xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/var-tracking.c (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* Variable tracking routines for the GNU compiler.
2    Copyright (C) 2002-2020 Free Software Foundation, Inc.
3 
4    This file is part of GCC.
5 
6    GCC is free software; you can redistribute it and/or modify it
7    under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3, or (at your option)
9    any later version.
10 
11    GCC is distributed in the hope that it will be useful, but WITHOUT
12    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13    or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public
14    License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with GCC; see the file COPYING3.  If not see
18    <http://www.gnu.org/licenses/>.  */
19 
20 /* This file contains the variable tracking pass.  It computes where
21    variables are located (which registers or where in memory) at each position
22    in instruction stream and emits notes describing the locations.
23    Debug information (DWARF2 location lists) is finally generated from
24    these notes.
25    With this debug information, it is possible to show variables
26    even when debugging optimized code.
27 
28    How does the variable tracking pass work?
29 
30    First, it scans RTL code for uses, stores and clobbers (register/memory
31    references in instructions), for call insns and for stack adjustments
32    separately for each basic block and saves them to an array of micro
33    operations.
34    The micro operations of one instruction are ordered so that
35    pre-modifying stack adjustment < use < use with no var < call insn <
36      < clobber < set < post-modifying stack adjustment
37 
38    Then, a forward dataflow analysis is performed to find out how locations
39    of variables change through code and to propagate the variable locations
40    along control flow graph.
41    The IN set for basic block BB is computed as a union of OUT sets of BB's
42    predecessors, the OUT set for BB is copied from the IN set for BB and
43    is changed according to micro operations in BB.
44 
45    The IN and OUT sets for basic blocks consist of a current stack adjustment
46    (used for adjusting offset of variables addressed using stack pointer),
47    the table of structures describing the locations of parts of a variable
48    and for each physical register a linked list for each physical register.
49    The linked list is a list of variable parts stored in the register,
50    i.e. it is a list of triplets (reg, decl, offset) where decl is
51    REG_EXPR (reg) and offset is REG_OFFSET (reg).  The linked list is used for
52    effective deleting appropriate variable parts when we set or clobber the
53    register.
54 
55    There may be more than one variable part in a register.  The linked lists
56    should be pretty short so it is a good data structure here.
57    For example in the following code, register allocator may assign same
58    register to variables A and B, and both of them are stored in the same
59    register in CODE:
60 
61      if (cond)
62        set A;
63      else
64        set B;
65      CODE;
66      if (cond)
67        use A;
68      else
69        use B;
70 
71    Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72    are emitted to appropriate positions in RTL code.  Each such a note describes
73    the location of one variable at the point in instruction stream where the
74    note is.  There is no need to emit a note for each variable before each
75    instruction, we only emit these notes where the location of variable changes
76    (this means that we also emit notes for changes between the OUT set of the
77    previous block and the IN set of the current block).
78 
79    The notes consist of two parts:
80    1. the declaration (from REG_EXPR or MEM_EXPR)
81    2. the location of a variable - it is either a simple register/memory
82       reference (for simple variables, for example int),
83       or a parallel of register/memory references (for a large variables
84       which consist of several parts, for example long long).
85 
86 */
87 
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
117 #include "print-rtl.h"
118 #include "function-abi.h"
119 
120 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
121 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
122 
123 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
124    has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
125    Currently the value is the same as IDENTIFIER_NODE, which has such
126    a property.  If this compile time assertion ever fails, make sure that
127    the new tree code that equals (int) VALUE has the same property.  */
128 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
129 
130 /* Type of micro operation.  */
131 enum micro_operation_type
132 {
133   MO_USE,	/* Use location (REG or MEM).  */
134   MO_USE_NO_VAR,/* Use location which is not associated with a variable
135 		   or the variable is not trackable.  */
136   MO_VAL_USE,	/* Use location which is associated with a value.  */
137   MO_VAL_LOC,   /* Use location which appears in a debug insn.  */
138   MO_VAL_SET,	/* Set location associated with a value.  */
139   MO_SET,	/* Set location.  */
140   MO_COPY,	/* Copy the same portion of a variable from one
141 		   location to another.  */
142   MO_CLOBBER,	/* Clobber location.  */
143   MO_CALL,	/* Call insn.  */
144   MO_ADJUST	/* Adjust stack pointer.  */
145 
146 };
147 
148 static const char * const ATTRIBUTE_UNUSED
149 micro_operation_type_name[] = {
150   "MO_USE",
151   "MO_USE_NO_VAR",
152   "MO_VAL_USE",
153   "MO_VAL_LOC",
154   "MO_VAL_SET",
155   "MO_SET",
156   "MO_COPY",
157   "MO_CLOBBER",
158   "MO_CALL",
159   "MO_ADJUST"
160 };
161 
162 /* Where shall the note be emitted?  BEFORE or AFTER the instruction.
163    Notes emitted as AFTER_CALL are to take effect during the call,
164    rather than after the call.  */
165 enum emit_note_where
166 {
167   EMIT_NOTE_BEFORE_INSN,
168   EMIT_NOTE_AFTER_INSN,
169   EMIT_NOTE_AFTER_CALL_INSN
170 };
171 
172 /* Structure holding information about micro operation.  */
173 struct micro_operation
174 {
175   /* Type of micro operation.  */
176   enum micro_operation_type type;
177 
178   /* The instruction which the micro operation is in, for MO_USE,
179      MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
180      instruction or note in the original flow (before any var-tracking
181      notes are inserted, to simplify emission of notes), for MO_SET
182      and MO_CLOBBER.  */
183   rtx_insn *insn;
184 
185   union {
186     /* Location.  For MO_SET and MO_COPY, this is the SET that
187        performs the assignment, if known, otherwise it is the target
188        of the assignment.  For MO_VAL_USE and MO_VAL_SET, it is a
189        CONCAT of the VALUE and the LOC associated with it.  For
190        MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
191        associated with it.  */
192     rtx loc;
193 
194     /* Stack adjustment.  */
195     HOST_WIDE_INT adjust;
196   } u;
197 };
198 
199 
200 /* A declaration of a variable, or an RTL value being handled like a
201    declaration.  */
202 typedef void *decl_or_value;
203 
204 /* Return true if a decl_or_value DV is a DECL or NULL.  */
205 static inline bool
dv_is_decl_p(decl_or_value dv)206 dv_is_decl_p (decl_or_value dv)
207 {
208   return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
209 }
210 
211 /* Return true if a decl_or_value is a VALUE rtl.  */
212 static inline bool
dv_is_value_p(decl_or_value dv)213 dv_is_value_p (decl_or_value dv)
214 {
215   return dv && !dv_is_decl_p (dv);
216 }
217 
218 /* Return the decl in the decl_or_value.  */
219 static inline tree
dv_as_decl(decl_or_value dv)220 dv_as_decl (decl_or_value dv)
221 {
222   gcc_checking_assert (dv_is_decl_p (dv));
223   return (tree) dv;
224 }
225 
226 /* Return the value in the decl_or_value.  */
227 static inline rtx
dv_as_value(decl_or_value dv)228 dv_as_value (decl_or_value dv)
229 {
230   gcc_checking_assert (dv_is_value_p (dv));
231   return (rtx)dv;
232 }
233 
234 /* Return the opaque pointer in the decl_or_value.  */
235 static inline void *
dv_as_opaque(decl_or_value dv)236 dv_as_opaque (decl_or_value dv)
237 {
238   return dv;
239 }
240 
241 
242 /* Description of location of a part of a variable.  The content of a physical
243    register is described by a chain of these structures.
244    The chains are pretty short (usually 1 or 2 elements) and thus
245    chain is the best data structure.  */
246 struct attrs
247 {
248   /* Pointer to next member of the list.  */
249   attrs *next;
250 
251   /* The rtx of register.  */
252   rtx loc;
253 
254   /* The declaration corresponding to LOC.  */
255   decl_or_value dv;
256 
257   /* Offset from start of DECL.  */
258   HOST_WIDE_INT offset;
259 };
260 
261 /* Structure for chaining the locations.  */
262 struct location_chain
263 {
264   /* Next element in the chain.  */
265   location_chain *next;
266 
267   /* The location (REG, MEM or VALUE).  */
268   rtx loc;
269 
270   /* The "value" stored in this location.  */
271   rtx set_src;
272 
273   /* Initialized? */
274   enum var_init_status init;
275 };
276 
277 /* A vector of loc_exp_dep holds the active dependencies of a one-part
278    DV on VALUEs, i.e., the VALUEs expanded so as to form the current
279    location of DV.  Each entry is also part of VALUE' s linked-list of
280    backlinks back to DV.  */
281 struct loc_exp_dep
282 {
283   /* The dependent DV.  */
284   decl_or_value dv;
285   /* The dependency VALUE or DECL_DEBUG.  */
286   rtx value;
287   /* The next entry in VALUE's backlinks list.  */
288   struct loc_exp_dep *next;
289   /* A pointer to the pointer to this entry (head or prev's next) in
290      the doubly-linked list.  */
291   struct loc_exp_dep **pprev;
292 };
293 
294 
295 /* This data structure holds information about the depth of a variable
296    expansion.  */
297 struct expand_depth
298 {
299   /* This measures the complexity of the expanded expression.  It
300      grows by one for each level of expansion that adds more than one
301      operand.  */
302   int complexity;
303   /* This counts the number of ENTRY_VALUE expressions in an
304      expansion.  We want to minimize their use.  */
305   int entryvals;
306 };
307 
308 /* This data structure is allocated for one-part variables at the time
309    of emitting notes.  */
310 struct onepart_aux
311 {
312   /* Doubly-linked list of dependent DVs.  These are DVs whose cur_loc
313      computation used the expansion of this variable, and that ought
314      to be notified should this variable change.  If the DV's cur_loc
315      expanded to NULL, all components of the loc list are regarded as
316      active, so that any changes in them give us a chance to get a
317      location.  Otherwise, only components of the loc that expanded to
318      non-NULL are regarded as active dependencies.  */
319   loc_exp_dep *backlinks;
320   /* This holds the LOC that was expanded into cur_loc.  We need only
321      mark a one-part variable as changed if the FROM loc is removed,
322      or if it has no known location and a loc is added, or if it gets
323      a change notification from any of its active dependencies.  */
324   rtx from;
325   /* The depth of the cur_loc expression.  */
326   expand_depth depth;
327   /* Dependencies actively used when expand FROM into cur_loc.  */
328   vec<loc_exp_dep, va_heap, vl_embed> deps;
329 };
330 
331 /* Structure describing one part of variable.  */
332 struct variable_part
333 {
334   /* Chain of locations of the part.  */
335   location_chain *loc_chain;
336 
337   /* Location which was last emitted to location list.  */
338   rtx cur_loc;
339 
340   union variable_aux
341   {
342     /* The offset in the variable, if !var->onepart.  */
343     HOST_WIDE_INT offset;
344 
345     /* Pointer to auxiliary data, if var->onepart and emit_notes.  */
346     struct onepart_aux *onepaux;
347   } aux;
348 };
349 
350 /* Maximum number of location parts.  */
351 #define MAX_VAR_PARTS 16
352 
353 /* Enumeration type used to discriminate various types of one-part
354    variables.  */
355 enum onepart_enum
356 {
357   /* Not a one-part variable.  */
358   NOT_ONEPART = 0,
359   /* A one-part DECL that is not a DEBUG_EXPR_DECL.  */
360   ONEPART_VDECL = 1,
361   /* A DEBUG_EXPR_DECL.  */
362   ONEPART_DEXPR = 2,
363   /* A VALUE.  */
364   ONEPART_VALUE = 3
365 };
366 
367 /* Structure describing where the variable is located.  */
368 struct variable
369 {
370   /* The declaration of the variable, or an RTL value being handled
371      like a declaration.  */
372   decl_or_value dv;
373 
374   /* Reference count.  */
375   int refcount;
376 
377   /* Number of variable parts.  */
378   char n_var_parts;
379 
380   /* What type of DV this is, according to enum onepart_enum.  */
381   ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
382 
383   /* True if this variable_def struct is currently in the
384      changed_variables hash table.  */
385   bool in_changed_variables;
386 
387   /* The variable parts.  */
388   variable_part var_part[1];
389 };
390 
391 /* Pointer to the BB's information specific to variable tracking pass.  */
392 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
393 
394 /* Return MEM_OFFSET (MEM) as a HOST_WIDE_INT, or 0 if we can't.  */
395 
396 static inline HOST_WIDE_INT
int_mem_offset(const_rtx mem)397 int_mem_offset (const_rtx mem)
398 {
399   HOST_WIDE_INT offset;
400   if (MEM_OFFSET_KNOWN_P (mem) && MEM_OFFSET (mem).is_constant (&offset))
401     return offset;
402   return 0;
403 }
404 
405 #if CHECKING_P && (GCC_VERSION >= 2007)
406 
407 /* Access VAR's Ith part's offset, checking that it's not a one-part
408    variable.  */
409 #define VAR_PART_OFFSET(var, i) __extension__			\
410 (*({  variable *const __v = (var);				\
411       gcc_checking_assert (!__v->onepart);			\
412       &__v->var_part[(i)].aux.offset; }))
413 
414 /* Access VAR's one-part auxiliary data, checking that it is a
415    one-part variable.  */
416 #define VAR_LOC_1PAUX(var) __extension__			\
417 (*({  variable *const __v = (var);				\
418       gcc_checking_assert (__v->onepart);			\
419       &__v->var_part[0].aux.onepaux; }))
420 
421 #else
422 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
423 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
424 #endif
425 
426 /* These are accessor macros for the one-part auxiliary data.  When
427    convenient for users, they're guarded by tests that the data was
428    allocated.  */
429 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var)		  \
430 			      ? VAR_LOC_1PAUX (var)->backlinks	  \
431 			      : NULL)
432 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var)		  \
433 			       ? &VAR_LOC_1PAUX (var)->backlinks  \
434 			       : NULL)
435 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
436 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
437 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var)		  \
438 			      ? &VAR_LOC_1PAUX (var)->deps	  \
439 			      : NULL)
440 
441 
442 
443 typedef unsigned int dvuid;
444 
445 /* Return the uid of DV.  */
446 
447 static inline dvuid
dv_uid(decl_or_value dv)448 dv_uid (decl_or_value dv)
449 {
450   if (dv_is_value_p (dv))
451     return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
452   else
453     return DECL_UID (dv_as_decl (dv));
454 }
455 
456 /* Compute the hash from the uid.  */
457 
458 static inline hashval_t
dv_uid2hash(dvuid uid)459 dv_uid2hash (dvuid uid)
460 {
461   return uid;
462 }
463 
464 /* The hash function for a mask table in a shared_htab chain.  */
465 
466 static inline hashval_t
dv_htab_hash(decl_or_value dv)467 dv_htab_hash (decl_or_value dv)
468 {
469   return dv_uid2hash (dv_uid (dv));
470 }
471 
472 static void variable_htab_free (void *);
473 
474 /* Variable hashtable helpers.  */
475 
476 struct variable_hasher : pointer_hash <variable>
477 {
478   typedef void *compare_type;
479   static inline hashval_t hash (const variable *);
480   static inline bool equal (const variable *, const void *);
481   static inline void remove (variable *);
482 };
483 
484 /* The hash function for variable_htab, computes the hash value
485    from the declaration of variable X.  */
486 
487 inline hashval_t
hash(const variable * v)488 variable_hasher::hash (const variable *v)
489 {
490   return dv_htab_hash (v->dv);
491 }
492 
493 /* Compare the declaration of variable X with declaration Y.  */
494 
495 inline bool
equal(const variable * v,const void * y)496 variable_hasher::equal (const variable *v, const void *y)
497 {
498   decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
499 
500   return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
501 }
502 
503 /* Free the element of VARIABLE_HTAB (its type is struct variable_def).  */
504 
505 inline void
remove(variable * var)506 variable_hasher::remove (variable *var)
507 {
508   variable_htab_free (var);
509 }
510 
511 typedef hash_table<variable_hasher> variable_table_type;
512 typedef variable_table_type::iterator variable_iterator_type;
513 
514 /* Structure for passing some other parameters to function
515    emit_note_insn_var_location.  */
516 struct emit_note_data
517 {
518   /* The instruction which the note will be emitted before/after.  */
519   rtx_insn *insn;
520 
521   /* Where the note will be emitted (before/after insn)?  */
522   enum emit_note_where where;
523 
524   /* The variables and values active at this point.  */
525   variable_table_type *vars;
526 };
527 
528 /* Structure holding a refcounted hash table.  If refcount > 1,
529    it must be first unshared before modified.  */
530 struct shared_hash
531 {
532   /* Reference count.  */
533   int refcount;
534 
535   /* Actual hash table.  */
536   variable_table_type *htab;
537 };
538 
539 /* Structure holding the IN or OUT set for a basic block.  */
540 struct dataflow_set
541 {
542   /* Adjustment of stack offset.  */
543   HOST_WIDE_INT stack_adjust;
544 
545   /* Attributes for registers (lists of attrs).  */
546   attrs *regs[FIRST_PSEUDO_REGISTER];
547 
548   /* Variable locations.  */
549   shared_hash *vars;
550 
551   /* Vars that is being traversed.  */
552   shared_hash *traversed_vars;
553 };
554 
555 /* The structure (one for each basic block) containing the information
556    needed for variable tracking.  */
557 struct variable_tracking_info
558 {
559   /* The vector of micro operations.  */
560   vec<micro_operation> mos;
561 
562   /* The IN and OUT set for dataflow analysis.  */
563   dataflow_set in;
564   dataflow_set out;
565 
566   /* The permanent-in dataflow set for this block.  This is used to
567      hold values for which we had to compute entry values.  ??? This
568      should probably be dynamically allocated, to avoid using more
569      memory in non-debug builds.  */
570   dataflow_set *permp;
571 
572   /* Has the block been visited in DFS?  */
573   bool visited;
574 
575   /* Has the block been flooded in VTA?  */
576   bool flooded;
577 
578 };
579 
580 /* Alloc pool for struct attrs_def.  */
581 object_allocator<attrs> attrs_pool ("attrs pool");
582 
583 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries.  */
584 
585 static pool_allocator var_pool
586   ("variable_def pool", sizeof (variable) +
587    (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
588 
589 /* Alloc pool for struct variable_def with a single var_part entry.  */
590 static pool_allocator valvar_pool
591   ("small variable_def pool", sizeof (variable));
592 
593 /* Alloc pool for struct location_chain.  */
594 static object_allocator<location_chain> location_chain_pool
595   ("location_chain pool");
596 
597 /* Alloc pool for struct shared_hash.  */
598 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
599 
600 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables.  */
601 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
602 
603 /* Changed variables, notes will be emitted for them.  */
604 static variable_table_type *changed_variables;
605 
606 /* Shall notes be emitted?  */
607 static bool emit_notes;
608 
609 /* Values whose dynamic location lists have gone empty, but whose
610    cselib location lists are still usable.  Use this to hold the
611    current location, the backlinks, etc, during emit_notes.  */
612 static variable_table_type *dropped_values;
613 
614 /* Empty shared hashtable.  */
615 static shared_hash *empty_shared_hash;
616 
617 /* Scratch register bitmap used by cselib_expand_value_rtx.  */
618 static bitmap scratch_regs = NULL;
619 
620 #ifdef HAVE_window_save
621 struct GTY(()) parm_reg {
622   rtx outgoing;
623   rtx incoming;
624 };
625 
626 
627 /* Vector of windowed parameter registers, if any.  */
628 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
629 #endif
630 
631 /* Variable used to tell whether cselib_process_insn called our hook.  */
632 static bool cselib_hook_called;
633 
634 /* Local function prototypes.  */
635 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
636 					  HOST_WIDE_INT *);
637 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
638 					       HOST_WIDE_INT *);
639 static bool vt_stack_adjustments (void);
640 
641 static void init_attrs_list_set (attrs **);
642 static void attrs_list_clear (attrs **);
643 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
644 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
645 static void attrs_list_copy (attrs **, attrs *);
646 static void attrs_list_union (attrs **, attrs *);
647 
648 static variable **unshare_variable (dataflow_set *set, variable **slot,
649 					variable *var, enum var_init_status);
650 static void vars_copy (variable_table_type *, variable_table_type *);
651 static tree var_debug_decl (tree);
652 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
653 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
654 				    enum var_init_status, rtx);
655 static void var_reg_delete (dataflow_set *, rtx, bool);
656 static void var_regno_delete (dataflow_set *, int);
657 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
658 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
659 				    enum var_init_status, rtx);
660 static void var_mem_delete (dataflow_set *, rtx, bool);
661 
662 static void dataflow_set_init (dataflow_set *);
663 static void dataflow_set_clear (dataflow_set *);
664 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
665 static int variable_union_info_cmp_pos (const void *, const void *);
666 static void dataflow_set_union (dataflow_set *, dataflow_set *);
667 static location_chain *find_loc_in_1pdv (rtx, variable *,
668 					 variable_table_type *);
669 static bool canon_value_cmp (rtx, rtx);
670 static int loc_cmp (rtx, rtx);
671 static bool variable_part_different_p (variable_part *, variable_part *);
672 static bool onepart_variable_different_p (variable *, variable *);
673 static bool variable_different_p (variable *, variable *);
674 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
675 static void dataflow_set_destroy (dataflow_set *);
676 
677 static bool track_expr_p (tree, bool);
678 static void add_uses_1 (rtx *, void *);
679 static void add_stores (rtx, const_rtx, void *);
680 static bool compute_bb_dataflow (basic_block);
681 static bool vt_find_locations (void);
682 
683 static void dump_attrs_list (attrs *);
684 static void dump_var (variable *);
685 static void dump_vars (variable_table_type *);
686 static void dump_dataflow_set (dataflow_set *);
687 static void dump_dataflow_sets (void);
688 
689 static void set_dv_changed (decl_or_value, bool);
690 static void variable_was_changed (variable *, dataflow_set *);
691 static variable **set_slot_part (dataflow_set *, rtx, variable **,
692 				 decl_or_value, HOST_WIDE_INT,
693 				 enum var_init_status, rtx);
694 static void set_variable_part (dataflow_set *, rtx,
695 			       decl_or_value, HOST_WIDE_INT,
696 			       enum var_init_status, rtx, enum insert_option);
697 static variable **clobber_slot_part (dataflow_set *, rtx,
698 				     variable **, HOST_WIDE_INT, rtx);
699 static void clobber_variable_part (dataflow_set *, rtx,
700 				   decl_or_value, HOST_WIDE_INT, rtx);
701 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
702 				    HOST_WIDE_INT);
703 static void delete_variable_part (dataflow_set *, rtx,
704 				  decl_or_value, HOST_WIDE_INT);
705 static void emit_notes_in_bb (basic_block, dataflow_set *);
706 static void vt_emit_notes (void);
707 
708 static void vt_add_function_parameters (void);
709 static bool vt_initialize (void);
710 static void vt_finalize (void);
711 
712 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec.  */
713 
714 static int
stack_adjust_offset_pre_post_cb(rtx,rtx op,rtx dest,rtx src,rtx srcoff,void * arg)715 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
716 				 void *arg)
717 {
718   if (dest != stack_pointer_rtx)
719     return 0;
720 
721   switch (GET_CODE (op))
722     {
723     case PRE_INC:
724     case PRE_DEC:
725       ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
726       return 0;
727     case POST_INC:
728     case POST_DEC:
729       ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
730       return 0;
731     case PRE_MODIFY:
732     case POST_MODIFY:
733       /* We handle only adjustments by constant amount.  */
734       gcc_assert (GET_CODE (src) == PLUS
735 		  && CONST_INT_P (XEXP (src, 1))
736 		  && XEXP (src, 0) == stack_pointer_rtx);
737       ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
738 	-= INTVAL (XEXP (src, 1));
739       return 0;
740     default:
741       gcc_unreachable ();
742     }
743 }
744 
745 /* Given a SET, calculate the amount of stack adjustment it contains
746    PRE- and POST-modifying stack pointer.
747    This function is similar to stack_adjust_offset.  */
748 
749 static void
stack_adjust_offset_pre_post(rtx pattern,HOST_WIDE_INT * pre,HOST_WIDE_INT * post)750 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
751 			      HOST_WIDE_INT *post)
752 {
753   rtx src = SET_SRC (pattern);
754   rtx dest = SET_DEST (pattern);
755   enum rtx_code code;
756 
757   if (dest == stack_pointer_rtx)
758     {
759       /* (set (reg sp) (plus (reg sp) (const_int))) */
760       code = GET_CODE (src);
761       if (! (code == PLUS || code == MINUS)
762 	  || XEXP (src, 0) != stack_pointer_rtx
763 	  || !CONST_INT_P (XEXP (src, 1)))
764 	return;
765 
766       if (code == MINUS)
767 	*post += INTVAL (XEXP (src, 1));
768       else
769 	*post -= INTVAL (XEXP (src, 1));
770       return;
771     }
772   HOST_WIDE_INT res[2] = { 0, 0 };
773   for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
774   *pre += res[0];
775   *post += res[1];
776 }
777 
778 /* Given an INSN, calculate the amount of stack adjustment it contains
779    PRE- and POST-modifying stack pointer.  */
780 
781 static void
insn_stack_adjust_offset_pre_post(rtx_insn * insn,HOST_WIDE_INT * pre,HOST_WIDE_INT * post)782 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
783 				   HOST_WIDE_INT *post)
784 {
785   rtx pattern;
786 
787   *pre = 0;
788   *post = 0;
789 
790   pattern = PATTERN (insn);
791   if (RTX_FRAME_RELATED_P (insn))
792     {
793       rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
794       if (expr)
795 	pattern = XEXP (expr, 0);
796     }
797 
798   if (GET_CODE (pattern) == SET)
799     stack_adjust_offset_pre_post (pattern, pre, post);
800   else if (GET_CODE (pattern) == PARALLEL
801 	   || GET_CODE (pattern) == SEQUENCE)
802     {
803       int i;
804 
805       /* There may be stack adjustments inside compound insns.  Search
806 	 for them.  */
807       for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
808 	if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
809 	  stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
810     }
811 }
812 
813 /* Compute stack adjustments for all blocks by traversing DFS tree.
814    Return true when the adjustments on all incoming edges are consistent.
815    Heavily borrowed from pre_and_rev_post_order_compute.  */
816 
817 static bool
vt_stack_adjustments(void)818 vt_stack_adjustments (void)
819 {
820   edge_iterator *stack;
821   int sp;
822 
823   /* Initialize entry block.  */
824   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
825   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
826     = INCOMING_FRAME_SP_OFFSET;
827   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
828     = INCOMING_FRAME_SP_OFFSET;
829 
830   /* Allocate stack for back-tracking up CFG.  */
831   stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
832   sp = 0;
833 
834   /* Push the first edge on to the stack.  */
835   stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
836 
837   while (sp)
838     {
839       edge_iterator ei;
840       basic_block src;
841       basic_block dest;
842 
843       /* Look at the edge on the top of the stack.  */
844       ei = stack[sp - 1];
845       src = ei_edge (ei)->src;
846       dest = ei_edge (ei)->dest;
847 
848       /* Check if the edge destination has been visited yet.  */
849       if (!VTI (dest)->visited)
850 	{
851 	  rtx_insn *insn;
852 	  HOST_WIDE_INT pre, post, offset;
853 	  VTI (dest)->visited = true;
854 	  VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
855 
856 	  if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
857 	    for (insn = BB_HEAD (dest);
858 		 insn != NEXT_INSN (BB_END (dest));
859 		 insn = NEXT_INSN (insn))
860 	      if (INSN_P (insn))
861 		{
862 		  insn_stack_adjust_offset_pre_post (insn, &pre, &post);
863 		  offset += pre + post;
864 		}
865 
866 	  VTI (dest)->out.stack_adjust = offset;
867 
868 	  if (EDGE_COUNT (dest->succs) > 0)
869 	    /* Since the DEST node has been visited for the first
870 	       time, check its successors.  */
871 	    stack[sp++] = ei_start (dest->succs);
872 	}
873       else
874 	{
875 	  /* We can end up with different stack adjustments for the exit block
876 	     of a shrink-wrapped function if stack_adjust_offset_pre_post
877 	     doesn't understand the rtx pattern used to restore the stack
878 	     pointer in the epilogue.  For example, on s390(x), the stack
879 	     pointer is often restored via a load-multiple instruction
880 	     and so no stack_adjust offset is recorded for it.  This means
881 	     that the stack offset at the end of the epilogue block is the
882 	     same as the offset before the epilogue, whereas other paths
883 	     to the exit block will have the correct stack_adjust.
884 
885 	     It is safe to ignore these differences because (a) we never
886 	     use the stack_adjust for the exit block in this pass and
887 	     (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
888 	     function are correct.
889 
890 	     We must check whether the adjustments on other edges are
891 	     the same though.  */
892 	  if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
893 	      && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
894 	    {
895 	      free (stack);
896 	      return false;
897 	    }
898 
899 	  if (! ei_one_before_end_p (ei))
900 	    /* Go to the next edge.  */
901 	    ei_next (&stack[sp - 1]);
902 	  else
903 	    /* Return to previous level if there are no more edges.  */
904 	    sp--;
905 	}
906     }
907 
908   free (stack);
909   return true;
910 }
911 
912 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
913    hard_frame_pointer_rtx is being mapped to it and offset for it.  */
914 static rtx cfa_base_rtx;
915 static HOST_WIDE_INT cfa_base_offset;
916 
917 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
918    or hard_frame_pointer_rtx.  */
919 
920 static inline rtx
compute_cfa_pointer(poly_int64 adjustment)921 compute_cfa_pointer (poly_int64 adjustment)
922 {
923   return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
924 }
925 
926 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
927    or -1 if the replacement shouldn't be done.  */
928 static poly_int64 hard_frame_pointer_adjustment = -1;
929 
930 /* Data for adjust_mems callback.  */
931 
932 class adjust_mem_data
933 {
934 public:
935   bool store;
936   machine_mode mem_mode;
937   HOST_WIDE_INT stack_adjust;
938   auto_vec<rtx> side_effects;
939 };
940 
941 /* Helper for adjust_mems.  Return true if X is suitable for
942    transformation of wider mode arithmetics to narrower mode.  */
943 
944 static bool
use_narrower_mode_test(rtx x,const_rtx subreg)945 use_narrower_mode_test (rtx x, const_rtx subreg)
946 {
947   subrtx_var_iterator::array_type array;
948   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
949     {
950       rtx x = *iter;
951       if (CONSTANT_P (x))
952 	iter.skip_subrtxes ();
953       else
954 	switch (GET_CODE (x))
955 	  {
956 	  case REG:
957 	    if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
958 	      return false;
959 	    if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
960 				  subreg_lowpart_offset (GET_MODE (subreg),
961 							 GET_MODE (x))))
962 	      return false;
963 	    break;
964 	  case PLUS:
965 	  case MINUS:
966 	  case MULT:
967 	    break;
968 	  case ASHIFT:
969 	    if (GET_MODE (XEXP (x, 1)) != VOIDmode)
970 	      {
971 		enum machine_mode mode = GET_MODE (subreg);
972 		rtx op1 = XEXP (x, 1);
973 		enum machine_mode op1_mode = GET_MODE (op1);
974 		if (GET_MODE_PRECISION (as_a <scalar_int_mode> (mode))
975 		    < GET_MODE_PRECISION (as_a <scalar_int_mode> (op1_mode)))
976 		  {
977 		    poly_uint64 byte = subreg_lowpart_offset (mode, op1_mode);
978 		    if (GET_CODE (op1) == SUBREG || GET_CODE (op1) == CONCAT)
979 		      {
980 			if (!simplify_subreg (mode, op1, op1_mode, byte))
981 			  return false;
982 		      }
983 		    else if (!validate_subreg (mode, op1_mode, op1, byte))
984 		      return false;
985 		  }
986 	      }
987 	    iter.substitute (XEXP (x, 0));
988 	    break;
989 	  default:
990 	    return false;
991 	  }
992     }
993   return true;
994 }
995 
996 /* Transform X into narrower mode MODE from wider mode WMODE.  */
997 
998 static rtx
use_narrower_mode(rtx x,scalar_int_mode mode,scalar_int_mode wmode)999 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
1000 {
1001   rtx op0, op1;
1002   if (CONSTANT_P (x))
1003     return lowpart_subreg (mode, x, wmode);
1004   switch (GET_CODE (x))
1005     {
1006     case REG:
1007       return lowpart_subreg (mode, x, wmode);
1008     case PLUS:
1009     case MINUS:
1010     case MULT:
1011       op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1012       op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1013       return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1014     case ASHIFT:
1015       op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1016       op1 = XEXP (x, 1);
1017       /* Ensure shift amount is not wider than mode.  */
1018       if (GET_MODE (op1) == VOIDmode)
1019 	op1 = lowpart_subreg (mode, op1, wmode);
1020       else if (GET_MODE_PRECISION (mode)
1021 	       < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
1022 	op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
1023       return simplify_gen_binary (ASHIFT, mode, op0, op1);
1024     default:
1025       gcc_unreachable ();
1026     }
1027 }
1028 
1029 /* Helper function for adjusting used MEMs.  */
1030 
1031 static rtx
adjust_mems(rtx loc,const_rtx old_rtx,void * data)1032 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1033 {
1034   class adjust_mem_data *amd = (class adjust_mem_data *) data;
1035   rtx mem, addr = loc, tem;
1036   machine_mode mem_mode_save;
1037   bool store_save;
1038   scalar_int_mode tem_mode, tem_subreg_mode;
1039   poly_int64 size;
1040   switch (GET_CODE (loc))
1041     {
1042     case REG:
1043       /* Don't do any sp or fp replacements outside of MEM addresses
1044          on the LHS.  */
1045       if (amd->mem_mode == VOIDmode && amd->store)
1046 	return loc;
1047       if (loc == stack_pointer_rtx
1048 	  && !frame_pointer_needed
1049 	  && cfa_base_rtx)
1050 	return compute_cfa_pointer (amd->stack_adjust);
1051       else if (loc == hard_frame_pointer_rtx
1052 	       && frame_pointer_needed
1053 	       && maybe_ne (hard_frame_pointer_adjustment, -1)
1054 	       && cfa_base_rtx)
1055 	return compute_cfa_pointer (hard_frame_pointer_adjustment);
1056       gcc_checking_assert (loc != virtual_incoming_args_rtx);
1057       return loc;
1058     case MEM:
1059       mem = loc;
1060       if (!amd->store)
1061 	{
1062 	  mem = targetm.delegitimize_address (mem);
1063 	  if (mem != loc && !MEM_P (mem))
1064 	    return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1065 	}
1066 
1067       addr = XEXP (mem, 0);
1068       mem_mode_save = amd->mem_mode;
1069       amd->mem_mode = GET_MODE (mem);
1070       store_save = amd->store;
1071       amd->store = false;
1072       addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1073       amd->store = store_save;
1074       amd->mem_mode = mem_mode_save;
1075       if (mem == loc)
1076 	addr = targetm.delegitimize_address (addr);
1077       if (addr != XEXP (mem, 0))
1078 	mem = replace_equiv_address_nv (mem, addr);
1079       if (!amd->store)
1080 	mem = avoid_constant_pool_reference (mem);
1081       return mem;
1082     case PRE_INC:
1083     case PRE_DEC:
1084       size = GET_MODE_SIZE (amd->mem_mode);
1085       addr = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1086 			    GET_CODE (loc) == PRE_INC ? size : -size);
1087       /* FALLTHRU */
1088     case POST_INC:
1089     case POST_DEC:
1090       if (addr == loc)
1091 	addr = XEXP (loc, 0);
1092       gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1093       addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1094       size = GET_MODE_SIZE (amd->mem_mode);
1095       tem = plus_constant (GET_MODE (loc), XEXP (loc, 0),
1096 			   (GET_CODE (loc) == PRE_INC
1097 			    || GET_CODE (loc) == POST_INC) ? size : -size);
1098       store_save = amd->store;
1099       amd->store = false;
1100       tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1101       amd->store = store_save;
1102       amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1103       return addr;
1104     case PRE_MODIFY:
1105       addr = XEXP (loc, 1);
1106       /* FALLTHRU */
1107     case POST_MODIFY:
1108       if (addr == loc)
1109 	addr = XEXP (loc, 0);
1110       gcc_assert (amd->mem_mode != VOIDmode);
1111       addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1112       store_save = amd->store;
1113       amd->store = false;
1114       tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1115 				     adjust_mems, data);
1116       amd->store = store_save;
1117       amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1118       return addr;
1119     case SUBREG:
1120       /* First try without delegitimization of whole MEMs and
1121 	 avoid_constant_pool_reference, which is more likely to succeed.  */
1122       store_save = amd->store;
1123       amd->store = true;
1124       addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1125 				      data);
1126       amd->store = store_save;
1127       mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1128       if (mem == SUBREG_REG (loc))
1129 	{
1130 	  tem = loc;
1131 	  goto finish_subreg;
1132 	}
1133       tem = simplify_gen_subreg (GET_MODE (loc), mem,
1134 				 GET_MODE (SUBREG_REG (loc)),
1135 				 SUBREG_BYTE (loc));
1136       if (tem)
1137 	goto finish_subreg;
1138       tem = simplify_gen_subreg (GET_MODE (loc), addr,
1139 				 GET_MODE (SUBREG_REG (loc)),
1140 				 SUBREG_BYTE (loc));
1141       if (tem == NULL_RTX)
1142 	tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1143     finish_subreg:
1144       if (MAY_HAVE_DEBUG_BIND_INSNS
1145 	  && GET_CODE (tem) == SUBREG
1146 	  && (GET_CODE (SUBREG_REG (tem)) == PLUS
1147 	      || GET_CODE (SUBREG_REG (tem)) == MINUS
1148 	      || GET_CODE (SUBREG_REG (tem)) == MULT
1149 	      || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1150 	  && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1151 	  && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1152 				     &tem_subreg_mode)
1153 	  && (GET_MODE_PRECISION (tem_mode)
1154 	      < GET_MODE_PRECISION (tem_subreg_mode))
1155 	  && subreg_lowpart_p (tem)
1156 	  && use_narrower_mode_test (SUBREG_REG (tem), tem))
1157 	return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1158       return tem;
1159     case ASM_OPERANDS:
