xref: /netbsd-src/sys/uvm/uvm_page.c (revision 98b1abc7d3b57d1f54f1aa4f77221bdf52e66129)
1 /*	$NetBSD: uvm_page.c,v 1.256 2024/03/05 14:33:50 thorpej Exp $	*/
2 
3 /*-
4  * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1997 Charles D. Cranor and Washington University.
34  * Copyright (c) 1991, 1993, The Regents of the University of California.
35  *
36  * All rights reserved.
37  *
38  * This code is derived from software contributed to Berkeley by
39  * The Mach Operating System project at Carnegie-Mellon University.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
66  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
67  *
68  *
69  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
70  * All rights reserved.
71  *
72  * Permission to use, copy, modify and distribute this software and
73  * its documentation is hereby granted, provided that both the copyright
74  * notice and this permission notice appear in all copies of the
75  * software, derivative works or modified versions, and any portions
76  * thereof, and that both notices appear in supporting documentation.
77  *
78  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
79  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
80  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
81  *
82  * Carnegie Mellon requests users of this software to return to
83  *
84  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
85  *  School of Computer Science
86  *  Carnegie Mellon University
87  *  Pittsburgh PA 15213-3890
88  *
89  * any improvements or extensions that they make and grant Carnegie the
90  * rights to redistribute these changes.
91  */
92 
93 /*
94  * uvm_page.c: page ops.
95  */
96 
97 #include <sys/cdefs.h>
98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.256 2024/03/05 14:33:50 thorpej Exp $");
99 
100 #include "opt_ddb.h"
101 #include "opt_uvm.h"
102 #include "opt_uvmhist.h"
103 #include "opt_readahead.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/sched.h>
108 #include <sys/kernel.h>
109 #include <sys/vnode.h>
110 #include <sys/proc.h>
111 #include <sys/radixtree.h>
112 #include <sys/atomic.h>
113 #include <sys/cpu.h>
114 
115 #include <ddb/db_active.h>
116 
117 #include <uvm/uvm.h>
118 #include <uvm/uvm_ddb.h>
119 #include <uvm/uvm_pdpolicy.h>
120 #include <uvm/uvm_pgflcache.h>
121 
122 /*
123  * number of pages per-CPU to reserve for the kernel.
124  */
125 #ifndef	UVM_RESERVED_PAGES_PER_CPU
126 #define	UVM_RESERVED_PAGES_PER_CPU	5
127 #endif
128 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
129 
130 /*
131  * physical memory size;
132  */
133 psize_t physmem;
134 
135 /*
136  * local variables
137  */
138 
139 /*
140  * these variables record the values returned by vm_page_bootstrap,
141  * for debugging purposes.  The implementation of uvm_pageboot_alloc
142  * and pmap_startup here also uses them internally.
143  */
144 
145 static vaddr_t      virtual_space_start;
146 static vaddr_t      virtual_space_end;
147 
148 /*
149  * we allocate an initial number of page colors in uvm_page_init(),
150  * and remember them.  We may re-color pages as cache sizes are
151  * discovered during the autoconfiguration phase.  But we can never
152  * free the initial set of buckets, since they are allocated using
153  * uvm_pageboot_alloc().
154  */
155 
156 static size_t recolored_pages_memsize /* = 0 */;
157 static char *recolored_pages_mem;
158 
159 /*
160  * freelist locks - one per bucket.
161  */
162 
163 union uvm_freelist_lock	uvm_freelist_locks[PGFL_MAX_BUCKETS]
164     __cacheline_aligned;
165 
166 /*
167  * basic NUMA information.
168  */
169 
170 static struct uvm_page_numa_region {
171 	struct uvm_page_numa_region	*next;
172 	paddr_t				start;
173 	paddr_t				size;
174 	u_int				numa_id;
175 } *uvm_page_numa_region;
176 
177 #ifdef DEBUG
178 kmutex_t uvm_zerochecklock __cacheline_aligned;
179 vaddr_t uvm_zerocheckkva;
180 #endif /* DEBUG */
181 
182 /*
183  * These functions are reserved for uvm(9) internal use and are not
184  * exported in the header file uvm_physseg.h
185  *
186  * Thus they are redefined here.
187  */
188 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
189 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
190 
191 /* returns a pgs array */
192 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
193 
194 /*
195  * inline functions
196  */
197 
198 /*
199  * uvm_pageinsert: insert a page in the object.