1160       /* Don't do any replacements in second and following
1161 	 ASM_OPERANDS of inline-asm with multiple sets.
1162 	 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1163 	 and ASM_OPERANDS_LABEL_VEC need to be equal between
1164 	 all the ASM_OPERANDs in the insn and adjust_insn will
1165 	 fix this up.  */
1166       if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1167 	return loc;
1168       break;
1169     default:
1170       break;
1171     }
1172   return NULL_RTX;
1173 }
1174 
1175 /* Helper function for replacement of uses.  */
1176 
1177 static void
adjust_mem_uses(rtx * x,void * data)1178 adjust_mem_uses (rtx *x, void *data)
1179 {
1180   rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1181   if (new_x != *x)
1182     validate_change (NULL_RTX, x, new_x, true);
1183 }
1184 
1185 /* Helper function for replacement of stores.  */
1186 
1187 static void
adjust_mem_stores(rtx loc,const_rtx expr,void * data)1188 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1189 {
1190   if (MEM_P (loc))
1191     {
1192       rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1193 					      adjust_mems, data);
1194       if (new_dest != SET_DEST (expr))
1195 	{
1196 	  rtx xexpr = CONST_CAST_RTX (expr);
1197 	  validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1198 	}
1199     }
1200 }
1201 
1202 /* Simplify INSN.  Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1203    replace them with their value in the insn and add the side-effects
1204    as other sets to the insn.  */
1205 
1206 static void
adjust_insn(basic_block bb,rtx_insn * insn)1207 adjust_insn (basic_block bb, rtx_insn *insn)
1208 {
1209   rtx set;
1210 
1211 #ifdef HAVE_window_save
1212   /* If the target machine has an explicit window save instruction, the
1213      transformation OUTGOING_REGNO -> INCOMING_REGNO is done there.  */
1214   if (RTX_FRAME_RELATED_P (insn)
1215       && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1216     {
1217       unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1218       rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1219       parm_reg *p;
1220 
1221       FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1222 	{
1223 	  XVECEXP (rtl, 0, i * 2)
1224 	    = gen_rtx_SET (p->incoming, p->outgoing);
1225 	  /* Do not clobber the attached DECL, but only the REG.  */
1226 	  XVECEXP (rtl, 0, i * 2 + 1)
1227 	    = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1228 			       gen_raw_REG (GET_MODE (p->outgoing),
1229 					    REGNO (p->outgoing)));
1230 	}
1231 
1232       validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1233       return;
1234     }
1235 #endif
1236 
1237   adjust_mem_data amd;
1238   amd.mem_mode = VOIDmode;
1239   amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1240 
1241   amd.store = true;
1242   note_stores (insn, adjust_mem_stores, &amd);
1243 
1244   amd.store = false;
1245   if (GET_CODE (PATTERN (insn)) == PARALLEL
1246       && asm_noperands (PATTERN (insn)) > 0
1247       && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1248     {
1249       rtx body, set0;
1250       int i;
1251 
1252       /* inline-asm with multiple sets is tiny bit more complicated,
1253 	 because the 3 vectors in ASM_OPERANDS need to be shared between
1254 	 all ASM_OPERANDS in the instruction.  adjust_mems will
1255 	 not touch ASM_OPERANDS other than the first one, asm_noperands
1256 	 test above needs to be called before that (otherwise it would fail)
1257 	 and afterwards this code fixes it up.  */
1258       note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1259       body = PATTERN (insn);
1260       set0 = XVECEXP (body, 0, 0);
1261       gcc_checking_assert (GET_CODE (set0) == SET
1262 			   && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1263 			   && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1264       for (i = 1; i < XVECLEN (body, 0); i++)
1265 	if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1266 	  break;
1267 	else
1268 	  {
1269 	    set = XVECEXP (body, 0, i);
1270 	    gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1271 				 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1272 				    == i);
1273 	    if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1274 		!= ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1275 		|| ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1276 		   != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1277 		|| ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1278 		   != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1279 	      {
1280 		rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1281 		ASM_OPERANDS_INPUT_VEC (newsrc)
1282 		  = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1283 		ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1284 		  = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1285 		ASM_OPERANDS_LABEL_VEC (newsrc)
1286 		  = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1287 		validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1288 	      }
1289 	  }
1290     }
1291   else
1292     note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1293 
1294   /* For read-only MEMs containing some constant, prefer those
1295      constants.  */
1296   set = single_set (insn);
1297   if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1298     {
1299       rtx note = find_reg_equal_equiv_note (insn);
1300 
1301       if (note && CONSTANT_P (XEXP (note, 0)))
1302 	validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1303     }
1304 
1305   if (!amd.side_effects.is_empty ())
1306     {
1307       rtx *pat, new_pat;
1308       int i, oldn;
1309 
1310       pat = &PATTERN (insn);
1311       if (GET_CODE (*pat) == COND_EXEC)
1312 	pat = &COND_EXEC_CODE (*pat);
1313       if (GET_CODE (*pat) == PARALLEL)
1314 	oldn = XVECLEN (*pat, 0);
1315       else
1316 	oldn = 1;
1317       unsigned int newn = amd.side_effects.length ();
1318       new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1319       if (GET_CODE (*pat) == PARALLEL)
1320 	for (i = 0; i < oldn; i++)
1321 	  XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1322       else
1323 	XVECEXP (new_pat, 0, 0) = *pat;
1324 
1325       rtx effect;
1326       unsigned int j;
1327       FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1328 	XVECEXP (new_pat, 0, j + oldn) = effect;
1329       validate_change (NULL_RTX, pat, new_pat, true);
1330     }
1331 }
1332 
1333 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV.  */
1334 static inline rtx
dv_as_rtx(decl_or_value dv)1335 dv_as_rtx (decl_or_value dv)
1336 {
1337   tree decl;
1338 
1339   if (dv_is_value_p (dv))
1340     return dv_as_value (dv);
1341 
1342   decl = dv_as_decl (dv);
1343 
1344   gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1345   return DECL_RTL_KNOWN_SET (decl);
1346 }
1347 
1348 /* Return nonzero if a decl_or_value must not have more than one
1349    variable part.  The returned value discriminates among various
1350    kinds of one-part DVs ccording to enum onepart_enum.  */
1351 static inline onepart_enum
dv_onepart_p(decl_or_value dv)1352 dv_onepart_p (decl_or_value dv)
1353 {
1354   tree decl;
1355 
1356   if (!MAY_HAVE_DEBUG_BIND_INSNS)
1357     return NOT_ONEPART;
1358 
1359   if (dv_is_value_p (dv))
1360     return ONEPART_VALUE;
1361 
1362   decl = dv_as_decl (dv);
1363 
1364   if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1365     return ONEPART_DEXPR;
1366 
1367   if (target_for_debug_bind (decl) != NULL_TREE)
1368     return ONEPART_VDECL;
1369 
1370   return NOT_ONEPART;
1371 }
1372 
1373 /* Return the variable pool to be used for a dv of type ONEPART.  */
1374 static inline pool_allocator &
onepart_pool(onepart_enum onepart)1375 onepart_pool (onepart_enum onepart)
1376 {
1377   return onepart ? valvar_pool : var_pool;
1378 }
1379 
1380 /* Allocate a variable_def from the corresponding variable pool.  */
1381 static inline variable *
onepart_pool_allocate(onepart_enum onepart)1382 onepart_pool_allocate (onepart_enum onepart)
1383 {
1384   return (variable*) onepart_pool (onepart).allocate ();
1385 }
1386 
1387 /* Build a decl_or_value out of a decl.  */
1388 static inline decl_or_value
dv_from_decl(tree decl)1389 dv_from_decl (tree decl)
1390 {
1391   decl_or_value dv;
1392   dv = decl;
1393   gcc_checking_assert (dv_is_decl_p (dv));
1394   return dv;
1395 }
1396 
1397 /* Build a decl_or_value out of a value.  */
1398 static inline decl_or_value
dv_from_value(rtx value)1399 dv_from_value (rtx value)
1400 {
1401   decl_or_value dv;
1402   dv = value;
1403   gcc_checking_assert (dv_is_value_p (dv));
1404   return dv;
1405 }
1406 
1407 /* Return a value or the decl of a debug_expr as a decl_or_value.  */
1408 static inline decl_or_value
dv_from_rtx(rtx x)1409 dv_from_rtx (rtx x)
1410 {
1411   decl_or_value dv;
1412 
1413   switch (GET_CODE (x))
1414     {
1415     case DEBUG_EXPR:
1416       dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1417       gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1418       break;
1419 
1420     case VALUE:
1421       dv = dv_from_value (x);
1422       break;
1423 
1424     default:
1425       gcc_unreachable ();
1426     }
1427 
1428   return dv;
1429 }
1430 
1431 extern void debug_dv (decl_or_value dv);
1432 
1433 DEBUG_FUNCTION void
debug_dv(decl_or_value dv)1434 debug_dv (decl_or_value dv)
1435 {
1436   if (dv_is_value_p (dv))
1437     debug_rtx (dv_as_value (dv));
1438   else
1439     debug_generic_stmt (dv_as_decl (dv));
1440 }
1441 
1442 static void loc_exp_dep_clear (variable *var);
1443 
1444 /* Free the element of VARIABLE_HTAB (its type is struct variable_def).  */
1445 
1446 static void
variable_htab_free(void * elem)1447 variable_htab_free (void *elem)
1448 {
1449   int i;
1450   variable *var = (variable *) elem;
1451   location_chain *node, *next;
1452 
1453   gcc_checking_assert (var->refcount > 0);
1454 
1455   var->refcount--;
1456   if (var->refcount > 0)
1457     return;
1458 
1459   for (i = 0; i < var->n_var_parts; i++)
1460     {
1461       for (node = var->var_part[i].loc_chain; node; node = next)
1462 	{
1463 	  next = node->next;
1464 	  delete node;
1465 	}
1466       var->var_part[i].loc_chain = NULL;
1467     }
1468   if (var->onepart && VAR_LOC_1PAUX (var))
1469     {
1470       loc_exp_dep_clear (var);
1471       if (VAR_LOC_DEP_LST (var))
1472 	VAR_LOC_DEP_LST (var)->pprev = NULL;
1473       XDELETE (VAR_LOC_1PAUX (var));
1474       /* These may be reused across functions, so reset
1475 	 e.g. NO_LOC_P.  */
1476       if (var->onepart == ONEPART_DEXPR)
1477 	set_dv_changed (var->dv, true);
1478     }
1479   onepart_pool (var->onepart).remove (var);
1480 }
1481 
1482 /* Initialize the set (array) SET of attrs to empty lists.  */
1483 
1484 static void
init_attrs_list_set(attrs ** set)1485 init_attrs_list_set (attrs **set)
1486 {
1487   int i;
1488 
1489   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1490     set[i] = NULL;
1491 }
1492 
1493 /* Make the list *LISTP empty.  */
1494 
1495 static void
attrs_list_clear(attrs ** listp)1496 attrs_list_clear (attrs **listp)
1497 {
1498   attrs *list, *next;
1499 
1500   for (list = *listp; list; list = next)
1501     {
1502       next = list->next;
1503       delete list;
1504     }
1505   *listp = NULL;
1506 }
1507 
1508 /* Return true if the pair of DECL and OFFSET is the member of the LIST.  */
1509 
1510 static attrs *
attrs_list_member(attrs * list,decl_or_value dv,HOST_WIDE_INT offset)1511 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1512 {
1513   for (; list; list = list->next)
1514     if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1515       return list;
1516   return NULL;
1517 }
1518 
1519 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP.  */
1520 
1521 static void
attrs_list_insert(attrs ** listp,decl_or_value dv,HOST_WIDE_INT offset,rtx loc)1522 attrs_list_insert (attrs **listp, decl_or_value dv,
1523 		   HOST_WIDE_INT offset, rtx loc)
1524 {
1525   attrs *list = new attrs;
1526   list->loc = loc;
1527   list->dv = dv;
1528   list->offset = offset;
1529   list->next = *listp;
1530   *listp = list;
1531 }
1532 
1533 /* Copy all nodes from SRC and create a list *DSTP of the copies.  */
1534 
1535 static void
attrs_list_copy(attrs ** dstp,attrs * src)1536 attrs_list_copy (attrs **dstp, attrs *src)
1537 {
1538   attrs_list_clear (dstp);
1539   for (; src; src = src->next)
1540     {
1541       attrs *n = new attrs;
1542       n->loc = src->loc;
1543       n->dv = src->dv;
1544       n->offset = src->offset;
1545       n->next = *dstp;
1546       *dstp = n;
1547     }
1548 }
1549 
1550 /* Add all nodes from SRC which are not in *DSTP to *DSTP.  */
1551 
1552 static void
attrs_list_union(attrs ** dstp,attrs * src)1553 attrs_list_union (attrs **dstp, attrs *src)
1554 {
1555   for (; src; src = src->next)
1556     {
1557       if (!attrs_list_member (*dstp, src->dv, src->offset))
1558 	attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1559     }
1560 }
1561 
1562 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1563    *DSTP.  */
1564 
1565 static void
attrs_list_mpdv_union(attrs ** dstp,attrs * src,attrs * src2)1566 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1567 {
1568   gcc_assert (!*dstp);
1569   for (; src; src = src->next)
1570     {
1571       if (!dv_onepart_p (src->dv))
1572 	attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1573     }
1574   for (src = src2; src; src = src->next)
1575     {
1576       if (!dv_onepart_p (src->dv)
1577 	  && !attrs_list_member (*dstp, src->dv, src->offset))
1578 	attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1579     }
1580 }
1581 
1582 /* Shared hashtable support.  */
1583 
1584 /* Return true if VARS is shared.  */
1585 
1586 static inline bool
shared_hash_shared(shared_hash * vars)1587 shared_hash_shared (shared_hash *vars)
1588 {
1589   return vars->refcount > 1;
1590 }
1591 
1592 /* Return the hash table for VARS.  */
1593 
1594 static inline variable_table_type *
shared_hash_htab(shared_hash * vars)1595 shared_hash_htab (shared_hash *vars)
1596 {
1597   return vars->htab;
1598 }
1599 
1600 /* Return true if VAR is shared, or maybe because VARS is shared.  */
1601 
1602 static inline bool
shared_var_p(variable * var,shared_hash * vars)1603 shared_var_p (variable *var, shared_hash *vars)
1604 {
1605   /* Don't count an entry in the changed_variables table as a duplicate.  */
1606   return ((var->refcount > 1 + (int) var->in_changed_variables)
1607 	  || shared_hash_shared (vars));
1608 }
1609 
1610 /* Copy variables into a new hash table.  */
1611 
1612 static shared_hash *
shared_hash_unshare(shared_hash * vars)1613 shared_hash_unshare (shared_hash *vars)
1614 {
1615   shared_hash *new_vars = new shared_hash;
1616   gcc_assert (vars->refcount > 1);
1617   new_vars->refcount = 1;
1618   new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1619   vars_copy (new_vars->htab, vars->htab);
1620   vars->refcount--;
1621   return new_vars;
1622 }
1623 
1624 /* Increment reference counter on VARS and return it.  */
1625 
1626 static inline shared_hash *
shared_hash_copy(shared_hash * vars)1627 shared_hash_copy (shared_hash *vars)
1628 {
1629   vars->refcount++;
1630   return vars;
1631 }
1632 
1633 /* Decrement reference counter and destroy hash table if not shared
1634    anymore.  */
1635 
1636 static void
shared_hash_destroy(shared_hash * vars)1637 shared_hash_destroy (shared_hash *vars)
1638 {
1639   gcc_checking_assert (vars->refcount > 0);
1640   if (--vars->refcount == 0)
1641     {
1642       delete vars->htab;
1643       delete vars;
1644     }
1645 }
1646 
1647 /* Unshare *PVARS if shared and return slot for DV.  If INS is
1648    INSERT, insert it if not already present.  */
1649 
1650 static inline variable **
shared_hash_find_slot_unshare_1(shared_hash ** pvars,decl_or_value dv,hashval_t dvhash,enum insert_option ins)1651 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1652 				 hashval_t dvhash, enum insert_option ins)
1653 {
1654   if (shared_hash_shared (*pvars))
1655     *pvars = shared_hash_unshare (*pvars);
1656   return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1657 }
1658 
1659 static inline variable **
shared_hash_find_slot_unshare(shared_hash ** pvars,decl_or_value dv,enum insert_option ins)1660 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1661 			       enum insert_option ins)
1662 {
1663   return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1664 }
1665 
1666 /* Return slot for DV, if it is already present in the hash table.
1667    If it is not present, insert it only VARS is not shared, otherwise
1668    return NULL.  */
1669 
1670 static inline variable **
shared_hash_find_slot_1(shared_hash * vars,decl_or_value dv,hashval_t dvhash)1671 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1672 {
1673   return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1674 						       shared_hash_shared (vars)
1675 						       ? NO_INSERT : INSERT);
1676 }
1677 
1678 static inline variable **
shared_hash_find_slot(shared_hash * vars,decl_or_value dv)1679 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1680 {
1681   return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1682 }
1683 
1684 /* Return slot for DV only if it is already present in the hash table.  */
1685 
1686 static inline variable **
shared_hash_find_slot_noinsert_1(shared_hash * vars,decl_or_value dv,hashval_t dvhash)1687 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1688 				  hashval_t dvhash)
1689 {
1690   return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1691 }
1692 
1693 static inline variable **
shared_hash_find_slot_noinsert(shared_hash * vars,decl_or_value dv)1694 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1695 {
1696   return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1697 }
1698 
1699 /* Return variable for DV or NULL if not already present in the hash
1700    table.  */
1701 
1702 static inline variable *
shared_hash_find_1(shared_hash * vars,decl_or_value dv,hashval_t dvhash)1703 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1704 {
1705   return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1706 }
1707 
1708 static inline variable *
shared_hash_find(shared_hash * vars,decl_or_value dv)1709 shared_hash_find (shared_hash *vars, decl_or_value dv)
1710 {
1711   return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1712 }
1713 
1714 /* Return true if TVAL is better than CVAL as a canonival value.  We
1715    choose lowest-numbered VALUEs, using the RTX address as a
1716    tie-breaker.  The idea is to arrange them into a star topology,
1717    such that all of them are at most one step away from the canonical
1718    value, and the canonical value has backlinks to all of them, in
1719    addition to all the actual locations.  We don't enforce this
1720    topology throughout the entire dataflow analysis, though.
1721  */
1722 
1723 static inline bool
canon_value_cmp(rtx tval,rtx cval)1724 canon_value_cmp (rtx tval, rtx cval)
1725 {
1726   return !cval
1727     || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1728 }
1729 
1730 static bool dst_can_be_shared;
1731 
1732 /* Return a copy of a variable VAR and insert it to dataflow set SET.  */
1733 
1734 static variable **
unshare_variable(dataflow_set * set,variable ** slot,variable * var,enum var_init_status initialized)1735 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1736 		  enum var_init_status initialized)
1737 {
1738   variable *new_var;
1739   int i;
1740 
1741   new_var = onepart_pool_allocate (var->onepart);
1742   new_var->dv = var->dv;
1743   new_var->refcount = 1;
1744   var->refcount--;
1745   new_var->n_var_parts = var->n_var_parts;
1746   new_var->onepart = var->onepart;
1747   new_var->in_changed_variables = false;
1748 
1749   if (! flag_var_tracking_uninit)
1750     initialized = VAR_INIT_STATUS_INITIALIZED;
1751 
1752   for (i = 0; i < var->n_var_parts; i++)
1753     {
1754       location_chain *node;
1755       location_chain **nextp;
1756 
1757       if (i == 0 && var->onepart)
1758 	{
1759 	  /* One-part auxiliary data is only used while emitting
1760 	     notes, so propagate it to the new variable in the active
1761 	     dataflow set.  If we're not emitting notes, this will be
1762 	     a no-op.  */
1763 	  gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1764 	  VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1765 	  VAR_LOC_1PAUX (var) = NULL;
1766 	}
1767       else
1768 	VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1769       nextp = &new_var->var_part[i].loc_chain;
1770       for (node = var->var_part[i].loc_chain; node; node = node->next)
1771 	{
1772 	  location_chain *new_lc;
1773 
1774 	  new_lc = new location_chain;
1775 	  new_lc->next = NULL;
1776 	  if (node->init > initialized)
1777 	    new_lc->init = node->init;
1778 	  else
1779 	    new_lc->init = initialized;
1780 	  if (node->set_src && !(MEM_P (node->set_src)))
1781 	    new_lc->set_src = node->set_src;
1782 	  else
1783 	    new_lc->set_src = NULL;
1784 	  new_lc->loc = node->loc;
1785 
1786 	  *nextp = new_lc;
1787 	  nextp = &new_lc->next;
1788 	}
1789 
1790       new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1791     }
1792 
1793   dst_can_be_shared = false;
1794   if (shared_hash_shared (set->vars))
1795     slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1796   else if (set->traversed_vars && set->vars != set->traversed_vars)
1797     slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1798   *slot = new_var;
1799   if (var->in_changed_variables)
1800     {
1801       variable **cslot
1802 	= changed_variables->find_slot_with_hash (var->dv,
1803 						  dv_htab_hash (var->dv),
1804 						  NO_INSERT);
1805       gcc_assert (*cslot == (void *) var);
1806       var->in_changed_variables = false;
1807       variable_htab_free (var);
1808       *cslot = new_var;
1809       new_var->in_changed_variables = true;
1810     }
1811   return slot;
1812 }
1813 
1814 /* Copy all variables from hash table SRC to hash table DST.  */
1815 
1816 static void
vars_copy(variable_table_type * dst,variable_table_type * src)1817 vars_copy (variable_table_type *dst, variable_table_type *src)
1818 {
1819   variable_iterator_type hi;
1820   variable *var;
1821 
1822   FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1823     {
1824       variable **dstp;
1825       var->refcount++;
1826       dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1827 				       INSERT);
1828       *dstp = var;
1829     }
1830 }
1831 
1832 /* Map a decl to its main debug decl.  */
1833 
1834 static inline tree
var_debug_decl(tree decl)1835 var_debug_decl (tree decl)
1836 {
1837   if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1838     {
1839       tree debugdecl = DECL_DEBUG_EXPR (decl);
1840       if (DECL_P (debugdecl))
1841 	decl = debugdecl;
1842     }
1843 
1844   return decl;
1845 }
1846 
1847 /* Set the register LOC to contain DV, OFFSET.  */
1848 
1849 static void
var_reg_decl_set(dataflow_set * set,rtx loc,enum var_init_status initialized,decl_or_value dv,HOST_WIDE_INT offset,rtx set_src,enum insert_option iopt)1850 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1851 		  decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1852 		  enum insert_option iopt)
1853 {
1854   attrs *node;
1855   bool decl_p = dv_is_decl_p (dv);
1856 
1857   if (decl_p)
1858     dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1859 
1860   for (node = set->regs[REGNO (loc)]; node; node = node->next)
1861     if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1862 	&& node->offset == offset)
1863       break;
1864   if (!node)
1865     attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1866   set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1867 }
1868 
1869 /* Return true if we should track a location that is OFFSET bytes from
1870    a variable.  Store the constant offset in *OFFSET_OUT if so.  */
1871 
1872 static bool
track_offset_p(poly_int64 offset,HOST_WIDE_INT * offset_out)1873 track_offset_p (poly_int64 offset, HOST_WIDE_INT *offset_out)
1874 {
1875   HOST_WIDE_INT const_offset;
1876   if (!offset.is_constant (&const_offset)
1877       || !IN_RANGE (const_offset, 0, MAX_VAR_PARTS - 1))
1878     return false;
1879   *offset_out = const_offset;
1880   return true;
1881 }
1882 
1883 /* Return the offset of a register that track_offset_p says we
1884    should track.  */
1885 
1886 static HOST_WIDE_INT
get_tracked_reg_offset(rtx loc)1887 get_tracked_reg_offset (rtx loc)
1888 {
1889   HOST_WIDE_INT offset;
1890   if (!track_offset_p (REG_OFFSET (loc), &offset))
1891     gcc_unreachable ();
1892   return offset;
1893 }
1894 
1895 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC).  */
1896 
1897 static void
var_reg_set(dataflow_set * set,rtx loc,enum var_init_status initialized,rtx set_src)1898 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1899 	     rtx set_src)
1900 {
1901   tree decl = REG_EXPR (loc);
1902   HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1903 
1904   var_reg_decl_set (set, loc, initialized,
1905 		    dv_from_decl (decl), offset, set_src, INSERT);
1906 }
1907 
1908 static enum var_init_status
get_init_value(dataflow_set * set,rtx loc,decl_or_value dv)1909 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1910 {
1911   variable *var;
1912   int i;
1913   enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1914 
1915   if (! flag_var_tracking_uninit)
1916     return VAR_INIT_STATUS_INITIALIZED;
1917 
1918   var = shared_hash_find (set->vars, dv);
1919   if (var)
1920     {
1921       for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1922 	{
1923 	  location_chain *nextp;
1924 	  for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1925 	    if (rtx_equal_p (nextp->loc, loc))
1926 	      {
1927 		ret_val = nextp->init;
1928 		break;
1929 	      }
1930 	}
1931     }
1932 
1933   return ret_val;
1934 }
1935 
1936 /* Delete current content of register LOC in dataflow set SET and set
1937    the register to contain REG_EXPR (LOC), REG_OFFSET (LOC).  If
1938    MODIFY is true, any other live copies of the same variable part are
1939    also deleted from the dataflow set, otherwise the variable part is
1940    assumed to be copied from another location holding the same
1941    part.  */
1942 
1943 static void
var_reg_delete_and_set(dataflow_set * set,rtx loc,bool modify,enum var_init_status initialized,rtx set_src)1944 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1945 			enum var_init_status initialized, rtx set_src)
1946 {
1947   tree decl = REG_EXPR (loc);
1948   HOST_WIDE_INT offset = get_tracked_reg_offset (loc);
1949   attrs *node, *next;
1950   attrs **nextp;
1951 
1952   decl = var_debug_decl (decl);
1953 
1954   if (initialized == VAR_INIT_STATUS_UNKNOWN)
1955     initialized = get_init_value (set, loc, dv_from_decl (decl));
1956 
1957   nextp = &set->regs[REGNO (loc)];
1958   for (node = *nextp; node; node = next)
1959     {
1960       next = node->next;
1961       if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1962 	{
1963 	  delete_variable_part (set, node->loc, node->dv, node->offset);
1964 	  delete node;
1965 	  *nextp = next;
1966 	}
1967       else
1968 	{
1969 	  node->loc = loc;
1970 	  nextp = &node->next;
1971 	}
1972     }
1973   if (modify)
1974     clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1975   var_reg_set (set, loc, initialized, set_src);
1976 }
1977 
1978 /* Delete the association of register LOC in dataflow set SET with any
1979    variables that aren't onepart.  If CLOBBER is true, also delete any
1980    other live copies of the same variable part, and delete the
1981    association with onepart dvs too.  */
1982 
1983 static void
var_reg_delete(dataflow_set * set,rtx loc,bool clobber)1984 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1985 {
1986   attrs **nextp = &set->regs[REGNO (loc)];
1987   attrs *node, *next;
1988 
1989   HOST_WIDE_INT offset;
1990   if (clobber && track_offset_p (REG_OFFSET (loc), &offset))
1991     {
1992       tree decl = REG_EXPR (loc);
1993 
1994       decl = var_debug_decl (decl);
1995 
1996       clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1997     }
1998 
1999   for (node = *nextp; node; node = next)
2000     {
2001       next = node->next;
2002       if (clobber || !dv_onepart_p (node->dv))
2003 	{
2004 	  delete_variable_part (set, node->loc, node->dv, node->offset);
2005 	  delete node;
2006 	  *nextp = next;
2007 	}
2008       else
2009 	nextp = &node->next;
2010     }
2011 }
2012 
2013 /* Delete content of register with number REGNO in dataflow set SET.  */
2014 
2015 static void
var_regno_delete(dataflow_set * set,int regno)2016 var_regno_delete (dataflow_set *set, int regno)
2017 {
2018   attrs **reg = &set->regs[regno];
2019   attrs *node, *next;
2020 
2021   for (node = *reg; node; node = next)
2022     {
2023       next = node->next;
2024       delete_variable_part (set, node->loc, node->dv, node->offset);
2025       delete node;
2026     }
2027   *reg = NULL;
2028 }
2029 
2030 /* Return true if I is the negated value of a power of two.  */
2031 static bool
negative_power_of_two_p(HOST_WIDE_INT i)2032 negative_power_of_two_p (HOST_WIDE_INT i)
2033 {
2034   unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2035   return pow2_or_zerop (x);
2036 }
2037 
2038 /* Strip constant offsets and alignments off of LOC.  Return the base
2039    expression.  */
2040 
2041 static rtx
vt_get_canonicalize_base(rtx loc)2042 vt_get_canonicalize_base (rtx loc)
2043 {
2044   while ((GET_CODE (loc) == PLUS
2045 	  || GET_CODE (loc) == AND)
2046 	 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2047 	 && (GET_CODE (loc) != AND
2048 	     || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2049     loc = XEXP (loc, 0);
2050 
2051   return loc;
2052 }
2053 
2054 /* This caches canonicalized addresses for VALUEs, computed using
2055    information in the global cselib table.  */
2056 static hash_map<rtx, rtx> *global_get_addr_cache;
2057 
2058 /* This caches canonicalized addresses for VALUEs, computed using
2059    information from the global cache and information pertaining to a
2060    basic block being analyzed.  */
2061 static hash_map<rtx, rtx> *local_get_addr_cache;
2062 
2063 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2064 
2065 /* Return the canonical address for LOC, that must be a VALUE, using a
2066    cached global equivalence or computing it and storing it in the
2067    global cache.  */
2068 
2069 static rtx
get_addr_from_global_cache(rtx const loc)2070 get_addr_from_global_cache (rtx const loc)
2071 {
2072   rtx x;
2073 
2074   gcc_checking_assert (GET_CODE (loc) == VALUE);
2075 
2076   bool existed;
2077   rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2078   if (existed)
2079     return *slot;
2080 
2081   x = canon_rtx (get_addr (loc));
2082 
2083   /* Tentative, avoiding infinite recursion.  */
2084   *slot = x;
2085 
2086   if (x != loc)
2087     {
2088       rtx nx = vt_canonicalize_addr (NULL, x);
2089       if (nx != x)
2090 	{
2091 	  /* The table may have moved during recursion, recompute
2092 	     SLOT.  */
2093 	  *global_get_addr_cache->get (loc) = x = nx;
2094 	}
2095     }
2096 
2097   return x;
2098 }
2099 
2100 /* Return the canonical address for LOC, that must be a VALUE, using a
2101    cached local equivalence or computing it and storing it in the
2102    local cache.  */
2103 
2104 static rtx
get_addr_from_local_cache(dataflow_set * set,rtx const loc)2105 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2106 {
2107   rtx x;
2108   decl_or_value dv;
2109   variable *var;
2110   location_chain *l;
2111 
2112   gcc_checking_assert (GET_CODE (loc) == VALUE);
2113 
2114   bool existed;
2115   rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2116   if (existed)
2117     return *slot;
2118 
2119   x = get_addr_from_global_cache (loc);
2120 
2121   /* Tentative, avoiding infinite recursion.  */
2122   *slot = x;
2123 
2124   /* Recurse to cache local expansion of X, or if we need to search
2125      for a VALUE in the expansion.  */
2126   if (x != loc)
2127     {
2128       rtx nx = vt_canonicalize_addr (set, x);
2129       if (nx != x)
2130 	{
2131 	  slot = local_get_addr_cache->get (loc);
2132 	  *slot = x = nx;
2133 	}
2134       return x;
2135     }
2136 
2137   dv = dv_from_rtx (x);
2138   var = shared_hash_find (set->vars, dv);
2139   if (!var)
2140     return x;
2141 
2142   /* Look for an improved equivalent expression.  */
2143   for (l = var->var_part[0].loc_chain; l; l = l->next)
2144     {
2145       rtx base = vt_get_canonicalize_base (l->loc);
2146       if (GET_CODE (base) == VALUE
2147 	  && canon_value_cmp (base, loc))
2148 	{
2149 	  rtx nx = vt_canonicalize_addr (set, l->loc);
2150 	  if (x != nx)
2151 	    {
2152 	      slot = local_get_addr_cache->get (loc);
2153 	      *slot = x = nx;
2154 	    }
2155 	  break;
2156 	}
2157     }
2158 
2159   return x;
2160 }
2161 
2162 /* Canonicalize LOC using equivalences from SET in addition to those
2163    in the cselib static table.  It expects a VALUE-based expression,
2164    and it will only substitute VALUEs with other VALUEs or
2165    function-global equivalences, so that, if two addresses have base
2166    VALUEs that are locally or globally related in ways that
2167    memrefs_conflict_p cares about, they will both canonicalize to
2168    expressions that have the same base VALUE.
2169 
2170    The use of VALUEs as canonical base addresses enables the canonical
2171    RTXs to remain unchanged globally, if they resolve to a constant,
2172    or throughout a basic block otherwise, so that they can be cached
2173    and the cache needs not be invalidated when REGs, MEMs or such
2174    change.  */
2175 
2176 static rtx
vt_canonicalize_addr(dataflow_set * set,rtx oloc)2177 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2178 {
2179   poly_int64 ofst = 0, term;
2180   machine_mode mode = GET_MODE (oloc);
2181   rtx loc = oloc;
2182   rtx x;
2183   bool retry = true;
2184 
2185   while (retry)
2186     {
2187       while (GET_CODE (loc) == PLUS
2188 	     && poly_int_rtx_p (XEXP (loc, 1), &term))
2189 	{
2190 	  ofst += term;
2191 	  loc = XEXP (loc, 0);
2192 	}
2193 
2194       /* Alignment operations can't normally be combined, so just
2195 	 canonicalize the base and we're done.  We'll normally have
2196 	 only one stack alignment anyway.  */
2197       if (GET_CODE (loc) == AND
2198 	  && GET_CODE (XEXP (loc, 1)) == CONST_INT
2199 	  && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2200 	{
2201 	  x = vt_canonicalize_addr (set, XEXP (loc, 0));
2202 	  if (x != XEXP (loc, 0))
2203 	    loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2204 	  retry = false;
2205 	}
2206 
2207       if (GET_CODE (loc) == VALUE)
2208 	{
2209 	  if (set)
2210 	    loc = get_addr_from_local_cache (set, loc);
2211 	  else
2212 	    loc = get_addr_from_global_cache (loc);
2213 
2214 	  /* Consolidate plus_constants.  */
2215 	  while (maybe_ne (ofst, 0)
2216 		 && GET_CODE (loc) == PLUS
2217 		 && poly_int_rtx_p (XEXP (loc, 1), &term))
2218 	    {
2219 	      ofst += term;
2220 	      loc = XEXP (loc, 0);
2221 	    }
2222 
2223 	  retry = false;
2224 	}
2225       else
2226 	{
2227 	  x = canon_rtx (loc);
2228 	  if (retry)
2229 	    retry = (x != loc);
2230 	  loc = x;
2231 	}
2232     }
2233 
2234   /* Add OFST back in.  */
2235   if (maybe_ne (ofst, 0))
2236     {
2237       /* Don't build new RTL if we can help it.  */
2238       if (strip_offset (oloc, &term) == loc && known_eq (term, ofst))
2239 	return oloc;
2240 
2241       loc = plus_constant (mode, loc, ofst);
2242     }
2243 
2244   return loc;
2245 }
2246 
2247 /* Return true iff there's a true dependence between MLOC and LOC.
2248    MADDR must be a canonicalized version of MLOC's address.  */
2249 
2250 static inline bool
vt_canon_true_dep(dataflow_set * set,rtx mloc,rtx maddr,rtx loc)2251 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2252 {
2253   if (GET_CODE (loc) != MEM)
2254     return false;
2255 
2256   rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2257   if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2258     return false;
2259 
2260   return true;
2261 }
2262 
2263 /* Hold parameters for the hashtab traversal function
2264    drop_overlapping_mem_locs, see below.  */
2265 
2266 struct overlapping_mems
2267 {
2268   dataflow_set *set;
2269   rtx loc, addr;
2270 };
2271 
2272 /* Remove all MEMs that overlap with COMS->LOC from the location list
2273    of a hash table entry for a onepart variable.  COMS->ADDR must be a
2274    canonicalized form of COMS->LOC's address, and COMS->LOC must be
2275    canonicalized itself.  */
2276 
2277 int
drop_overlapping_mem_locs(variable ** slot,overlapping_mems * coms)2278 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2279 {
2280   dataflow_set *set = coms->set;
2281   rtx mloc = coms->loc, addr = coms->addr;
2282   variable *var = *slot;
2283 
2284   if (var->onepart != NOT_ONEPART)
2285     {
2286       location_chain *loc, **locp;
2287       bool changed = false;
2288       rtx cur_loc;
2289 
2290       gcc_assert (var->n_var_parts == 1);
2291 
2292       if (shared_var_p (var, set->vars))
2293 	{
2294 	  for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2295 	    if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2296 	      break;
2297 
2298 	  if (!loc)
2299 	    return 1;
2300 
2301 	  slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2302 	  var = *slot;
2303 	  gcc_assert (var->n_var_parts == 1);
2304 	}
2305 
2306       if (VAR_LOC_1PAUX (var))
2307 	cur_loc = VAR_LOC_FROM (var);
2308       else
2309 	cur_loc = var->var_part[0].cur_loc;
2310 
2311       for (locp = &var->var_part[0].loc_chain, loc = *locp;
2312 	   loc; loc = *locp)
2313 	{
2314 	  if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2315 	    {
2316 	      locp = &loc->next;
2317 	      continue;
2318 	    }
2319 
2320 	  *locp = loc->next;
2321 	  /* If we have deleted the location which was last emitted
2322 	     we have to emit new location so add the variable to set
2323 	     of changed variables.  */
2324 	  if (cur_loc == loc->loc)
2325 	    {
2326 	      changed = true;
2327 	      var->var_part[0].cur_loc = NULL;
2328 	      if (VAR_LOC_1PAUX (var))
2329 		VAR_LOC_FROM (var) = NULL;
2330 	    }
2331 	  delete loc;
2332 	}
2333 
2334       if (!var->var_part[0].loc_chain)
2335 	{
2336 	  var->n_var_parts--;
2337 	  changed = true;
2338 	}
2339       if (changed)
2340 	variable_was_changed (var, set);
2341     }
2342 
2343   return 1;
2344 }
2345 
2346 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC.  */
2347 
2348 static void
clobber_overlapping_mems(dataflow_set * set,rtx loc)2349 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2350 {
2351   struct overlapping_mems coms;
2352 
2353   gcc_checking_assert (GET_CODE (loc) == MEM);
2354 
2355   coms.set = set;
2356   coms.loc = canon_rtx (loc);
2357   coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2358 
2359   set->traversed_vars = set->vars;
2360   shared_hash_htab (set->vars)
2361     ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2362   set->traversed_vars = NULL;
2363 }
2364 
2365 /* Set the location of DV, OFFSET as the MEM LOC.  */
2366 
2367 static void
var_mem_decl_set(dataflow_set * set,rtx loc,enum var_init_status initialized,decl_or_value dv,HOST_WIDE_INT offset,rtx set_src,enum insert_option iopt)2368 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2369 		  decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2370 		  enum insert_option iopt)
2371 {
2372   if (dv_is_decl_p (dv))
2373     dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2374 
2375   set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2376 }
2377 
2378 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2379    SET to LOC.
2380    Adjust the address first if it is stack pointer based.  */
2381 
2382 static void
var_mem_set(dataflow_set * set,rtx loc,enum var_init_status initialized,rtx set_src)2383 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2384 	     rtx set_src)
2385 {
2386   tree decl = MEM_EXPR (loc);
2387   HOST_WIDE_INT offset = int_mem_offset (loc);
2388 
2389   var_mem_decl_set (set, loc, initialized,
2390 		    dv_from_decl (decl), offset, set_src, INSERT);
2391 }
2392 
2393 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2394    dataflow set SET to LOC.  If MODIFY is true, any other live copies
2395    of the same variable part are also deleted from the dataflow set,
2396    otherwise the variable part is assumed to be copied from another
2397    location holding the same part.
2398    Adjust the address first if it is stack pointer based.  */
2399 
2400 static void
var_mem_delete_and_set(dataflow_set * set,rtx loc,bool modify,enum var_init_status initialized,rtx set_src)2401 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2402 			enum var_init_status initialized, rtx set_src)
2403 {
2404   tree decl = MEM_EXPR (loc);
2405   HOST_WIDE_INT offset = int_mem_offset (loc);
2406 
2407   clobber_overlapping_mems (set, loc);
2408   decl = var_debug_decl (decl);
2409 
2410   if (initialized == VAR_INIT_STATUS_UNKNOWN)
2411     initialized = get_init_value (set, loc, dv_from_decl (decl));
2412 
2413   if (modify)
2414     clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2415   var_mem_set (set, loc, initialized, set_src);
2416 }
2417 
2418 /* Delete the location part LOC from dataflow set SET.  If CLOBBER is
2419    true, also delete any other live copies of the same variable part.
2420    Adjust the address first if it is stack pointer based.  */
2421 
2422 static void
var_mem_delete(dataflow_set * set,rtx loc,bool clobber)2423 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2424 {
2425   tree decl = MEM_EXPR (loc);
2426   HOST_WIDE_INT offset = int_mem_offset (loc);
2427 
2428   clobber_overlapping_mems (set, loc);
2429   decl = var_debug_decl (decl);
2430   if (clobber)
2431     clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2432   delete_variable_part (set, loc, dv_from_decl (decl), offset);
2433 }
2434 
2435 /* Return true if LOC should not be expanded for location expressions,
2436    or used in them.  */
2437 
2438 static inline bool
unsuitable_loc(rtx loc)2439 unsuitable_loc (rtx loc)
2440 {
2441   switch (GET_CODE (loc))
2442     {
2443     case PC:
2444     case SCRATCH:
2445     case CC0:
2446     case ASM_INPUT:
2447     case ASM_OPERANDS:
2448       return true;
2449 
2450     default:
2451       return false;
2452     }
2453 }
2454 
2455 /* Bind VAL to LOC in SET.  If MODIFIED, detach LOC from any values
2456    bound to it.  */
2457 
2458 static inline void
val_bind(dataflow_set * set,rtx val,rtx loc,bool modified)2459 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2460 {
2461   if (REG_P (loc))
2462     {
2463       if (modified)
2464 	var_regno_delete (set, REGNO (loc));
2465       var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2466 			dv_from_value (val), 0, NULL_RTX, INSERT);
2467     }
2468   else if (MEM_P (loc))
2469     {
2470       struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2471 
2472       if (modified)
2473 	clobber_overlapping_mems (set, loc);
2474 
2475       if (l && GET_CODE (l->loc) == VALUE)
2476 	l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2477 
2478       /* If this MEM is a global constant, we don't need it in the
2479 	 dynamic tables.  ??? We should test this before emitting the
2480 	 micro-op in the first place.  */
2481       while (l)
2482 	if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2483 	  break;
2484 	else
2485 	  l = l->next;
2486 
2487       if (!l)
2488 	var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2489 			  dv_from_value (val), 0, NULL_RTX, INSERT);
2490     }
2491   else
2492     {
2493       /* Other kinds of equivalences are necessarily static, at least
2494 	 so long as we do not perform substitutions while merging
2495 	 expressions.  */
2496       gcc_unreachable ();
2497       set_variable_part (set, loc, dv_from_value (val), 0,
2498 			 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2499     }
2500 }
2501 
2502 /* Bind a value to a location it was just stored in.  If MODIFIED
2503    holds, assume the location was modified, detaching it from any
2504    values bound to it.  */
2505 
2506 static void
val_store(dataflow_set * set,rtx val,rtx loc,rtx_insn * insn,bool modified)2507 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2508 	   bool modified)
2509 {
2510   cselib_val *v = CSELIB_VAL_PTR (val);
2511 
2512   gcc_assert (cselib_preserved_value_p (v));
2513 
2514   if (dump_file)
2515     {
2516       fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2517       print_inline_rtx (dump_file, loc, 0);
2518       fprintf (dump_file, " evaluates to ");
2519       print_inline_rtx (dump_file, val, 0);
2520       if (v->locs)
2521 	{
2522 	  struct elt_loc_list *l;
2523 	  for (l = v->locs; l; l = l->next)
2524 	    {
2525 	      fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2526 	      print_inline_rtx (dump_file, l->loc, 0);
2527 	    }
2528 	}
2529       fprintf (dump_file, "\n");
2530     }
2531 
2532   gcc_checking_assert (!unsuitable_loc (loc));
2533 
2534   val_bind (set, val, loc, modified);
2535 }
2536 
2537 /* Clear (canonical address) slots that reference X.  */
2538 
2539 bool
local_get_addr_clear_given_value(rtx const &,rtx * slot,rtx x)2540 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2541 {
2542   if (vt_get_canonicalize_base (*slot) == x)
2543     *slot = NULL;
2544   return true;
2545 }
2546 
2547 /* Reset this node, detaching all its equivalences.  Return the slot
2548    in the variable hash table that holds dv, if there is one.  */
2549 
2550 static void
val_reset(dataflow_set * set,decl_or_value dv)2551 val_reset (dataflow_set *set, decl_or_value dv)
2552 {
2553   variable *var = shared_hash_find (set->vars, dv) ;
2554   location_chain *node;
2555   rtx cval;
2556 
2557   if (!var || !var->n_var_parts)
2558     return;
2559 
2560   gcc_assert (var->n_var_parts == 1);
2561 
2562   if (var->onepart == ONEPART_VALUE)
2563     {
2564       rtx x = dv_as_value (dv);
2565 
2566       /* Relationships in the global cache don't change, so reset the
2567 	 local cache entry only.  */
2568       rtx *slot = local_get_addr_cache->get (x);
2569       if (slot)
2570 	{
2571 	  /* If the value resolved back to itself, odds are that other
2572 	     values may have cached it too.  These entries now refer
2573 	     to the old X, so detach them too.  Entries that used the
2574 	     old X but resolved to something else remain ok as long as
2575 	     that something else isn't also reset.  */
2576 	  if (*slot == x)
2577 	    local_get_addr_cache
2578 	      ->traverse<rtx, local_get_addr_clear_given_value> (x);
2579 	  *slot = NULL;
2580 	}
2581     }
2582 
2583   cval = NULL;
2584   for (node = var->var_part[0].loc_chain; node; node = node->next)
2585     if (GET_CODE (node->loc) == VALUE
2586 	&& canon_value_cmp (node->loc, cval))
2587       cval = node->loc;
2588 
2589   for (node = var->var_part[0].loc_chain; node; node = node->next)
2590     if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2591       {
2592 	/* Redirect the equivalence link to the new canonical
2593 	   value, or simply remove it if it would point at
2594 	   itself.  */
2595 	if (cval)
2596 	  set_variable_part (set, cval, dv_from_value (node->loc),
2597 			     0, node->init, node->set_src, NO_INSERT);
2598 	delete_variable_part (set, dv_as_value (dv),
2599 			      dv_from_value (node->loc), 0);
2600       }
2601 
2602   if (cval)
2603     {
2604       decl_or_value cdv = dv_from_value (cval);
2605 
2606       /* Keep the remaining values connected, accumulating links
2607 	 in the canonical value.  */
2608       for (node = var->var_part[0].loc_chain; node; node = node->next)
2609 	{
2610 	  if (node->loc == cval)
2611 	    continue;
2612 	  else if (GET_CODE (node->loc) == REG)
2613 	    var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2614 			      node->set_src, NO_INSERT);
2615 	  else if (GET_CODE (node->loc) == MEM)
2616 	    var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2617 			      node->set_src, NO_INSERT);
2618 	  else
2619 	    set_variable_part (set, node->loc, cdv, 0,
2620 			       node->init, node->set_src, NO_INSERT);
2621 	}
2622     }
2623 
2624   /* We remove this last, to make sure that the canonical value is not
2625      removed to the point of requiring reinsertion.  */
2626   if (cval)
2627     delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2628 
2629   clobber_variable_part (set, NULL, dv, 0, NULL);
2630 }
2631 
2632 /* Find the values in a given location and map the val to another
2633    value, if it is unique, or add the location as one holding the
2634    value.  */
2635 
2636 static void
val_resolve(dataflow_set * set,rtx val,rtx loc,rtx_insn * insn)2637 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2638 {
2639   decl_or_value dv = dv_from_value (val);
2640 
2641   if (dump_file && (dump_flags & TDF_DETAILS))
2642     {
2643       if (insn)
2644 	fprintf (dump_file, "%i: ", INSN_UID (insn));
2645       else
2646 	fprintf (dump_file, "head: ");
2647       print_inline_rtx (dump_file, val, 0);
2648       fputs (" is at ", dump_file);
2649       print_inline_rtx (dump_file, loc, 0);
2650       fputc ('\n', dump_file);
2651     }
2652 
2653   val_reset (set, dv);
2654 
2655   gcc_checking_assert (!unsuitable_loc (loc));
2656 
2657   if (REG_P (loc))
2658     {
2659       attrs *node, *found = NULL;
2660 
2661       for (node = set->regs[REGNO (loc)]; node; node = node->next)
2662 	if (dv_is_value_p (node->dv)
2663 	    && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2664 	  {
2665 	    found = node;
2666 
2667 	    /* Map incoming equivalences.  ??? Wouldn't it be nice if
2668 	     we just started sharing the location lists?  Maybe a
2669 	     circular list ending at the value itself or some
2670 	     such.  */
2671 	    set_variable_part (set, dv_as_value (node->dv),
2672 			       dv_from_value (val), node->offset,
2673 			       VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2674 	    set_variable_part (set, val, node->dv, node->offset,
2675 			       VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2676 	  }
2677 
2678       /* If we didn't find any equivalence, we need to remember that
2679 	 this value is held in the named register.  */
2680       if (found)
2681 	return;
2682     }
2683   /* ??? Attempt to find and merge equivalent MEMs or other
2684      expressions too.  */
2685 
2686   val_bind (set, val, loc, false);
2687 }
2688 
2689 /* Initialize dataflow set SET to be empty.
2690    VARS_SIZE is the initial size of hash table VARS.  */
2691 
2692 static void
dataflow_set_init(dataflow_set * set)2693 dataflow_set_init (dataflow_set *set)
2694 {
2695   init_attrs_list_set (set->regs);
2696   set->vars = shared_hash_copy (empty_shared_hash);
2697   set->stack_adjust = 0;
2698   set->traversed_vars = NULL;
2699 }
2700 
2701 /* Delete the contents of dataflow set SET.  */
2702 
2703 static void
dataflow_set_clear(dataflow_set * set)2704 dataflow_set_clear (dataflow_set *set)
2705 {
2706   int i;
2707 
2708   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2709     attrs_list_clear (&set->regs[i]);
2710 
2711   shared_hash_destroy (set->vars);
2712   set->vars = shared_hash_copy (empty_shared_hash);
2713 }
2714 
2715 /* Copy the contents of dataflow set SRC to DST.  */
2716 
2717 static void
dataflow_set_copy(dataflow_set * dst,dataflow_set * src)2718 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2719 {
2720   int i;
2721 
2722   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2723     attrs_list_copy (&dst->regs[i], src->regs[i]);
2724 
2725   shared_hash_destroy (dst->vars);
2726   dst->vars = shared_hash_copy (src->vars);
2727   dst->stack_adjust = src->stack_adjust;
2728 }
2729 
2730 /* Information for merging lists of locations for a given offset of variable.
2731  */
2732 struct variable_union_info
2733 {
2734   /* Node of the location chain.  */
2735   location_chain *lc;
2736 
2737   /* The sum of positions in the input chains.  */
2738   int pos;
2739 
2740   /* The position in the chain of DST dataflow set.  */
2741   int pos_dst;
2742 };
2743 
2744 /* Buffer for location list sorting and its allocated size.  */
2745 static struct variable_union_info *vui_vec;
2746 static int vui_allocated;
2747 
2748 /* Compare function for qsort, order the structures by POS element.  */
2749 
2750 static int
variable_union_info_cmp_pos(const void * n1,const void * n2)2751 variable_union_info_cmp_pos (const void *n1, const void *n2)
2752 {
2753   const struct variable_union_info *const i1 =
2754     (const struct variable_union_info *) n1;
2755   const struct variable_union_info *const i2 =
2756     ( const struct variable_union_info *) n2;
2757 
2758   if (i1->pos != i2->pos)
2759     return i1->pos - i2->pos;
2760 
2761   return (i1->pos_dst - i2->pos_dst);
2762 }
2763 
2764 /* Compute union of location parts of variable *SLOT and the same variable
2765    from hash table DATA.  Compute "sorted" union of the location chains
2766    for common offsets, i.e. the locations of a variable part are sorted by
2767    a priority where the priority is the sum of the positions in the 2 chains
2768    (if a location is only in one list the position in the second list is
2769    defined to be larger than the length of the chains).
2770    When we are updating the location parts the newest location is in the
2771    beginning of the chain, so when we do the described "sorted" union
2772    we keep the newest locations in the beginning.  */
2773 
2774 static int
variable_union(variable * src,dataflow_set * set)2775 variable_union (variable *src, dataflow_set *set)
2776 {
2777   variable *dst;
2778   variable **dstp;
2779   int i, j, k;
2780 
2781   dstp = shared_hash_find_slot (set->vars, src->dv);
2782   if (!dstp || !*dstp)
2783     {
2784       src->refcount++;
2785 
2786       dst_can_be_shared = false;
2787       if (!dstp)
2788 	dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2789 
2790       *dstp = src;
2791 
2792       /* Continue traversing the hash table.  */
2793       return 1;
2794     }
2795   else
2796     dst = *dstp;
2797 
2798   gcc_assert (src->n_var_parts);
2799   gcc_checking_assert (src->onepart == dst->onepart);
2800 
2801   /* We can combine one-part variables very efficiently, because their
2802      entries are in canonical order.  */
2803   if (src->onepart)
2804     {
2805       location_chain **nodep, *dnode, *snode;
2806 
2807       gcc_assert (src->n_var_parts == 1
2808 		  && dst->n_var_parts == 1);
2809 
2810       snode = src->var_part[0].loc_chain;
2811       gcc_assert (snode);
2812 
2813     restart_onepart_unshared:
2814       nodep = &dst->var_part[0].loc_chain;
2815       dnode = *nodep;
2816       gcc_assert (dnode);
2817 
2818       while (snode)
2819 	{
2820 	  int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2821 
2822 	  if (r > 0)
2823 	    {
2824 	      location_chain *nnode;
2825 
2826 	      if (shared_var_p (dst, set->vars))
2827 		{
2828 		  dstp = unshare_variable (set, dstp, dst,
2829 					   VAR_INIT_STATUS_INITIALIZED);
2830 		  dst = *dstp;
2831 		  goto restart_onepart_unshared;
2832 		}
2833 
2834 	      *nodep = nnode = new location_chain;
2835 	      nnode->loc = snode->loc;
2836 	      nnode->init = snode->init;
2837 	      if (!snode->set_src || MEM_P (snode->set_src))
2838 		nnode->set_src = NULL;
2839 	      else
2840 		nnode->set_src = snode->set_src;
2841 	      nnode->next = dnode;
2842 	      dnode = nnode;
2843 	    }
2844 	  else if (r == 0)
2845 	    gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2846 
2847 	  if (r >= 0)
2848 	    snode = snode->next;
2849 
2850 	  nodep = &dnode->next;
2851 	  dnode = *nodep;
2852 	}
2853 
2854       return 1;
2855     }
2856 
2857   gcc_checking_assert (!src->onepart);
2858 
2859   /* Count the number of location parts, result is K.  */
2860   for (i = 0, j = 0, k = 0;
2861        i < src->n_var_parts && j < dst->n_var_parts; k++)
2862     {
2863       if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2864 	{
2865 	  i++;
2866 	  j++;
2867 	}
2868       else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2869 	i++;
2870       else
2871 	j++;
2872     }
2873   k += src->n_var_parts - i;
2874   k += dst->n_var_parts - j;
2875 
2876   /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2877      thus there are at most MAX_VAR_PARTS different offsets.  */
2878   gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2879 
2880   if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2881     {
2882       dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2883       dst = *dstp;
2884     }
2885 
2886   i = src->n_var_parts - 1;
2887   j = dst->n_var_parts - 1;
2888   dst->n_var_parts = k;
2889 
2890   for (k--; k >= 0; k--)
2891     {
2892       location_chain *node, *node2;
2893 
2894       if (i >= 0 && j >= 0
2895 	  && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2896 	{
2897 	  /* Compute the "sorted" union of the chains, i.e. the locations which
2898 	     are in both chains go first, they are sorted by the sum of
2899 	     positions in the chains.  */
2900 	  int dst_l, src_l;
2901 	  int ii, jj, n;
2902 	  struct variable_union_info *vui;
2903 
2904 	  /* If DST is shared compare the location chains.
2905 	     If they are different we will modify the chain in DST with
2906 	     high probability so make a copy of DST.  */
2907 	  if (shared_var_p (dst, set->vars))
2908 	    {
2909 	      for (node = src->var_part[i].loc_chain,
2910 		   node2 = dst->var_part[j].loc_chain; node && node2;
2911 		   node = node->next, node2 = node2->next)
2912 		{
2913 		  if (!((REG_P (node2->loc)
2914 			 && REG_P (node->loc)
2915 			 && REGNO (node2->loc) == REGNO (node->loc))
2916 			|| rtx_equal_p (node2->loc, node->loc)))
2917 		    {
2918 		      if (node2->init < node->init)
2919 		        node2->init = node->init;
2920 		      break;
2921 		    }
2922 		}
2923 	      if (node || node2)
2924 		{
2925 		  dstp = unshare_variable (set, dstp, dst,
2926 					   VAR_INIT_STATUS_UNKNOWN);
2927 		  dst = (variable *)*dstp;
2928 		}
2929 	    }
2930 
2931 	  src_l = 0;
2932 	  for (node = src->var_part[i].loc_chain; node; node = node->next)
2933 	    src_l++;
2934 	  dst_l = 0;
2935 	  for (node = dst->var_part[j].loc_chain; node; node = node->next)
2936 	    dst_l++;
2937 
2938 	  if (dst_l == 1)
2939 	    {
2940 	      /* The most common case, much simpler, no qsort is needed.  */
2941 	      location_chain *dstnode = dst->var_part[j].loc_chain;
2942 	      dst->var_part[k].loc_chain = dstnode;
2943 	      VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2944 	      node2 = dstnode;
2945 	      for (node = src->var_part[i].loc_chain; node; node = node->next)
2946 		if (!((REG_P (dstnode->loc)
2947 		       && REG_P (node->loc)
2948 		       && REGNO (dstnode->loc) == REGNO (node->loc))
2949 		      || rtx_equal_p (dstnode->loc, node->loc)))
2950 		  {
2951 		    location_chain *new_node;
2952 
2953 		    /* Copy the location from SRC.  */
2954 		    new_node = new location_chain;
2955 		    new_node->loc = node->loc;
2956 		    new_node->init = node->init;
2957 		    if (!node->set_src || MEM_P (node->set_src))
2958 		      new_node->set_src = NULL;
2959 		    else
2960 		      new_node->set_src = node->set_src;
2961 		    node2->next = new_node;
2962 		    node2 = new_node;
2963 		  }
2964 	      node2->next = NULL;
2965 	    }
2966 	  else
2967 	    {
2968 	      if (src_l + dst_l > vui_allocated)
2969 		{
2970 		  vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2971 		  vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2972 					vui_allocated);
2973 		}
2974 	      vui = vui_vec;
2975 
2976 	      /* Fill in the locations from DST.  */
2977 	      for (node = dst->var_part[j].loc_chain, jj = 0; node;
2978 		   node = node->next, jj++)
2979 		{
2980 		  vui[jj].lc = node;
2981 		  vui[jj].pos_dst = jj;
2982 
2983 		  /* Pos plus value larger than a sum of 2 valid positions.  */
2984 		  vui[jj].pos = jj + src_l + dst_l;
2985 		}
2986 
2987 	      /* Fill in the locations from SRC.  */
2988 	      n = dst_l;
2989 	      for (node = src->var_part[i].loc_chain, ii = 0; node;
2990 		   node = node->next, ii++)
2991 		{
2992 		  /* Find location from NODE.  */
2993 		  for (jj = 0; jj < dst_l; jj++)
2994 		    {
2995 		      if ((REG_P (vui[jj].lc->loc)
2996 			   && REG_P (node->loc)
2997 			   && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2998 			  || rtx_equal_p (vui[jj].lc->loc, node->loc))
2999 			{
3000 			  vui[jj].pos = jj + ii;
3001 			  break;
3002 			}
3003 		    }
3004 		  if (jj >= dst_l)	/* The location has not been found.  */
3005 		    {
3006 		      location_chain *new_node;
3007 
3008 		      /* Copy the location from SRC.  */
3009 		      new_node = new location_chain;
3010 		      new_node->loc = node->loc;
3011 		      new_node->init = node->init;
3012 		      if (!node->set_src || MEM_P (node->set_src))
3013 			new_node->set_src = NULL;
3014 		      else
3015 			new_node->set_src = node->set_src;
3016 		      vui[n].lc = new_node;
3017 		      vui[n].pos_dst = src_l + dst_l;
3018 		      vui[n].pos = ii + src_l + dst_l;
3019 		      n++;
3020 		    }
3021 		}
3022 
3023 	      if (dst_l == 2)
3024 		{
3025 		  /* Special case still very common case.  For dst_l == 2
3026 		     all entries dst_l ... n-1 are sorted, with for i >= dst_l
3027 		     vui[i].pos == i + src_l + dst_l.  */
3028 		  if (vui[0].pos > vui[1].pos)
3029 		    {
3030 		      /* Order should be 1, 0, 2... */
3031 		      dst->var_part[k].loc_chain = vui[1].lc;
3032 		      vui[1].lc->next = vui[0].lc;
3033 		      if (n >= 3)
3034 			{
3035 			  vui[0].lc->next = vui[2].lc;
3036 			  vui[n - 1].lc->next = NULL;
3037 			}
3038 		      else
3039 			vui[0].lc->next = NULL;
3040 		      ii = 3;
3041 		    }
3042 		  else
3043 		    {
3044 		      dst->var_part[k].loc_chain = vui[0].lc;
3045 		      if (n >= 3 && vui[2].pos < vui[1].pos)
3046 			{
3047 			  /* Order should be 0, 2, 1, 3... */
3048 			  vui[0].lc->next = vui[2].lc;
3049 			  vui[2].lc->next = vui[1].lc;
3050 			  if (n >= 4)
3051 			    {
3052 			      vui[1].lc->next = vui[3].lc;
3053 			      vui[n - 1].lc->next = NULL;
3054 			    }
3055 			  else
3056 			    vui[1].lc->next = NULL;
3057 			  ii = 4;
3058 			}
3059 		      else
3060 			{
3061 			  /* Order should be 0, 1, 2... */
3062 			  ii = 1;
3063 			  vui[n - 1].lc->next = NULL;
3064 			}
3065 		    }
3066 		  for (; ii < n; ii++)
3067 		    vui[ii - 1].lc->next = vui[ii].lc;
3068 		}
3069 	      else
3070 		{
3071 		  qsort (vui, n, sizeof (struct variable_union_info),
3072 			 variable_union_info_cmp_pos);
3073 
3074 		  /* Reconnect the nodes in sorted order.  */
3075 		  for (ii = 1; ii < n; ii++)
3076 		    vui[ii - 1].lc->next = vui[ii].lc;
3077 		  vui[n - 1].lc->next = NULL;
3078 		  dst->var_part[k].loc_chain = vui[0].lc;
3079 		}
3080 
3081 	      VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3082 	    }
3083 	  i--;
3084 	  j--;
3085 	}
3086       else if ((i >= 0 && j >= 0
3087 		&& VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3088 	       || i < 0)
3089 	{
3090 	  dst->var_part[k] = dst->var_part[j];
3091 	  j--;
3092 	}
3093       else if ((i >= 0 && j >= 0
3094 		&& VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3095 	       || j < 0)
3096 	{
3097 	  location_chain **nextp;
3098 
3099 	  /* Copy the chain from SRC.  */
3100 	  nextp = &dst->var_part[k].loc_chain;
3101 	  for (node = src->var_part[i].loc_chain; node; node = node->next)
3102 	    {
3103 	      location_chain *new_lc;
3104 
3105 	      new_lc = new location_chain;
3106 	      new_lc->next = NULL;
3107 	      new_lc->init = node->init;
3108 	      if (!node->set_src || MEM_P (node->set_src))
3109 		new_lc->set_src = NULL;
3110 	      else
3111 		new_lc->set_src = node->set_src;
3112 	      new_lc->loc = node->loc;
3113 
3114 	      *nextp = new_lc;
3115 	      nextp = &new_lc->next;
3116 	    }
3117 
3118 	  VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3119 	  i--;
3120 	}
3121       dst->var_part[k].cur_loc = NULL;
3122     }
3123 
3124   if (flag_var_tracking_uninit)
3125     for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3126       {
3127 	location_chain *node, *node2;
3128 	for (node = src->var_part[i].loc_chain; node; node = node->next)
3129 	  for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3130 	    if (rtx_equal_p (node->loc, node2->loc))
3131 	      {
3132 		if (node->init > node2->init)
3133 		  node2->init = node->init;
3134 	      }
3135       }
3136 
3137   /* Continue traversing the hash table.  */
3138   return 1;
3139 }
3140 
3141 /* Compute union of dataflow sets SRC and DST and store it to DST.  */
3142 
3143 static void
dataflow_set_union(dataflow_set * dst,dataflow_set * src)3144 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3145 {
3146   int i;
3147 
3148   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3149     attrs_list_union (&dst->regs[i], src->regs[i]);
3150 
3151   if (dst->vars == empty_shared_hash)
3152     {
3153       shared_hash_destroy (dst->vars);
3154       dst->vars = shared_hash_copy (src->vars);
3155     }
3156   else
3157     {
3158       variable_iterator_type hi;
3159       variable *var;
3160 
3161       FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3162 				   var, variable, hi)
3163 	variable_union (var, dst);
3164     }
3165 }
3166 
3167 /* Whether the value is currently being expanded.  */
3168 #define VALUE_RECURSED_INTO(x) \
3169   (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3170 
3171 /* Whether no expansion was found, saving useless lookups.
3172    It must only be set when VALUE_CHANGED is clear.  */
3173 #define NO_LOC_P(x) \
3174   (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3175 
3176 /* Whether cur_loc in the value needs to be (re)computed.  */
3177 #define VALUE_CHANGED(x) \
3178   (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3179 /* Whether cur_loc in the decl needs to be (re)computed.  */
3180 #define DECL_CHANGED(x) TREE_VISITED (x)
3181 
3182 /* Record (if NEWV) that DV needs to have its cur_loc recomputed.  For
3183    user DECLs, this means they're in changed_variables.  Values and
3184    debug exprs may be left with this flag set if no user variable
3185    requires them to be evaluated.  */
3186 
3187 static inline void
set_dv_changed(decl_or_value dv,bool newv)3188 set_dv_changed (decl_or_value dv, bool newv)
3189 {
3190   switch (dv_onepart_p (dv))
3191     {
3192     case ONEPART_VALUE:
3193       if (newv)
3194 	NO_LOC_P (dv_as_value (dv)) = false;
3195       VALUE_CHANGED (dv_as_value (dv)) = newv;
3196       break;
3197 
3198     case ONEPART_DEXPR:
3199       if (newv)
3200 	NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3201       /* Fall through.  */
3202 
3203     default:
3204       DECL_CHANGED (dv_as_decl (dv)) = newv;
3205       break;
3206     }
3207 }
3208 
3209 /* Return true if DV needs to have its cur_loc recomputed.  */
3210 
3211 static inline bool
dv_changed_p(decl_or_value dv)3212 dv_changed_p (decl_or_value dv)
3213 {
3214   return (dv_is_value_p (dv)
3215 	  ? VALUE_CHANGED (dv_as_value (dv))
3216 	  : DECL_CHANGED (dv_as_decl (dv)));
3217 }
3218 
3219 /* Return a location list node whose loc is rtx_equal to LOC, in the
3220    location list of a one-part variable or value VAR, or in that of
3221    any values recursively mentioned in the location lists.  VARS must
3222    be in star-canonical form.  */
3223 
3224 static location_chain *
find_loc_in_1pdv(rtx loc,variable * var,variable_table_type * vars)3225 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3226 {
3227   location_chain *node;
3228   enum rtx_code loc_code;
3229 
3230   if (!var)
3231     return NULL;
3232 
3233   gcc_checking_assert (var->onepart);
3234 
3235   if (!var->n_var_parts)
3236     return NULL;
3237 
3238   gcc_checking_assert (loc != dv_as_opaque (var->dv));
3239 
3240   loc_code = GET_CODE (loc);
3241   for (node = var->var_part[0].loc_chain; node; node = node->next)
3242     {
3243       decl_or_value dv;
3244       variable *rvar;
3245 
3246       if (GET_CODE (node->loc) != loc_code)
3247 	{
3248 	  if (GET_CODE (node->loc) != VALUE)
3249 	    continue;
3250 	}
3251       else if (loc == node->loc)
3252 	return node;
3253       else if (loc_code != VALUE)
3254 	{
3255 	  if (rtx_equal_p (loc, node->loc))
3256 	    return node;
3257 	  continue;
3258 	}
3259 
3260       /* Since we're in star-canonical form, we don't need to visit
3261 	 non-canonical nodes: one-part variables and non-canonical
3262 	 values would only point back to the canonical node.  */
3263       if (dv_is_value_p (var->dv)
3264 	  && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3265 	{
3266 	  /* Skip all subsequent VALUEs.  */
3267 	  while (node->next && GET_CODE (node->next->loc) == VALUE)
3268 	    {
3269 	      node = node->next;
3270 	      gcc_checking_assert (!canon_value_cmp (node->loc,
3271 						     dv_as_value (var->dv)));
3272 	      if (loc == node->loc)
3273 		return node;
3274 	    }
3275 	  continue;
3276 	}
3277 
3278       gcc_checking_assert (node == var->var_part[0].loc_chain);
3279       gcc_checking_assert (!node->next);
3280 
3281       dv = dv_from_value (node->loc);
3282       rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3283       return find_loc_in_1pdv (loc, rvar, vars);
3284     }
3285 
3286   /* ??? Gotta look in cselib_val locations too.  */
3287 
3288   return NULL;
3289 }
3290 
3291 /* Hash table iteration argument passed to variable_merge.  */
3292 struct dfset_merge
3293 {
3294   /* The set in which the merge is to be inserted.  */
3295   dataflow_set *dst;
3296   /* The set that we're iterating in.  */
3297   dataflow_set *cur;
3298   /* The set that may contain the other dv we are to merge with.  */
3299   dataflow_set *src;
3300   /* Number of onepart dvs in src.  */
3301   int src_onepart_cnt;
3302 };
3303 
3304 /* Insert LOC in *DNODE, if it's not there yet.  The list must be in
3305    loc_cmp order, and it is maintained as such.  */
3306 
3307 static void
insert_into_intersection(location_chain ** nodep,rtx loc,enum var_init_status status)3308 insert_into_intersection (location_chain **nodep, rtx loc,
3309 			  enum var_init_status status)
3310 {
3311   location_chain *node;
3312   int r;
3313 
3314   for (node = *nodep; node; nodep = &node->next, node = *nodep)
3315     if ((r = loc_cmp (node->loc, loc)) == 0)
3316       {
3317 	node->init = MIN (node->init, status);
3318 	return;
3319       }
3320     else if (r > 0)
3321       break;
3322 
3323   node = new location_chain;
3324 
3325   node->loc = loc;
3326   node->set_src = NULL;
3327   node->init = status;
3328   node->next = *nodep;
3329   *nodep = node;
3330 }
3331 
3332 /* Insert in DEST the intersection of the locations present in both
3333    S1NODE and S2VAR, directly or indirectly.  S1NODE is from a
3334    variable in DSM->cur, whereas S2VAR is from DSM->src.  dvar is in
3335    DSM->dst.  */
3336 
3337 static void
intersect_loc_chains(rtx val,location_chain ** dest,struct dfset_merge * dsm,location_chain * s1node,variable * s2var)3338 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3339 		      location_chain *s1node, variable *s2var)
3340 {
3341   dataflow_set *s1set = dsm->cur;
3342   dataflow_set *s2set = dsm->src;
3343   location_chain *found;
3344 
3345   if (s2var)
3346     {
3347       location_chain *s2node;
3348 
3349       gcc_checking_assert (s2var->onepart);
3350 
3351       if (s2var->n_var_parts)
3352 	{
3353 	  s2node = s2var->var_part[0].loc_chain;
3354 
3355 	  for (; s1node && s2node;
3356 	       s1node = s1node->next, s2node = s2node->next)
3357 	    if (s1node->loc != s2node->loc)
3358 	      break;
3359 	    else if (s1node->loc == val)
3360 	      continue;
3361 	    else
3362 	      insert_into_intersection (dest, s1node->loc,
3363 					MIN (s1node->init, s2node->init));
3364 	}
3365     }
3366 
3367   for (; s1node; s1node = s1node->next)
3368     {
3369       if (s1node->loc == val)
3370 	continue;
3371 
3372       if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3373 				     shared_hash_htab (s2set->vars))))
3374 	{
3375 	  insert_into_intersection (dest, s1node->loc,
3376 				    MIN (s1node->init, found->init));
3377 	  continue;
3378 	}
3379 
3380       if (GET_CODE (s1node->loc) == VALUE
3381 	  && !VALUE_RECURSED_INTO (s1node->loc))
3382 	{
3383 	  decl_or_value dv = dv_from_value (s1node->loc);
3384 	  variable *svar = shared_hash_find (s1set->vars, dv);
3385 	  if (svar)
3386 	    {
3387 	      if (svar->n_var_parts == 1)
3388 		{
3389 		  VALUE_RECURSED_INTO (s1node->loc) = true;
3390 		  intersect_loc_chains (val, dest, dsm,
3391 					svar->var_part[0].loc_chain,
3392 					s2var);
3393 		  VALUE_RECURSED_INTO (s1node->loc) = false;
3394 		}
3395 	    }
3396 	}
3397 
3398       /* ??? gotta look in cselib_val locations too.  */
3399 
3400       /* ??? if the location is equivalent to any location in src,
3401 	 searched recursively
3402 
3403 	   add to dst the values needed to represent the equivalence
3404 
3405      telling whether locations S is equivalent to another dv's
3406      location list:
3407 
3408        for each location D in the list
3409 
3410          if S and D satisfy rtx_equal_p, then it is present
3411 
3412 	 else if D is a value, recurse without cycles
3413 
3414 	 else if S and D have the same CODE and MODE
3415 
3416 	   for each operand oS and the corresponding oD
3417 
3418 	     if oS and oD are not equivalent, then S an D are not equivalent
3419 
3420 	     else if they are RTX vectors
3421 
3422 	       if any vector oS element is not equivalent to its respective oD,
3423 	       then S and D are not equivalent
3424 
3425    */
3426 
3427 
3428     }
3429 }
3430 
3431 /* Return -1 if X should be before Y in a location list for a 1-part
3432    variable, 1 if Y should be before X, and 0 if they're equivalent
3433    and should not appear in the list.  */
3434 
3435 static int
loc_cmp(rtx x,rtx y)3436 loc_cmp (rtx x, rtx y)
3437 {
3438   int i, j, r;
3439   RTX_CODE code = GET_CODE (x);
3440   const char *fmt;
3441 
3442   if (x == y)
3443     return 0;
3444 
3445   if (REG_P (x))
3446     {
3447       if (!REG_P (y))
3448 	return -1;
3449       gcc_assert (GET_MODE (x) == GET_MODE (y));
3450       if (REGNO (x) == REGNO (y))
3451 	return 0;
3452       else if (REGNO (x) < REGNO (y))
3453 	return -1;
3454       else
3455 	return 1;
3456     }
3457 
3458   if (REG_P (y))
3459     return 1;
3460 
3461   if (MEM_P (x))
3462     {
3463       if (!MEM_P (y))
3464 	return -1;
3465       gcc_assert (GET_MODE (x) == GET_MODE (y));
3466       return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3467     }
3468 
3469   if (MEM_P (y))
3470     return 1;
3471 
3472   if (GET_CODE (x) == VALUE)
3473     {
3474       if (GET_CODE (y) != VALUE)
3475 	return -1;
3476       /* Don't assert the modes are the same, that is true only
3477 	 when not recursing.  (subreg:QI (value:SI 1:1) 0)
3478 	 and (subreg:QI (value:DI 2:2) 0) can be compared,
3479 	 even when the modes are different.  */
3480       if (canon_value_cmp (x, y))
3481 	return -1;
3482       else
3483 	return 1;
3484     }
3485 
3486   if (GET_CODE (y) == VALUE)
3487     return 1;
3488 
3489   /* Entry value is the least preferable kind of expression.  */
3490   if (GET_CODE (x) == ENTRY_VALUE)
3491     {
3492       if (GET_CODE (y) != ENTRY_VALUE)
3493 	return 1;
3494       gcc_assert (GET_MODE (x) == GET_MODE (y));
3495       return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3496     }
3497 
3498   if (GET_CODE (y) == ENTRY_VALUE)
3499     return -1;
3500 
3501   if (GET_CODE (x) == GET_CODE (y))
3502     /* Compare operands below.  */;
3503   else if (GET_CODE (x) < GET_CODE (y))
3504     return -1;
3505   else
3506     return 1;
3507 
3508   gcc_assert (GET_MODE (x) == GET_MODE (y));
3509 
3510   if (GET_CODE (x) == DEBUG_EXPR)
3511     {
3512       if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3513 	  < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3514 	return -1;
3515       gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3516 			   > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3517       return 1;
3518     }
3519 
3520   fmt = GET_RTX_FORMAT (code);
3521   for (i = 0; i < GET_RTX_LENGTH (code); i++)
3522     switch (fmt[i])
3523       {
3524       case 'w':
3525 	if (XWINT (x, i) == XWINT (y, i))
3526 	  break;
3527 	else if (XWINT (x, i) < XWINT (y, i))
3528 	  return -1;
3529 	else
3530 	  return 1;
3531 
3532       case 'n':
3533       case 'i':
3534 	if (XINT (x, i) == XINT (y, i))
3535 	  break;
3536 	else if (XINT (x, i) < XINT (y, i))
3537 	  return -1;
3538 	else
3539 	  return 1;
3540 
3541       case 'p':
3542 	r = compare_sizes_for_sort (SUBREG_BYTE (x), SUBREG_BYTE (y));
3543 	if (r != 0)
3544 	  return r;
3545 	break;
3546 
3547       case 'V':
3548       case 'E':
3549 	/* Compare the vector length first.  */
3550 	if (XVECLEN (x, i) == XVECLEN (y, i))
3551 	  /* Compare the vectors elements.  */;
3552 	else if (XVECLEN (x, i) < XVECLEN (y, i))
3553 	  return -1;
3554 	else
3555 	  return 1;
3556 
3557 	for (j = 0; j < XVECLEN (x, i); j++)
3558 	  if ((r = loc_cmp (XVECEXP (x, i, j),
3559 			    XVECEXP (y, i, j))))
3560 	    return r;
3561 	break;
3562 
3563       case 'e':
3564 	if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3565 	  return r;
3566 	break;
3567 
3568       case 'S':
3569       case 's':
3570 	if (XSTR (x, i) == XSTR (y, i))
3571 	  break;
3572 	if (!XSTR (x, i))
3573 	  return -1;
3574 	if (!XSTR (y, i))
3575 	  return 1;
3576 	if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3577 	  break;
3578 	else if (r < 0)
3579 	  return -1;
3580 	else
3581 	  return 1;
3582 
3583       case 'u':
3584 	/* These are just backpointers, so they don't matter.  */
3585 	break;
3586 
3587       case '0':
3588       case 't':
3589 	break;
3590 
3591 	/* It is believed that rtx's at this level will never
3592 	   contain anything but integers and other rtx's,
3593 	   except for within LABEL_REFs and SYMBOL_REFs.  */
3594       default:
3595 	gcc_unreachable ();
3596       }
3597   if (CONST_WIDE_INT_P (x))
3598     {
3599       /* Compare the vector length first.  */
3600       if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3601 	return 1;
3602       else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3603 	return -1;
3604 
3605       /* Compare the vectors elements.  */;
3606       for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3607 	{
3608 	  if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3609 	    return -1;
3610 	  if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3611 	    return 1;
3612 	}
3613     }
3614 
3615   return 0;
3616 }
3617 
3618 /* Check the order of entries in one-part variables.   */
3619 
3620 int
canonicalize_loc_order_check(variable ** slot,dataflow_set * data ATTRIBUTE_UNUSED)3621 canonicalize_loc_order_check (variable **slot,
3622 			      dataflow_set *data ATTRIBUTE_UNUSED)
3623 {
3624   variable *var = *slot;
3625   location_chain *node, *next;
3626 
3627 #ifdef ENABLE_RTL_CHECKING
3628   int i;
3629   for (i = 0; i < var->n_var_parts; i++)
3630     gcc_assert (var->var_part[0].cur_loc == NULL);
3631   gcc_assert (!var->in_changed_variables);
3632 #endif
3633 
3634   if (!var->onepart)
3635     return 1;
3636 
3637   gcc_assert (var->n_var_parts == 1);
3638   node = var->var_part[0].loc_chain;
3639   gcc_assert (node);
3640 
3641   while ((next = node->next))
3642     {
3643       gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3644       node = next;
3645     }
3646 
3647   return 1;
3648 }
3649 
3650 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3651    more likely to be chosen as canonical for an equivalence set.
3652    Ensure less likely values can reach more likely neighbors, making
3653    the connections bidirectional.  */
3654 
3655 int
canonicalize_values_mark(variable ** slot,dataflow_set * set)3656 canonicalize_values_mark (variable **slot, dataflow_set *set)
3657 {
3658   variable *var = *slot;
3659   decl_or_value dv = var->dv;
3660   rtx val;
3661   location_chain *node;
3662 
3663   if (!dv_is_value_p (dv))
3664     return 1;
3665 
3666   gcc_checking_assert (var->n_var_parts == 1);
3667 
3668   val = dv_as_value (dv);
3669 
3670   for (node = var->var_part[0].loc_chain; node; node = node->next)
3671     if (GET_CODE (node->loc) == VALUE)
3672       {
3673 	if (canon_value_cmp (node->loc, val))
3674 	  VALUE_RECURSED_INTO (val) = true;
3675 	else
3676 	  {
3677 	    decl_or_value odv = dv_from_value (node->loc);
3678 	    variable **oslot;
3679 	    oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3680 
3681 	    set_slot_part (set, val, oslot, odv, 0,
3682 			   node->init, NULL_RTX);
3683 
3684 	    VALUE_RECURSED_INTO (node->loc) = true;
3685 	  }
3686       }
3687 
3688   return 1;
3689 }
3690 
3691 /* Remove redundant entries from equivalence lists in onepart
3692    variables, canonicalizing equivalence sets into star shapes.  */
3693 
3694 int
canonicalize_values_star(variable ** slot,dataflow_set * set)3695 canonicalize_values_star (variable **slot, dataflow_set *set)
3696 {
3697   variable *var = *slot;
3698   decl_or_value dv = var->dv;
3699   location_chain *node;
3700   decl_or_value cdv;
3701   rtx val, cval;
3702   variable **cslot;
3703   bool has_value;
3704   bool has_marks;
3705 
3706   if (!var->onepart)
3707     return 1;
3708 
3709   gcc_checking_assert (var->n_var_parts == 1);
3710 
3711   if (dv_is_value_p (dv))
3712     {
3713       cval = dv_as_value (dv);
3714       if (!VALUE_RECURSED_INTO (cval))
3715 	return 1;
3716       VALUE_RECURSED_INTO (cval) = false;
3717     }
3718   else
3719     cval = NULL_RTX;
3720 
3721  restart:
3722   val = cval;
3723   has_value = false;
3724   has_marks = false;
3725 
3726   gcc_assert (var->n_var_parts == 1);
3727 
3728   for (node = var->var_part[0].loc_chain; node; node = node->next)
3729     if (GET_CODE (node->loc) == VALUE)
3730       {
3731 	has_value = true;
3732 	if (VALUE_RECURSED_INTO (node->loc))
3733 	  has_marks = true;
3734 	if (canon_value_cmp (node->loc, cval))
3735 	  cval = node->loc;
3736       }
3737 
3738   if (!has_value)
3739     return 1;
3740 
3741   if (cval == val)
3742     {
3743       if (!has_marks || dv_is_decl_p (dv))
3744 	return 1;
3745 
3746       /* Keep it marked so that we revisit it, either after visiting a
3747 	 child node, or after visiting a new parent that might be
3748 	 found out.  */
3749       VALUE_RECURSED_INTO (val) = true;
3750 
3751       for (node = var->var_part[0].loc_chain; node; node = node->next)
3752 	if (GET_CODE (node->loc) == VALUE
3753 	    && VALUE_RECURSED_INTO (node->loc))
3754 	  {
3755 	    cval = node->loc;
3756 	  restart_with_cval:
3757 	    VALUE_RECURSED_INTO (cval) = false;
3758 	    dv = dv_from_value (cval);
3759 	    slot = shared_hash_find_slot_noinsert (set->vars, dv);
3760 	    if (!slot)
3761 	      {
3762 		gcc_assert (dv_is_decl_p (var->dv));
3763 		/* The canonical value was reset and dropped.
3764 		   Remove it.  */
3765 		clobber_variable_part (set, NULL, var->dv, 0, NULL);
3766 		return 1;
3767 	      }
3768 	    var = *slot;
3769 	    gcc_assert (dv_is_value_p (var->dv));
3770 	    if (var->n_var_parts == 0)
3771 	      return 1;
3772 	    gcc_assert (var->n_var_parts == 1);
3773 	    goto restart;
3774 	  }
3775 
3776       VALUE_RECURSED_INTO (val) = false;
3777 
3778       return 1;
3779     }
3780 
3781   /* Push values to the canonical one.  */
3782   cdv = dv_from_value (cval);
3783   cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3784 
3785   for (node = var->var_part[0].loc_chain; node; node = node->next)
3786     if (node->loc != cval)
3787       {
3788 	cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3789 			       node->init, NULL_RTX);
3790 	if (GET_CODE (node->loc) == VALUE)
3791 	  {
3792 	    decl_or_value ndv = dv_from_value (node->loc);
3793 
3794 	    set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3795 			       NO_INSERT);
3796 
3797 	    if (canon_value_cmp (node->loc, val))
3798 	      {
3799 		/* If it could have been a local minimum, it's not any more,
3800 		   since it's now neighbor to cval, so it may have to push
3801 		   to it.  Conversely, if it wouldn't have prevailed over
3802 		   val, then whatever mark it has is fine: if it was to
3803 		   push, it will now push to a more canonical node, but if
3804 		   it wasn't, then it has already pushed any values it might
3805 		   have to.  */
3806 		VALUE_RECURSED_INTO (node->loc) = true;
3807 		/* Make sure we visit node->loc by ensuring we cval is
3808 		   visited too.  */
3809 		VALUE_RECURSED_INTO (cval) = true;
3810 	      }
3811 	    else if (!VALUE_RECURSED_INTO (node->loc))
3812 	      /* If we have no need to "recurse" into this node, it's
3813 		 already "canonicalized", so drop the link to the old
3814 		 parent.  */
3815 	      clobber_variable_part (set, cval, ndv, 0, NULL);
3816 	  }
3817 	else if (GET_CODE (node->loc) == REG)
3818 	  {
3819 	    attrs *list = set->regs[REGNO (node->loc)], **listp;
3820 
3821 	    /* Change an existing attribute referring to dv so that it
3822 	       refers to cdv, removing any duplicate this might
3823 	       introduce, and checking that no previous duplicates
3824 	       existed, all in a single pass.  */
3825 
3826 	    while (list)
3827 	      {
3828 		if (list->offset == 0
3829 		    && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3830 			|| dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3831 		  break;
3832 
3833 		list = list->next;
3834 	      }
3835 
3836 	    gcc_assert (list);
3837 	    if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3838 	      {
3839 		list->dv = cdv;
3840 		for (listp = &list->next; (list = *listp); listp = &list->next)
3841 		  {
3842 		    if (list->offset)
3843 		      continue;
3844 
3845 		    if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3846 		      {
3847 			*listp = list->next;
3848 			delete list;
3849 			list = *listp;
3850 			break;
3851 		      }
3852 
3853 		    gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3854 		  }
3855 	      }
3856 	    else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3857 	      {
3858 		for (listp = &list->next; (list = *listp); listp = &list->next)
3859 		  {
3860 		    if (list->offset)
3861 		      continue;
3862 
3863 		    if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3864 		      {
3865 			*listp = list->next;
3866 			delete list;
3867 			list = *listp;
3868 			break;
3869 		      }
3870 
3871 		    gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3872 		  }
3873 	      }
3874 	    else
3875 	      gcc_unreachable ();
3876 
3877 	    if (flag_checking)
3878 	      while (list)
3879 		{
3880 		  if (list->offset == 0
3881 		      && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3882 			  || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3883 		    gcc_unreachable ();
3884 
3885 		  list = list->next;
3886 		}
3887 	  }
3888       }
3889 
3890   if (val)
3891     set_slot_part (set, val, cslot, cdv, 0,
3892 		   VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3893 
3894   slot = clobber_slot_part (set, cval, slot, 0, NULL);
3895 
3896   /* Variable may have been unshared.  */
3897   var = *slot;
3898   gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3899 		       && var->var_part[0].loc_chain->next == NULL);
3900 
3901   if (VALUE_RECURSED_INTO (cval))
3902     goto restart_with_cval;
3903 
3904   return 1;
3905 }
3906 
3907 /* Bind one-part variables to the canonical value in an equivalence
3908    set.  Not doing this causes dataflow convergence failure in rare
3909    circumstances, see PR42873.  Unfortunately we can't do this
3910    efficiently as part of canonicalize_values_star, since we may not
3911    have determined or even seen the canonical value of a set when we
3912    get to a variable that references another member of the set.  */
3913 
3914 int
canonicalize_vars_star(variable ** slot,dataflow_set * set)3915 canonicalize_vars_star (variable **slot, dataflow_set *set)
3916 {
3917   variable *var = *slot;
3918   decl_or_value dv = var->dv;
3919   location_chain *node;
3920   rtx cval;
3921   decl_or_value cdv;
3922   variable **cslot;
3923   variable *cvar;
3924   location_chain *cnode;
3925 
3926   if (!var->onepart || var->onepart == ONEPART_VALUE)
3927     return 1;
3928 
3929   gcc_assert (var->n_var_parts == 1);
3930 
3931   node = var->var_part[0].loc_chain;
3932 
3933   if (GET_CODE (node->loc) != VALUE)
3934     return 1;
3935 
3936   gcc_assert (!node->next);
3937   cval = node->loc;
3938 
3939   /* Push values to the canonical one.  */
3940   cdv = dv_from_value (cval);
3941   cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3942   if (!cslot)
3943     return 1;
3944   cvar = *cslot;
3945   gcc_assert (cvar->n_var_parts == 1);
3946 
3947   cnode = cvar->var_part[0].loc_chain;
3948 
3949   /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3950      that are not “more canonical” than it.  */
3951   if (GET_CODE (cnode->loc) != VALUE
3952       || !canon_value_cmp (cnode->loc, cval))
3953     return 1;
3954 
3955   /* CVAL was found to be non-canonical.  Change the variable to point
3956      to the canonical VALUE.  */
3957   gcc_assert (!cnode->next);
3958   cval = cnode->loc;
3959 
3960   slot = set_slot_part (set, cval, slot, dv, 0,
3961 			node->init, node->set_src);
3962   clobber_slot_part (set, cval, slot, 0, node->set_src);
3963 
3964   return 1;
3965 }
3966 
3967 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3968    corresponding entry in DSM->src.  Multi-part variables are combined
3969    with variable_union, whereas onepart dvs are combined with
3970    intersection.  */
3971 
3972 static int
variable_merge_over_cur(variable * s1var,struct dfset_merge * dsm)3973 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3974 {
3975   dataflow_set *dst = dsm->dst;
3976   variable **dstslot;
3977   variable *s2var, *dvar = NULL;
3978   decl_or_value dv = s1var->dv;
3979   onepart_enum onepart = s1var->onepart;
3980   rtx val;
3981   hashval_t dvhash;
3982   location_chain *node, **nodep;
3983 
3984   /* If the incoming onepart variable has an empty location list, then
3985      the intersection will be just as empty.  For other variables,
3986      it's always union.  */
3987   gcc_checking_assert (s1var->n_var_parts
3988 		       && s1var->var_part[0].loc_chain);
3989 
3990   if (!onepart)
3991     return variable_union (s1var, dst);
3992 
3993   gcc_checking_assert (s1var->n_var_parts == 1);
3994 
3995   dvhash = dv_htab_hash (dv);
3996   if (dv_is_value_p (dv))
3997     val = dv_as_value (dv);
3998   else
3999     val = NULL;
4000 
4001   s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
4002   if (!s2var)
4003     {
4004       dst_can_be_shared = false;
4005       return 1;
4006     }
4007 
4008   dsm->src_onepart_cnt--;
4009   gcc_assert (s2var->var_part[0].loc_chain
4010 	      && s2var->onepart == onepart
4011 	      && s2var->n_var_parts == 1);
4012 
4013   dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4014   if (dstslot)
4015     {
4016       dvar = *dstslot;
4017       gcc_assert (dvar->refcount == 1
4018 		  && dvar->onepart == onepart
4019 		  && dvar->n_var_parts == 1);
4020       nodep = &dvar->var_part[0].loc_chain;
4021     }
4022   else
4023     {
4024       nodep = &node;
4025       node = NULL;
4026     }
4027 
4028   if (!dstslot && !onepart_variable_different_p (s1var, s2var))
4029     {
4030       dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
4031 						 dvhash, INSERT);
4032       *dstslot = dvar = s2var;
4033       dvar->refcount++;
4034     }
4035   else
4036     {
4037       dst_can_be_shared = false;
4038 
4039       intersect_loc_chains (val, nodep, dsm,
4040 			    s1var->var_part[0].loc_chain, s2var);
4041 
4042       if (!dstslot)
4043 	{
4044 	  if (node)
4045 	    {
4046 	      dvar = onepart_pool_allocate (onepart);
4047 	      dvar->dv = dv;
4048 	      dvar->refcount = 1;
4049 	      dvar->n_var_parts = 1;
4050 	      dvar->onepart = onepart;
4051 	      dvar->in_changed_variables = false;
4052 	      dvar->var_part[0].loc_chain = node;
4053 	      dvar->var_part[0].cur_loc = NULL;
4054 	      if (onepart)
4055 		VAR_LOC_1PAUX (dvar) = NULL;
4056 	      else
4057 		VAR_PART_OFFSET (dvar, 0) = 0;
4058 
4059 	      dstslot
4060 		= shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4061 						   INSERT);
4062 	      gcc_assert (!*dstslot);
4063 	      *dstslot = dvar;
4064 	    }
4065 	  else
4066 	    return 1;
4067 	}
4068     }
4069 
4070   nodep = &dvar->var_part[0].loc_chain;
4071   while ((node = *nodep))
4072     {
4073       location_chain **nextp = &node->next;
4074 
4075       if (GET_CODE (node->loc) == REG)
4076 	{
4077 	  attrs *list;
4078 
4079 	  for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4080 	    if (GET_MODE (node->loc) == GET_MODE (list->loc)
4081 		&& dv_is_value_p (list->dv))
4082 	      break;
4083 
4084 	  if (!list)
4085 	    attrs_list_insert (&dst->regs[REGNO (node->loc)],
4086 			       dv, 0, node->loc);
4087 	  /* If this value became canonical for another value that had
4088 	     this register, we want to leave it alone.  */
4089 	  else if (dv_as_value (list->dv) != val)
4090 	    {
4091 	      dstslot = set_slot_part (dst, dv_as_value (list->dv),
4092 				       dstslot, dv, 0,
4093 				       node->init, NULL_RTX);
4094 	      dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4095 
4096 	      /* Since nextp points into the removed node, we can't
4097 		 use it.  The pointer to the next node moved to nodep.
4098 		 However, if the variable we're walking is unshared
4099 		 during our walk, we'll keep walking the location list
4100 		 of the previously-shared variable, in which case the
4101 		 node won't have been removed, and we'll want to skip
4102 		 it.  That's why we test *nodep here.  */
4103 	      if (*nodep != node)
4104 		nextp = nodep;
4105 	    }
4106 	}
4107       else
4108 	/* Canonicalization puts registers first, so we don't have to
4109 	   walk it all.  */
4110 	break;
4111       nodep = nextp;
4112     }
4113 
4114   if (dvar != *dstslot)
4115     dvar = *dstslot;
4116   nodep = &dvar->var_part[0].loc_chain;
4117 
4118   if (val)
4119     {
4120       /* Mark all referenced nodes for canonicalization, and make sure
4121 	 we have mutual equivalence links.  */
4122       VALUE_RECURSED_INTO (val) = true;
4123       for (node = *nodep; node; node = node->next)
4124 	if (GET_CODE (node->loc) == VALUE)
4125 	  {
4126 	    VALUE_RECURSED_INTO (node->loc) = true;
4127 	    set_variable_part (dst, val, dv_from_value (node->loc), 0,
4128 			       node->init, NULL, INSERT);
4129 	  }
4130 
4131       dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4132       gcc_assert (*dstslot == dvar);
4133       canonicalize_values_star (dstslot, dst);
4134       gcc_checking_assert (dstslot
4135 			   == shared_hash_find_slot_noinsert_1 (dst->vars,
4136 								dv, dvhash));
4137       dvar = *dstslot;
4138     }
4139   else
4140     {
4141       bool has_value = false, has_other = false;
4142 
4143       /* If we have one value and anything else, we're going to
4144 	 canonicalize this, so make sure all values have an entry in
4145 	 the table and are marked for canonicalization.  */
4146       for (node = *nodep; node; node = node->next)
4147 	{
4148 	  if (GET_CODE (node->loc) == VALUE)
4149 	    {
4150 	      /* If this was marked during register canonicalization,
4151 		 we know we have to canonicalize values.  */
4152 	      if (has_value)
4153 		has_other = true;
4154 	      has_value = true;
4155 	      if (has_other)
4156 		break;
4157 	    }
4158 	  else
4159 	    {
4160 	      has_other = true;
4161 	      if (has_value)
4162 		break;
4163 	    }
4164 	}
4165 
4166       if (has_value && has_other)
4167 	{
4168 	  for (node = *nodep; node; node = node->next)
4169 	    {
4170 	      if (GET_CODE (node->loc) == VALUE)
4171 		{
4172 		  decl_or_value dv = dv_from_value (node->loc);
4173 		  variable **slot = NULL;
4174 
4175 		  if (shared_hash_shared (dst->vars))
4176 		    slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4177 		  if (!slot)
4178 		    slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4179 							  INSERT);
4180 		  if (!*slot)
4181 		    {
4182 		      variable *var = onepart_pool_allocate (ONEPART_VALUE);
4183 		      var->dv = dv;
4184 		      var->refcount = 1;
4185 		      var->n_var_parts = 1;
4186 		      var->onepart = ONEPART_VALUE;
4187 		      var->in_changed_variables = false;
4188 		      var->var_part[0].loc_chain = NULL;
4189 		      var->var_part[0].cur_loc = NULL;
4190 		      VAR_LOC_1PAUX (var) = NULL;
4191 		      *slot = var;
4192 		    }
4193 
4194 		  VALUE_RECURSED_INTO (node->loc) = true;
4195 		}
4196 	    }
4197 
4198 	  dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4199 	  gcc_assert (*dstslot == dvar);
4200 	  canonicalize_values_star (dstslot, dst);
4201 	  gcc_checking_assert (dstslot
4202 			       == shared_hash_find_slot_noinsert_1 (dst->vars,
4203 								    dv, dvhash));
4204 	  dvar = *dstslot;
4205 	}
4206     }
4207 
4208   if (!onepart_variable_different_p (dvar, s2var))
4209     {
4210       variable_htab_free (dvar);
4211       *dstslot = dvar = s2var;
4212       dvar->refcount++;
4213     }
4214   else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4215     {
4216       variable_htab_free (dvar);
4217       *dstslot = dvar = s1var;
4218       dvar->refcount++;
4219       dst_can_be_shared = false;
4220     }
4221   else
4222     dst_can_be_shared = false;
4223 
4224   return 1;
4225 }
4226 
4227 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4228    multi-part variable.  Unions of multi-part variables and
4229    intersections of one-part ones will be handled in
4230    variable_merge_over_cur().  */
4231 
4232 static int
variable_merge_over_src(variable * s2var,struct dfset_merge * dsm)4233 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4234 {
4235   dataflow_set *dst = dsm->dst;
4236   decl_or_value dv = s2var->dv;
4237 
4238   if (!s2var->onepart)
4239     {
4240       variable **dstp = shared_hash_find_slot (dst->vars, dv);
4241       *dstp = s2var;
4242       s2var->refcount++;
4243       return 1;
4244     }
4245 
4246   dsm->src_onepart_cnt++;
4247   return 1;
4248 }
4249 
4250 /* Combine dataflow set information from SRC2 into DST, using PDST
4251    to carry over information across passes.  */
4252 
4253 static void
dataflow_set_merge(dataflow_set * dst,dataflow_set * src2)4254 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4255 {
4256   dataflow_set cur = *dst;
4257   dataflow_set *src1 = &cur;
4258   struct dfset_merge dsm;
4259   int i;
4260   size_t src1_elems, src2_elems;
4261   variable_iterator_type hi;
4262   variable *var;
4263 
4264   src1_elems = shared_hash_htab (src1->vars)->elements ();
4265   src2_elems = shared_hash_htab (src2->vars)->elements ();
4266   dataflow_set_init (dst);
4267   dst->stack_adjust = cur.stack_adjust;
4268   shared_hash_destroy (dst->vars);
4269   dst->vars = new shared_hash;
4270   dst->vars->refcount = 1;
4271   dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4272 
4273   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4274     attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4275 
4276   dsm.dst = dst;
4277   dsm.src = src2;
4278   dsm.cur = src1;
4279   dsm.src_onepart_cnt = 0;
4280 
4281   FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4282 			       var, variable, hi)
4283     variable_merge_over_src (var, &dsm);
4284   FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4285 			       var, variable, hi)
4286     variable_merge_over_cur (var, &dsm);
4287 
4288   if (dsm.src_onepart_cnt)
4289     dst_can_be_shared = false;
4290 
4291   dataflow_set_destroy (src1);
4292 }
4293 
4294 /* Mark register equivalences.  */
4295 
4296 static void
dataflow_set_equiv_regs(dataflow_set * set)4297 dataflow_set_equiv_regs (dataflow_set *set)
4298 {
4299   int i;
4300   attrs *list, **listp;
4301 
4302   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4303     {
4304       rtx canon[NUM_MACHINE_MODES];
4305 
4306       /* If the list is empty or one entry, no need to canonicalize
4307 	 anything.  */
4308       if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4309 	continue;
4310 
4311       memset (canon, 0, sizeof (canon));
4312 
4313       for (list = set->regs[i]; list; list = list->next)
4314 	if (list->offset == 0 && dv_is_value_p (list->dv))
4315 	  {
4316 	    rtx val = dv_as_value (list->dv);
4317 	    rtx *cvalp = &canon[(int)GET_MODE (val)];
4318 	    rtx cval = *cvalp;
4319 
4320 	    if (canon_value_cmp (val, cval))
4321 	      *cvalp = val;
4322 	  }
4323 
4324       for (list = set->regs[i]; list; list = list->next)
4325 	if (list->offset == 0 && dv_onepart_p (list->dv))
4326 	  {
4327 	    rtx cval = canon[(int)GET_MODE (list->loc)];
4328 
4329 	    if (!cval)
4330 	      continue;
4331 
4332 	    if (dv_is_value_p (list->dv))
4333 	      {
4334 		rtx val = dv_as_value (list->dv);
4335 
4336 		if (val == cval)
4337 		  continue;
4338 
4339 		VALUE_RECURSED_INTO (val) = true;
4340 		set_variable_part (set, val, dv_from_value (cval), 0,
4341 				   VAR_INIT_STATUS_INITIALIZED,
4342 				   NULL, NO_INSERT);
4343 	      }
4344 
4345 	    VALUE_RECURSED_INTO (cval) = true;
4346 	    set_variable_part (set, cval, list->dv, 0,
4347 			       VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4348 	  }
4349 
4350       for (listp = &set->regs[i]; (list = *listp);
4351 	   listp = list ? &list->next : listp)
4352 	if (list->offset == 0 && dv_onepart_p (list->dv))
4353 	  {
4354 	    rtx cval = canon[(int)GET_MODE (list->loc)];
4355 	    variable **slot;
4356 
4357 	    if (!cval)
4358 	      continue;
4359 
4360 	    if (dv_is_value_p (list->dv))
4361 	      {
4362 		rtx val = dv_as_value (list->dv);
4363 		if (!VALUE_RECURSED_INTO (val))
4364 		  continue;
4365 	      }
4366 
4367 	    slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4368 	    canonicalize_values_star (slot, set);
4369 	    if (*listp != list)
4370 	      list = NULL;
4371 	  }
4372     }
4373 }
4374 
4375 /* Remove any redundant values in the location list of VAR, which must
4376    be unshared and 1-part.  */
4377 
4378 static void
remove_duplicate_values(variable * var)4379 remove_duplicate_values (variable *var)
4380 {
4381   location_chain *node, **nodep;
4382 
4383   gcc_assert (var->onepart);
4384   gcc_assert (var->n_var_parts == 1);
4385   gcc_assert (var->refcount == 1);
4386 
4387   for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4388     {
4389       if (GET_CODE (node->loc) == VALUE)
4390 	{
4391 	  if (VALUE_RECURSED_INTO (node->loc))
4392 	    {
4393 	      /* Remove duplicate value node.  */
4394 	      *nodep = node->next;
4395 	      delete node;
4396 	      continue;
4397 	    }
4398 	  else
4399 	    VALUE_RECURSED_INTO (node->loc) = true;
4400 	}
4401       nodep = &node->next;
4402     }
4403 
4404   for (node = var->var_part[0].loc_chain; node; node = node->next)
4405     if (GET_CODE (node->loc) == VALUE)
4406       {
4407 	gcc_assert (VALUE_RECURSED_INTO (node->loc));
4408 	VALUE_RECURSED_INTO (node->loc) = false;
4409       }
4410 }
4411 
4412 
4413 /* Hash table iteration argument passed to variable_post_merge.  */
4414 struct dfset_post_merge
4415 {
4416   /* The new input set for the current block.  */
4417   dataflow_set *set;
4418   /* Pointer to the permanent input set for the current block, or
4419      NULL.  */
4420   dataflow_set **permp;
4421 };
4422 
4423 /* Create values for incoming expressions associated with one-part
4424    variables that don't have value numbers for them.  */
4425 
4426 int
variable_post_merge_new_vals(variable ** slot,dfset_post_merge * dfpm)4427 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4428 {
4429   dataflow_set *set = dfpm->set;
4430   variable *var = *slot;
4431   location_chain *node;
4432 
4433   if (!var->onepart || !var->n_var_parts)
4434     return 1;
4435 
4436   gcc_assert (var->n_var_parts == 1);
4437 
4438   if (dv_is_decl_p (var->dv))
4439     {
4440       bool check_dupes = false;
4441 
4442     restart:
4443       for (node = var->var_part[0].loc_chain; node; node = node->next)
4444 	{
4445 	  if (GET_CODE (node->loc) == VALUE)
4446 	    gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4447 	  else if (GET_CODE (node->loc) == REG)
4448 	    {
4449 	      attrs *att, **attp, **curp = NULL;
4450 
4451 	      if (var->refcount != 1)
4452 		{
4453 		  slot = unshare_variable (set, slot, var,
4454 					   VAR_INIT_STATUS_INITIALIZED);
4455 		  var = *slot;
4456 		  goto restart;
4457 		}
4458 
4459 	      for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4460 		   attp = &att->next)
4461 		if (att->offset == 0
4462 		    && GET_MODE (att->loc) == GET_MODE (node->loc))
4463 		  {
4464 		    if (dv_is_value_p (att->dv))
4465 		      {
4466 			rtx cval = dv_as_value (att->dv);
4467 			node->loc = cval;
4468 			check_dupes = true;
4469 			break;
4470 		      }
4471 		    else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4472 		      curp = attp;
4473 		  }
4474 
4475 	      if (!curp)
4476 		{
4477 		  curp = attp;
4478 		  while (*curp)
4479 		    if ((*curp)->offset == 0
4480 			&& GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4481 			&& dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4482 		      break;
4483 		    else
4484 		      curp = &(*curp)->next;
4485 		  gcc_assert (*curp);
4486 		}
4487 
4488 	      if (!att)
4489 		{
4490 		  decl_or_value cdv;
4491 		  rtx cval;
4492 
4493 		  if (!*dfpm->permp)
4494 		    {
4495 		      *dfpm->permp = XNEW (dataflow_set);
4496 		      dataflow_set_init (*dfpm->permp);
4497 		    }
4498 
4499 		  for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4500 		       att; att = att->next)
4501 		    if (GET_MODE (att->loc) == GET_MODE (node->loc))
4502 		      {
4503 			gcc_assert (att->offset == 0
4504 				    && dv_is_value_p (att->dv));
4505 			val_reset (set, att->dv);
4506 			break;
4507 		      }
4508 
4509 		  if (att)
4510 		    {
4511 		      cdv = att->dv;
4512 		      cval = dv_as_value (cdv);
4513 		    }
4514 		  else
4515 		    {
4516 		      /* Create a unique value to hold this register,
4517 			 that ought to be found and reused in
4518 			 subsequent rounds.  */
4519 		      cselib_val *v;
4520 		      gcc_assert (!cselib_lookup (node->loc,
4521 						  GET_MODE (node->loc), 0,
4522 						  VOIDmode));
4523 		      v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4524 					 VOIDmode);
4525 		      cselib_preserve_value (v);
4526 		      cselib_invalidate_rtx (node->loc);
4527 		      cval = v->val_rtx;
4528 		      cdv = dv_from_value (cval);
4529 		      if (dump_file)
4530 			fprintf (dump_file,
4531 				 "Created new value %u:%u for reg %i\n",
4532 				 v->uid, v->hash, REGNO (node->loc));
4533 		    }
4534 
4535 		  var_reg_decl_set (*dfpm->permp, node->loc,
4536 				    VAR_INIT_STATUS_INITIALIZED,
4537 				    cdv, 0, NULL, INSERT);
4538 
4539 		  node->loc = cval;
4540 		  check_dupes = true;
4541 		}
4542 
4543 	      /* Remove attribute referring to the decl, which now
4544 		 uses the value for the register, already existing or
4545 		 to be added when we bring perm in.  */
4546 	      att = *curp;
4547 	      *curp = att->next;
4548 	      delete att;
4549 	    }
4550 	}
4551 
4552       if (check_dupes)
4553 	remove_duplicate_values (var);
4554     }
4555 
4556   return 1;
4557 }
4558 
4559 /* Reset values in the permanent set that are not associated with the
4560    chosen expression.  */
4561 
4562 int
variable_post_merge_perm_vals(variable ** pslot,dfset_post_merge * dfpm)4563 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4564 {
4565   dataflow_set *set = dfpm->set;
4566   variable *pvar = *pslot, *var;
4567   location_chain *pnode;
4568   decl_or_value dv;
4569   attrs *att;
4570 
4571   gcc_assert (dv_is_value_p (pvar->dv)
4572 	      && pvar->n_var_parts == 1);
4573   pnode = pvar->var_part[0].loc_chain;
4574   gcc_assert (pnode
4575 	      && !pnode->next
4576 	      && REG_P (pnode->loc));
4577 
4578   dv = pvar->dv;
4579 
4580   var = shared_hash_find (set->vars, dv);
4581   if (var)
4582     {
4583       /* Although variable_post_merge_new_vals may have made decls
4584 	 non-star-canonical, values that pre-existed in canonical form
4585 	 remain canonical, and newly-created values reference a single
4586 	 REG, so they are canonical as well.  Since VAR has the
4587 	 location list for a VALUE, using find_loc_in_1pdv for it is
4588 	 fine, since VALUEs don't map back to DECLs.  */
4589       if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4590 	return 1;
4591       val_reset (set, dv);
4592     }
4593 
4594   for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4595     if (att->offset == 0
4596 	&& GET_MODE (att->loc) == GET_MODE (pnode->loc)
4597 	&& dv_is_value_p (att->dv))
4598       break;
4599 
4600   /* If there is a value associated with this register already, create
4601      an equivalence.  */
4602   if (att && dv_as_value (att->dv) != dv_as_value (dv))
4603     {
4604       rtx cval = dv_as_value (att->dv);
4605       set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4606       set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4607 			 NULL, INSERT);
4608     }
4609   else if (!att)
4610     {
4611       attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4612 			 dv, 0, pnode->loc);
4613       variable_union (pvar, set);
4614     }
4615 
4616   return 1;
4617 }
4618 
4619 /* Just checking stuff and registering register attributes for
4620    now.  */
4621 
4622 static void
dataflow_post_merge_adjust(dataflow_set * set,dataflow_set ** permp)4623 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4624 {
4625   struct dfset_post_merge dfpm;
4626 
4627   dfpm.set = set;
4628   dfpm.permp = permp;
4629 
4630   shared_hash_htab (set->vars)
4631     ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4632   if (*permp)
4633     shared_hash_htab ((*permp)->vars)
4634       ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4635   shared_hash_htab (set->vars)
4636     ->traverse <dataflow_set *, canonicalize_values_star> (set);
4637   shared_hash_htab (set->vars)
4638     ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4639 }
4640 
4641 /* Return a node whose loc is a MEM that refers to EXPR in the
4642    location list of a one-part variable or value VAR, or in that of
4643    any values recursively mentioned in the location lists.  */
4644 
4645 static location_chain *
find_mem_expr_in_1pdv(tree expr,rtx val,variable_table_type * vars)4646 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4647 {
4648   location_chain *node;
4649   decl_or_value dv;
4650   variable *var;
4651   location_chain *where = NULL;
4652 
4653   if (!val)
4654     return NULL;
4655 
4656   gcc_assert (GET_CODE (val) == VALUE
4657 	      && !VALUE_RECURSED_INTO (val));
4658 
4659   dv = dv_from_value (val);
4660   var = vars->find_with_hash (dv, dv_htab_hash (dv));
4661 
4662   if (!var)
4663     return NULL;
4664 
4665   gcc_assert (var->onepart);
4666 
4667   if (!var->n_var_parts)
4668     return NULL;
4669 
4670   VALUE_RECURSED_INTO (val) = true;
4671 
4672   for (node = var->var_part[0].loc_chain; node; node = node->next)
4673     if (MEM_P (node->loc)
4674 	&& MEM_EXPR (node->loc) == expr
4675 	&& int_mem_offset (node->loc) == 0)
4676       {
4677 	where = node;
4678 	break;
4679       }
4680     else if (GET_CODE (node->loc) == VALUE
4681 	     && !VALUE_RECURSED_INTO (node->loc)
4682 	     && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4683       break;
4684 
4685   VALUE_RECURSED_INTO (val) = false;
4686 
4687   return where;
4688 }
4689 
4690 /* Return TRUE if the value of MEM may vary across a call.  */
4691 
4692 static bool
mem_dies_at_call(rtx mem)4693 mem_dies_at_call (rtx mem)
4694 {
4695   tree expr = MEM_EXPR (mem);
4696   tree decl;
4697 
4698   if (!expr)
4699     return true;
4700 
4701   decl = get_base_address (expr);
4702 
4703   if (!decl)
4704     return true;
4705 
4706   if (!DECL_P (decl))
4707     return true;
4708 
4709   return (may_be_aliased (decl)
4710 	  || (!TREE_READONLY (decl) && is_global_var (decl)));
4711 }
4712 
4713 /* Remove all MEMs from the location list of a hash table entry for a
4714    one-part variable, except those whose MEM attributes map back to
4715    the variable itself, directly or within a VALUE.  */
4716 
4717 int
dataflow_set_preserve_mem_locs(variable ** slot,dataflow_set * set)4718 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4719 {
4720   variable *var = *slot;
4721 
4722   if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4723     {
4724       tree decl = dv_as_decl (var->dv);
4725       location_chain *loc, **locp;
4726       bool changed = false;
4727 
4728       if (!var->n_var_parts)
4729 	return 1;
4730 
4731       gcc_assert (var->n_var_parts == 1);
4732 
4733       if (shared_var_p (var, set->vars))
4734 	{
4735 	  for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4736 	    {
4737 	      /* We want to remove dying MEMs that don't refer to DECL.  */
4738 	      if (GET_CODE (loc->loc) == MEM
4739 		  && (MEM_EXPR (loc->loc) != decl
4740 		      || int_mem_offset (loc->loc) != 0)
4741 		  && mem_dies_at_call (loc->loc))
4742 		break;
4743 	      /* We want to move here MEMs that do refer to DECL.  */
4744 	      else if (GET_CODE (loc->loc) == VALUE
4745 		       && find_mem_expr_in_1pdv (decl, loc->loc,
4746 						 shared_hash_htab (set->vars)))
4747 		break;
4748 	    }
4749 
4750 	  if (!loc)
4751 	    return 1;
4752 
4753 	  slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4754 	  var = *slot;
4755 	  gcc_assert (var->n_var_parts == 1);
4756 	}
4757 
4758       for (locp = &var->var_part[0].loc_chain, loc = *locp;
4759 	   loc; loc = *locp)
4760 	{
4761 	  rtx old_loc = loc->loc;
4762 	  if (GET_CODE (old_loc) == VALUE)
4763 	    {
4764 	      location_chain *mem_node
4765 		= find_mem_expr_in_1pdv (decl, loc->loc,
4766 					 shared_hash_htab (set->vars));
4767 
4768 	      /* ??? This picks up only one out of multiple MEMs that
4769 		 refer to the same variable.  Do we ever need to be
4770 		 concerned about dealing with more than one, or, given
4771 		 that they should all map to the same variable
4772 		 location, their addresses will have been merged and
4773 		 they will be regarded as equivalent?  */
4774 	      if (mem_node)
4775 		{
4776 		  loc->loc = mem_node->loc;
4777 		  loc->set_src = mem_node->set_src;
4778 		  loc->init = MIN (loc->init, mem_node->init);
4779 		}
4780 	    }
4781 
4782 	  if (GET_CODE (loc->loc) != MEM
4783 	      || (MEM_EXPR (loc->loc) == decl
4784 		  && int_mem_offset (loc->loc) == 0)
4785 	      || !mem_dies_at_call (loc->loc))
4786 	    {
4787 	      if (old_loc != loc->loc && emit_notes)
4788 		{
4789 		  if (old_loc == var->var_part[0].cur_loc)
4790 		    {
4791 		      changed = true;
4792 		      var->var_part[0].cur_loc = NULL;
4793 		    }
4794 		}
4795 	      locp = &loc->next;
4796 	      continue;
4797 	    }
4798 
4799 	  if (emit_notes)
4800 	    {
4801 	      if (old_loc == var->var_part[0].cur_loc)
4802 		{
4803 		  changed = true;
4804 		  var->var_part[0].cur_loc = NULL;
4805 		}
4806 	    }
4807 	  *locp = loc->next;
4808 	  delete loc;
4809 	}
4810 
4811       if (!var->var_part[0].loc_chain)
4812 	{
4813 	  var->n_var_parts--;
4814 	  changed = true;
4815 	}
4816       if (changed)
4817 	variable_was_changed (var, set);
4818     }
4819 
4820   return 1;
4821 }
4822 
4823 /* Remove all MEMs from the location list of a hash table entry for a
4824    onepart variable.  */
4825 
4826 int
dataflow_set_remove_mem_locs(variable ** slot,dataflow_set * set)4827 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4828 {
4829   variable *var = *slot;
4830 
4831   if (var->onepart != NOT_ONEPART)
4832     {
4833       location_chain *loc, **locp;
4834       bool changed = false;
4835       rtx cur_loc;
4836 
4837       gcc_assert (var->n_var_parts == 1);
4838 
4839       if (shared_var_p (var, set->vars))
4840 	{
4841 	  for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4842 	    if (GET_CODE (loc->loc) == MEM
4843 		&& mem_dies_at_call (loc->loc))
4844 	      break;
4845 
4846 	  if (!loc)
4847 	    return 1;
4848 
4849 	  slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4850 	  var = *slot;
4851 	  gcc_assert (var->n_var_parts == 1);
4852 	}
4853 
4854       if (VAR_LOC_1PAUX (var))
4855 	cur_loc = VAR_LOC_FROM (var);
4856       else
4857 	cur_loc = var->var_part[0].cur_loc;
4858 
4859       for (locp = &var->var_part[0].loc_chain, loc = *locp;
4860 	   loc; loc = *locp)
4861 	{
4862 	  if (GET_CODE (loc->loc) != MEM
4863 	      || !mem_dies_at_call (loc->loc))
4864 	    {
4865 	      locp = &loc->next;
4866 	      continue;
4867 	    }
4868 
4869 	  *locp = loc->next;
4870 	  /* If we have deleted the location which was last emitted
4871 	     we have to emit new location so add the variable to set
4872 	     of changed variables.  */
4873 	  if (cur_loc == loc->loc)
4874 	    {
4875 	      changed = true;
4876 	      var->var_part[0].cur_loc = NULL;
4877 	      if (VAR_LOC_1PAUX (var))
4878 		VAR_LOC_FROM (var) = NULL;
4879 	    }
4880 	  delete loc;
4881 	}
4882 
4883       if (!var->var_part[0].loc_chain)
4884 	{
4885 	  var->n_var_parts--;
4886 	  changed = true;
4887 	}
4888       if (changed)
4889 	variable_was_changed (var, set);
4890     }
4891 
4892   return 1;
4893 }
4894 
4895 /* Remove all variable-location information about call-clobbered
4896    registers, as well as associations between MEMs and VALUEs.  */
4897 
4898 static void
dataflow_set_clear_at_call(dataflow_set * set,rtx_insn * call_insn)4899 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4900 {
4901   unsigned int r;
4902   hard_reg_set_iterator hrsi;
4903 
4904   HARD_REG_SET callee_clobbers
4905     = insn_callee_abi (call_insn).full_reg_clobbers ();
4906 
4907   EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, r, hrsi)
4908     var_regno_delete (set, r);
4909 
4910   if (MAY_HAVE_DEBUG_BIND_INSNS)
4911     {
4912       set->traversed_vars = set->vars;
4913       shared_hash_htab (set->vars)
4914 	->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4915       set->traversed_vars = set->vars;
4916       shared_hash_htab (set->vars)
4917 	->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4918       set->traversed_vars = NULL;
4919     }
4920 }
4921 
4922 static bool
variable_part_different_p(variable_part * vp1,variable_part * vp2)4923 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4924 {
4925   location_chain *lc1, *lc2;
4926 
4927   for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4928     {
4929       for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4930 	{
4931 	  if (REG_P (lc1->loc) && REG_P (lc2->loc))
4932 	    {
4933 	      if (REGNO (lc1->loc) == REGNO (lc2->loc))
4934 		break;
4935 	    }
4936 	  if (rtx_equal_p (lc1->loc, lc2->loc))
4937 	    break;
4938 	}
4939       if (!lc2)
4940 	return true;
4941     }
4942   return false;
4943 }
4944 
4945 /* Return true if one-part variables VAR1 and VAR2 are different.
4946    They must be in canonical order.  */
4947 
4948 static bool
onepart_variable_different_p(variable * var1,variable * var2)4949 onepart_variable_different_p (variable *var1, variable *var2)
4950 {
4951   location_chain *lc1, *lc2;
4952 
4953   if (var1 == var2)
4954     return false;
4955 
4956   gcc_assert (var1->n_var_parts == 1
4957 	      && var2->n_var_parts == 1);
4958 
4959   lc1 = var1->var_part[0].loc_chain;
4960   lc2 = var2->var_part[0].loc_chain;
4961 
4962   gcc_assert (lc1 && lc2);
4963 
4964   while (lc1 && lc2)
4965     {
4966       if (loc_cmp (lc1->loc, lc2->loc))
4967 	return true;
4968       lc1 = lc1->next;
4969       lc2 = lc2->next;
4970     }
4971 
4972   return lc1 != lc2;
4973 }
4974 
4975 /* Return true if one-part variables VAR1 and VAR2 are different.
4976    They must be in canonical order.  */
4977 
4978 static void
dump_onepart_variable_differences(variable * var1,variable * var2)4979 dump_onepart_variable_differences (variable *var1, variable *var2)
4980 {
4981   location_chain *lc1, *lc2;
4982 
4983   gcc_assert (var1 != var2);
4984   gcc_assert (dump_file);
4985   gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4986   gcc_assert (var1->n_var_parts == 1
4987 	      && var2->n_var_parts == 1);
4988 
4989   lc1 = var1->var_part[0].loc_chain;
4990   lc2 = var2->var_part[0].loc_chain;
4991 
4992   gcc_assert (lc1 && lc2);
4993 
4994   while (lc1 && lc2)
4995     {
4996       switch (loc_cmp (lc1->loc, lc2->loc))
4997 	{
4998 	case -1:
4999 	  fprintf (dump_file, "removed: ");
5000 	  print_rtl_single (dump_file, lc1->loc);
5001 	  lc1 = lc1->next;
5002 	  continue;
5003 	case 0:
5004 	  break;
5005 	case 1:
5006 	  fprintf (dump_file, "added: ");
5007 	  print_rtl_single (dump_file, lc2->loc);
5008 	  lc2 = lc2->next;
5009 	  continue;
5010 	default:
5011 	  gcc_unreachable ();
5012 	}
5013       lc1 = lc1->next;
5014       lc2 = lc2->next;
5015     }
5016 
5017   while (lc1)
5018     {
5019       fprintf (dump_file, "removed: ");
5020       print_rtl_single (dump_file, lc1->loc);
5021       lc1 = lc1->next;
5022     }
5023 
5024   while (lc2)
5025     {
5026       fprintf (dump_file, "added: ");
5027       print_rtl_single (dump_file, lc2->loc);
5028       lc2 = lc2->next;
5029     }
5030 }
5031 
5032 /* Return true if variables VAR1 and VAR2 are different.  */
5033 
5034 static bool
variable_different_p(variable * var1,variable * var2)5035 variable_different_p (variable *var1, variable *var2)
5036 {
5037   int i;
5038 
5039   if (var1 == var2)
5040     return false;
5041 
5042   if (var1->onepart != var2->onepart)
5043     return true;
5044 
5045   if (var1->n_var_parts != var2->n_var_parts)
5046     return true;
5047 
5048   if (var1->onepart && var1->n_var_parts)
5049     {
5050       gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5051 			   && var1->n_var_parts == 1);
5052       /* One-part values have locations in a canonical order.  */
5053       return onepart_variable_different_p (var1, var2);
5054     }
5055 
5056   for (i = 0; i < var1->n_var_parts; i++)
5057     {
5058       if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5059 	return true;
5060       if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5061 	return true;
5062       if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5063 	return true;
5064     }
5065   return false;
5066 }
5067 
5068 /* Return true if dataflow sets OLD_SET and NEW_SET differ.  */
5069 
5070 static bool
dataflow_set_different(dataflow_set * old_set,dataflow_set * new_set)5071 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5072 {
5073   variable_iterator_type hi;
5074   variable *var1;
5075   bool diffound = false;
5076   bool details = (dump_file && (dump_flags & TDF_DETAILS));
5077 
5078 #define RETRUE					\
5079   do						\
5080     {						\
5081       if (!details)				\
5082 	return true;				\
5083       else					\
5084 	diffound = true;			\
5085     }						\
5086   while (0)
5087 
5088   if (old_set->vars == new_set->vars)
5089     return false;
5090 
5091   if (shared_hash_htab (old_set->vars)->elements ()
5092       != shared_hash_htab (new_set->vars)->elements ())
5093     RETRUE;
5094 
5095   FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5096 			       var1, variable, hi)
5097     {
5098       variable_table_type *htab = shared_hash_htab (new_set->vars);
5099       variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5100 
5101       if (!var2)
5102 	{
5103 	  if (dump_file && (dump_flags & TDF_DETAILS))
5104 	    {
5105 	      fprintf (dump_file, "dataflow difference found: removal of:\n");
5106 	      dump_var (var1);
5107 	    }
5108 	  RETRUE;
5109 	}
5110       else if (variable_different_p (var1, var2))
5111 	{
5112 	  if (details)
5113 	    {
5114 	      fprintf (dump_file, "dataflow difference found: "
5115 		       "old and new follow:\n");
5116 	      dump_var (var1);
5117 	      if (dv_onepart_p (var1->dv))
5118 		dump_onepart_variable_differences (var1, var2);
5119 	      dump_var (var2);
5120 	    }
5121 	  RETRUE;
5122 	}
5123     }
5124 
5125   /* There's no need to traverse the second hashtab unless we want to
5126      print the details.  If both have the same number of elements and
5127      the second one had all entries found in the first one, then the
5128      second can't have any extra entries.  */
5129   if (!details)
5130     return diffound;
5131 
5132   FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5133 			       var1, variable, hi)
5134     {
5135       variable_table_type *htab = shared_hash_htab (old_set->vars);
5136       variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5137       if (!var2)
5138 	{
5139 	  if (details)
5140 	    {
5141 	      fprintf (dump_file, "dataflow difference found: addition of:\n");
5142 	      dump_var (var1);
5143 	    }
5144 	  RETRUE;
5145 	}
5146     }
5147 
5148 #undef RETRUE
5149 
5150   return diffound;
5151 }
5152 
5153 /* Free the contents of dataflow set SET.  */
5154 
5155 static void
dataflow_set_destroy(dataflow_set * set)5156 dataflow_set_destroy (dataflow_set *set)
5157 {
5158   int i;
5159 
5160   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5161     attrs_list_clear (&set->regs[i]);
5162 
5163   shared_hash_destroy (set->vars);
5164   set->vars = NULL;
5165 }
5166 
5167 /* Return true if T is a tracked parameter with non-degenerate record type.  */
5168 
5169 static bool
tracked_record_parameter_p(tree t)5170 tracked_record_parameter_p (tree t)
5171 {
5172   if (TREE_CODE (t) != PARM_DECL)
5173     return false;
5174 
5175   if (DECL_MODE (t) == BLKmode)
5176     return false;
5177 
5178   tree type = TREE_TYPE (t);
5179   if (TREE_CODE (type) != RECORD_TYPE)
5180     return false;
5181 
5182   if (TYPE_FIELDS (type) == NULL_TREE
5183       || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5184     return false;
5185 
5186   return true;
5187 }
5188 
5189 /* Shall EXPR be tracked?  */
5190 
5191 static bool
track_expr_p(tree expr,bool need_rtl)5192 track_expr_p (tree expr, bool need_rtl)
5193 {
5194   rtx decl_rtl;
5195   tree realdecl;
5196 
5197   if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5198     return DECL_RTL_SET_P (expr);
5199 
5200   /* If EXPR is not a parameter or a variable do not track it.  */
5201   if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5202     return 0;
5203 
5204   /* It also must have a name...  */
5205   if (!DECL_NAME (expr) && need_rtl)
5206     return 0;
5207 
5208   /* ... and a RTL assigned to it.  */
5209   decl_rtl = DECL_RTL_IF_SET (expr);
5210   if (!decl_rtl && need_rtl)
5211     return 0;
5212 
5213   /* If this expression is really a debug alias of some other declaration, we
5214      don't need to track this expression if the ultimate declaration is
5215      ignored.  */
5216   realdecl = expr;
5217   if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5218     {
5219       realdecl = DECL_DEBUG_EXPR (realdecl);
5220       if (!DECL_P (realdecl))
5221 	{
5222 	  if (handled_component_p (realdecl)
5223 	      || (TREE_CODE (realdecl) == MEM_REF
5224 		  && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5225 	    {
5226 	      HOST_WIDE_INT bitsize, bitpos;
5227 	      bool reverse;
5228 	      tree innerdecl
5229 		= get_ref_base_and_extent_hwi (realdecl, &bitpos,
5230 					       &bitsize, &reverse);
5231 	      if (!innerdecl
5232 		  || !DECL_P (innerdecl)
5233 		  || DECL_IGNORED_P (innerdecl)
5234 		  /* Do not track declarations for parts of tracked record
5235 		     parameters since we want to track them as a whole.  */
5236 		  || tracked_record_parameter_p (innerdecl)
5237 		  || TREE_STATIC (innerdecl)
5238 		  || bitsize == 0
5239 		  || bitpos + bitsize > 256)
5240 		return 0;
5241 	      else
5242 		realdecl = expr;
5243 	    }
5244 	  else
5245 	    return 0;
5246 	}
5247     }
5248 
5249   /* Do not track EXPR if REALDECL it should be ignored for debugging
5250      purposes.  */
5251   if (DECL_IGNORED_P (realdecl))
5252     return 0;
5253 
5254   /* Do not track global variables until we are able to emit correct location
5255      list for them.  */
5256   if (TREE_STATIC (realdecl))
5257     return 0;
5258 
5259   /* When the EXPR is a DECL for alias of some variable (see example)
5260      the TREE_STATIC flag is not used.  Disable tracking all DECLs whose
5261      DECL_RTL contains SYMBOL_REF.
5262 
5263      Example:
5264      extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5265      char **_dl_argv;
5266   */
5267   if (decl_rtl && MEM_P (decl_rtl)
5268       && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5269     return 0;
5270 
5271   /* If RTX is a memory it should not be very large (because it would be
5272      an array or struct).  */
5273   if (decl_rtl && MEM_P (decl_rtl))
5274     {
5275       /* Do not track structures and arrays.  */
5276       if ((GET_MODE (decl_rtl) == BLKmode
5277 	   || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5278 	  && !tracked_record_parameter_p (realdecl))
5279 	return 0;
5280       if (MEM_SIZE_KNOWN_P (decl_rtl)
5281 	  && maybe_gt (MEM_SIZE (decl_rtl), MAX_VAR_PARTS))
5282 	return 0;
5283     }
5284 
5285   DECL_CHANGED (expr) = 0;
5286   DECL_CHANGED (realdecl) = 0;
5287   return 1;
5288 }
5289 
5290 /* Determine whether a given LOC refers to the same variable part as
5291    EXPR+OFFSET.  */
5292 
5293 static bool
same_variable_part_p(rtx loc,tree expr,poly_int64 offset)5294 same_variable_part_p (rtx loc, tree expr, poly_int64 offset)
5295 {
5296   tree expr2;
5297   poly_int64 offset2;
5298 
5299   if (! DECL_P (expr))
5300     return false;
5301 
5302   if (REG_P (loc))
5303     {
5304       expr2 = REG_EXPR (loc);
5305       offset2 = REG_OFFSET (loc);
5306     }
5307   else if (MEM_P (loc))
5308     {
5309       expr2 = MEM_EXPR (loc);
5310       offset2 = int_mem_offset (loc);
5311     }
5312   else
5313     return false;
5314 
5315   if (! expr2 || ! DECL_P (expr2))
5316     return false;
5317 
5318   expr = var_debug_decl (expr);
5319   expr2 = var_debug_decl (expr2);
5320 
5321   return (expr == expr2 && known_eq (offset, offset2));
5322 }
5323 
5324 /* LOC is a REG or MEM that we would like to track if possible.
5325    If EXPR is null, we don't know what expression LOC refers to,
5326    otherwise it refers to EXPR + OFFSET.  STORE_REG_P is true if
5327    LOC is an lvalue register.
5328 
5329    Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5330    is something we can track.  When returning true, store the mode of
5331    the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5332    from EXPR in *OFFSET_OUT (if nonnull).  */
5333 
5334 static bool
track_loc_p(rtx loc,tree expr,poly_int64 offset,bool store_reg_p,machine_mode * mode_out,HOST_WIDE_INT * offset_out)5335 track_loc_p (rtx loc, tree expr, poly_int64 offset, bool store_reg_p,
5336 	     machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5337 {
5338   machine_mode mode;
5339 
5340   if (expr == NULL || !track_expr_p (expr, true))
5341     return false;
5342 
5343   /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5344      whole subreg, but only the old inner part is really relevant.  */
5345   mode = GET_MODE (loc);
5346   if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5347     {
5348       machine_mode pseudo_mode;
5349 
5350       pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5351       if (paradoxical_subreg_p (mode, pseudo_mode))
5352 	{
5353 	  offset += byte_lowpart_offset (pseudo_mode, mode);
5354 	  mode = pseudo_mode;
5355 	}
5356     }
5357 
5358   /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5359      Do the same if we are storing to a register and EXPR occupies
5360      the whole of register LOC; in that case, the whole of EXPR is
5361      being changed.  We exclude complex modes from the second case
5362      because the real and imaginary parts are represented as separate
5363      pseudo registers, even if the whole complex value fits into one
5364      hard register.  */
5365   if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5366        || (store_reg_p
5367 	   && !COMPLEX_MODE_P (DECL_MODE (expr))
5368 	   && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5369       && known_eq (offset + byte_lowpart_offset (DECL_MODE (expr), mode), 0))
5370     {
5371       mode = DECL_MODE (expr);
5372       offset = 0;
5373     }
5374 
5375   HOST_WIDE_INT const_offset;
5376   if (!track_offset_p (offset, &const_offset))
5377     return false;
5378 
5379   if (mode_out)
5380     *mode_out = mode;
5381   if (offset_out)
5382     *offset_out = const_offset;
5383   return true;
5384 }
5385 
5386 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5387    want to track.  When returning nonnull, make sure that the attributes
5388    on the returned value are updated.  */
5389 
5390 static rtx
var_lowpart(machine_mode mode,rtx loc)5391 var_lowpart (machine_mode mode, rtx loc)
5392 {
5393   unsigned int regno;
5394 
5395   if (GET_MODE (loc) == mode)
5396     return loc;
5397 
5398   if (!REG_P (loc) && !MEM_P (loc))
5399     return NULL;
5400 
5401   poly_uint64 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5402 
5403   if (MEM_P (loc))
5404     return adjust_address_nv (loc, mode, offset);
5405 
5406   poly_uint64 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5407   regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5408 					     reg_offset, mode);
5409   return gen_rtx_REG_offset (loc, mode, regno, offset);
5410 }
5411 
5412 /* Carry information about uses and stores while walking rtx.  */
5413 
5414 struct count_use_info
5415 {
5416   /* The insn where the RTX is.  */
5417   rtx_insn *insn;
5418 
5419   /* The basic block where insn is.  */
5420   basic_block bb;
5421 
5422   /* The array of n_sets sets in the insn, as determined by cselib.  */
5423   struct cselib_set *sets;
5424   int n_sets;
5425 
5426   /* True if we're counting stores, false otherwise.  */
5427   bool store_p;
5428 };
5429 
5430 /* Find a VALUE corresponding to X.   */
5431 
5432 static inline cselib_val *
find_use_val(rtx x,machine_mode mode,struct count_use_info * cui)5433 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5434 {
5435   int i;
5436 
5437   if (cui->sets)
5438     {
5439       /* This is called after uses are set up and before stores are
5440 	 processed by cselib, so it's safe to look up srcs, but not
5441 	 dsts.  So we look up expressions that appear in srcs or in
5442 	 dest expressions, but we search the sets array for dests of
5443 	 stores.  */
5444       if (cui->store_p)
5445 	{
5446 	  /* Some targets represent memset and memcpy patterns
5447 	     by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5448 	     (set (mem:BLK ...) (const_int ...)) or
5449 	     (set (mem:BLK ...) (mem:BLK ...)).  Don't return anything
5450 	     in that case, otherwise we end up with mode mismatches.  */
5451 	  if (mode == BLKmode && MEM_P (x))
5452 	    return NULL;
5453 	  for (i = 0; i < cui->n_sets; i++)
5454 	    if (cui->sets[i].dest == x)
5455 	      return cui->sets[i].src_elt;
5456 	}
5457       else
5458 	return cselib_lookup (x, mode, 0, VOIDmode);
5459     }
5460 
5461   return NULL;
5462 }
5463 
5464 /* Replace all registers and addresses in an expression with VALUE
5465    expressions that map back to them, unless the expression is a
5466    register.  If no mapping is or can be performed, returns NULL.  */
5467 
5468 static rtx
replace_expr_with_values(rtx loc)5469 replace_expr_with_values (rtx loc)
5470 {
5471   if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5472     return NULL;
5473   else if (MEM_P (loc))
5474     {
5475       cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5476 					get_address_mode (loc), 0,
5477 					GET_MODE (loc));
5478       if (addr)
5479 	return replace_equiv_address_nv (loc, addr->val_rtx);
5480       else
5481 	return NULL;
5482     }
5483   else
5484     return cselib_subst_to_values (loc, VOIDmode);
5485 }
5486 
5487 /* Return true if X contains a DEBUG_EXPR.  */
5488 
5489 static bool
rtx_debug_expr_p(const_rtx x)5490 rtx_debug_expr_p (const_rtx x)
5491 {
5492   subrtx_iterator::array_type array;
5493   FOR_EACH_SUBRTX (iter, array, x, ALL)
5494     if (GET_CODE (*iter) == DEBUG_EXPR)
5495       return true;
5496   return false;
5497 }
5498 
5499 /* Determine what kind of micro operation to choose for a USE.  Return
5500    MO_CLOBBER if no micro operation is to be generated.  */
5501 
5502 static enum micro_operation_type
use_type(rtx loc,struct count_use_info * cui,machine_mode * modep)5503 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5504 {
5505   tree expr;
5506 
5507   if (cui && cui->sets)
5508     {
5509       if (GET_CODE (loc) == VAR_LOCATION)
5510 	{
5511 	  if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5512 	    {
5513 	      rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5514 	      if (! VAR_LOC_UNKNOWN_P (ploc))
5515 		{
5516 		  cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5517 						   VOIDmode);
5518 
5519 		  /* ??? flag_float_store and volatile mems are never
5520 		     given values, but we could in theory use them for
5521 		     locations.  */
5522 		  gcc_assert (val || 1);
5523 		}
5524 	      return MO_VAL_LOC;
5525 	    }
5526 	  else
5527 	    return MO_CLOBBER;
5528 	}
5529 
5530       if (REG_P (loc) || MEM_P (loc))
5531 	{
5532 	  if (modep)
5533 	    *modep = GET_MODE (loc);
5534 	  if (cui->store_p)
5535 	    {
5536 	      if (REG_P (loc)
5537 		  || (find_use_val (loc, GET_MODE (loc), cui)
5538 		      && cselib_lookup (XEXP (loc, 0),
5539 					get_address_mode (loc), 0,
5540 					GET_MODE (loc))))
5541 		return MO_VAL_SET;
5542 	    }
5543 	  else
5544 	    {
5545 	      cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5546 
5547 	      if (val && !cselib_preserved_value_p (val))
5548 		return MO_VAL_USE;
5549 	    }
5550 	}
5551     }
5552 
5553   if (REG_P (loc))
5554     {
5555       gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5556 
5557       if (loc == cfa_base_rtx)
5558 	return MO_CLOBBER;
5559       expr = REG_EXPR (loc);
5560 
5561       if (!expr)
5562 	return MO_USE_NO_VAR;
5563       else if (target_for_debug_bind (var_debug_decl (expr)))
5564 	return MO_CLOBBER;
5565       else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5566 			    false, modep, NULL))
5567 	return MO_USE;
5568       else
5569 	return MO_USE_NO_VAR;
5570     }
5571   else if (MEM_P (loc))
5572     {
5573       expr = MEM_EXPR (loc);
5574 
5575       if (!expr)
5576 	return MO_CLOBBER;
5577       else if (target_for_debug_bind (var_debug_decl (expr)))
5578 	return MO_CLOBBER;
5579       else if (track_loc_p (loc, expr, int_mem_offset (loc),
5580 			    false, modep, NULL)
5581 	       /* Multi-part variables shouldn't refer to one-part
5582 		  variable names such as VALUEs (never happens) or
5583 		  DEBUG_EXPRs (only happens in the presence of debug
5584 		  insns).  */
5585 	       && (!MAY_HAVE_DEBUG_BIND_INSNS
5586 		   || !rtx_debug_expr_p (XEXP (loc, 0))))
5587 	return MO_USE;
5588       else
5589 	return MO_CLOBBER;
5590     }
5591 
5592   return MO_CLOBBER;
5593 }
5594 
5595 /* Log to OUT information about micro-operation MOPT involving X in
5596    INSN of BB.  */
5597 
5598 static inline void
log_op_type(rtx x,basic_block bb,rtx_insn * insn,enum micro_operation_type mopt,FILE * out)5599 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5600 	     enum micro_operation_type mopt, FILE *out)
5601 {
5602   fprintf (out, "bb %i op %i insn %i %s ",
5603 	   bb->index, VTI (bb)->mos.length (),
5604 	   INSN_UID (insn), micro_operation_type_name[mopt]);
5605   print_inline_rtx (out, x, 2);
5606   fputc ('\n', out);
5607 }
5608 
5609 /* Tell whether the CONCAT used to holds a VALUE and its location
5610    needs value resolution, i.e., an attempt of mapping the location
5611    back to other incoming values.  */
5612 #define VAL_NEEDS_RESOLUTION(x) \
5613   (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5614 /* Whether the location in the CONCAT is a tracked expression, that
5615    should also be handled like a MO_USE.  */
5616 #define VAL_HOLDS_TRACK_EXPR(x) \
5617   (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5618 /* Whether the location in the CONCAT should be handled like a MO_COPY
5619    as well.  */
5620 #define VAL_EXPR_IS_COPIED(x) \
5621   (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5622 /* Whether the location in the CONCAT should be handled like a
5623    MO_CLOBBER as well.  */
5624 #define VAL_EXPR_IS_CLOBBERED(x) \
5625   (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5626 
5627 /* All preserved VALUEs.  */
5628 static vec<rtx> preserved_values;
5629 
5630 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes.  */
5631 
5632 static void
preserve_value(cselib_val * val)5633 preserve_value (cselib_val *val)
5634 {
5635   cselib_preserve_value (val);
5636   preserved_values.safe_push (val->val_rtx);
5637 }
5638 
5639 /* Helper function for MO_VAL_LOC handling.  Return non-zero if
5640    any rtxes not suitable for CONST use not replaced by VALUEs
5641    are discovered.  */
5642 
5643 static bool
non_suitable_const(const_rtx x)5644 non_suitable_const (const_rtx x)
5645 {
5646   subrtx_iterator::array_type array;
5647   FOR_EACH_SUBRTX (iter, array, x, ALL)
5648     {
5649       const_rtx x = *iter;
5650       switch (GET_CODE (x))
5651 	{
5652 	case REG:
5653 	case DEBUG_EXPR:
5654 	case PC:
5655 	case SCRATCH:
5656 	case CC0:
5657 	case ASM_INPUT:
5658 	case ASM_OPERANDS:
5659 	  return true;
5660 	case MEM:
5661 	  if (!MEM_READONLY_P (x))
5662 	    return true;
5663 	  break;
5664 	default:
5665 	  break;
5666 	}
5667     }
5668   return false;
5669 }
5670 
5671 /* Add uses (register and memory references) LOC which will be tracked
5672    to VTI (bb)->mos.  */
5673 
5674 static void
add_uses(rtx loc,struct count_use_info * cui)5675 add_uses (rtx loc, struct count_use_info *cui)
5676 {
5677   machine_mode mode = VOIDmode;
5678   enum micro_operation_type type = use_type (loc, cui, &mode);
5679 
5680   if (type != MO_CLOBBER)
5681     {
5682       basic_block bb = cui->bb;
5683       micro_operation mo;
5684 
5685       mo.type = type;
5686       mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5687       mo.insn = cui->insn;
5688 
5689       if (type == MO_VAL_LOC)
5690 	{
5691 	  rtx oloc = loc;
5692 	  rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5693 	  cselib_val *val;
5694 
5695 	  gcc_assert (cui->sets);
5696 
5697 	  if (MEM_P (vloc)
5698 	      && !REG_P (XEXP (vloc, 0))
5699 	      && !MEM_P (XEXP (vloc, 0)))
5700 	    {
5701 	      rtx mloc = vloc;
5702 	      machine_mode address_mode = get_address_mode (mloc);
5703 	      cselib_val *val
5704 		= cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5705 				 GET_MODE (mloc));
5706 
5707 	      if (val && !cselib_preserved_value_p (val))
5708 		preserve_value (val);
5709 	    }
5710 
5711 	  if (CONSTANT_P (vloc)
5712 	      && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5713 	    /* For constants don't look up any value.  */;
5714 	  else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5715 		   && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5716 	    {
5717 	      machine_mode mode2;
5718 	      enum micro_operation_type type2;
5719 	      rtx nloc = NULL;
5720 	      bool resolvable = REG_P (vloc) || MEM_P (vloc);
5721 
5722 	      if (resolvable)
5723 		nloc = replace_expr_with_values (vloc);
5724 
5725 	      if (nloc)
5726 		{
5727 		  oloc = shallow_copy_rtx (oloc);
5728 		  PAT_VAR_LOCATION_LOC (oloc) = nloc;
5729 		}
5730 
5731 	      oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5732 
5733 	      type2 = use_type (vloc, 0, &mode2);
5734 
5735 	      gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5736 			  || type2 == MO_CLOBBER);
5737 
5738 	      if (type2 == MO_CLOBBER
5739 		  && !cselib_preserved_value_p (val))
5740 		{
5741 		  VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5742 		  preserve_value (val);
5743 		}
5744 	    }
5745 	  else if (!VAR_LOC_UNKNOWN_P (vloc))
5746 	    {
5747 	      oloc = shallow_copy_rtx (oloc);
5748 	      PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5749 	    }
5750 
5751 	  mo.u.loc = oloc;
5752 	}
5753       else if (type == MO_VAL_USE)
5754 	{
5755 	  machine_mode mode2 = VOIDmode;
5756 	  enum micro_operation_type type2;
5757 	  cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5758 	  rtx vloc, oloc = loc, nloc;
5759 
5760 	  gcc_assert (cui->sets);
5761 
5762 	  if (MEM_P (oloc)
5763 	      && !REG_P (XEXP (oloc, 0))
5764 	      && !MEM_P (XEXP (oloc, 0)))
5765 	    {
5766 	      rtx mloc = oloc;
5767 	      machine_mode address_mode = get_address_mode (mloc);
5768 	      cselib_val *val
5769 		= cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5770 				 GET_MODE (mloc));
5771 
5772 	      if (val && !cselib_preserved_value_p (val))
5773 		preserve_value (val);
5774 	    }
5775 
5776 	  type2 = use_type (loc, 0, &mode2);
5777 
5778 	  gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5779 		      || type2 == MO_CLOBBER);
5780 
5781 	  if (type2 == MO_USE)
5782 	    vloc = var_lowpart (mode2, loc);
5783 	  else
5784 	    vloc = oloc;
5785 
5786 	  /* The loc of a MO_VAL_USE may have two forms:
5787 
5788 	     (concat val src): val is at src, a value-based
5789 	     representation.
5790 
5791 	     (concat (concat val use) src): same as above, with use as
5792 	     the MO_USE tracked value, if it differs from src.
5793 
5794 	  */
5795 
5796 	  gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5797 	  nloc = replace_expr_with_values (loc);
5798 	  if (!nloc)
5799 	    nloc = oloc;
5800 
5801 	  if (vloc != nloc)
5802 	    oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5803 	  else
5804 	    oloc = val->val_rtx;
5805 
5806 	  mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5807 
5808 	  if (type2 == MO_USE)
5809 	    VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5810 	  if (!cselib_preserved_value_p (val))
5811 	    {
5812 	      VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5813 	      preserve_value (val);
5814 	    }
5815 	}
5816       else
5817 	gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5818 
5819       if (dump_file && (dump_flags & TDF_DETAILS))
5820 	log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5821       VTI (bb)->mos.safe_push (mo);
5822     }
5823 }
5824 
5825 /* Helper function for finding all uses of REG/MEM in X in insn INSN.  */
5826 
5827 static void
add_uses_1(rtx * x,void * cui)5828 add_uses_1 (rtx *x, void *cui)
5829 {
5830   subrtx_var_iterator::array_type array;
5831   FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5832     add_uses (*iter, (struct count_use_info *) cui);
5833 }
5834 
5835 /* This is the value used during expansion of locations.  We want it
5836    to be unbounded, so that variables expanded deep in a recursion
5837    nest are fully evaluated, so that their values are cached
5838    correctly.  We avoid recursion cycles through other means, and we
5839    don't unshare RTL, so excess complexity is not a problem.  */
5840 #define EXPR_DEPTH (INT_MAX)
5841 /* We use this to keep too-complex expressions from being emitted as
5842    location notes, and then to debug information.  Users can trade
5843    compile time for ridiculously complex expressions, although they're
5844    seldom useful, and they may often have to be discarded as not
5845    representable anyway.  */
5846 #define EXPR_USE_DEPTH (param_max_vartrack_expr_depth)
5847 
5848 /* Attempt to reverse the EXPR operation in the debug info and record
5849    it in the cselib table.  Say for reg1 = reg2 + 6 even when reg2 is
5850    no longer live we can express its value as VAL - 6.  */
5851 
5852 static void
reverse_op(rtx val,const_rtx expr,rtx_insn * insn)5853 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5854 {
5855   rtx src, arg, ret;
5856   cselib_val *v;
5857   struct elt_loc_list *l;
5858   enum rtx_code code;
5859   int count;
5860 
5861   if (GET_CODE (expr) != SET)
5862     return;
5863 
5864   if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5865     return;
5866 
5867   src = SET_SRC (expr);
5868   switch (GET_CODE (src))
5869     {
5870     case PLUS:
5871     case MINUS:
5872     case XOR:
5873     case NOT:
5874     case NEG:
5875       if (!REG_P (XEXP (src, 0)))
5876 	return;
5877       break;
5878     case SIGN_EXTEND:
5879     case ZERO_EXTEND:
5880       if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5881 	return;
5882       break;
5883     default:
5884       return;
5885     }
5886 
5887   if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5888     return;
5889 
5890   v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5891   if (!v || !cselib_preserved_value_p (v))
5892     return;
5893 
5894   /* Use canonical V to avoid creating multiple redundant expressions
5895      for different VALUES equivalent to V.  */
5896   v = canonical_cselib_val (v);
5897 
5898   /* Adding a reverse op isn't useful if V already has an always valid
5899      location.  Ignore ENTRY_VALUE, while it is always constant, we should
5900      prefer non-ENTRY_VALUE locations whenever possible.  */
5901   for (l = v->locs, count = 0; l; l = l->next, count++)
5902     if (CONSTANT_P (l->loc)
5903 	&& (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5904       return;
5905     /* Avoid creating too large locs lists.  */
5906     else if (count == param_max_vartrack_reverse_op_size)
5907       return;
5908 
5909   switch (GET_CODE (src))
5910     {
5911     case NOT:
5912     case NEG:
5913       if (GET_MODE (v->val_rtx) != GET_MODE (val))
5914 	return;
5915       ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5916       break;
5917     case SIGN_EXTEND:
5918     case ZERO_EXTEND:
5919       ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5920       break;
5921     case XOR:
5922       code = XOR;
5923       goto binary;
5924     case PLUS:
5925       code = MINUS;
5926       goto binary;
5927     case MINUS:
5928       code = PLUS;
5929       goto binary;
5930     binary:
5931       if (GET_MODE (v->val_rtx) != GET_MODE (val))
5932 	return;
5933       arg = XEXP (src, 1);
5934       if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5935 	{
5936 	  arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5937 	  if (arg == NULL_RTX)
5938 	    return;
5939 	  if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5940 	    return;
5941 	}
5942       ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5943       break;
5944     default:
5945       gcc_unreachable ();
5946     }
5947 
5948   cselib_add_permanent_equiv (v, ret, insn);
5949 }
5950 
5951 /* Add stores (register and memory references) LOC which will be tracked
5952    to VTI (bb)->mos.  EXPR is the RTL expression containing the store.
5953    CUIP->insn is instruction which the LOC is part of.  */
5954 
5955 static void
add_stores(rtx loc,const_rtx expr,void * cuip)5956 add_stores (rtx loc, const_rtx expr, void *cuip)
5957 {
5958   machine_mode mode = VOIDmode, mode2;
5959   struct count_use_info *cui = (struct count_use_info *)cuip;
5960   basic_block bb = cui->bb;
5961   micro_operation mo;
5962   rtx oloc = loc, nloc, src = NULL;
5963   enum micro_operation_type type = use_type (loc, cui, &mode);
5964   bool track_p = false;
5965   cselib_val *v;
5966   bool resolve, preserve;
5967 
5968   if (type == MO_CLOBBER)
5969     return;
5970 
5971   mode2 = mode;
5972 
5973   if (REG_P (loc))
5974     {
5975       gcc_assert (loc != cfa_base_rtx);
5976       if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5977 	  || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5978 	  || GET_CODE (expr) == CLOBBER)
5979 	{
5980 	  mo.type = MO_CLOBBER;
5981 	  mo.u.loc = loc;
5982 	  if (GET_CODE (expr) == SET
5983 	      && (SET_DEST (expr) == loc
5984 		  || (GET_CODE (SET_DEST (expr)) == STRICT_LOW_PART
5985 		      && XEXP (SET_DEST (expr), 0) == loc))
5986 	      && !unsuitable_loc (SET_SRC (expr))
5987 	      && find_use_val (loc, mode, cui))
5988 	    {
5989 	      gcc_checking_assert (type == MO_VAL_SET);
5990 	      mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5991 	    }
5992 	}
5993       else
5994 	{
5995 	  if (GET_CODE (expr) == SET
5996 	      && SET_DEST (expr) == loc
5997 	      && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5998 	    src = var_lowpart (mode2, SET_SRC (expr));
5999 	  loc = var_lowpart (mode2, loc);
6000 
6001 	  if (src == NULL)
6002 	    {
6003 	      mo.type = MO_SET;
6004 	      mo.u.loc = loc;
6005 	    }
6006 	  else
6007 	    {
6008 	      rtx xexpr = gen_rtx_SET (loc, src);
6009 	      if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
6010 		{
6011 		  /* If this is an instruction copying (part of) a parameter
6012 		     passed by invisible reference to its register location,
6013 		     pretend it's a SET so that the initial memory location
6014 		     is discarded, as the parameter register can be reused
6015 		     for other purposes and we do not track locations based
6016 		     on generic registers.  */
6017 		  if (MEM_P (src)
6018 		      && REG_EXPR (loc)
6019 		      && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
6020 		      && DECL_MODE (REG_EXPR (loc)) != BLKmode
6021 		      && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
6022 		      && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
6023 			 != arg_pointer_rtx)
6024 		    mo.type = MO_SET;
6025 		  else
6026 		    mo.type = MO_COPY;
6027 		}
6028 	      else
6029 		mo.type = MO_SET;
6030 	      mo.u.loc = xexpr;
6031 	    }
6032 	}
6033       mo.insn = cui->insn;
6034     }
6035   else if (MEM_P (loc)
6036 	   && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
6037 	       || cui->sets))
6038     {
6039       if (MEM_P (loc) && type == MO_VAL_SET
6040 	  && !REG_P (XEXP (loc, 0))
6041 	  && !MEM_P (XEXP (loc, 0)))
6042 	{
6043 	  rtx mloc = loc;
6044 	  machine_mode address_mode = get_address_mode (mloc);
6045 	  cselib_val *val = cselib_lookup (XEXP (mloc, 0),
6046 					   address_mode, 0,
6047 					   GET_MODE (mloc));
6048 
6049 	  if (val && !cselib_preserved_value_p (val))
6050 	    preserve_value (val);
6051 	}
6052 
6053       if (GET_CODE (expr) == CLOBBER || !track_p)
6054 	{
6055 	  mo.type = MO_CLOBBER;
6056 	  mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6057 	}
6058       else
6059 	{
6060 	  if (GET_CODE (expr) == SET
6061 	      && SET_DEST (expr) == loc
6062 	      && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6063 	    src = var_lowpart (mode2, SET_SRC (expr));
6064 	  loc = var_lowpart (mode2, loc);
6065 
6066 	  if (src == NULL)
6067 	    {
6068 	      mo.type = MO_SET;
6069 	      mo.u.loc = loc;
6070 	    }
6071 	  else
6072 	    {
6073 	      rtx xexpr = gen_rtx_SET (loc, src);
6074 	      if (same_variable_part_p (SET_SRC (xexpr),
6075 					MEM_EXPR (loc),
6076 					int_mem_offset (loc)))
6077 		mo.type = MO_COPY;
6078 	      else
6079 		mo.type = MO_SET;
6080 	      mo.u.loc = xexpr;
6081 	    }
6082 	}
6083       mo.insn = cui->insn;
6084     }
6085   else
6086     return;
6087 
6088   if (type != MO_VAL_SET)
6089     goto log_and_return;
6090 
6091   v = find_use_val (oloc, mode, cui);
6092 
6093   if (!v)
6094     goto log_and_return;
6095 
6096   resolve = preserve = !cselib_preserved_value_p (v);
6097 
6098   /* We cannot track values for multiple-part variables, so we track only
6099      locations for tracked record parameters.  */
6100   if (track_p
6101       && REG_P (loc)
6102       && REG_EXPR (loc)
6103       && tracked_record_parameter_p (REG_EXPR (loc)))
6104     {
6105       /* Although we don't use the value here, it could be used later by the
6106 	 mere virtue of its existence as the operand of the reverse operation
6107 	 that gave rise to it (typically extension/truncation).  Make sure it
6108 	 is preserved as required by vt_expand_var_loc_chain.  */
6109       if (preserve)
6110 	preserve_value (v);
6111       goto log_and_return;
6112     }
6113 
6114   if (loc == stack_pointer_rtx
6115       && (maybe_ne (hard_frame_pointer_adjustment, -1)
6116 	  || (!frame_pointer_needed && !ACCUMULATE_OUTGOING_ARGS))
6117       && preserve)
6118     cselib_set_value_sp_based (v);
6119 
6120   /* Don't record MO_VAL_SET for VALUEs that can be described using
6121      cfa_base_rtx or cfa_base_rtx + CONST_INT, cselib already knows
6122      all the needed equivalences and they shouldn't change depending
6123      on which register holds that VALUE in some instruction.  */
6124   if (!frame_pointer_needed
6125       && cfa_base_rtx
6126       && cselib_sp_derived_value_p (v)
6127       && loc == stack_pointer_rtx)
6128     {
6129       if (preserve)
6130 	preserve_value (v);
6131       return;
6132     }
6133 
6134   nloc = replace_expr_with_values (oloc);
6135   if (nloc)
6136     oloc = nloc;
6137 
6138   if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6139     {
6140       cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6141 
6142       if (oval == v)
6143 	return;
6144       gcc_assert (REG_P (oloc) || MEM_P (oloc));
6145 
6146       if (oval && !cselib_preserved_value_p (oval))
6147 	{
6148 	  micro_operation moa;
6149 
6150 	  preserve_value (oval);
6151 
6152 	  moa.type = MO_VAL_USE;
6153 	  moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6154 	  VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6155 	  moa.insn = cui->insn;
6156 
6157 	  if (dump_file && (dump_flags & TDF_DETAILS))
6158 	    log_op_type (moa.u.loc, cui->bb, cui->insn,
6159 			 moa.type, dump_file);
6160 	  VTI (bb)->mos.safe_push (moa);
6161 	}
6162 
6163       resolve = false;
6164     }
6165   else if (resolve && GET_CODE (mo.u.loc) == SET)
6166     {
6167       if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6168 	nloc = replace_expr_with_values (SET_SRC (expr));
6169       else
6170 	nloc = NULL_RTX;
6171 
6172       /* Avoid the mode mismatch between oexpr and expr.  */
6173       if (!nloc && mode != mode2)
6174 	{
6175 	  nloc = SET_SRC (expr);
6176 	  gcc_assert (oloc == SET_DEST (expr));
6177 	}
6178 
6179       if (nloc && nloc != SET_SRC (mo.u.loc))
6180 	oloc = gen_rtx_SET (oloc, nloc);
6181       else
6182 	{
6183 	  if (oloc == SET_DEST (mo.u.loc))
6184 	    /* No point in duplicating.  */
6185 	    oloc = mo.u.loc;
6186 	  if (!REG_P (SET_SRC (mo.u.loc)))
6187 	    resolve = false;
6188 	}
6189     }
6190   else if (!resolve)
6191     {
6192       if (GET_CODE (mo.u.loc) == SET
6193 	  && oloc == SET_DEST (mo.u.loc))
6194 	/* No point in duplicating.  */
6195 	oloc = mo.u.loc;
6196     }
6197   else
6198     resolve = false;
6199 
6200   loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6201 
6202   if (mo.u.loc != oloc)
6203     loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6204 
6205   /* The loc of a MO_VAL_SET may have various forms:
6206 
6207      (concat val dst): dst now holds val
6208 
6209      (concat val (set dst src)): dst now holds val, copied from src
6210 
6211      (concat (concat val dstv) dst): dst now holds val; dstv is dst
6212      after replacing mems and non-top-level regs with values.
6213 
6214      (concat (concat val dstv) (set dst src)): dst now holds val,
6215      copied from src.  dstv is a value-based representation of dst, if
6216      it differs from dst.  If resolution is needed, src is a REG, and
6217      its mode is the same as that of val.
6218 
6219      (concat (concat val (set dstv srcv)) (set dst src)): src
6220      copied to dst, holding val.  dstv and srcv are value-based
6221      representations of dst and src, respectively.
6222 
6223   */
6224 
6225   if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6226     reverse_op (v->val_rtx, expr, cui->insn);
6227 
6228   mo.u.loc = loc;
6229 
6230   if (track_p)
6231     VAL_HOLDS_TRACK_EXPR (loc) = 1;
6232   if (preserve)
6233     {
6234       VAL_NEEDS_RESOLUTION (loc) = resolve;
6235       preserve_value (v);
6236     }
6237   if (mo.type == MO_CLOBBER)
6238     VAL_EXPR_IS_CLOBBERED (loc) = 1;
6239   if (mo.type == MO_COPY)
6240     VAL_EXPR_IS_COPIED (loc) = 1;
6241 
6242   mo.type = MO_VAL_SET;
6243 
6244  log_and_return:
6245   if (dump_file && (dump_flags & TDF_DETAILS))
6246     log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6247   VTI (bb)->mos.safe_push (mo);
6248 }
6249 
6250 /* Arguments to the call.  */
6251 static rtx call_arguments;
6252 
6253 /* Compute call_arguments.  */
6254 
6255 static void
prepare_call_arguments(basic_block bb,rtx_insn * insn)6256 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6257 {
6258   rtx link, x, call;
6259   rtx prev, cur, next;
6260   rtx this_arg = NULL_RTX;
6261   tree type = NULL_TREE, t, fndecl = NULL_TREE;
6262   tree obj_type_ref = NULL_TREE;
6263   CUMULATIVE_ARGS args_so_far_v;
6264   cumulative_args_t args_so_far;
6265 
6266   memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6267   args_so_far = pack_cumulative_args (&args_so_far_v);
6268   call = get_call_rtx_from (insn);
6269   if (call)
6270     {
6271       if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6272 	{
6273 	  rtx symbol = XEXP (XEXP (call, 0), 0);
6274 	  if (SYMBOL_REF_DECL (symbol))
6275 	    fndecl = SYMBOL_REF_DECL (symbol);
6276 	}
6277       if (fndecl == NULL_TREE)
6278 	fndecl = MEM_EXPR (XEXP (call, 0));
6279       if (fndecl
6280 	  && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6281 	  && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6282 	fndecl = NULL_TREE;
6283       if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6284 	type = TREE_TYPE (fndecl);
6285       if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6286 	{
6287 	  if (TREE_CODE (fndecl) == INDIRECT_REF
6288 	      && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6289 	    obj_type_ref = TREE_OPERAND (fndecl, 0);
6290 	  fndecl = NULL_TREE;
6291 	}
6292       if (type)
6293 	{
6294 	  for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6295 	       t = TREE_CHAIN (t))
6296 	    if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6297 		&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6298 	      break;
6299 	  if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6300 	    type = NULL;
6301 	  else
6302 	    {
6303 	      int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6304 	      link = CALL_INSN_FUNCTION_USAGE (insn);
6305 #ifndef PCC_STATIC_STRUCT_RETURN
6306 	      if (aggregate_value_p (TREE_TYPE (type), type)
6307 		  && targetm.calls.struct_value_rtx (type, 0) == 0)
6308 		{
6309 		  tree struct_addr = build_pointer_type (TREE_TYPE (type));
6310 		  function_arg_info arg (struct_addr, /*named=*/true);
6311 		  rtx reg;
6312 		  INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6313 					nargs + 1);
6314 		  reg = targetm.calls.function_arg (args_so_far, arg);
6315 		  targetm.calls.function_arg_advance (args_so_far, arg);
6316 		  if (reg == NULL_RTX)
6317 		    {
6318 		      for (; link; link = XEXP (link, 1))
6319 			if (GET_CODE (XEXP (link, 0)) == USE
6320 			    && MEM_P (XEXP (XEXP (link, 0), 0)))
6321 			  {
6322 			    link = XEXP (link, 1);
6323 			    break;
6324 			  }
6325 		    }
6326 		}
6327 	      else
6328 #endif
6329 		INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6330 				      nargs);
6331 	      if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6332 		{
6333 		  t = TYPE_ARG_TYPES (type);
6334 		  function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6335 		  this_arg = targetm.calls.function_arg (args_so_far, arg);
6336 		  if (this_arg && !REG_P (this_arg))
6337 		    this_arg = NULL_RTX;
6338 		  else if (this_arg == NULL_RTX)
6339 		    {
6340 		      for (; link; link = XEXP (link, 1))
6341 			if (GET_CODE (XEXP (link, 0)) == USE
6342 			    && MEM_P (XEXP (XEXP (link, 0), 0)))
6343 			  {
6344 			    this_arg = XEXP (XEXP (link, 0), 0);
6345 			    break;
6346 			  }
6347 		    }
6348 		}
6349 	    }
6350 	}
6351     }
6352   t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6353 
6354   for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6355     if (GET_CODE (XEXP (link, 0)) == USE)
6356       {
6357 	rtx item = NULL_RTX;
6358 	x = XEXP (XEXP (link, 0), 0);
6359 	if (GET_MODE (link) == VOIDmode
6360 	    || GET_MODE (link) == BLKmode
6361 	    || (GET_MODE (link) != GET_MODE (x)
6362 		&& ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6363 		     && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6364 		    || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6365 			&& GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6366 	  /* Can't do anything for these, if the original type mode
6367 	     isn't known or can't be converted.  */;
6368 	else if (REG_P (x))
6369 	  {
6370 	    cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6371 	    scalar_int_mode mode;
6372 	    if (val && cselib_preserved_value_p (val))
6373 	      item = val->val_rtx;
6374 	    else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6375 	      {
6376 		opt_scalar_int_mode mode_iter;
6377 		FOR_EACH_WIDER_MODE (mode_iter, mode)
6378 		  {
6379 		    mode = mode_iter.require ();
6380 		    if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6381 		      break;
6382 
6383 		    rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6384 		    if (reg == NULL_RTX || !REG_P (reg))
6385 		      continue;
6386 		    val = cselib_lookup (reg, mode, 0, VOIDmode);
6387 		    if (val && cselib_preserved_value_p (val))
6388 		      {
6389 			item = val->val_rtx;
6390 			break;
6391 		      }
6392 		  }
6393 	      }
6394 	  }
6395 	else if (MEM_P (x))
6396 	  {
6397 	    rtx mem = x;
6398 	    cselib_val *val;
6399 
6400 	    if (!frame_pointer_needed)
6401 	      {
6402 		class adjust_mem_data amd;
6403 		amd.mem_mode = VOIDmode;
6404 		amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6405 		amd.store = true;
6406 		mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6407 					       &amd);
6408 		gcc_assert (amd.side_effects.is_empty ());
6409 	      }
6410 	    val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6411 	    if (val && cselib_preserved_value_p (val))
6412 	      item = val->val_rtx;
6413 	    else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6414 		     && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6415 	      {
6416 		/* For non-integer stack argument see also if they weren't
6417 		   initialized by integers.  */
6418 		scalar_int_mode imode;
6419 		if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6420 		    && imode != GET_MODE (mem))
6421 		  {
6422 		    val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6423 					 imode, 0, VOIDmode);
6424 		    if (val && cselib_preserved_value_p (val))
6425 		      item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6426 					     imode);
6427 		  }
6428 	      }
6429 	  }
6430 	if (item)
6431 	  {
6432 	    rtx x2 = x;
6433 	    if (GET_MODE (item) != GET_MODE (link))
6434 	      item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6435 	    if (GET_MODE (x2) != GET_MODE (link))
6436 	      x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6437 	    item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6438 	    call_arguments
6439 	      = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6440 	  }
6441 	if (t && t != void_list_node)
6442 	  {
6443 	    rtx reg;
6444 	    function_arg_info arg (TREE_VALUE (t), /*named=*/true);
6445 	    apply_pass_by_reference_rules (&args_so_far_v, arg);
6446 	    reg = targetm.calls.function_arg (args_so_far, arg);
6447 	    if (TREE_CODE (arg.type) == REFERENCE_TYPE
6448 		&& INTEGRAL_TYPE_P (TREE_TYPE (arg.type))
6449 		&& reg
6450 		&& REG_P (reg)
6451 		&& GET_MODE (reg) == arg.mode
6452 		&& (GET_MODE_CLASS (arg.mode) == MODE_INT
6453 		    || GET_MODE_CLASS (arg.mode) == MODE_PARTIAL_INT)
6454 		&& REG_P (x)
6455 		&& REGNO (x) == REGNO (reg)
6456 		&& GET_MODE (x) == arg.mode
6457 		&& item)
6458 	      {
6459 		machine_mode indmode
6460 		  = TYPE_MODE (TREE_TYPE (arg.type));
6461 		rtx mem = gen_rtx_MEM (indmode, x);
6462 		cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6463 		if (val && cselib_preserved_value_p (val))
6464 		  {
6465 		    item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6466 		    call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6467 							call_arguments);
6468 		  }
6469 		else
6470 		  {
6471 		    struct elt_loc_list *l;
6472 		    tree initial;
6473 
6474 		    /* Try harder, when passing address of a constant
6475 		       pool integer it can be easily read back.  */
6476 		    item = XEXP (item, 1);
6477 		    if (GET_CODE (item) == SUBREG)
6478 		      item = SUBREG_REG (item);
6479 		    gcc_assert (GET_CODE (item) == VALUE);
6480 		    val = CSELIB_VAL_PTR (item);
6481 		    for (l = val->locs; l; l = l->next)
6482 		      if (GET_CODE (l->loc) == SYMBOL_REF
6483 			  && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6484 			  && SYMBOL_REF_DECL (l->loc)
6485 			  && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6486 			{
6487 			  initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6488 			  if (tree_fits_shwi_p (initial))
6489 			    {
6490 			      item = GEN_INT (tree_to_shwi (initial));
6491 			      item = gen_rtx_CONCAT (indmode, mem, item);
6492 			      call_arguments
6493 				= gen_rtx_EXPR_LIST (VOIDmode, item,
6494 						     call_arguments);
6495 			    }
6496 			  break;
6497 			}
6498 		  }
6499 	      }
6500 	    targetm.calls.function_arg_advance (args_so_far, arg);
6501 	    t = TREE_CHAIN (t);
6502 	  }
6503       }
6504 
6505   /* Add debug arguments.  */
6506   if (fndecl
6507       && TREE_CODE (fndecl) == FUNCTION_DECL
6508       && DECL_HAS_DEBUG_ARGS_P (fndecl))
6509     {
6510       vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6511       if (debug_args)
6512 	{
6513 	  unsigned int ix;
6514 	  tree param;
6515 	  for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6516 	    {
6517 	      rtx item;
6518 	      tree dtemp = (**debug_args)[ix + 1];
6519 	      machine_mode mode = DECL_MODE (dtemp);
6520 	      item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6521 	      item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6522 	      call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6523 						  call_arguments);
6524 	    }
6525 	}
6526     }
6527 
6528   /* Reverse call_arguments chain.  */
6529   prev = NULL_RTX;
6530   for (cur = call_arguments; cur; cur = next)
6531     {
6532       next = XEXP (cur, 1);
6533       XEXP (cur, 1) = prev;
6534       prev = cur;
6535     }
6536   call_arguments = prev;
6537 
6538   x = get_call_rtx_from (insn);
6539   if (x)
6540     {
6541       x = XEXP (XEXP (x, 0), 0);
6542       if (GET_CODE (x) == SYMBOL_REF)
6543 	/* Don't record anything.  */;
6544       else if (CONSTANT_P (x))
6545 	{
6546 	  x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6547 			      pc_rtx, x);
6548 	  call_arguments
6549 	    = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6550 	}
6551       else
6552 	{
6553 	  cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6554 	  if (val && cselib_preserved_value_p (val))
6555 	    {
6556 	      x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6557 	      call_arguments
6558 		= gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6559 	    }
6560 	}
6561     }
6562   if (this_arg)
6563     {
6564       machine_mode mode
6565 	= TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6566       rtx clobbered = gen_rtx_MEM (mode, this_arg);
6567       HOST_WIDE_INT token
6568 	= tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6569       if (token)
6570 	clobbered = plus_constant (mode, clobbered,
6571 				   token * GET_MODE_SIZE (mode));
6572       clobbered = gen_rtx_MEM (mode, clobbered);
6573       x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6574       call_arguments
6575 	= gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6576     }
6577 }
6578 
6579 /* Callback for cselib_record_sets_hook, that records as micro
6580    operations uses and stores in an insn after cselib_record_sets has
6581    analyzed the sets in an insn, but before it modifies the stored
6582    values in the internal tables, unless cselib_record_sets doesn't
6583    call it directly (perhaps because we're not doing cselib in the
6584    first place, in which case sets and n_sets will be 0).  */
6585 
6586 static void
add_with_sets(rtx_insn * insn,struct cselib_set * sets,int n_sets)6587 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6588 {
6589   basic_block bb = BLOCK_FOR_INSN (insn);
6590   int n1, n2;
6591   struct count_use_info cui;
6592   micro_operation *mos;
6593 
6594   cselib_hook_called = true;
6595 
6596   cui.insn = insn;
6597   cui.bb = bb;
6598   cui.sets = sets;
6599   cui.n_sets = n_sets;
6600 
6601   n1 = VTI (bb)->mos.length ();
6602   cui.store_p = false;
6603   note_uses (&PATTERN (insn), add_uses_1, &cui);
6604   n2 = VTI (bb)->mos.length () - 1;
6605   mos = VTI (bb)->mos.address ();
6606 
6607   /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6608      MO_VAL_LOC last.  */
6609   while (n1 < n2)
6610     {
6611       while (n1 < n2 && mos[n1].type == MO_USE)
6612 	n1++;
6613       while (n1 < n2 && mos[n2].type != MO_USE)
6614 	n2--;
6615       if (n1 < n2)
6616 	std::swap (mos[n1], mos[n2]);
6617     }
6618 
6619   n2 = VTI (bb)->mos.length () - 1;
6620   while (n1 < n2)
6621     {
6622       while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6623 	n1++;
6624       while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6625 	n2--;
6626       if (n1 < n2)
6627 	std::swap (mos[n1], mos[n2]);
6628     }
6629 
6630   if (CALL_P (insn))
6631     {
6632       micro_operation mo;
6633 
6634       mo.type = MO_CALL;
6635       mo.insn = insn;
6636       mo.u.loc = call_arguments;
6637       call_arguments = NULL_RTX;
6638 
6639       if (dump_file && (dump_flags & TDF_DETAILS))
6640 	log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6641       VTI (bb)->mos.safe_push (mo);
6642     }
6643 
6644   n1 = VTI (bb)->mos.length ();
6645   /* This will record NEXT_INSN (insn), such that we can
6646      insert notes before it without worrying about any
6647      notes that MO_USEs might emit after the insn.  */
6648   cui.store_p = true;
6649   note_stores (insn, add_stores, &cui);
6650   n2 = VTI (bb)->mos.length () - 1;
6651   mos = VTI (bb)->mos.address ();
6652 
6653   /* Order the MO_VAL_USEs first (note_stores does nothing
6654      on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6655      insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET.  */
6656   while (n1 < n2)
6657     {
6658       while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6659 	n1++;
6660       while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6661 	n2--;
6662       if (n1 < n2)
6663 	std::swap (mos[n1], mos[n2]);
6664     }
6665 
6666   n2 = VTI (bb)->mos.length () - 1;
6667   while (n1 < n2)
6668     {
6669       while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6670 	n1++;
6671       while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6672 	n2--;
6673       if (n1 < n2)
6674 	std::swap (mos[n1], mos[n2]);
6675     }
6676 }
6677 
6678 static enum var_init_status
find_src_status(dataflow_set * in,rtx src)6679 find_src_status (dataflow_set *in, rtx src)
6680 {
6681   tree decl = NULL_TREE;
6682   enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6683 
6684   if (! flag_var_tracking_uninit)
6685     status = VAR_INIT_STATUS_INITIALIZED;
6686 
6687   if (src && REG_P (src))
6688     decl = var_debug_decl (REG_EXPR (src));
6689   else if (src && MEM_P (src))
6690     decl = var_debug_decl (MEM_EXPR (src));
6691 
6692   if (src && decl)
6693     status = get_init_value (in, src, dv_from_decl (decl));
6694 
6695   return status;
6696 }
6697 
6698 /* SRC is the source of an assignment.  Use SET to try to find what
6699    was ultimately assigned to SRC.  Return that value if known,
6700    otherwise return SRC itself.  */
6701 
6702 static rtx
find_src_set_src(dataflow_set * set,rtx src)6703 find_src_set_src (dataflow_set *set, rtx src)
6704 {
6705   tree decl = NULL_TREE;   /* The variable being copied around.          */
6706   rtx set_src = NULL_RTX;  /* The value for "decl" stored in "src".      */
6707   variable *var;
6708   location_chain *nextp;
6709   int i;
6710   bool found;
6711 
6712   if (src && REG_P (src))
6713     decl = var_debug_decl (REG_EXPR (src));
6714   else if (src && MEM_P (src))
6715     decl = var_debug_decl (MEM_EXPR (src));
6716 
6717   if (src && decl)
6718     {
6719       decl_or_value dv = dv_from_decl (decl);
6720 
6721       var = shared_hash_find (set->vars, dv);
6722       if (var)
6723 	{
6724 	  found = false;
6725 	  for (i = 0; i < var->n_var_parts && !found; i++)
6726 	    for (nextp = var->var_part[i].loc_chain; nextp && !found;
6727 		 nextp = nextp->next)
6728 	      if (rtx_equal_p (nextp->loc, src))
6729 		{
6730 		  set_src = nextp->set_src;
6731 		  found = true;
6732 		}
6733 
6734 	}
6735     }
6736 
6737   return set_src;
6738 }
6739 
6740 /* Compute the changes of variable locations in the basic block BB.  */
6741 
6742 static bool
compute_bb_dataflow(basic_block bb)6743 compute_bb_dataflow (basic_block bb)
6744 {
6745   unsigned int i;
6746   micro_operation *mo;
6747   bool changed;
6748   dataflow_set old_out;
6749   dataflow_set *in = &VTI (bb)->in;
6750   dataflow_set *out = &VTI (bb)->out;
6751 
6752   dataflow_set_init (&old_out);
6753   dataflow_set_copy (&old_out, out);
6754   dataflow_set_copy (out, in);
6755 
6756   if (MAY_HAVE_DEBUG_BIND_INSNS)
6757     local_get_addr_cache = new hash_map<rtx, rtx>;
6758 
6759   FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6760     {
6761       rtx_insn *insn = mo->insn;
6762 
6763       switch (mo->type)
6764 	{
6765 	  case MO_CALL:
6766 	    dataflow_set_clear_at_call (out, insn);
6767 	    break;
6768 
6769 	  case MO_USE:
6770 	    {
6771 	      rtx loc = mo->u.loc;
6772 
6773 	      if (REG_P (loc))
6774 		var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6775 	      else if (MEM_P (loc))
6776 		var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6777 	    }
6778 	    break;
6779 
6780 	  case MO_VAL_LOC:
6781 	    {
6782 	      rtx loc = mo->u.loc;
6783 	      rtx val, vloc;
6784 	      tree var;
6785 
6786 	      if (GET_CODE (loc) == CONCAT)
6787 		{
6788 		  val = XEXP (loc, 0);
6789 		  vloc = XEXP (loc, 1);
6790 		}
6791 	      else
6792 		{
6793 		  val = NULL_RTX;
6794 		  vloc = loc;
6795 		}
6796 
6797 	      var = PAT_VAR_LOCATION_DECL (vloc);
6798 
6799 	      clobber_variable_part (out, NULL_RTX,
6800 				     dv_from_decl (var), 0, NULL_RTX);
6801 	      if (val)
6802 		{
6803 		  if (VAL_NEEDS_RESOLUTION (loc))
6804 		    val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6805 		  set_variable_part (out, val, dv_from_decl (var), 0,
6806 				     VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6807 				     INSERT);
6808 		}
6809 	      else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6810 		set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6811 				   dv_from_decl (var), 0,
6812 				   VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6813 				   INSERT);
6814 	    }
6815 	    break;
6816 
6817 	  case MO_VAL_USE:
6818 	    {
6819 	      rtx loc = mo->u.loc;
6820 	      rtx val, vloc, uloc;
6821 
6822 	      vloc = uloc = XEXP (loc, 1);
6823 	      val = XEXP (loc, 0);
6824 
6825 	      if (GET_CODE (val) == CONCAT)
6826 		{
6827 		  uloc = XEXP (val, 1);
6828 		  val = XEXP (val, 0);
6829 		}
6830 
6831 	      if (VAL_NEEDS_RESOLUTION (loc))
6832 		val_resolve (out, val, vloc, insn);
6833 	      else
6834 		val_store (out, val, uloc, insn, false);
6835 
6836 	      if (VAL_HOLDS_TRACK_EXPR (loc))
6837 		{
6838 		  if (GET_CODE (uloc) == REG)
6839 		    var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6840 				 NULL);
6841 		  else if (GET_CODE (uloc) == MEM)
6842 		    var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6843 				 NULL);
6844 		}
6845 	    }
6846 	    break;
6847 
6848 	  case MO_VAL_SET:
6849 	    {
6850 	      rtx loc = mo->u.loc;
6851 	      rtx val, vloc, uloc;
6852 	      rtx dstv, srcv;
6853 
6854 	      vloc = loc;
6855 	      uloc = XEXP (vloc, 1);
6856 	      val = XEXP (vloc, 0);
6857 	      vloc = uloc;
6858 
6859 	      if (GET_CODE (uloc) == SET)
6860 		{
6861 		  dstv = SET_DEST (uloc);
6862 		  srcv = SET_SRC (uloc);
6863 		}
6864 	      else
6865 		{
6866 		  dstv = uloc;
6867 		  srcv = NULL;
6868 		}
6869 
6870 	      if (GET_CODE (val) == CONCAT)
6871 		{
6872 		  dstv = vloc = XEXP (val, 1);
6873 		  val = XEXP (val, 0);
6874 		}
6875 
6876 	      if (GET_CODE (vloc) == SET)
6877 		{
6878 		  srcv = SET_SRC (vloc);
6879 
6880 		  gcc_assert (val != srcv);
6881 		  gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6882 
6883 		  dstv = vloc = SET_DEST (vloc);
6884 
6885 		  if (VAL_NEEDS_RESOLUTION (loc))
6886 		    val_resolve (out, val, srcv, insn);
6887 		}
6888 	      else if (VAL_NEEDS_RESOLUTION (loc))
6889 		{
6890 		  gcc_assert (GET_CODE (uloc) == SET
6891 			      && GET_CODE (SET_SRC (uloc)) == REG);
6892 		  val_resolve (out, val, SET_SRC (uloc), insn);
6893 		}
6894 
6895 	      if (VAL_HOLDS_TRACK_EXPR (loc))
6896 		{
6897 		  if (VAL_EXPR_IS_CLOBBERED (loc))
6898 		    {
6899 		      if (REG_P (uloc))
6900 			var_reg_delete (out, uloc, true);
6901 		      else if (MEM_P (uloc))
6902 			{
6903 			  gcc_assert (MEM_P (dstv));
6904 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6905 			  var_mem_delete (out, dstv, true);
6906 			}
6907 		    }
6908 		  else
6909 		    {
6910 		      bool copied_p = VAL_EXPR_IS_COPIED (loc);
6911 		      rtx src = NULL, dst = uloc;
6912 		      enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6913 
6914 		      if (GET_CODE (uloc) == SET)
6915 			{
6916 			  src = SET_SRC (uloc);
6917 			  dst = SET_DEST (uloc);
6918 			}
6919 
6920 		      if (copied_p)
6921 			{
6922 			  if (flag_var_tracking_uninit)
6923 			    {
6924 			      status = find_src_status (in, src);
6925 
6926 			      if (status == VAR_INIT_STATUS_UNKNOWN)
6927 				status = find_src_status (out, src);
6928 			    }
6929 
6930 			  src = find_src_set_src (in, src);
6931 			}
6932 
6933 		      if (REG_P (dst))
6934 			var_reg_delete_and_set (out, dst, !copied_p,
6935 						status, srcv);
6936 		      else if (MEM_P (dst))
6937 			{
6938 			  gcc_assert (MEM_P (dstv));
6939 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6940 			  var_mem_delete_and_set (out, dstv, !copied_p,
6941 						  status, srcv);
6942 			}
6943 		    }
6944 		}
6945 	      else if (REG_P (uloc))
6946 		var_regno_delete (out, REGNO (uloc));
6947 	      else if (MEM_P (uloc))
6948 		{
6949 		  gcc_checking_assert (GET_CODE (vloc) == MEM);
6950 		  gcc_checking_assert (dstv == vloc);
6951 		  if (dstv != vloc)
6952 		    clobber_overlapping_mems (out, vloc);
6953 		}
6954 
6955 	      val_store (out, val, dstv, insn, true);
6956 	    }
6957 	    break;
6958 
6959 	  case MO_SET:
6960 	    {
6961 	      rtx loc = mo->u.loc;
6962 	      rtx set_src = NULL;
6963 
6964 	      if (GET_CODE (loc) == SET)
6965 		{
6966 		  set_src = SET_SRC (loc);
6967 		  loc = SET_DEST (loc);
6968 		}
6969 
6970 	      if (REG_P (loc))
6971 		var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6972 					set_src);
6973 	      else if (MEM_P (loc))
6974 		var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6975 					set_src);
6976 	    }
6977 	    break;
6978 
6979 	  case MO_COPY:
6980 	    {
6981 	      rtx loc = mo->u.loc;
6982 	      enum var_init_status src_status;
6983 	      rtx set_src = NULL;
6984 
6985 	      if (GET_CODE (loc) == SET)
6986 		{
6987 		  set_src = SET_SRC (loc);
6988 		  loc = SET_DEST (loc);
6989 		}
6990 
6991 	      if (! flag_var_tracking_uninit)
6992 		src_status = VAR_INIT_STATUS_INITIALIZED;
6993 	      else
6994 		{
6995 		  src_status = find_src_status (in, set_src);
6996 
6997 		  if (src_status == VAR_INIT_STATUS_UNKNOWN)
6998 		    src_status = find_src_status (out, set_src);
6999 		}
7000 
7001 	      set_src = find_src_set_src (in, set_src);
7002 
7003 	      if (REG_P (loc))
7004 		var_reg_delete_and_set (out, loc, false, src_status, set_src);
7005 	      else if (MEM_P (loc))
7006 		var_mem_delete_and_set (out, loc, false, src_status, set_src);
7007 	    }
7008 	    break;
7009 
7010 	  case MO_USE_NO_VAR:
7011 	    {
7012 	      rtx loc = mo->u.loc;
7013 
7014 	      if (REG_P (loc))
7015 		var_reg_delete (out, loc, false);
7016 	      else if (MEM_P (loc))
7017 		var_mem_delete (out, loc, false);
7018 	    }
7019 	    break;
7020 
7021 	  case MO_CLOBBER:
7022 	    {
7023 	      rtx loc = mo->u.loc;
7024 
7025 	      if (REG_P (loc))
7026 		var_reg_delete (out, loc, true);
7027 	      else if (MEM_P (loc))
7028 		var_mem_delete (out, loc, true);
7029 	    }
7030 	    break;
7031 
7032 	  case MO_ADJUST:
7033 	    out->stack_adjust += mo->u.adjust;
7034 	    break;
7035 	}
7036     }
7037 
7038   if (MAY_HAVE_DEBUG_BIND_INSNS)
7039     {
7040       delete local_get_addr_cache;
7041       local_get_addr_cache = NULL;
7042 
7043       dataflow_set_equiv_regs (out);
7044       shared_hash_htab (out->vars)
7045 	->traverse <dataflow_set *, canonicalize_values_mark> (out);
7046       shared_hash_htab (out->vars)
7047 	->traverse <dataflow_set *, canonicalize_values_star> (out);
7048       if (flag_checking)
7049 	shared_hash_htab (out->vars)
7050 	  ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
7051     }
7052   changed = dataflow_set_different (&old_out, out);
7053   dataflow_set_destroy (&old_out);
7054   return changed;
7055 }
7056 
7057 /* Find the locations of variables in the whole function.  */
7058 
7059 static bool
vt_find_locations(void)7060 vt_find_locations (void)
7061 {
7062   bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7063   bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7064   sbitmap in_worklist, in_pending;
7065   basic_block bb;
7066   edge e;
7067   int *bb_order;
7068   int *rc_order;
7069   int i;
7070   int htabsz = 0;
7071   int htabmax = param_max_vartrack_size;
7072   bool success = true;
7073 
7074   timevar_push (TV_VAR_TRACKING_DATAFLOW);
7075   /* Compute reverse completion order of depth first search of the CFG
7076      so that the data-flow runs faster.  */
7077   rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7078   bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7079   pre_and_rev_post_order_compute (NULL, rc_order, false);
7080   for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7081     bb_order[rc_order[i]] = i;
7082   free (rc_order);
7083 
7084   auto_sbitmap visited (last_basic_block_for_fn (cfun));
7085   in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7086   in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7087   bitmap_clear (in_worklist);
7088 
7089   FOR_EACH_BB_FN (bb, cfun)
7090     pending->insert (bb_order[bb->index], bb);
7091   bitmap_ones (in_pending);
7092 
7093   while (success && !pending->empty ())
7094     {
7095       std::swap (worklist, pending);
7096       std::swap (in_worklist, in_pending);
7097 
7098       bitmap_clear (visited);
7099 
7100       while (!worklist->empty ())
7101 	{
7102 	  bb = worklist->extract_min ();
7103 	  bitmap_clear_bit (in_worklist, bb->index);
7104 	  gcc_assert (!bitmap_bit_p (visited, bb->index));
7105 	  if (!bitmap_bit_p (visited, bb->index))
7106 	    {
7107 	      bool changed;
7108 	      edge_iterator ei;
7109 	      int oldinsz, oldoutsz;
7110 
7111 	      bitmap_set_bit (visited, bb->index);
7112 
7113 	      if (VTI (bb)->in.vars)
7114 		{
7115 		  htabsz
7116 		    -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7117 			+ shared_hash_htab (VTI (bb)->out.vars)->size ();
7118 		  oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7119 		  oldoutsz
7120 		    = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7121 		}
7122 	      else
7123 		oldinsz = oldoutsz = 0;
7124 
7125 	      if (MAY_HAVE_DEBUG_BIND_INSNS)
7126 		{
7127 		  dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7128 		  bool first = true, adjust = false;
7129 
7130 		  /* Calculate the IN set as the intersection of
7131 		     predecessor OUT sets.  */
7132 
7133 		  dataflow_set_clear (in);
7134 		  dst_can_be_shared = true;
7135 
7136 		  FOR_EACH_EDGE (e, ei, bb->preds)
7137 		    if (!VTI (e->src)->flooded)
7138 		      gcc_assert (bb_order[bb->index]
7139 				  <= bb_order[e->src->index]);
7140 		    else if (first)
7141 		      {
7142 			dataflow_set_copy (in, &VTI (e->src)->out);
7143 			first_out = &VTI (e->src)->out;
7144 			first = false;
7145 		      }
7146 		    else
7147 		      {
7148 			dataflow_set_merge (in, &VTI (e->src)->out);
7149 			adjust = true;
7150 		      }
7151 
7152 		  if (adjust)
7153 		    {
7154 		      dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7155 
7156 		      if (flag_checking)
7157 			/* Merge and merge_adjust should keep entries in
7158 			   canonical order.  */
7159 			shared_hash_htab (in->vars)
7160 			  ->traverse <dataflow_set *,
7161 				      canonicalize_loc_order_check> (in);
7162 
7163 		      if (dst_can_be_shared)
7164 			{
7165 			  shared_hash_destroy (in->vars);
7166 			  in->vars = shared_hash_copy (first_out->vars);
7167 			}
7168 		    }
7169 
7170 		  VTI (bb)->flooded = true;
7171 		}
7172 	      else
7173 		{
7174 		  /* Calculate the IN set as union of predecessor OUT sets.  */
7175 		  dataflow_set_clear (&VTI (bb)->in);
7176 		  FOR_EACH_EDGE (e, ei, bb->preds)
7177 		    dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7178 		}
7179 
7180 	      changed = compute_bb_dataflow (bb);
7181 	      htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7182 			 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7183 
7184 	      if (htabmax && htabsz > htabmax)
7185 		{
7186 		  if (MAY_HAVE_DEBUG_BIND_INSNS)
7187 		    inform (DECL_SOURCE_LOCATION (cfun->decl),
7188 			    "variable tracking size limit exceeded with "
7189 			    "%<-fvar-tracking-assignments%>, retrying without");
7190 		  else
7191 		    inform (DECL_SOURCE_LOCATION (cfun->decl),
7192 			    "variable tracking size limit exceeded");
7193 		  success = false;
7194 		  break;
7195 		}
7196 
7197 	      if (changed)
7198 		{
7199 		  FOR_EACH_EDGE (e, ei, bb->succs)
7200 		    {
7201 		      if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7202 			continue;
7203 
7204 		      if (bitmap_bit_p (visited, e->dest->index))
7205 			{
7206 			  if (!bitmap_bit_p (in_pending, e->dest->index))
7207 			    {
7208 			      /* Send E->DEST to next round.  */
7209 			      bitmap_set_bit (in_pending, e->dest->index);
7210 			      pending->insert (bb_order[e->dest->index],
7211 					       e->dest);
7212 			    }
7213 			}
7214 		      else if (!bitmap_bit_p (in_worklist, e->dest->index))
7215 			{
7216 			  /* Add E->DEST to current round.  */
7217 			  bitmap_set_bit (in_worklist, e->dest->index);
7218 			  worklist->insert (bb_order[e->dest->index],
7219 					    e->dest);
7220 			}
7221 		    }
7222 		}
7223 
7224 	      if (dump_file)
7225 		fprintf (dump_file,
7226 			 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7227 			 bb->index,
7228 			 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7229 			 oldinsz,
7230 			 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7231 			 oldoutsz,
7232 			 (int)worklist->nodes (), (int)pending->nodes (),
7233 			 htabsz);
7234 
7235 	      if (dump_file && (dump_flags & TDF_DETAILS))
7236 		{
7237 		  fprintf (dump_file, "BB %i IN:\n", bb->index);
7238 		  dump_dataflow_set (&VTI (bb)->in);
7239 		  fprintf (dump_file, "BB %i OUT:\n", bb->index);
7240 		  dump_dataflow_set (&VTI (bb)->out);
7241 		}
7242 	    }
7243 	}
7244     }
7245 
7246   if (success && MAY_HAVE_DEBUG_BIND_INSNS)
7247     FOR_EACH_BB_FN (bb, cfun)
7248       gcc_assert (VTI (bb)->flooded);
7249 
7250   free (bb_order);
7251   delete worklist;
7252   delete pending;
7253   sbitmap_free (in_worklist);
7254   sbitmap_free (in_pending);
7255 
7256   timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7257   return success;
7258 }
7259 
7260 /* Print the content of the LIST to dump file.  */
7261 
7262 static void
dump_attrs_list(attrs * list)7263 dump_attrs_list (attrs *list)
7264 {
7265   for (; list; list = list->next)
7266     {
7267       if (dv_is_decl_p (list->dv))
7268 	print_mem_expr (dump_file, dv_as_decl (list->dv));
7269       else
7270 	print_rtl_single (dump_file, dv_as_value (list->dv));
7271       fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7272     }
7273   fprintf (dump_file, "\n");
7274 }
7275 
7276 /* Print the information about variable *SLOT to dump file.  */
7277 
7278 int
dump_var_tracking_slot(variable ** slot,void * data ATTRIBUTE_UNUSED)7279 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7280 {
7281   variable *var = *slot;
7282 
7283   dump_var (var);
7284 
7285   /* Continue traversing the hash table.  */
7286   return 1;
7287 }
7288 
7289 /* Print the information about variable VAR to dump file.  */
7290 
7291 static void
dump_var(variable * var)7292 dump_var (variable *var)
7293 {
7294   int i;
7295   location_chain *node;
7296 
7297   if (dv_is_decl_p (var->dv))
7298     {
7299       const_tree decl = dv_as_decl (var->dv);
7300 
7301       if (DECL_NAME (decl))
7302 	{
7303 	  fprintf (dump_file, "  name: %s",
7304 		   IDENTIFIER_POINTER (DECL_NAME (decl)));
7305 	  if (dump_flags & TDF_UID)
7306 	    fprintf (dump_file, "D.%u", DECL_UID (decl));
7307 	}
7308       else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7309 	fprintf (dump_file, "  name: D#%u", DEBUG_TEMP_UID (decl));
7310       else
7311 	fprintf (dump_file, "  name: D.%u", DECL_UID (decl));
7312       fprintf (dump_file, "\n");
7313     }
7314   else
7315     {
7316       fputc (' ', dump_file);
7317       print_rtl_single (dump_file, dv_as_value (var->dv));
7318     }
7319 
7320   for (i = 0; i < var->n_var_parts; i++)
7321     {
7322       fprintf (dump_file, "    offset %ld\n",
7323 	       (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7324       for (node = var->var_part[i].loc_chain; node; node = node->next)
7325 	{
7326 	  fprintf (dump_file, "      ");
7327 	  if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7328 	    fprintf (dump_file, "[uninit]");
7329 	  print_rtl_single (dump_file, node->loc);
7330 	}
7331     }
7332 }
7333 
7334 /* Print the information about variables from hash table VARS to dump file.  */
7335 
7336 static void
dump_vars(variable_table_type * vars)7337 dump_vars (variable_table_type *vars)
7338 {
7339   if (!vars->is_empty ())
7340     {
7341       fprintf (dump_file, "Variables:\n");
7342       vars->traverse <void *, dump_var_tracking_slot> (NULL);
7343     }
7344 }
7345 
7346 /* Print the dataflow set SET to dump file.  */
7347 
7348 static void
dump_dataflow_set(dataflow_set * set)7349 dump_dataflow_set (dataflow_set *set)
7350 {
7351   int i;
7352 
7353   fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7354 	   set->stack_adjust);
7355   for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7356     {
7357       if (set->regs[i])
7358 	{
7359 	  fprintf (dump_file, "Reg %d:", i);
7360 	  dump_attrs_list (set->regs[i]);
7361 	}
7362     }
7363   dump_vars (shared_hash_htab (set->vars));
7364   fprintf (dump_file, "\n");
7365 }
7366 
7367 /* Print the IN and OUT sets for each basic block to dump file.  */
7368 
7369 static void
dump_dataflow_sets(void)7370 dump_dataflow_sets (void)
7371 {
7372   basic_block bb;
7373 
7374   FOR_EACH_BB_FN (bb, cfun)
7375     {
7376       fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7377       fprintf (dump_file, "IN:\n");
7378       dump_dataflow_set (&VTI (bb)->in);
7379       fprintf (dump_file, "OUT:\n");
7380       dump_dataflow_set (&VTI (bb)->out);
7381     }
7382 }
7383 
7384 /* Return the variable for DV in dropped_values, inserting one if
7385    requested with INSERT.  */
7386 
7387 static inline variable *
variable_from_dropped(decl_or_value dv,enum insert_option insert)7388 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7389 {
7390   variable **slot;
7391   variable *empty_var;
7392   onepart_enum onepart;
7393 
7394   slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7395 
7396   if (!slot)
7397     return NULL;
7398 
7399   if (*slot)
7400     return *slot;
7401 
7402   gcc_checking_assert (insert == INSERT);
7403 
7404   onepart = dv_onepart_p (dv);
7405 
7406   gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7407 
7408   empty_var = onepart_pool_allocate (onepart);
7409   empty_var->dv = dv;
7410   empty_var->refcount = 1;
7411   empty_var->n_var_parts = 0;
7412   empty_var->onepart = onepart;
7413   empty_var->in_changed_variables = false;
7414   empty_var->var_part[0].loc_chain = NULL;
7415   empty_var->var_part[0].cur_loc = NULL;
7416   VAR_LOC_1PAUX (empty_var) = NULL;
7417   set_dv_changed (dv, true);
7418 
7419   *slot = empty_var;
7420 
7421   return empty_var;
7422 }
7423 
7424 /* Recover the one-part aux from dropped_values.  */
7425 
7426 static struct onepart_aux *
recover_dropped_1paux(variable * var)7427 recover_dropped_1paux (variable *var)
7428 {
7429   variable *dvar;
7430 
7431   gcc_checking_assert (var->onepart);
7432 
7433   if (VAR_LOC_1PAUX (var))
7434     return VAR_LOC_1PAUX (var);
7435 
7436   if (var->onepart == ONEPART_VDECL)
7437     return NULL;
7438 
7439   dvar = variable_from_dropped (var->dv, NO_INSERT);
7440 
7441   if (!dvar)
7442     return NULL;
7443 
7444   VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7445   VAR_LOC_1PAUX (dvar) = NULL;
7446 
7447   return VAR_LOC_1PAUX (var);
7448 }
7449 
7450 /* Add variable VAR to the hash table of changed variables and
7451    if it has no locations delete it from SET's hash table.  */
7452 
7453 static void
variable_was_changed(variable * var,dataflow_set * set)7454 variable_was_changed (variable *var, dataflow_set *set)
7455 {
7456   hashval_t hash = dv_htab_hash (var->dv);
7457 
7458   if (emit_notes)
7459     {
7460       variable **slot;
7461 
7462       /* Remember this decl or VALUE has been added to changed_variables.  */
7463       set_dv_changed (var->dv, true);
7464 
7465       slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7466 
7467       if (*slot)
7468 	{
7469 	  variable *old_var = *slot;
7470 	  gcc_assert (old_var->in_changed_variables);
7471 	  old_var->in_changed_variables = false;
7472 	  if (var != old_var && var->onepart)
7473 	    {
7474 	      /* Restore the auxiliary info from an empty variable
7475 		 previously created for changed_variables, so it is
7476 		 not lost.  */
7477 	      gcc_checking_assert (!VAR_LOC_1PAUX (var));
7478 	      VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7479 	      VAR_LOC_1PAUX (old_var) = NULL;
7480 	    }
7481 	  variable_htab_free (*slot);
7482 	}
7483 
7484       if (set && var->n_var_parts == 0)
7485 	{
7486 	  onepart_enum onepart = var->onepart;
7487 	  variable *empty_var = NULL;
7488 	  variable **dslot = NULL;
7489 
7490 	  if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7491 	    {
7492 	      dslot = dropped_values->find_slot_with_hash (var->dv,
7493 							   dv_htab_hash (var->dv),
7494 							   INSERT);
7495 	      empty_var = *dslot;
7496 
7497 	      if (empty_var)
7498 		{
7499 		  gcc_checking_assert (!empty_var->in_changed_variables);
7500 		  if (!VAR_LOC_1PAUX (var))
7501 		    {
7502 		      VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7503 		      VAR_LOC_1PAUX (empty_var) = NULL;
7504 		    }
7505 		  else
7506 		    gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7507 		}
7508 	    }
7509 
7510 	  if (!empty_var)
7511 	    {
7512 	      empty_var = onepart_pool_allocate (onepart);
7513 	      empty_var->dv = var->dv;
7514 	      empty_var->refcount = 1;
7515 	      empty_var->n_var_parts = 0;
7516 	      empty_var->onepart = onepart;
7517 	      if (dslot)
7518 		{
7519 		  empty_var->refcount++;
7520 		  *dslot = empty_var;
7521 		}
7522 	    }
7523 	  else
7524 	    empty_var->refcount++;
7525 	  empty_var->in_changed_variables = true;
7526 	  *slot = empty_var;
7527 	  if (onepart)
7528 	    {
7529 	      empty_var->var_part[0].loc_chain = NULL;
7530 	      empty_var->var_part[0].cur_loc = NULL;
7531 	      VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7532 	      VAR_LOC_1PAUX (var) = NULL;
7533 	    }
7534 	  goto drop_var;
7535 	}
7536       else
7537 	{
7538 	  if (var->onepart && !VAR_LOC_1PAUX (var))
7539 	    recover_dropped_1paux (var);
7540 	  var->refcount++;
7541 	  var->in_changed_variables = true;
7542 	  *slot = var;
7543 	}
7544     }
7545   else
7546     {
7547       gcc_assert (set);
7548       if (var->n_var_parts == 0)
7549 	{
7550 	  variable **slot;
7551 
7552 	drop_var:
7553 	  slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7554 	  if (slot)
7555 	    {
7556 	      if (shared_hash_shared (set->vars))
7557 		slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7558 						      NO_INSERT);
7559 	      shared_hash_htab (set->vars)->clear_slot (slot);
7560 	    }
7561 	}
7562     }
7563 }
7564 
7565 /* Look for the index in VAR->var_part corresponding to OFFSET.
7566    Return -1 if not found.  If INSERTION_POINT is non-NULL, the
7567    referenced int will be set to the index that the part has or should
7568    have, if it should be inserted.  */
7569 
7570 static inline int
find_variable_location_part(variable * var,HOST_WIDE_INT offset,int * insertion_point)7571 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7572 			     int *insertion_point)
7573 {
7574   int pos, low, high;
7575 
7576   if (var->onepart)
7577     {
7578       if (offset != 0)
7579 	return -1;
7580 
7581       if (insertion_point)
7582 	*insertion_point = 0;
7583 
7584       return var->n_var_parts - 1;
7585     }
7586 
7587   /* Find the location part.  */
7588   low = 0;
7589   high = var->n_var_parts;
7590   while (low != high)
7591     {
7592       pos = (low + high) / 2;
7593       if (VAR_PART_OFFSET (var, pos) < offset)
7594 	low = pos + 1;
7595       else
7596 	high = pos;
7597     }
7598   pos = low;
7599 
7600   if (insertion_point)
7601     *insertion_point = pos;
7602 
7603   if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7604     return pos;
7605 
7606   return -1;
7607 }
7608 
7609 static variable **
set_slot_part(dataflow_set * set,rtx loc,variable ** slot,decl_or_value dv,HOST_WIDE_INT offset,enum var_init_status initialized,rtx set_src)7610 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7611 	       decl_or_value dv, HOST_WIDE_INT offset,
7612 	       enum var_init_status initialized, rtx set_src)
7613 {
7614   int pos;
7615   location_chain *node, *next;
7616   location_chain **nextp;
7617   variable *var;
7618   onepart_enum onepart;
7619 
7620   var = *slot;
7621 
7622   if (var)
7623     onepart = var->onepart;
7624   else
7625     onepart = dv_onepart_p (dv);
7626 
7627   gcc_checking_assert (offset == 0 || !onepart);
7628   gcc_checking_assert (loc != dv_as_opaque (dv));
7629 
7630   if (! flag_var_tracking_uninit)
7631     initialized = VAR_INIT_STATUS_INITIALIZED;
7632 
7633   if (!var)
7634     {
7635       /* Create new variable information.  */
7636       var = onepart_pool_allocate (onepart);
7637       var->dv = dv;
7638       var->refcount = 1;
7639       var->n_var_parts = 1;
7640       var->onepart = onepart;
7641       var->in_changed_variables = false;
7642       if (var->onepart)
7643 	VAR_LOC_1PAUX (var) = NULL;
7644       else
7645 	VAR_PART_OFFSET (var, 0) = offset;
7646       var->var_part[0].loc_chain = NULL;
7647       var->var_part[0].cur_loc = NULL;
7648       *slot = var;
7649       pos = 0;
7650       nextp = &var->var_part[0].loc_chain;
7651     }
7652   else if (onepart)
7653     {
7654       int r = -1, c = 0;
7655 
7656       gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7657 
7658       pos = 0;
7659 
7660       if (GET_CODE (loc) == VALUE)
7661 	{
7662 	  for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7663 	       nextp = &node->next)
7664 	    if (GET_CODE (node->loc) == VALUE)
7665 	      {
7666 		if (node->loc == loc)
7667 		  {
7668 		    r = 0;
7669 		    break;
7670 		  }
7671 		if (canon_value_cmp (node->loc, loc))
7672 		  c++;
7673 		else
7674 		  {
7675 		    r = 1;
7676 		    break;
7677 		  }
7678 	      }
7679 	    else if (REG_P (node->loc) || MEM_P (node->loc))
7680 	      c++;
7681 	    else
7682 	      {
7683 		r = 1;
7684 		break;
7685 	      }
7686 	}
7687       else if (REG_P (loc))
7688 	{
7689 	  for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7690 	       nextp = &node->next)
7691 	    if (REG_P (node->loc))
7692 	      {
7693 		if (REGNO (node->loc) < REGNO (loc))
7694 		  c++;
7695 		else
7696 		  {
7697 		    if (REGNO (node->loc) == REGNO (loc))
7698 		      r = 0;
7699 		    else
7700 		      r = 1;
7701 		    break;
7702 		  }
7703 	      }
7704 	    else
7705 	      {
7706 		r = 1;
7707 		break;
7708 	      }
7709 	}
7710       else if (MEM_P (loc))
7711 	{
7712 	  for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7713 	       nextp = &node->next)
7714 	    if (REG_P (node->loc))
7715 	      c++;
7716 	    else if (MEM_P (node->loc))
7717 	      {
7718 		if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7719 		  break;
7720 		else
7721 		  c++;
7722 	      }
7723 	    else
7724 	      {
7725 		r = 1;
7726 		break;
7727 	      }
7728 	}
7729       else
7730 	for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7731 	     nextp = &node->next)
7732 	  if ((r = loc_cmp (node->loc, loc)) >= 0)
7733 	    break;
7734 	  else
7735 	    c++;
7736 
7737       if (r == 0)
7738 	return slot;
7739 
7740       if (shared_var_p (var, set->vars))
7741 	{
7742 	  slot = unshare_variable (set, slot, var, initialized);
7743 	  var = *slot;
7744 	  for (nextp = &var->var_part[0].loc_chain; c;
7745 	       nextp = &(*nextp)->next)
7746 	    c--;
7747 	  gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7748 	}
7749     }
7750   else
7751     {
7752       int inspos = 0;
7753 
7754       gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7755 
7756       pos = find_variable_location_part (var, offset, &inspos);
7757 
7758       if (pos >= 0)
7759 	{
7760 	  node = var->var_part[pos].loc_chain;
7761 
7762 	  if (node
7763 	      && ((REG_P (node->loc) && REG_P (loc)
7764 		   && REGNO (node->loc) == REGNO (loc))
7765 		  || rtx_equal_p (node->loc, loc)))
7766 	    {
7767 	      /* LOC is in the beginning of the chain so we have nothing
7768 		 to do.  */
7769 	      if (node->init < initialized)
7770 		node->init = initialized;
7771 	      if (set_src != NULL)
7772 		node->set_src = set_src;
7773 
7774 	      return slot;
7775 	    }
7776 	  else
7777 	    {
7778 	      /* We have to make a copy of a shared variable.  */
7779 	      if (shared_var_p (var, set->vars))
7780 		{
7781 		  slot = unshare_variable (set, slot, var, initialized);
7782 		  var = *slot;
7783 		}
7784 	    }
7785 	}
7786       else
7787 	{
7788 	  /* We have not found the location part, new one will be created.  */
7789 
7790 	  /* We have to make a copy of the shared variable.  */
7791 	  if (shared_var_p (var, set->vars))
7792 	    {
7793 	      slot = unshare_variable (set, slot, var, initialized);
7794 	      var = *slot;
7795 	    }
7796 
7797 	  /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7798 	     thus there are at most MAX_VAR_PARTS different offsets.  */
7799 	  gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7800 		      && (!var->n_var_parts || !onepart));
7801 
7802 	  /* We have to move the elements of array starting at index
7803 	     inspos to the next position.  */
7804 	  for (pos = var->n_var_parts; pos > inspos; pos--)
7805 	    var->var_part[pos] = var->var_part[pos - 1];
7806 
7807 	  var->n_var_parts++;
7808 	  gcc_checking_assert (!onepart);
7809 	  VAR_PART_OFFSET (var, pos) = offset;
7810 	  var->var_part[pos].loc_chain = NULL;
7811 	  var->var_part[pos].cur_loc = NULL;
7812 	}
7813 
7814       /* Delete the location from the list.  */
7815       nextp = &var->var_part[pos].loc_chain;
7816       for (node = var->var_part[pos].loc_chain; node; node = next)
7817 	{
7818 	  next = node->next;
7819 	  if ((REG_P (node->loc) && REG_P (loc)
7820 	       && REGNO (node->loc) == REGNO (loc))
7821 	      || rtx_equal_p (node->loc, loc))
7822 	    {
7823 	      /* Save these values, to assign to the new node, before
7824 		 deleting this one.  */
7825 	      if (node->init > initialized)
7826 		initialized = node->init;
7827 	      if (node->set_src != NULL && set_src == NULL)
7828 		set_src = node->set_src;
7829 	      if (var->var_part[pos].cur_loc == node->loc)
7830 		var->var_part[pos].cur_loc = NULL;
7831 	      delete node;
7832 	      *nextp = next;
7833 	      break;
7834 	    }
7835 	  else
7836 	    nextp = &node->next;
7837 	}
7838 
7839       nextp = &var->var_part[pos].loc_chain;
7840     }
7841 
7842   /* Add the location to the beginning.  */
7843   node = new location_chain;
7844   node->loc = loc;
7845   node->init = initialized;
7846   node->set_src = set_src;
7847   node->next = *nextp;
7848   *nextp = node;
7849 
7850   /* If no location was emitted do so.  */
7851   if (var->var_part[pos].cur_loc == NULL)
7852     variable_was_changed (var, set);
7853 
7854   return slot;
7855 }
7856 
7857 /* Set the part of variable's location in the dataflow set SET.  The
7858    variable part is specified by variable's declaration in DV and
7859    offset OFFSET and the part's location by LOC.  IOPT should be
7860    NO_INSERT if the variable is known to be in SET already and the
7861    variable hash table must not be resized, and INSERT otherwise.  */
7862 
7863 static void
set_variable_part(dataflow_set * set,rtx loc,decl_or_value dv,HOST_WIDE_INT offset,enum var_init_status initialized,rtx set_src,enum insert_option iopt)7864 set_variable_part (dataflow_set *set, rtx loc,
7865 		   decl_or_value dv, HOST_WIDE_INT offset,
7866 		   enum var_init_status initialized, rtx set_src,
7867 		   enum insert_option iopt)
7868 {
7869   variable **slot;
7870 
7871   if (iopt == NO_INSERT)
7872     slot = shared_hash_find_slot_noinsert (set->vars, dv);
7873   else
7874     {
7875       slot = shared_hash_find_slot (set->vars, dv);
7876       if (!slot)
7877 	slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7878     }
7879   set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7880 }
7881 
7882 /* Remove all recorded register locations for the given variable part
7883    from dataflow set SET, except for those that are identical to loc.
7884    The variable part is specified by variable's declaration or value
7885    DV and offset OFFSET.  */
7886 
7887 static variable **
clobber_slot_part(dataflow_set * set,rtx loc,variable ** slot,HOST_WIDE_INT offset,rtx set_src)7888 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7889 		   HOST_WIDE_INT offset, rtx set_src)
7890 {
7891   variable *var = *slot;
7892   int pos = find_variable_location_part (var, offset, NULL);
7893 
7894   if (pos >= 0)
7895     {
7896       location_chain *node, *next;
7897 
7898       /* Remove the register locations from the dataflow set.  */
7899       next = var->var_part[pos].loc_chain;
7900       for (node = next; node; node = next)
7901 	{
7902 	  next = node->next;
7903 	  if (node->loc != loc
7904 	      && (!flag_var_tracking_uninit
7905 		  || !set_src
7906 		  || MEM_P (set_src)
7907 		  || !rtx_equal_p (set_src, node->set_src)))
7908 	    {
7909 	      if (REG_P (node->loc))
7910 		{
7911 		  attrs *anode, *anext;
7912 		  attrs **anextp;
7913 
7914 		  /* Remove the variable part from the register's
7915 		     list, but preserve any other variable parts
7916 		     that might be regarded as live in that same
7917 		     register.  */
7918 		  anextp = &set->regs[REGNO (node->loc)];
7919 		  for (anode = *anextp; anode; anode = anext)
7920 		    {
7921 		      anext = anode->next;
7922 		      if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7923 			  && anode->offset == offset)
7924 			{
7925 			  delete anode;
7926 			  *anextp = anext;
7927 			}
7928 		      else
7929 			anextp = &anode->next;
7930 		    }
7931 		}
7932 
7933 	      slot = delete_slot_part (set, node->loc, slot, offset);
7934 	    }
7935 	}
7936     }
7937 
7938   return slot;
7939 }
7940 
7941 /* Remove all recorded register locations for the given variable part
7942    from dataflow set SET, except for those that are identical to loc.
7943    The variable part is specified by variable's declaration or value
7944    DV and offset OFFSET.  */
7945 
7946 static void
clobber_variable_part(dataflow_set * set,rtx loc,decl_or_value dv,HOST_WIDE_INT offset,rtx set_src)7947 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7948 		       HOST_WIDE_INT offset, rtx set_src)
7949 {
7950   variable **slot;
7951 
7952   if (!dv_as_opaque (dv)
7953       || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7954     return;
7955 
7956   slot = shared_hash_find_slot_noinsert (set->vars, dv);
7957   if (!slot)
7958     return;
7959 
7960   clobber_slot_part (set, loc, slot, offset, set_src);
7961 }
7962 
7963 /* Delete the part of variable's location from dataflow set SET.  The
7964    variable part is specified by its SET->vars slot SLOT and offset
7965    OFFSET and the part's location by LOC.  */
7966 
7967 static variable **
delete_slot_part(dataflow_set * set,rtx loc,variable ** slot,HOST_WIDE_INT offset)7968 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7969 		  HOST_WIDE_INT offset)
7970 {
7971   variable *var = *slot;
7972   int pos = find_variable_location_part (var, offset, NULL);
7973 
7974   if (pos >= 0)
7975     {
7976       location_chain *node, *next;
7977       location_chain **nextp;
7978       bool changed;
7979       rtx cur_loc;
7980 
7981       if (shared_var_p (var, set->vars))
7982 	{
7983 	  /* If the variable contains the location part we have to
7984 	     make a copy of the variable.  */
7985 	  for (node = var->var_part[pos].loc_chain; node;
7986 	       node = node->next)
7987 	    {
7988 	      if ((REG_P (node->loc) && REG_P (loc)
7989 		   && REGNO (node->loc) == REGNO (loc))
7990 		  || rtx_equal_p (node->loc, loc))
7991 		{
7992 		  slot = unshare_variable (set, slot, var,
7993 					   VAR_INIT_STATUS_UNKNOWN);
7994 		  var = *slot;
7995 		  break;
7996 		}
7997 	    }
7998 	}
7999 
8000       if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8001 	cur_loc = VAR_LOC_FROM (var);
8002       else
8003 	cur_loc = var->var_part[pos].cur_loc;
8004 
8005       /* Delete the location part.  */
8006       changed = false;
8007       nextp = &var->var_part[pos].loc_chain;
8008       for (node = *nextp; node; node = next)
8009 	{
8010 	  next = node->next;
8011 	  if ((REG_P (node->loc) && REG_P (loc)
8012 	       && REGNO (node->loc) == REGNO (loc))
8013 	      || rtx_equal_p (node->loc, loc))
8014 	    {
8015 	      /* If we have deleted the location which was last emitted
8016 		 we have to emit new location so add the variable to set
8017 		 of changed variables.  */
8018 	      if (cur_loc == node->loc)
8019 		{
8020 		  changed = true;
8021 		  var->var_part[pos].cur_loc = NULL;
8022 		  if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
8023 		    VAR_LOC_FROM (var) = NULL;
8024 		}
8025 	      delete node;
8026 	      *nextp = next;
8027 	      break;
8028 	    }
8029 	  else
8030 	    nextp = &node->next;
8031 	}
8032 
8033       if (var->var_part[pos].loc_chain == NULL)
8034 	{
8035 	  changed = true;
8036 	  var->n_var_parts--;
8037 	  while (pos < var->n_var_parts)
8038 	    {
8039 	      var->var_part[pos] = var->var_part[pos + 1];
8040 	      pos++;
8041 	    }
8042 	}
8043       if (changed)
8044 	variable_was_changed (var, set);
8045     }
8046 
8047   return slot;
8048 }
8049 
8050 /* Delete the part of variable's location from dataflow set SET.  The
8051    variable part is specified by variable's declaration or value DV
8052    and offset OFFSET and the part's location by LOC.  */
8053 
8054 static void
delete_variable_part(dataflow_set * set,rtx loc,decl_or_value dv,HOST_WIDE_INT offset)8055 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
8056 		      HOST_WIDE_INT offset)
8057 {
8058   variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
8059   if (!slot)
8060     return;
8061 
8062   delete_slot_part (set, loc, slot, offset);
8063 }
8064 
8065 
8066 /* Structure for passing some other parameters to function
8067    vt_expand_loc_callback.  */
8068 class expand_loc_callback_data
8069 {
8070 public:
8071   /* The variables and values active at this point.  */
8072   variable_table_type *vars;
8073 
8074   /* Stack of values and debug_exprs under expansion, and their
8075      children.  */
8076   auto_vec<rtx, 4> expanding;
8077 
8078   /* Stack of values and debug_exprs whose expansion hit recursion
8079      cycles.  They will have VALUE_RECURSED_INTO marked when added to
8080      this list.  This flag will be cleared if any of its dependencies
8081      resolves to a valid location.  So, if the flag remains set at the
8082      end of the search, we know no valid location for this one can
8083      possibly exist.  */
8084   auto_vec<rtx, 4> pending;
8085 
8086   /* The maximum depth among the sub-expressions under expansion.
8087      Zero indicates no expansion so far.  */
8088   expand_depth depth;
8089 };
8090 
8091 /* Allocate the one-part auxiliary data structure for VAR, with enough
8092    room for COUNT dependencies.  */
8093 
8094 static void
loc_exp_dep_alloc(variable * var,int count)8095 loc_exp_dep_alloc (variable *var, int count)
8096 {
8097   size_t allocsize;
8098 
8099   gcc_checking_assert (var->onepart);
8100 
8101   /* We can be called with COUNT == 0 to allocate the data structure
8102      without any dependencies, e.g. for the backlinks only.  However,
8103      if we are specifying a COUNT, then the dependency list must have
8104      been emptied before.  It would be possible to adjust pointers or
8105      force it empty here, but this is better done at an earlier point
8106      in the algorithm, so we instead leave an assertion to catch
8107      errors.  */
8108   gcc_checking_assert (!count
8109 		       || VAR_LOC_DEP_VEC (var) == NULL
8110 		       || VAR_LOC_DEP_VEC (var)->is_empty ());
8111 
8112   if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8113     return;
8114 
8115   allocsize = offsetof (struct onepart_aux, deps)
8116 	      + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8117 
8118   if (VAR_LOC_1PAUX (var))
8119     {
8120       VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8121 					VAR_LOC_1PAUX (var), allocsize);
8122       /* If the reallocation moves the onepaux structure, the
8123 	 back-pointer to BACKLINKS in the first list member will still
8124 	 point to its old location.  Adjust it.  */
8125       if (VAR_LOC_DEP_LST (var))
8126 	VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8127     }
8128   else
8129     {
8130       VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8131       *VAR_LOC_DEP_LSTP (var) = NULL;
8132       VAR_LOC_FROM (var) = NULL;
8133       VAR_LOC_DEPTH (var).complexity = 0;
8134       VAR_LOC_DEPTH (var).entryvals = 0;
8135     }
8136   VAR_LOC_DEP_VEC (var)->embedded_init (count);
8137 }
8138 
8139 /* Remove all entries from the vector of active dependencies of VAR,
8140    removing them from the back-links lists too.  */
8141 
8142 static void
loc_exp_dep_clear(variable * var)8143 loc_exp_dep_clear (variable *var)
8144 {
8145   while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8146     {
8147       loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8148       if (led->next)
8149 	led->next->pprev = led->pprev;
8150       if (led->pprev)
8151 	*led->pprev = led->next;
8152       VAR_LOC_DEP_VEC (var)->pop ();
8153     }
8154 }
8155 
8156 /* Insert an active dependency from VAR on X to the vector of
8157    dependencies, and add the corresponding back-link to X's list of
8158    back-links in VARS.  */
8159 
8160 static void
loc_exp_insert_dep(variable * var,rtx x,variable_table_type * vars)8161 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8162 {
8163   decl_or_value dv;
8164   variable *xvar;
8165   loc_exp_dep *led;
8166 
8167   dv = dv_from_rtx (x);
8168 
8169   /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8170      an additional look up?  */
8171   xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8172 
8173   if (!xvar)
8174     {
8175       xvar = variable_from_dropped (dv, NO_INSERT);
8176       gcc_checking_assert (xvar);
8177     }
8178 
8179   /* No point in adding the same backlink more than once.  This may
8180      arise if say the same value appears in two complex expressions in
8181      the same loc_list, or even more than once in a single
8182      expression.  */
8183   if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8184     return;
8185 
8186   if (var->onepart == NOT_ONEPART)
8187     led = new loc_exp_dep;
8188   else
8189     {
8190       loc_exp_dep empty;
8191       memset (&empty, 0, sizeof (empty));
8192       VAR_LOC_DEP_VEC (var)->quick_push (empty);
8193       led = &VAR_LOC_DEP_VEC (var)->last ();
8194     }
8195   led->dv = var->dv;
8196   led->value = x;
8197 
8198   loc_exp_dep_alloc (xvar, 0);
8199   led->pprev = VAR_LOC_DEP_LSTP (xvar);
8200   led->next = *led->pprev;
8201   if (led->next)
8202     led->next->pprev = &led->next;
8203   *led->pprev = led;
8204 }
8205 
8206 /* Create active dependencies of VAR on COUNT values starting at
8207    VALUE, and corresponding back-links to the entries in VARS.  Return
8208    true if we found any pending-recursion results.  */
8209 
8210 static bool
loc_exp_dep_set(variable * var,rtx result,rtx * value,int count,variable_table_type * vars)8211 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8212 		 variable_table_type *vars)
8213 {
8214   bool pending_recursion = false;
8215 
8216   gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8217 		       || VAR_LOC_DEP_VEC (var)->is_empty ());
8218 
8219   /* Set up all dependencies from last_child (as set up at the end of
8220      the loop above) to the end.  */
8221   loc_exp_dep_alloc (var, count);
8222 
8223   while (count--)
8224     {
8225       rtx x = *value++;
8226 
8227       if (!pending_recursion)
8228 	pending_recursion = !result && VALUE_RECURSED_INTO (x);
8229 
8230       loc_exp_insert_dep (var, x, vars);
8231     }
8232 
8233   return pending_recursion;
8234 }
8235 
8236 /* Notify the back-links of IVAR that are pending recursion that we
8237    have found a non-NIL value for it, so they are cleared for another
8238    attempt to compute a current location.  */
8239 
8240 static void
notify_dependents_of_resolved_value(variable * ivar,variable_table_type * vars)8241 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8242 {
8243   loc_exp_dep *led, *next;
8244 
8245   for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8246     {
8247       decl_or_value dv = led->dv;
8248       variable *var;
8249 
8250       next = led->next;
8251 
8252       if (dv_is_value_p (dv))
8253 	{
8254 	  rtx value = dv_as_value (dv);
8255 
8256 	  /* If we have already resolved it, leave it alone.  */
8257 	  if (!VALUE_RECURSED_INTO (value))
8258 	    continue;
8259 
8260 	  /* Check that VALUE_RECURSED_INTO, true from the test above,
8261 	     implies NO_LOC_P.  */
8262 	  gcc_checking_assert (NO_LOC_P (value));
8263 
8264 	  /* We won't notify variables that are being expanded,
8265 	     because their dependency list is cleared before
8266 	     recursing.  */
8267 	  NO_LOC_P (value) = false;
8268 	  VALUE_RECURSED_INTO (value) = false;
8269 
8270 	  gcc_checking_assert (dv_changed_p (dv));
8271 	}
8272       else
8273 	{
8274 	  gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8275 	  if (!dv_changed_p (dv))
8276 	    continue;
8277       }
8278 
8279       var = vars->find_with_hash (dv, dv_htab_hash (dv));
8280 
8281       if (!var)
8282 	var = variable_from_dropped (dv, NO_INSERT);
8283 
8284       if (var)
8285 	notify_dependents_of_resolved_value (var, vars);
8286 
8287       if (next)
8288 	next->pprev = led->pprev;
8289       if (led->pprev)
8290 	*led->pprev = next;
8291       led->next = NULL;
8292       led->pprev = NULL;
8293     }
8294 }
8295 
8296 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8297 				   int max_depth, void *data);
8298 
8299 /* Return the combined depth, when one sub-expression evaluated to
8300    BEST_DEPTH and the previous known depth was SAVED_DEPTH.  */
8301 
8302 static inline expand_depth
update_depth(expand_depth saved_depth,expand_depth best_depth)8303 update_depth (expand_depth saved_depth, expand_depth best_depth)
8304 {
8305   /* If we didn't find anything, stick with what we had.  */
8306   if (!best_depth.complexity)
8307     return saved_depth;
8308 
8309   /* If we found hadn't found anything, use the depth of the current
8310      expression.  Do NOT add one extra level, we want to compute the
8311      maximum depth among sub-expressions.  We'll increment it later,
8312      if appropriate.  */
8313   if (!saved_depth.complexity)
8314     return best_depth;
8315 
8316   /* Combine the entryval count so that regardless of which one we
8317      return, the entryval count is accurate.  */
8318   best_depth.entryvals = saved_depth.entryvals
8319     = best_depth.entryvals + saved_depth.entryvals;
8320 
8321   if (saved_depth.complexity < best_depth.complexity)
8322     return best_depth;
8323   else
8324     return saved_depth;
8325 }
8326 
8327 /* Expand VAR to a location RTX, updating its cur_loc.  Use REGS and
8328    DATA for cselib expand callback.  If PENDRECP is given, indicate in
8329    it whether any sub-expression couldn't be fully evaluated because
8330    it is pending recursion resolution.  */
8331 
8332 static inline rtx
vt_expand_var_loc_chain(variable * var,bitmap regs,void * data,bool * pendrecp)8333 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8334 			 bool *pendrecp)
8335 {
8336   class expand_loc_callback_data *elcd
8337     = (class expand_loc_callback_data *) data;
8338   location_chain *loc, *next;
8339   rtx result = NULL;
8340   int first_child, result_first_child, last_child;
8341   bool pending_recursion;
8342   rtx loc_from = NULL;
8343   struct elt_loc_list *cloc = NULL;
8344   expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8345   int wanted_entryvals, found_entryvals = 0;
8346 
8347   /* Clear all backlinks pointing at this, so that we're not notified
8348      while we're active.  */
8349   loc_exp_dep_clear (var);
8350 
8351  retry:
8352   if (var->onepart == ONEPART_VALUE)
8353     {
8354       cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8355 
8356       gcc_checking_assert (cselib_preserved_value_p (val));
8357 
8358       cloc = val->locs;
8359     }
8360 
8361   first_child = result_first_child = last_child
8362     = elcd->expanding.length ();
8363 
8364   wanted_entryvals = found_entryvals;
8365 
8366   /* Attempt to expand each available location in turn.  */
8367   for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8368        loc || cloc; loc = next)
8369     {
8370       result_first_child = last_child;
8371 
8372       if (!loc)
8373 	{
8374 	  loc_from = cloc->loc;
8375 	  next = loc;
8376 	  cloc = cloc->next;
8377 	  if (unsuitable_loc (loc_from))
8378 	    continue;
8379 	}
8380       else
8381 	{
8382 	  loc_from = loc->loc;
8383 	  next = loc->next;
8384 	}
8385 
8386       gcc_checking_assert (!unsuitable_loc (loc_from));
8387 
8388       elcd->depth.complexity = elcd->depth.entryvals = 0;
8389       result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8390 					   vt_expand_loc_callback, data);
8391       last_child = elcd->expanding.length ();
8392 
8393       if (result)
8394 	{
8395 	  depth = elcd->depth;
8396 
8397 	  gcc_checking_assert (depth.complexity
8398 			       || result_first_child == last_child);
8399 
8400 	  if (last_child - result_first_child != 1)
8401 	    {
8402 	      if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8403 		depth.entryvals++;
8404 	      depth.complexity++;
8405 	    }
8406 
8407 	  if (depth.complexity <= EXPR_USE_DEPTH)
8408 	    {
8409 	      if (depth.entryvals <= wanted_entryvals)
8410 		break;
8411 	      else if (!found_entryvals || depth.entryvals < found_entryvals)
8412 		found_entryvals = depth.entryvals;
8413 	    }
8414 
8415 	  result = NULL;
8416 	}
8417 
8418       /* Set it up in case we leave the loop.  */
8419       depth.complexity = depth.entryvals = 0;
8420       loc_from = NULL;
8421       result_first_child = first_child;
8422     }
8423 
8424   if (!loc_from && wanted_entryvals < found_entryvals)
8425     {
8426       /* We found entries with ENTRY_VALUEs and skipped them.  Since
8427 	 we could not find any expansions without ENTRY_VALUEs, but we
8428 	 found at least one with them, go back and get an entry with
8429 	 the minimum number ENTRY_VALUE count that we found.  We could
8430 	 avoid looping, but since each sub-loc is already resolved,
8431 	 the re-expansion should be trivial.  ??? Should we record all
8432 	 attempted locs as dependencies, so that we retry the
8433 	 expansion should any of them change, in the hope it can give
8434 	 us a new entry without an ENTRY_VALUE?  */
8435       elcd->expanding.truncate (first_child);
8436       goto retry;
8437     }
8438 
8439   /* Register all encountered dependencies as active.  */
8440   pending_recursion = loc_exp_dep_set
8441     (var, result, elcd->expanding.address () + result_first_child,
8442      last_child - result_first_child, elcd->vars);
8443 
8444   elcd->expanding.truncate (first_child);
8445 
8446   /* Record where the expansion came from.  */
8447   gcc_checking_assert (!result || !pending_recursion);
8448   VAR_LOC_FROM (var) = loc_from;
8449   VAR_LOC_DEPTH (var) = depth;
8450 
8451   gcc_checking_assert (!depth.complexity == !result);
8452 
8453   elcd->depth = update_depth (saved_depth, depth);
8454 
8455   /* Indicate whether any of the dependencies are pending recursion
8456      resolution.  */
8457   if (pendrecp)
8458     *pendrecp = pending_recursion;
8459 
8460   if (!pendrecp || !pending_recursion)
8461     var->var_part[0].cur_loc = result;
8462 
8463   return result;
8464 }
8465 
8466 /* Callback for cselib_expand_value, that looks for expressions
8467    holding the value in the var-tracking hash tables.  Return X for
8468    standard processing, anything else is to be used as-is.  */
8469 
8470 static rtx
vt_expand_loc_callback(rtx x,bitmap regs,int max_depth ATTRIBUTE_UNUSED,void * data)8471 vt_expand_loc_callback (rtx x, bitmap regs,
8472 			int max_depth ATTRIBUTE_UNUSED,
8473 			void *data)
8474 {
8475   class expand_loc_callback_data *elcd
8476     = (class expand_loc_callback_data *) data;
8477   decl_or_value dv;
8478   variable *var;
8479   rtx result, subreg;
8480   bool pending_recursion = false;
8481   bool from_empty = false;
8482 
8483   switch (GET_CODE (x))
8484     {
8485     case SUBREG:
8486       subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8487 					   EXPR_DEPTH,
8488 					   vt_expand_loc_callback, data);
8489 
8490       if (!subreg)
8491 	return NULL;
8492 
8493       result = simplify_gen_subreg (GET_MODE (x), subreg,
8494 				    GET_MODE (SUBREG_REG (x)),
8495 				    SUBREG_BYTE (x));
8496 
8497       /* Invalid SUBREGs are ok in debug info.  ??? We could try
8498 	 alternate expansions for the VALUE as well.  */
8499       if (!result && GET_MODE (subreg) != VOIDmode)
8500 	result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8501 
8502       return result;
8503 
8504     case DEBUG_EXPR:
8505     case VALUE:
8506       dv = dv_from_rtx (x);
8507       break;
8508 
8509     default:
8510       return x;
8511     }
8512 
8513   elcd->expanding.safe_push (x);
8514 
8515   /* Check that VALUE_RECURSED_INTO implies NO_LOC_P.  */
8516   gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8517 
8518   if (NO_LOC_P (x))
8519     {
8520       gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8521       return NULL;
8522     }
8523 
8524   var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8525 
8526   if (!var)
8527     {
8528       from_empty = true;
8529       var = variable_from_dropped (dv, INSERT);
8530     }
8531 
8532   gcc_checking_assert (var);
8533 
8534   if (!dv_changed_p (dv))
8535     {
8536       gcc_checking_assert (!NO_LOC_P (x));
8537       gcc_checking_assert (var->var_part[0].cur_loc);
8538       gcc_checking_assert (VAR_LOC_1PAUX (var));
8539       gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8540 
8541       elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8542 
8543       return var->var_part[0].cur_loc;
8544     }
8545 
8546   VALUE_RECURSED_INTO (x) = true;
8547   /* This is tentative, but it makes some tests simpler.  */
8548   NO_LOC_P (x) = true;
8549 
8550   gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8551 
8552   result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8553 
8554   if (pending_recursion)
8555     {
8556       gcc_checking_assert (!result);
8557       elcd->pending.safe_push (x);
8558     }
8559   else
8560     {
8561       NO_LOC_P (x) = !result;
8562       VALUE_RECURSED_INTO (x) = false;
8563       set_dv_changed (dv, false);
8564 
8565       if (result)
8566 	notify_dependents_of_resolved_value (var, elcd->vars);
8567     }
8568 
8569   return result;
8570 }
8571 
8572 /* While expanding variables, we may encounter recursion cycles
8573    because of mutual (possibly indirect) dependencies between two
8574    particular variables (or values), say A and B.  If we're trying to
8575    expand A when we get to B, which in turn attempts to expand A, if
8576    we can't find any other expansion for B, we'll add B to this
8577    pending-recursion stack, and tentatively return NULL for its
8578    location.  This tentative value will be used for any other
8579    occurrences of B, unless A gets some other location, in which case
8580    it will notify B that it is worth another try at computing a
8581    location for it, and it will use the location computed for A then.
8582    At the end of the expansion, the tentative NULL locations become
8583    final for all members of PENDING that didn't get a notification.
8584    This function performs this finalization of NULL locations.  */
8585 
8586 static void
resolve_expansions_pending_recursion(vec<rtx,va_heap> * pending)8587 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8588 {
8589   while (!pending->is_empty ())
8590     {
8591       rtx x = pending->pop ();
8592       decl_or_value dv;
8593 
8594       if (!VALUE_RECURSED_INTO (x))
8595 	continue;
8596 
8597       gcc_checking_assert (NO_LOC_P (x));
8598       VALUE_RECURSED_INTO (x) = false;
8599       dv = dv_from_rtx (x);
8600       gcc_checking_assert (dv_changed_p (dv));
8601       set_dv_changed (dv, false);
8602     }
8603 }
8604 
8605 /* Initialize expand_loc_callback_data D with variable hash table V.
8606    It must be a macro because of alloca (vec stack).  */
8607 #define INIT_ELCD(d, v)						\
8608   do								\
8609     {								\
8610       (d).vars = (v);						\
8611       (d).depth.complexity = (d).depth.entryvals = 0;		\
8612     }								\
8613   while (0)
8614 /* Finalize expand_loc_callback_data D, resolved to location L.  */
8615 #define FINI_ELCD(d, l)						\
8616   do								\
8617     {								\
8618       resolve_expansions_pending_recursion (&(d).pending);	\
8619       (d).pending.release ();					\
8620       (d).expanding.release ();					\
8621 								\
8622       if ((l) && MEM_P (l))					\
8623 	(l) = targetm.delegitimize_address (l);			\
8624     }								\
8625   while (0)
8626 
8627 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8628    equivalences in VARS, updating their CUR_LOCs in the process.  */
8629 
8630 static rtx
vt_expand_loc(rtx loc,variable_table_type * vars)8631 vt_expand_loc (rtx loc, variable_table_type *vars)
8632 {
8633   class expand_loc_callback_data data;
8634   rtx result;
8635 
8636   if (!MAY_HAVE_DEBUG_BIND_INSNS)
8637     return loc;
8638 
8639   INIT_ELCD (data, vars);
8640 
8641   result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8642 				       vt_expand_loc_callback, &data);
8643 
8644   FINI_ELCD (data, result);
8645 
8646   return result;
8647 }
8648 
8649 /* Expand the one-part VARiable to a location, using the equivalences
8650    in VARS, updating their CUR_LOCs in the process.  */
8651 
8652 static rtx
vt_expand_1pvar(variable * var,variable_table_type * vars)8653 vt_expand_1pvar (variable *var, variable_table_type *vars)
8654 {
8655   class expand_loc_callback_data data;
8656   rtx loc;
8657 
8658   gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8659 
8660   if (!dv_changed_p (var->dv))
8661     return var->var_part[0].cur_loc;
8662 
8663   INIT_ELCD (data, vars);
8664 
8665   loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8666 
8667   gcc_checking_assert (data.expanding.is_empty ());
8668 
8669   FINI_ELCD (data, loc);
8670 
8671   return loc;
8672 }
8673 
8674 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP.  DATA contains
8675    additional parameters: WHERE specifies whether the note shall be emitted
8676    before or after instruction INSN.  */
8677 
8678 int
emit_note_insn_var_location(variable ** varp,emit_note_data * data)8679 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8680 {
8681   variable *var = *varp;
8682   rtx_insn *insn = data->insn;
8683   enum emit_note_where where = data->where;
8684   variable_table_type *vars = data->vars;
8685   rtx_note *note;
8686   rtx note_vl;
8687   int i, j, n_var_parts;
8688   bool complete;
8689   enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8690   HOST_WIDE_INT last_limit;
8691   HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8692   rtx loc[MAX_VAR_PARTS];
8693   tree decl;
8694   location_chain *lc;
8695 
8696   gcc_checking_assert (var->onepart == NOT_ONEPART
8697 		       || var->onepart == ONEPART_VDECL);
8698 
8699   decl = dv_as_decl (var->dv);
8700 
8701   complete = true;
8702   last_limit = 0;
8703   n_var_parts = 0;
8704   if (!var->onepart)
8705     for (i = 0; i < var->n_var_parts; i++)
8706       if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8707 	var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8708   for (i = 0; i < var->n_var_parts; i++)
8709     {
8710       machine_mode mode, wider_mode;
8711       rtx loc2;
8712       HOST_WIDE_INT offset, size, wider_size;
8713 
8714       if (i == 0 && var->onepart)
8715 	{
8716 	  gcc_checking_assert (var->n_var_parts == 1);
8717 	  offset = 0;
8718 	  initialized = VAR_INIT_STATUS_INITIALIZED;
8719 	  loc2 = vt_expand_1pvar (var, vars);
8720 	}
8721       else
8722 	{
8723 	  if (last_limit < VAR_PART_OFFSET (var, i))
8724 	    {
8725 	      complete = false;
8726 	      break;
8727 	    }
8728 	  else if (last_limit > VAR_PART_OFFSET (var, i))
8729 	    continue;
8730 	  offset = VAR_PART_OFFSET (var, i);
8731 	  loc2 = var->var_part[i].cur_loc;
8732 	  if (loc2 && GET_CODE (loc2) == MEM
8733 	      && GET_CODE (XEXP (loc2, 0)) == VALUE)
8734 	    {
8735 	      rtx depval = XEXP (loc2, 0);
8736 
8737 	      loc2 = vt_expand_loc (loc2, vars);
8738 
8739 	      if (loc2)
8740 		loc_exp_insert_dep (var, depval, vars);
8741 	    }
8742 	  if (!loc2)
8743 	    {
8744 	      complete = false;
8745 	      continue;
8746 	    }
8747 	  gcc_checking_assert (GET_CODE (loc2) != VALUE);
8748 	  for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8749 	    if (var->var_part[i].cur_loc == lc->loc)
8750 	      {
8751 		initialized = lc->init;
8752 		break;
8753 	      }
8754 	  gcc_assert (lc);
8755 	}
8756 
8757       offsets[n_var_parts] = offset;
8758       if (!loc2)
8759 	{
8760 	  complete = false;
8761 	  continue;
8762 	}
8763       loc[n_var_parts] = loc2;
8764       mode = GET_MODE (var->var_part[i].cur_loc);
8765       if (mode == VOIDmode && var->onepart)
8766 	mode = DECL_MODE (decl);
8767       /* We ony track subparts of constant-sized objects, since at present
8768 	 there's no representation for polynomial pieces.  */
8769       if (!GET_MODE_SIZE (mode).is_constant (&size))
8770 	{
8771 	  complete = false;
8772 	  continue;
8773 	}
8774       last_limit = offsets[n_var_parts] + size;
8775 
8776       /* Attempt to merge adjacent registers or memory.  */
8777       for (j = i + 1; j < var->n_var_parts; j++)
8778 	if (last_limit <= VAR_PART_OFFSET (var, j))
8779 	  break;
8780       if (j < var->n_var_parts
8781 	  && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8782 	  && GET_MODE_SIZE (wider_mode).is_constant (&wider_size)
8783 	  && var->var_part[j].cur_loc
8784 	  && mode == GET_MODE (var->var_part[j].cur_loc)
8785 	  && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8786 	  && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8787 	  && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8788 	  && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8789 	{
8790 	  rtx new_loc = NULL;
8791 	  poly_int64 offset2;
8792 
8793 	  if (REG_P (loc[n_var_parts])
8794 	      && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8795 		 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8796 	      && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8797 		 == REGNO (loc2))
8798 	    {
8799 	      if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8800 		new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8801 					   mode, 0);
8802 	      else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8803 		new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8804 	      if (new_loc)
8805 		{
8806 		  if (!REG_P (new_loc)
8807 		      || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8808 		    new_loc = NULL;
8809 		  else
8810 		    REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8811 		}
8812 	    }
8813 	  else if (MEM_P (loc[n_var_parts])
8814 		   && GET_CODE (XEXP (loc2, 0)) == PLUS
8815 		   && REG_P (XEXP (XEXP (loc2, 0), 0))
8816 		   && poly_int_rtx_p (XEXP (XEXP (loc2, 0), 1), &offset2))
8817 	    {
8818 	      poly_int64 end1 = size;
8819 	      rtx base1 = strip_offset_and_add (XEXP (loc[n_var_parts], 0),
8820 						&end1);
8821 	      if (rtx_equal_p (base1, XEXP (XEXP (loc2, 0), 0))
8822 		  && known_eq (end1, offset2))
8823 		new_loc = adjust_address_nv (loc[n_var_parts],
8824 					     wider_mode, 0);
8825 	    }
8826 
8827 	  if (new_loc)
8828 	    {
8829 	      loc[n_var_parts] = new_loc;
8830 	      mode = wider_mode;
8831 	      last_limit = offsets[n_var_parts] + wider_size;
8832 	      i = j;
8833 	    }
8834 	}
8835       ++n_var_parts;
8836     }
8837   poly_uint64 type_size_unit
8838     = tree_to_poly_uint64 (TYPE_SIZE_UNIT (TREE_TYPE (decl)));
8839   if (maybe_lt (poly_uint64 (last_limit), type_size_unit))
8840     complete = false;
8841 
8842   if (! flag_var_tracking_uninit)
8843     initialized = VAR_INIT_STATUS_INITIALIZED;
8844 
8845   note_vl = NULL_RTX;
8846   if (!complete)
8847     note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8848   else if (n_var_parts == 1)
8849     {
8850       rtx expr_list;
8851 
8852       if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8853 	expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8854       else
8855 	expr_list = loc[0];
8856 
8857       note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8858     }
8859   else if (n_var_parts)
8860     {
8861       rtx parallel;
8862 
8863       for (i = 0; i < n_var_parts; i++)
8864 	loc[i]
8865 	  = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8866 
8867       parallel = gen_rtx_PARALLEL (VOIDmode,
8868 				   gen_rtvec_v (n_var_parts, loc));
8869       note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8870 				      parallel, initialized);
8871     }
8872 
8873   if (where != EMIT_NOTE_BEFORE_INSN)
8874     {
8875       note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8876       if (where == EMIT_NOTE_AFTER_CALL_INSN)
8877 	NOTE_DURING_CALL_P (note) = true;
8878     }
8879   else
8880     {
8881       /* Make sure that the call related notes come first.  */
8882       while (NEXT_INSN (insn)
8883 	     && NOTE_P (insn)
8884 	     && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8885 	     && NOTE_DURING_CALL_P (insn))
8886 	insn = NEXT_INSN (insn);
8887       if (NOTE_P (insn)
8888 	  && NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8889 	  && NOTE_DURING_CALL_P (insn))
8890 	note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8891       else
8892 	note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8893     }
8894   NOTE_VAR_LOCATION (note) = note_vl;
8895 
8896   set_dv_changed (var->dv, false);
8897   gcc_assert (var->in_changed_variables);
8898   var->in_changed_variables = false;
8899   changed_variables->clear_slot (varp);
8900 
8901   /* Continue traversing the hash table.  */
8902   return 1;
8903 }
8904 
8905 /* While traversing changed_variables, push onto DATA (a stack of RTX
8906    values) entries that aren't user variables.  */
8907 
8908 int
var_track_values_to_stack(variable ** slot,vec<rtx,va_heap> * changed_values_stack)8909 var_track_values_to_stack (variable **slot,
8910 			   vec<rtx, va_heap> *changed_values_stack)
8911 {
8912   variable *var = *slot;
8913 
8914   if (var->onepart == ONEPART_VALUE)
8915     changed_values_stack->safe_push (dv_as_value (var->dv));
8916   else if (var->onepart == ONEPART_DEXPR)
8917     changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8918 
8919   return 1;
8920 }
8921 
8922 /* Remove from changed_variables the entry whose DV corresponds to
8923    value or debug_expr VAL.  */
8924 static void
remove_value_from_changed_variables(rtx val)8925 remove_value_from_changed_variables (rtx val)
8926 {
8927   decl_or_value dv = dv_from_rtx (val);
8928   variable **slot;
8929   variable *var;
8930 
8931   slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8932 						NO_INSERT);
8933   var = *slot;
8934   var->in_changed_variables = false;
8935   changed_variables->clear_slot (slot);
8936 }
8937 
8938 /* If VAL (a value or debug_expr) has backlinks to variables actively
8939    dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8940    changed, adding to CHANGED_VALUES_STACK any dependencies that may
8941    have dependencies of their own to notify.  */
8942 
8943 static void
notify_dependents_of_changed_value(rtx val,variable_table_type * htab,vec<rtx,va_heap> * changed_values_stack)8944 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8945 				    vec<rtx, va_heap> *changed_values_stack)
8946 {
8947   variable **slot;
8948   variable *var;
8949   loc_exp_dep *led;
8950   decl_or_value dv = dv_from_rtx (val);
8951 
8952   slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8953 						NO_INSERT);
8954   if (!slot)
8955     slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8956   if (!slot)
8957     slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8958 						NO_INSERT);
8959   var = *slot;
8960 
8961   while ((led = VAR_LOC_DEP_LST (var)))
8962     {
8963       decl_or_value ldv = led->dv;
8964       variable *ivar;
8965 
8966       /* Deactivate and remove the backlink, as it was “used up”.  It
8967 	 makes no sense to attempt to notify the same entity again:
8968 	 either it will be recomputed and re-register an active
8969 	 dependency, or it will still have the changed mark.  */
8970       if (led->next)
8971 	led->next->pprev = led->pprev;
8972       if (led->pprev)
8973 	*led->pprev = led->next;
8974       led->next = NULL;
8975       led->pprev = NULL;
8976 
8977       if (dv_changed_p (ldv))
8978 	continue;
8979 
8980       switch (dv_onepart_p (ldv))
8981 	{
8982 	case ONEPART_VALUE:
8983 	case ONEPART_DEXPR:
8984 	  set_dv_changed (ldv, true);
8985 	  changed_values_stack->safe_push (dv_as_rtx (ldv));
8986 	  break;
8987 
8988 	case ONEPART_VDECL:
8989 	  ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8990 	  gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8991 	  variable_was_changed (ivar, NULL);
8992 	  break;
8993 
8994 	case NOT_ONEPART:
8995 	  delete led;
8996 	  ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8997 	  if (ivar)
8998 	    {
8999 	      int i = ivar->n_var_parts;
9000 	      while (i--)
9001 		{
9002 		  rtx loc = ivar->var_part[i].cur_loc;
9003 
9004 		  if (loc && GET_CODE (loc) == MEM
9005 		      && XEXP (loc, 0) == val)
9006 		    {
9007 		      variable_was_changed (ivar, NULL);
9008 		      break;
9009 		    }
9010 		}
9011 	    }
9012 	  break;
9013 
9014 	default:
9015 	  gcc_unreachable ();
9016 	}
9017     }
9018 }
9019 
9020 /* Take out of changed_variables any entries that don't refer to use
9021    variables.  Back-propagate change notifications from values and
9022    debug_exprs to their active dependencies in HTAB or in
9023    CHANGED_VARIABLES.  */
9024 
9025 static void
process_changed_values(variable_table_type * htab)9026 process_changed_values (variable_table_type *htab)
9027 {
9028   int i, n;
9029   rtx val;
9030   auto_vec<rtx, 20> changed_values_stack;
9031 
9032   /* Move values from changed_variables to changed_values_stack.  */
9033   changed_variables
9034     ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
9035       (&changed_values_stack);
9036 
9037   /* Back-propagate change notifications in values while popping
9038      them from the stack.  */
9039   for (n = i = changed_values_stack.length ();
9040        i > 0; i = changed_values_stack.length ())
9041     {
9042       val = changed_values_stack.pop ();
9043       notify_dependents_of_changed_value (val, htab, &changed_values_stack);
9044 
9045       /* This condition will hold when visiting each of the entries
9046 	 originally in changed_variables.  We can't remove them
9047 	 earlier because this could drop the backlinks before we got a
9048 	 chance to use them.  */
9049       if (i == n)
9050 	{
9051 	  remove_value_from_changed_variables (val);
9052 	  n--;
9053 	}
9054     }
9055 }
9056 
9057 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
9058    CHANGED_VARIABLES and delete this chain.  WHERE specifies whether
9059    the notes shall be emitted before of after instruction INSN.  */
9060 
9061 static void
emit_notes_for_changes(rtx_insn * insn,enum emit_note_where where,shared_hash * vars)9062 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9063 			shared_hash *vars)
9064 {
9065   emit_note_data data;
9066   variable_table_type *htab = shared_hash_htab (vars);
9067 
9068   if (changed_variables->is_empty ())
9069     return;
9070 
9071   if (MAY_HAVE_DEBUG_BIND_INSNS)
9072     process_changed_values (htab);
9073 
9074   data.insn = insn;
9075   data.where = where;
9076   data.vars = htab;
9077 
9078   changed_variables
9079     ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9080 }
9081 
9082 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9083    same variable in hash table DATA or is not there at all.  */
9084 
9085 int
emit_notes_for_differences_1(variable ** slot,variable_table_type * new_vars)9086 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9087 {
9088   variable *old_var, *new_var;
9089 
9090   old_var = *slot;
9091   new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9092 
9093   if (!new_var)
9094     {
9095       /* Variable has disappeared.  */
9096       variable *empty_var = NULL;
9097 
9098       if (old_var->onepart == ONEPART_VALUE
9099 	  || old_var->onepart == ONEPART_DEXPR)
9100 	{
9101 	  empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9102 	  if (empty_var)
9103 	    {
9104 	      gcc_checking_assert (!empty_var->in_changed_variables);
9105 	      if (!VAR_LOC_1PAUX (old_var))
9106 		{
9107 		  VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9108 		  VAR_LOC_1PAUX (empty_var) = NULL;
9109 		}
9110 	      else
9111 		gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9112 	    }
9113 	}
9114 
9115       if (!empty_var)
9116 	{
9117 	  empty_var = onepart_pool_allocate (old_var->onepart);
9118 	  empty_var->dv = old_var->dv;
9119 	  empty_var->refcount = 0;
9120 	  empty_var->n_var_parts = 0;
9121 	  empty_var->onepart = old_var->onepart;
9122 	  empty_var->in_changed_variables = false;
9123 	}
9124 
9125       if (empty_var->onepart)
9126 	{
9127 	  /* Propagate the auxiliary data to (ultimately)
9128 	     changed_variables.  */
9129 	  empty_var->var_part[0].loc_chain = NULL;
9130 	  empty_var->var_part[0].cur_loc = NULL;
9131 	  VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9132 	  VAR_LOC_1PAUX (old_var) = NULL;
9133 	}
9134       variable_was_changed (empty_var, NULL);
9135       /* Continue traversing the hash table.  */
9136       return 1;
9137     }
9138   /* Update cur_loc and one-part auxiliary data, before new_var goes
9139      through variable_was_changed.  */
9140   if (old_var != new_var && new_var->onepart)
9141     {
9142       gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9143       VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9144       VAR_LOC_1PAUX (old_var) = NULL;
9145       new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9146     }
9147   if (variable_different_p (old_var, new_var))
9148     variable_was_changed (new_var, NULL);
9149 
9150   /* Continue traversing the hash table.  */
9151   return 1;
9152 }
9153 
9154 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9155    table DATA.  */
9156 
9157 int
emit_notes_for_differences_2(variable ** slot,variable_table_type * old_vars)9158 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9159 {
9160   variable *old_var, *new_var;
9161 
9162   new_var = *slot;
9163   old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9164   if (!old_var)
9165     {
9166       int i;
9167       for (i = 0; i < new_var->n_var_parts; i++)
9168 	new_var->var_part[i].cur_loc = NULL;
9169       variable_was_changed (new_var, NULL);
9170     }
9171 
9172   /* Continue traversing the hash table.  */
9173   return 1;
9174 }
9175 
9176 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9177    NEW_SET.  */
9178 
9179 static void
emit_notes_for_differences(rtx_insn * insn,dataflow_set * old_set,dataflow_set * new_set)9180 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9181 			    dataflow_set *new_set)
9182 {
9183   shared_hash_htab (old_set->vars)
9184     ->traverse <variable_table_type *, emit_notes_for_differences_1>
9185       (shared_hash_htab (new_set->vars));
9186   shared_hash_htab (new_set->vars)
9187     ->traverse <variable_table_type *, emit_notes_for_differences_2>
9188       (shared_hash_htab (old_set->vars));
9189   emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9190 }
9191 
9192 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION.  */
9193 
9194 static rtx_insn *
next_non_note_insn_var_location(rtx_insn * insn)9195 next_non_note_insn_var_location (rtx_insn *insn)
9196 {
9197   while (insn)
9198     {
9199       insn = NEXT_INSN (insn);
9200       if (insn == 0
9201 	  || !NOTE_P (insn)
9202 	  || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9203 	break;
9204     }
9205 
9206   return insn;
9207 }
9208 
9209 /* Emit the notes for changes of location parts in the basic block BB.  */
9210 
9211 static void
emit_notes_in_bb(basic_block bb,dataflow_set * set)9212 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9213 {
9214   unsigned int i;
9215   micro_operation *mo;
9216 
9217   dataflow_set_clear (set);
9218   dataflow_set_copy (set, &VTI (bb)->in);
9219 
9220   FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9221     {
9222       rtx_insn *insn = mo->insn;
9223       rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9224 
9225       switch (mo->type)
9226 	{
9227 	  case MO_CALL:
9228 	    dataflow_set_clear_at_call (set, insn);
9229 	    emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9230 	    {
9231 	      rtx arguments = mo->u.loc, *p = &arguments;
9232 	      while (*p)
9233 		{
9234 		  XEXP (XEXP (*p, 0), 1)
9235 		    = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9236 				     shared_hash_htab (set->vars));
9237 		  /* If expansion is successful, keep it in the list.  */
9238 		  if (XEXP (XEXP (*p, 0), 1))
9239 		    {
9240 		      XEXP (XEXP (*p, 0), 1)
9241 			= copy_rtx_if_shared (XEXP (XEXP (*p, 0), 1));
9242 		      p = &XEXP (*p, 1);
9243 		    }
9244 		  /* Otherwise, if the following item is data_value for it,
9245 		     drop it too too.  */
9246 		  else if (XEXP (*p, 1)
9247 			   && REG_P (XEXP (XEXP (*p, 0), 0))
9248 			   && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9249 			   && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9250 					   0))
9251 			   && REGNO (XEXP (XEXP (*p, 0), 0))
9252 			      == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9253 						    0), 0)))
9254 		    *p = XEXP (XEXP (*p, 1), 1);
9255 		  /* Just drop this item.  */
9256 		  else
9257 		    *p = XEXP (*p, 1);
9258 		}
9259 	      add_reg_note (insn, REG_CALL_ARG_LOCATION, arguments);
9260 	    }
9261 	    break;
9262 
9263 	  case MO_USE:
9264 	    {
9265 	      rtx loc = mo->u.loc;
9266 
9267 	      if (REG_P (loc))
9268 		var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9269 	      else
9270 		var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9271 
9272 	      emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9273 	    }
9274 	    break;
9275 
9276 	  case MO_VAL_LOC:
9277 	    {
9278 	      rtx loc = mo->u.loc;
9279 	      rtx val, vloc;
9280 	      tree var;
9281 
9282 	      if (GET_CODE (loc) == CONCAT)
9283 		{
9284 		  val = XEXP (loc, 0);
9285 		  vloc = XEXP (loc, 1);
9286 		}
9287 	      else
9288 		{
9289 		  val = NULL_RTX;
9290 		  vloc = loc;
9291 		}
9292 
9293 	      var = PAT_VAR_LOCATION_DECL (vloc);
9294 
9295 	      clobber_variable_part (set, NULL_RTX,
9296 				     dv_from_decl (var), 0, NULL_RTX);
9297 	      if (val)
9298 		{
9299 		  if (VAL_NEEDS_RESOLUTION (loc))
9300 		    val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9301 		  set_variable_part (set, val, dv_from_decl (var), 0,
9302 				     VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9303 				     INSERT);
9304 		}
9305 	      else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9306 		set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9307 				   dv_from_decl (var), 0,
9308 				   VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9309 				   INSERT);
9310 
9311 	      emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9312 	    }
9313 	    break;
9314 
9315 	  case MO_VAL_USE:
9316 	    {
9317 	      rtx loc = mo->u.loc;
9318 	      rtx val, vloc, uloc;
9319 
9320 	      vloc = uloc = XEXP (loc, 1);
9321 	      val = XEXP (loc, 0);
9322 
9323 	      if (GET_CODE (val) == CONCAT)
9324 		{
9325 		  uloc = XEXP (val, 1);
9326 		  val = XEXP (val, 0);
9327 		}
9328 
9329 	      if (VAL_NEEDS_RESOLUTION (loc))
9330 		val_resolve (set, val, vloc, insn);
9331 	      else
9332 		val_store (set, val, uloc, insn, false);
9333 
9334 	      if (VAL_HOLDS_TRACK_EXPR (loc))
9335 		{
9336 		  if (GET_CODE (uloc) == REG)
9337 		    var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9338 				 NULL);
9339 		  else if (GET_CODE (uloc) == MEM)
9340 		    var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9341 				 NULL);
9342 		}
9343 
9344 	      emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9345 	    }
9346 	    break;
9347 
9348 	  case MO_VAL_SET:
9349 	    {
9350 	      rtx loc = mo->u.loc;
9351 	      rtx val, vloc, uloc;
9352 	      rtx dstv, srcv;
9353 
9354 	      vloc = loc;
9355 	      uloc = XEXP (vloc, 1);
9356 	      val = XEXP (vloc, 0);
9357 	      vloc = uloc;
9358 
9359 	      if (GET_CODE (uloc) == SET)
9360 		{
9361 		  dstv = SET_DEST (uloc);
9362 		  srcv = SET_SRC (uloc);
9363 		}
9364 	      else
9365 		{
9366 		  dstv = uloc;
9367 		  srcv = NULL;
9368 		}
9369 
9370 	      if (GET_CODE (val) == CONCAT)
9371 		{
9372 		  dstv = vloc = XEXP (val, 1);
9373 		  val = XEXP (val, 0);
9374 		}
9375 
9376 	      if (GET_CODE (vloc) == SET)
9377 		{
9378 		  srcv = SET_SRC (vloc);
9379 
9380 		  gcc_assert (val != srcv);
9381 		  gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9382 
9383 		  dstv = vloc = SET_DEST (vloc);
9384 
9385 		  if (VAL_NEEDS_RESOLUTION (loc))
9386 		    val_resolve (set, val, srcv, insn);
9387 		}
9388 	      else if (VAL_NEEDS_RESOLUTION (loc))
9389 		{
9390 		  gcc_assert (GET_CODE (uloc) == SET
9391 			      && GET_CODE (SET_SRC (uloc)) == REG);
9392 		  val_resolve (set, val, SET_SRC (uloc), insn);
9393 		}
9394 
9395 	      if (VAL_HOLDS_TRACK_EXPR (loc))
9396 		{
9397 		  if (VAL_EXPR_IS_CLOBBERED (loc))
9398 		    {
9399 		      if (REG_P (uloc))
9400 			var_reg_delete (set, uloc, true);
9401 		      else if (MEM_P (uloc))
9402 			{
9403 			  gcc_assert (MEM_P (dstv));
9404 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9405 			  var_mem_delete (set, dstv, true);
9406 			}
9407 		    }
9408 		  else
9409 		    {
9410 		      bool copied_p = VAL_EXPR_IS_COPIED (loc);
9411 		      rtx src = NULL, dst = uloc;
9412 		      enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9413 
9414 		      if (GET_CODE (uloc) == SET)
9415 			{
9416 			  src = SET_SRC (uloc);
9417 			  dst = SET_DEST (uloc);
9418 			}
9419 
9420 		      if (copied_p)
9421 			{
9422 			  status = find_src_status (set, src);
9423 
9424 			  src = find_src_set_src (set, src);
9425 			}
9426 
9427 		      if (REG_P (dst))
9428 			var_reg_delete_and_set (set, dst, !copied_p,
9429 						status, srcv);
9430 		      else if (MEM_P (dst))
9431 			{
9432 			  gcc_assert (MEM_P (dstv));
9433 			  gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9434 			  var_mem_delete_and_set (set, dstv, !copied_p,
9435 						  status, srcv);
9436 			}
9437 		    }
9438 		}
9439 	      else if (REG_P (uloc))
9440 		var_regno_delete (set, REGNO (uloc));
9441 	      else if (MEM_P (uloc))
9442 		{
9443 		  gcc_checking_assert (GET_CODE (vloc) == MEM);
9444 		  gcc_checking_assert (vloc == dstv);
9445 		  if (vloc != dstv)
9446 		    clobber_overlapping_mems (set, vloc);
9447 		}
9448 
9449 	      val_store (set, val, dstv, insn, true);
9450 
9451 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9452 				      set->vars);
9453 	    }
9454 	    break;
9455 
9456 	  case MO_SET:
9457 	    {
9458 	      rtx loc = mo->u.loc;
9459 	      rtx set_src = NULL;
9460 
9461 	      if (GET_CODE (loc) == SET)
9462 		{
9463 		  set_src = SET_SRC (loc);
9464 		  loc = SET_DEST (loc);
9465 		}
9466 
9467 	      if (REG_P (loc))
9468 		var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9469 					set_src);
9470 	      else
9471 		var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9472 					set_src);
9473 
9474 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9475 				      set->vars);
9476 	    }
9477 	    break;
9478 
9479 	  case MO_COPY:
9480 	    {
9481 	      rtx loc = mo->u.loc;
9482 	      enum var_init_status src_status;
9483 	      rtx set_src = NULL;
9484 
9485 	      if (GET_CODE (loc) == SET)
9486 		{
9487 		  set_src = SET_SRC (loc);
9488 		  loc = SET_DEST (loc);
9489 		}
9490 
9491 	      src_status = find_src_status (set, set_src);
9492 	      set_src = find_src_set_src (set, set_src);
9493 
9494 	      if (REG_P (loc))
9495 		var_reg_delete_and_set (set, loc, false, src_status, set_src);
9496 	      else
9497 		var_mem_delete_and_set (set, loc, false, src_status, set_src);
9498 
9499 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9500 				      set->vars);
9501 	    }
9502 	    break;
9503 
9504 	  case MO_USE_NO_VAR:
9505 	    {
9506 	      rtx loc = mo->u.loc;
9507 
9508 	      if (REG_P (loc))
9509 		var_reg_delete (set, loc, false);
9510 	      else
9511 		var_mem_delete (set, loc, false);
9512 
9513 	      emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9514 	    }
9515 	    break;
9516 
9517 	  case MO_CLOBBER:
9518 	    {
9519 	      rtx loc = mo->u.loc;
9520 
9521 	      if (REG_P (loc))
9522 		var_reg_delete (set, loc, true);
9523 	      else
9524 		var_mem_delete (set, loc, true);
9525 
9526 	      emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9527 				      set->vars);
9528 	    }
9529 	    break;
9530 
9531 	  case MO_ADJUST:
9532 	    set->stack_adjust += mo->u.adjust;
9533 	    break;
9534 	}
9535     }
9536 }
9537 
9538 /* Emit notes for the whole function.  */
9539 
9540 static void
vt_emit_notes(void)9541 vt_emit_notes (void)
9542 {
9543   basic_block bb;
9544   dataflow_set cur;
9545 
9546   gcc_assert (changed_variables->is_empty ());
9547 
9548   /* Free memory occupied by the out hash tables, as they aren't used
9549      anymore.  */
9550   FOR_EACH_BB_FN (bb, cfun)
9551     dataflow_set_clear (&VTI (bb)->out);
9552 
9553   /* Enable emitting notes by functions (mainly by set_variable_part and
9554      delete_variable_part).  */
9555   emit_notes = true;
9556 
9557   if (MAY_HAVE_DEBUG_BIND_INSNS)
9558     dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9559 
9560   dataflow_set_init (&cur);
9561 
9562   FOR_EACH_BB_FN (bb, cfun)
9563     {
9564       /* Emit the notes for changes of variable locations between two
9565 	 subsequent basic blocks.  */
9566       emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9567 
9568       if (MAY_HAVE_DEBUG_BIND_INSNS)
9569 	local_get_addr_cache = new hash_map<rtx, rtx>;
9570 
9571       /* Emit the notes for the changes in the basic block itself.  */
9572       emit_notes_in_bb (bb, &cur);
9573 
9574       if (MAY_HAVE_DEBUG_BIND_INSNS)
9575 	delete local_get_addr_cache;
9576       local_get_addr_cache = NULL;
9577 
9578       /* Free memory occupied by the in hash table, we won't need it
9579 	 again.  */
9580       dataflow_set_clear (&VTI (bb)->in);
9581     }
9582 
9583   if (flag_checking)
9584     shared_hash_htab (cur.vars)
9585       ->traverse <variable_table_type *, emit_notes_for_differences_1>
9586 	(shared_hash_htab (empty_shared_hash));
9587 
9588   dataflow_set_destroy (&cur);
9589 
9590   if (MAY_HAVE_DEBUG_BIND_INSNS)
9591     delete dropped_values;
9592   dropped_values = NULL;
9593 
9594   emit_notes = false;
9595 }
9596 
9597 /* If there is a declaration and offset associated with register/memory RTL
9598    assign declaration to *DECLP and offset to *OFFSETP, and return true.  */
9599 
9600 static bool
vt_get_decl_and_offset(rtx rtl,tree * declp,poly_int64 * offsetp)9601 vt_get_decl_and_offset (rtx rtl, tree *declp, poly_int64 *offsetp)
9602 {
9603   if (REG_P (rtl))
9604     {
9605       if (REG_ATTRS (rtl))
9606 	{
9607 	  *declp = REG_EXPR (rtl);
9608 	  *offsetp = REG_OFFSET (rtl);
9609 	  return true;
9610 	}
9611     }
9612   else if (GET_CODE (rtl) == PARALLEL)
9613     {
9614       tree decl = NULL_TREE;
9615       HOST_WIDE_INT offset = MAX_VAR_PARTS;
9616       int len = XVECLEN (rtl, 0), i;
9617 
9618       for (i = 0; i < len; i++)
9619 	{
9620 	  rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9621 	  if (!REG_P (reg) || !REG_ATTRS (reg))
9622 	    break;
9623 	  if (!decl)
9624 	    decl = REG_EXPR (reg);
9625 	  if (REG_EXPR (reg) != decl)
9626 	    break;
9627 	  HOST_WIDE_INT this_offset;
9628 	  if (!track_offset_p (REG_OFFSET (reg), &this_offset))
9629 	    break;
9630 	  offset = MIN (offset, this_offset);
9631 	}
9632 
9633       if (i == len)
9634 	{
9635 	  *declp = decl;
9636 	  *offsetp = offset;
9637 	  return true;
9638 	}
9639     }
9640   else if (MEM_P (rtl))
9641     {
9642       if (MEM_ATTRS (rtl))
9643 	{
9644 	  *declp = MEM_EXPR (rtl);
9645 	  *offsetp = int_mem_offset (rtl);
9646 	  return true;
9647 	}
9648     }
9649   return false;
9650 }
9651 
9652 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9653    of VAL.  */
9654 
9655 static void
record_entry_value(cselib_val * val,rtx rtl)9656 record_entry_value (cselib_val *val, rtx rtl)
9657 {
9658   rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9659 
9660   ENTRY_VALUE_EXP (ev) = rtl;
9661 
9662   cselib_add_permanent_equiv (val, ev, get_insns ());
9663 }
9664 
9665 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK.  */
9666 
9667 static void
vt_add_function_parameter(tree parm)9668 vt_add_function_parameter (tree parm)
9669 {
9670   rtx decl_rtl = DECL_RTL_IF_SET (parm);
9671   rtx incoming = DECL_INCOMING_RTL (parm);
9672   tree decl;
9673   machine_mode mode;
9674   poly_int64 offset;
9675   dataflow_set *out;
9676   decl_or_value dv;
9677   bool incoming_ok = true;
9678 
9679   if (TREE_CODE (parm) != PARM_DECL)
9680     return;
9681 
9682   if (!decl_rtl || !incoming)
9683     return;
9684 
9685   if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9686     return;
9687 
9688   /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9689      rewrite the incoming location of parameters passed on the stack
9690      into MEMs based on the argument pointer, so that incoming doesn't
9691      depend on a pseudo.  */
9692   poly_int64 incoming_offset = 0;
9693   if (MEM_P (incoming)
9694       && (strip_offset (XEXP (incoming, 0), &incoming_offset)
9695 	  == crtl->args.internal_arg_pointer))
9696     {
9697       HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9698       incoming
9699 	= replace_equiv_address_nv (incoming,
9700 				    plus_constant (Pmode,
9701 						   arg_pointer_rtx,
9702 						   off + incoming_offset));
9703     }
9704 
9705 #ifdef HAVE_window_save
9706   /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9707      If the target machine has an explicit window save instruction, the
9708      actual entry value is the corresponding OUTGOING_REGNO instead.  */
9709   if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9710     {
9711       if (REG_P (incoming)
9712 	  && HARD_REGISTER_P (incoming)
9713 	  && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9714 	{
9715 	  parm_reg p;
9716 	  p.incoming = incoming;
9717 	  incoming
9718 	    = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9719 				  OUTGOING_REGNO (REGNO (incoming)), 0);
9720 	  p.outgoing = incoming;
9721 	  vec_safe_push (windowed_parm_regs, p);
9722 	}
9723       else if (GET_CODE (incoming) == PARALLEL)
9724 	{
9725 	  rtx outgoing
9726 	    = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9727 	  int i;
9728 
9729 	  for (i = 0; i < XVECLEN (incoming, 0); i++)
9730 	    {
9731 	      rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9732 	      parm_reg p;
9733 	      p.incoming = reg;
9734 	      reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9735 					OUTGOING_REGNO (REGNO (reg)), 0);
9736 	      p.outgoing = reg;
9737 	      XVECEXP (outgoing, 0, i)
9738 		= gen_rtx_EXPR_LIST (VOIDmode, reg,
9739 				     XEXP (XVECEXP (incoming, 0, i), 1));
9740 	      vec_safe_push (windowed_parm_regs, p);
9741 	    }
9742 
9743 	  incoming = outgoing;
9744 	}
9745       else if (MEM_P (incoming)
9746 	       && REG_P (XEXP (incoming, 0))
9747 	       && HARD_REGISTER_P (XEXP (incoming, 0)))
9748 	{
9749 	  rtx reg = XEXP (incoming, 0);
9750 	  if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9751 	    {
9752 	      parm_reg p;
9753 	      p.incoming = reg;
9754 	      reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9755 	      p.outgoing = reg;
9756 	      vec_safe_push (windowed_parm_regs, p);
9757 	      incoming = replace_equiv_address_nv (incoming, reg);
9758 	    }
9759 	}
9760     }
9761 #endif
9762 
9763   if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9764     {
9765       incoming_ok = false;
9766       if (MEM_P (incoming))
9767 	{
9768 	  /* This means argument is passed by invisible reference.  */
9769 	  offset = 0;
9770 	  decl = parm;
9771 	}
9772       else
9773 	{
9774 	  if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9775 	    return;
9776 	  offset += byte_lowpart_offset (GET_MODE (incoming),
9777 					 GET_MODE (decl_rtl));
9778 	}
9779     }
9780 
9781   if (!decl)
9782     return;
9783 
9784   if (parm != decl)
9785     {
9786       /* If that DECL_RTL wasn't a pseudo that got spilled to
9787 	 memory, bail out.  Otherwise, the spill slot sharing code
9788 	 will force the memory to reference spill_slot_decl (%sfp),
9789 	 so we don't match above.  That's ok, the pseudo must have
9790 	 referenced the entire parameter, so just reset OFFSET.  */
9791       if (decl != get_spill_slot_decl (false))
9792         return;
9793       offset = 0;
9794     }
9795 
9796   HOST_WIDE_INT const_offset;
9797   if (!track_loc_p (incoming, parm, offset, false, &mode, &const_offset))
9798     return;
9799 
9800   out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9801 
9802   dv = dv_from_decl (parm);
9803 
9804   if (target_for_debug_bind (parm)
9805       /* We can't deal with these right now, because this kind of
9806 	 variable is single-part.  ??? We could handle parallels
9807 	 that describe multiple locations for the same single
9808 	 value, but ATM we don't.  */
9809       && GET_CODE (incoming) != PARALLEL)
9810     {
9811       cselib_val *val;
9812       rtx lowpart;
9813 
9814       /* ??? We shouldn't ever hit this, but it may happen because
9815 	 arguments passed by invisible reference aren't dealt with
9816 	 above: incoming-rtl will have Pmode rather than the
9817 	 expected mode for the type.  */
9818       if (const_offset)
9819 	return;
9820 
9821       lowpart = var_lowpart (mode, incoming);
9822       if (!lowpart)
9823 	return;
9824 
9825       val = cselib_lookup_from_insn (lowpart, mode, true,
9826 				     VOIDmode, get_insns ());
9827 
9828       /* ??? Float-typed values in memory are not handled by
9829 	 cselib.  */
9830       if (val)
9831 	{
9832 	  preserve_value (val);
9833 	  set_variable_part (out, val->val_rtx, dv, const_offset,
9834 			     VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9835 	  dv = dv_from_value (val->val_rtx);
9836 	}
9837 
9838       if (MEM_P (incoming))
9839 	{
9840 	  val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9841 					 VOIDmode, get_insns ());
9842 	  if (val)
9843 	    {
9844 	      preserve_value (val);
9845 	      incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9846 	    }
9847 	}
9848     }
9849 
9850   if (REG_P (incoming))
9851     {
9852       incoming = var_lowpart (mode, incoming);
9853       gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9854       attrs_list_insert (&out->regs[REGNO (incoming)], dv, const_offset,
9855 			 incoming);
9856       set_variable_part (out, incoming, dv, const_offset,
9857 			 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9858       if (dv_is_value_p (dv))
9859 	{
9860 	  record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9861 	  if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9862 	      && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9863 	    {
9864 	      machine_mode indmode
9865 		= TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9866 	      rtx mem = gen_rtx_MEM (indmode, incoming);
9867 	      cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9868 							 VOIDmode,
9869 							 get_insns ());
9870 	      if (val)
9871 		{
9872 		  preserve_value (val);
9873 		  record_entry_value (val, mem);
9874 		  set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9875 				     VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9876 		}
9877 	    }
9878 	}
9879     }
9880   else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9881     {
9882       int i;
9883 
9884       /* The following code relies on vt_get_decl_and_offset returning true for
9885 	 incoming, which might not be always the case.  */
9886       if (!incoming_ok)
9887 	return;
9888       for (i = 0; i < XVECLEN (incoming, 0); i++)
9889 	{
9890 	  rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9891 	  /* vt_get_decl_and_offset has already checked that the offset
9892 	     is a valid variable part.  */
9893 	  const_offset = get_tracked_reg_offset (reg);
9894 	  gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9895 	  attrs_list_insert (&out->regs[REGNO (reg)], dv, const_offset, reg);
9896 	  set_variable_part (out, reg, dv, const_offset,
9897 			     VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9898 	}
9899     }
9900   else if (MEM_P (incoming))
9901     {
9902       incoming = var_lowpart (mode, incoming);
9903       set_variable_part (out, incoming, dv, const_offset,
9904 			 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9905     }
9906 }
9907 
9908 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK.  */
9909 
9910 static void
vt_add_function_parameters(void)9911 vt_add_function_parameters (void)
9912 {
9913   tree parm;
9914 
9915   for (parm = DECL_ARGUMENTS (current_function_decl);
9916        parm; parm = DECL_CHAIN (parm))
9917     vt_add_function_parameter (parm);
9918 
9919   if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9920     {
9921       tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9922 
9923       if (TREE_CODE (vexpr) == INDIRECT_REF)
9924 	vexpr = TREE_OPERAND (vexpr, 0);
9925 
9926       if (TREE_CODE (vexpr) == PARM_DECL
9927 	  && DECL_ARTIFICIAL (vexpr)
9928 	  && !DECL_IGNORED_P (vexpr)
9929 	  && DECL_NAMELESS (vexpr))
9930 	vt_add_function_parameter (vexpr);
9931     }
9932 }
9933 
9934 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9935    ensure it isn't flushed during cselib_reset_table.
9936    Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9937    has been eliminated.  */
9938 
9939 static void
vt_init_cfa_base(void)9940 vt_init_cfa_base (void)
9941 {
9942   cselib_val *val;
9943 
9944 #ifdef FRAME_POINTER_CFA_OFFSET
9945   cfa_base_rtx = frame_pointer_rtx;
9946   cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9947 #else
9948   cfa_base_rtx = arg_pointer_rtx;
9949   cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9950 #endif
9951   if (cfa_base_rtx == hard_frame_pointer_rtx
9952       || !fixed_regs[REGNO (cfa_base_rtx)])
9953     {
9954       cfa_base_rtx = NULL_RTX;
9955       return;
9956     }
9957   if (!MAY_HAVE_DEBUG_BIND_INSNS)
9958     return;
9959 
9960   /* Tell alias analysis that cfa_base_rtx should share
9961      find_base_term value with stack pointer or hard frame pointer.  */
9962   if (!frame_pointer_needed)
9963     vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9964   else if (!crtl->stack_realign_tried)
9965     vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9966 
9967   val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9968 				 VOIDmode, get_insns ());
9969   preserve_value (val);
9970   cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9971 }
9972 
9973 /* Reemit INSN, a MARKER_DEBUG_INSN, as a note.  */
9974 
9975 static rtx_insn *
reemit_marker_as_note(rtx_insn * insn)9976 reemit_marker_as_note (rtx_insn *insn)
9977 {
9978   gcc_checking_assert (DEBUG_MARKER_INSN_P (insn));
9979 
9980   enum insn_note kind = INSN_DEBUG_MARKER_KIND (insn);
9981 
9982   switch (kind)
9983     {
9984     case NOTE_INSN_BEGIN_STMT:
9985     case NOTE_INSN_INLINE_ENTRY:
9986       {
9987 	rtx_insn *note = NULL;
9988 	if (cfun->debug_nonbind_markers)
9989 	  {
9990 	    note = emit_note_before (kind, insn);
9991 	    NOTE_MARKER_LOCATION (note) = INSN_LOCATION (insn);
9992 	  }
9993 	delete_insn (insn);
9994 	return note;
9995       }
9996 
9997     default:
9998       gcc_unreachable ();
9999     }
10000 }
10001 
10002 /* Allocate and initialize the data structures for variable tracking
10003    and parse the RTL to get the micro operations.  */
10004 
10005 static bool
vt_initialize(void)10006 vt_initialize (void)
10007 {
10008   basic_block bb;
10009   poly_int64 fp_cfa_offset = -1;
10010 
10011   alloc_aux_for_blocks (sizeof (variable_tracking_info));
10012 
10013   empty_shared_hash = shared_hash_pool.allocate ();
10014   empty_shared_hash->refcount = 1;
10015   empty_shared_hash->htab = new variable_table_type (1);
10016   changed_variables = new variable_table_type (10);
10017 
10018   /* Init the IN and OUT sets.  */
10019   FOR_ALL_BB_FN (bb, cfun)
10020     {
10021       VTI (bb)->visited = false;
10022       VTI (bb)->flooded = false;
10023       dataflow_set_init (&VTI (bb)->in);
10024       dataflow_set_init (&VTI (bb)->out);
10025       VTI (bb)->permp = NULL;
10026     }
10027 
10028   if (MAY_HAVE_DEBUG_BIND_INSNS)
10029     {
10030       cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
10031       scratch_regs = BITMAP_ALLOC (NULL);
10032       preserved_values.create (256);
10033       global_get_addr_cache = new hash_map<rtx, rtx>;
10034     }
10035   else
10036     {
10037       scratch_regs = NULL;
10038       global_get_addr_cache = NULL;
10039     }
10040 
10041   if (MAY_HAVE_DEBUG_BIND_INSNS)
10042     {
10043       rtx reg, expr;
10044       int ofst;
10045       cselib_val *val;
10046 
10047 #ifdef FRAME_POINTER_CFA_OFFSET
10048       reg = frame_pointer_rtx;
10049       ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10050 #else
10051       reg = arg_pointer_rtx;
10052       ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
10053 #endif
10054 
10055       ofst -= INCOMING_FRAME_SP_OFFSET;
10056 
10057       val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
10058 				     VOIDmode, get_insns ());
10059       preserve_value (val);
10060       if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
10061 	cselib_preserve_cfa_base_value (val, REGNO (reg));
10062       if (ofst)
10063 	{
10064 	  cselib_val *valsp
10065 	    = cselib_lookup_from_insn (stack_pointer_rtx,
10066 				       GET_MODE (stack_pointer_rtx), 1,
10067 				       VOIDmode, get_insns ());
10068 	  preserve_value (valsp);
10069 	  expr = plus_constant (GET_MODE (reg), reg, ofst);
10070 	  /* This cselib_add_permanent_equiv call needs to be done before
10071 	     the other cselib_add_permanent_equiv a few lines later,
10072 	     because after that one is done, cselib_lookup on this expr
10073 	     will due to the cselib SP_DERIVED_VALUE_P optimizations
10074 	     return valsp and so no permanent equivalency will be added.  */
10075 	  cselib_add_permanent_equiv (valsp, expr, get_insns ());
10076 	}
10077 
10078       expr = plus_constant (GET_MODE (stack_pointer_rtx),
10079 			    stack_pointer_rtx, -ofst);
10080       cselib_add_permanent_equiv (val, expr, get_insns ());
10081     }
10082 
10083   /* In order to factor out the adjustments made to the stack pointer or to
10084      the hard frame pointer and thus be able to use DW_OP_fbreg operations
10085      instead of individual location lists, we're going to rewrite MEMs based
10086      on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
10087      or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
10088      resp. arg_pointer_rtx.  We can do this either when there is no frame
10089      pointer in the function and stack adjustments are consistent for all
10090      basic blocks or when there is a frame pointer and no stack realignment.
10091      But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
10092      has been eliminated.  */
10093   if (!frame_pointer_needed)
10094     {
10095       rtx reg, elim;
10096 
10097       if (!vt_stack_adjustments ())
10098 	return false;
10099 
10100 #ifdef FRAME_POINTER_CFA_OFFSET
10101       reg = frame_pointer_rtx;
10102 #else
10103       reg = arg_pointer_rtx;
10104 #endif
10105       elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10106       if (elim != reg)
10107 	{
10108 	  if (GET_CODE (elim) == PLUS)
10109 	    elim = XEXP (elim, 0);
10110 	  if (elim == stack_pointer_rtx)
10111 	    vt_init_cfa_base ();
10112 	}
10113     }
10114   else if (!crtl->stack_realign_tried)
10115     {
10116       rtx reg, elim;
10117 
10118 #ifdef FRAME_POINTER_CFA_OFFSET
10119       reg = frame_pointer_rtx;
10120       fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10121 #else
10122       reg = arg_pointer_rtx;
10123       fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10124 #endif
10125       elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10126       if (elim != reg)
10127 	{
10128 	  if (GET_CODE (elim) == PLUS)
10129 	    {
10130 	      fp_cfa_offset -= rtx_to_poly_int64 (XEXP (elim, 1));
10131 	      elim = XEXP (elim, 0);
10132 	    }
10133 	  if (elim != hard_frame_pointer_rtx)
10134 	    fp_cfa_offset = -1;
10135 	}
10136       else
10137 	fp_cfa_offset = -1;
10138     }
10139 
10140   /* If the stack is realigned and a DRAP register is used, we're going to
10141      rewrite MEMs based on it representing incoming locations of parameters
10142      passed on the stack into MEMs based on the argument pointer.  Although
10143      we aren't going to rewrite other MEMs, we still need to initialize the
10144      virtual CFA pointer in order to ensure that the argument pointer will
10145      be seen as a constant throughout the function.
10146 
10147      ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined.  */
10148   else if (stack_realign_drap)
10149     {
10150       rtx reg, elim;
10151 
10152 #ifdef FRAME_POINTER_CFA_OFFSET
10153       reg = frame_pointer_rtx;
10154 #else
10155       reg = arg_pointer_rtx;
10156 #endif
10157       elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10158       if (elim != reg)
10159 	{
10160 	  if (GET_CODE (elim) == PLUS)
10161 	    elim = XEXP (elim, 0);
10162 	  if (elim == hard_frame_pointer_rtx)
10163 	    vt_init_cfa_base ();
10164 	}
10165     }
10166 
10167   hard_frame_pointer_adjustment = -1;
10168 
10169   vt_add_function_parameters ();
10170 
10171   bool record_sp_value = false;
10172   FOR_EACH_BB_FN (bb, cfun)
10173     {
10174       rtx_insn *insn;
10175       basic_block first_bb, last_bb;
10176 
10177       if (MAY_HAVE_DEBUG_BIND_INSNS)
10178 	{
10179 	  cselib_record_sets_hook = add_with_sets;
10180 	  if (dump_file && (dump_flags & TDF_DETAILS))
10181 	    fprintf (dump_file, "first value: %i\n",
10182 		     cselib_get_next_uid ());
10183 	}
10184 
10185       if (MAY_HAVE_DEBUG_BIND_INSNS
10186 	  && cfa_base_rtx
10187 	  && !frame_pointer_needed
10188 	  && record_sp_value)
10189 	cselib_record_sp_cfa_base_equiv (-cfa_base_offset
10190 					 - VTI (bb)->in.stack_adjust,
10191 					 BB_HEAD (bb));
10192       record_sp_value = true;
10193 
10194       first_bb = bb;
10195       for (;;)
10196 	{
10197 	  edge e;
10198 	  if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10199 	      || ! single_pred_p (bb->next_bb))
10200 	    break;
10201 	  e = find_edge (bb, bb->next_bb);
10202 	  if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10203 	    break;
10204 	  bb = bb->next_bb;
10205 	}
10206       last_bb = bb;
10207 
10208       /* Add the micro-operations to the vector.  */
10209       FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10210 	{
10211 	  HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10212 	  VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10213 
10214 	  rtx_insn *next;
10215 	  FOR_BB_INSNS_SAFE (bb, insn, next)
10216 	    {
10217 	      if (INSN_P (insn))
10218 		{
10219 		  HOST_WIDE_INT pre = 0, post = 0;
10220 
10221 		  if (!frame_pointer_needed)
10222 		    {
10223 		      insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10224 		      if (pre)
10225 			{
10226 			  micro_operation mo;
10227 			  mo.type = MO_ADJUST;
10228 			  mo.u.adjust = pre;
10229 			  mo.insn = insn;
10230 			  if (dump_file && (dump_flags & TDF_DETAILS))
10231 			    log_op_type (PATTERN (insn), bb, insn,
10232 					 MO_ADJUST, dump_file);
10233 			  VTI (bb)->mos.safe_push (mo);
10234 			}
10235 		    }
10236 
10237 		  cselib_hook_called = false;
10238 		  adjust_insn (bb, insn);
10239 
10240 		  if (pre)
10241 		    VTI (bb)->out.stack_adjust += pre;
10242 
10243 		  if (DEBUG_MARKER_INSN_P (insn))
10244 		    {
10245 		      reemit_marker_as_note (insn);
10246 		      continue;
10247 		    }
10248 
10249 		  if (MAY_HAVE_DEBUG_BIND_INSNS)
10250 		    {
10251 		      if (CALL_P (insn))
10252 			prepare_call_arguments (bb, insn);
10253 		      cselib_process_insn (insn);
10254 		      if (dump_file && (dump_flags & TDF_DETAILS))
10255 			{
10256 			  if (dump_flags & TDF_SLIM)
10257 			    dump_insn_slim (dump_file, insn);
10258 			  else
10259 			    print_rtl_single (dump_file, insn);
10260 			  dump_cselib_table (dump_file);
10261 			}
10262 		    }
10263 		  if (!cselib_hook_called)
10264 		    add_with_sets (insn, 0, 0);
10265 		  cancel_changes (0);
10266 
10267 		  if (post)
10268 		    {
10269 		      micro_operation mo;
10270 		      mo.type = MO_ADJUST;
10271 		      mo.u.adjust = post;
10272 		      mo.insn = insn;
10273 		      if (dump_file && (dump_flags & TDF_DETAILS))
10274 			log_op_type (PATTERN (insn), bb, insn,
10275 				     MO_ADJUST, dump_file);
10276 		      VTI (bb)->mos.safe_push (mo);
10277 		      VTI (bb)->out.stack_adjust += post;
10278 		    }
10279 
10280 		  if (maybe_ne (fp_cfa_offset, -1)
10281 		      && known_eq (hard_frame_pointer_adjustment, -1)
10282 		      && fp_setter_insn (insn))
10283 		    {
10284 		      vt_init_cfa_base ();
10285 		      hard_frame_pointer_adjustment = fp_cfa_offset;
10286 		      /* Disassociate sp from fp now.  */
10287 		      if (MAY_HAVE_DEBUG_BIND_INSNS)
10288 			{
10289 			  cselib_val *v;
10290 			  cselib_invalidate_rtx (stack_pointer_rtx);
10291 			  v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10292 					     VOIDmode);
10293 			  if (v && !cselib_preserved_value_p (v))
10294 			    {
10295 			      cselib_set_value_sp_based (v);
10296 			      preserve_value (v);
10297 			    }
10298 			}
10299 		    }
10300 		}
10301 	    }
10302 	  gcc_assert (offset == VTI (bb)->out.stack_adjust);
10303 	}
10304 
10305       bb = last_bb;
10306 
10307       if (MAY_HAVE_DEBUG_BIND_INSNS)
10308 	{
10309 	  cselib_preserve_only_values ();
10310 	  cselib_reset_table (cselib_get_next_uid ());
10311 	  cselib_record_sets_hook = NULL;
10312 	}
10313     }
10314 
10315   hard_frame_pointer_adjustment = -1;
10316   VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10317   cfa_base_rtx = NULL_RTX;
10318   return true;
10319 }
10320 
10321 /* This is *not* reset after each function.  It gives each
10322    NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10323    a unique label number.  */
10324 
10325 static int debug_label_num = 1;
10326 
10327 /* Remove from the insn stream a single debug insn used for
10328    variable tracking at assignments.  */
10329 
10330 static inline void
delete_vta_debug_insn(rtx_insn * insn)10331 delete_vta_debug_insn (rtx_insn *insn)
10332 {
10333   if (DEBUG_MARKER_INSN_P (insn))
10334     {
10335       reemit_marker_as_note (insn);
10336       return;
10337     }
10338 
10339   tree decl = INSN_VAR_LOCATION_DECL (insn);
10340   if (TREE_CODE (decl) == LABEL_DECL
10341       && DECL_NAME (decl)
10342       && !DECL_RTL_SET_P (decl))
10343     {
10344       PUT_CODE (insn, NOTE);
10345       NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10346       NOTE_DELETED_LABEL_NAME (insn)
10347 	= IDENTIFIER_POINTER (DECL_NAME (decl));
10348       SET_DECL_RTL (decl, insn);
10349       CODE_LABEL_NUMBER (insn) = debug_label_num++;
10350     }
10351   else
10352     delete_insn (insn);
10353 }
10354 
10355 /* Remove from the insn stream all debug insns used for variable
10356    tracking at assignments.  USE_CFG should be false if the cfg is no
10357    longer usable.  */
10358 
10359 void
delete_vta_debug_insns(bool use_cfg)10360 delete_vta_debug_insns (bool use_cfg)
10361 {
10362   basic_block bb;
10363   rtx_insn *insn, *next;
10364 
10365   if (!MAY_HAVE_DEBUG_INSNS)
10366     return;
10367 
10368   if (use_cfg)
10369     FOR_EACH_BB_FN (bb, cfun)
10370       {
10371 	FOR_BB_INSNS_SAFE (bb, insn, next)
10372 	  if (DEBUG_INSN_P (insn))
10373 	    delete_vta_debug_insn (insn);
10374       }
10375   else
10376     for (insn = get_insns (); insn; insn = next)
10377       {
10378 	next = NEXT_INSN (insn);
10379 	if (DEBUG_INSN_P (insn))
10380 	  delete_vta_debug_insn (insn);
10381       }
10382 }
10383 
10384 /* Run a fast, BB-local only version of var tracking, to take care of
10385    information that we don't do global analysis on, such that not all
10386    information is lost.  If SKIPPED holds, we're skipping the global
10387    pass entirely, so we should try to use information it would have
10388    handled as well..  */
10389 
10390 static void
vt_debug_insns_local(bool skipped ATTRIBUTE_UNUSED)10391 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10392 {
10393   /* ??? Just skip it all for now.  */
10394   delete_vta_debug_insns (true);
10395 }
10396 
10397 /* Free the data structures needed for variable tracking.  */
10398 
10399 static void
vt_finalize(void)10400 vt_finalize (void)
10401 {
10402   basic_block bb;
10403 
10404   FOR_EACH_BB_FN (bb, cfun)
10405     {
10406       VTI (bb)->mos.release ();
10407     }
10408 
10409   FOR_ALL_BB_FN (bb, cfun)
10410     {
10411       dataflow_set_destroy (&VTI (bb)->in);
10412       dataflow_set_destroy (&VTI (bb)->out);
10413       if (VTI (bb)->permp)
10414 	{
10415 	  dataflow_set_destroy (VTI (bb)->permp);
10416 	  XDELETE (VTI (bb)->permp);
10417 	}
10418     }
10419   free_aux_for_blocks ();
10420   delete empty_shared_hash->htab;
10421   empty_shared_hash->htab = NULL;
10422   delete changed_variables;
10423   changed_variables = NULL;
10424   attrs_pool.release ();
10425   var_pool.release ();
10426   location_chain_pool.release ();
10427   shared_hash_pool.release ();
10428 
10429   if (MAY_HAVE_DEBUG_BIND_INSNS)
10430     {
10431       if (global_get_addr_cache)
10432 	delete global_get_addr_cache;
10433       global_get_addr_cache = NULL;
10434       loc_exp_dep_pool.release ();
10435       valvar_pool.release ();
10436       preserved_values.release ();
10437       cselib_finish ();
10438       BITMAP_FREE (scratch_regs);
10439       scratch_regs = NULL;
10440     }
10441 
10442 #ifdef HAVE_window_save
10443   vec_free (windowed_parm_regs);
10444 #endif
10445 
10446   if (vui_vec)
10447     XDELETEVEC (vui_vec);
10448   vui_vec = NULL;
10449   vui_allocated = 0;
10450 }
10451 
10452 /* The entry point to variable tracking pass.  */
10453 
10454 static inline unsigned int
variable_tracking_main_1(void)10455 variable_tracking_main_1 (void)
10456 {
10457   bool success;
10458 
10459   /* We won't be called as a separate pass if flag_var_tracking is not
10460      set, but final may call us to turn debug markers into notes.  */
10461   if ((!flag_var_tracking && MAY_HAVE_DEBUG_INSNS)
10462       || flag_var_tracking_assignments < 0
10463       /* Var-tracking right now assumes the IR doesn't contain
10464 	 any pseudos at this point.  */
10465       || targetm.no_register_allocation)
10466     {
10467       delete_vta_debug_insns (true);
10468       return 0;
10469     }
10470 
10471   if (!flag_var_tracking)
10472     return 0;
10473 
10474   if (n_basic_blocks_for_fn (cfun) > 500
10475       && n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10476     {
10477       vt_debug_insns_local (true);
10478       return 0;
10479     }
10480 
10481   mark_dfs_back_edges ();
10482   if (!vt_initialize ())
10483     {
10484       vt_finalize ();
10485       vt_debug_insns_local (true);
10486       return 0;
10487     }
10488 
10489   success = vt_find_locations ();
10490 
10491   if (!success && flag_var_tracking_assignments > 0)
10492     {
10493       vt_finalize ();
10494 
10495       delete_vta_debug_insns (true);
10496 
10497       /* This is later restored by our caller.  */
10498       flag_var_tracking_assignments = 0;
10499 
10500       success = vt_initialize ();
10501       gcc_assert (success);
10502 
10503       success = vt_find_locations ();
10504     }
10505 
10506   if (!success)
10507     {
10508       vt_finalize ();
10509       vt_debug_insns_local (false);
10510       return 0;
10511     }
10512 
10513   if (dump_file && (dump_flags & TDF_DETAILS))
10514     {
10515       dump_dataflow_sets ();
10516       dump_reg_info (dump_file);
10517       dump_flow_info (dump_file, dump_flags);
10518     }
10519 
10520   timevar_push (TV_VAR_TRACKING_EMIT);
10521   vt_emit_notes ();
10522   timevar_pop (TV_VAR_TRACKING_EMIT);
10523 
10524   vt_finalize ();
10525   vt_debug_insns_local (false);
10526   return 0;
10527 }
10528 
10529 unsigned int
variable_tracking_main(void)10530 variable_tracking_main (void)
10531 {
10532   unsigned int ret;
10533   int save = flag_var_tracking_assignments;
10534 
10535   ret = variable_tracking_main_1 ();
10536 
10537   flag_var_tracking_assignments = save;
10538 
10539   return ret;
10540 }
10541 
10542 namespace {
10543 
10544 const pass_data pass_data_variable_tracking =
10545 {
10546   RTL_PASS, /* type */
10547   "vartrack", /* name */
10548   OPTGROUP_NONE, /* optinfo_flags */
10549   TV_VAR_TRACKING, /* tv_id */
10550   0, /* properties_required */
10551   0, /* properties_provided */
10552   0, /* properties_destroyed */
10553   0, /* todo_flags_start */
10554   0, /* todo_flags_finish */
10555 };
10556 
10557 class pass_variable_tracking : public rtl_opt_pass
10558 {
10559 public:
pass_variable_tracking(gcc::context * ctxt)10560   pass_variable_tracking (gcc::context *ctxt)
10561     : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10562   {}
10563 
10564   /* opt_pass methods: */
gate(function *)10565   virtual bool gate (function *)
10566     {
10567       return (flag_var_tracking && !targetm.delay_vartrack);
10568     }
10569 
execute(function *)10570   virtual unsigned int execute (function *)
10571     {
10572       return variable_tracking_main ();
10573     }
10574 
10575 }; // class pass_variable_tracking
10576 
10577 } // anon namespace
10578 
10579 rtl_opt_pass *
make_pass_variable_tracking(gcc::context * ctxt)10580 make_pass_variable_tracking (gcc::context *ctxt)
10581 {
10582   return new pass_variable_tracking (ctxt);
10583 }
10584