200  *
201  * => caller must lock object
202  * => call should have already set pg's object and offset pointers
203  *    and bumped the version counter
204  */
205 
206 static inline void
uvm_pageinsert_object(struct uvm_object * uobj,struct vm_page * pg)207 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
208 {
209 
210 	KASSERT(uobj == pg->uobject);
211 	KASSERT(rw_write_held(uobj->vmobjlock));
212 	KASSERT((pg->flags & PG_TABLED) == 0);
213 
214 	if ((pg->flags & PG_STAT) != 0) {
215 		/* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
216 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
217 
218 		if ((pg->flags & PG_FILE) != 0) {
219 			if (uobj->uo_npages == 0) {
220 				struct vnode *vp = (struct vnode *)uobj;
221 				mutex_enter(vp->v_interlock);
222 				KASSERT((vp->v_iflag & VI_PAGES) == 0);
223 				vp->v_iflag |= VI_PAGES;
224 				vholdl(vp);
225 				mutex_exit(vp->v_interlock);
226 			}
227 			if (UVM_OBJ_IS_VTEXT(uobj)) {
228 				cpu_count(CPU_COUNT_EXECPAGES, 1);
229 			}
230 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, 1);
231 		} else {
232 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, 1);
233 		}
234 	}
235 	pg->flags |= PG_TABLED;
236 	uobj->uo_npages++;
237 }
238 
239 static inline int
uvm_pageinsert_tree(struct uvm_object * uobj,struct vm_page * pg)240 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
241 {
242 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
243 	int error;
244 
245 	KASSERT(rw_write_held(uobj->vmobjlock));
246 
247 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
248 	if (error != 0) {
249 		return error;
250 	}
251 	if ((pg->flags & PG_CLEAN) == 0) {
252 		uvm_obj_page_set_dirty(pg);
253 	}
254 	KASSERT(((pg->flags & PG_CLEAN) == 0) ==
255 		uvm_obj_page_dirty_p(pg));
256 	return 0;
257 }
258 
259 /*
260  * uvm_page_remove: remove page from object.
261  *
262  * => caller must lock object
263  */
264 
265 static inline void
uvm_pageremove_object(struct uvm_object * uobj,struct vm_page * pg)266 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
267 {
268 
269 	KASSERT(uobj == pg->uobject);
270 	KASSERT(rw_write_held(uobj->vmobjlock));
271 	KASSERT(pg->flags & PG_TABLED);
272 
273 	if ((pg->flags & PG_STAT) != 0) {
274 		/* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
275 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
276 
277 		if ((pg->flags & PG_FILE) != 0) {
278 			if (uobj->uo_npages == 1) {
279 				struct vnode *vp = (struct vnode *)uobj;
280 				mutex_enter(vp->v_interlock);
281 				KASSERT((vp->v_iflag & VI_PAGES) != 0);
282 				vp->v_iflag &= ~VI_PAGES;
283 				holdrelel(vp);
284 				mutex_exit(vp->v_interlock);
285 			}
286 			if (UVM_OBJ_IS_VTEXT(uobj)) {
287 				cpu_count(CPU_COUNT_EXECPAGES, -1);
288 			}
289 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, -1);
290 		} else {
291 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
292 		}
293 	}
294 	uobj->uo_npages--;
295 	pg->flags &= ~PG_TABLED;
296 	pg->uobject = NULL;
297 }
298 
299 static inline void
uvm_pageremove_tree(struct uvm_object * uobj,struct vm_page * pg)300 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
301 {
302 	struct vm_page *opg __unused;
303 
304 	KASSERT(rw_write_held(uobj->vmobjlock));
305 
306 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
307 	KASSERT(pg == opg);
308 }
309 
310 static void
uvm_page_init_bucket(struct pgfreelist * pgfl,struct pgflbucket * pgb,int num)311 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
312 {
313 	int i;
314 
315 	pgb->pgb_nfree = 0;
316 	for (i = 0; i < uvmexp.ncolors; i++) {
317 		LIST_INIT(&pgb->pgb_colors[i]);
318 	}
319 	pgfl->pgfl_buckets[num] = pgb;
320 }
321 
322 /*
323  * uvm_page_init: init the page system.   called from uvm_init().
324  *
325  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
326  */
327 
328 void
uvm_page_init(vaddr_t * kvm_startp,vaddr_t * kvm_endp)329 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
330 {
331 	static struct uvm_cpu uvm_boot_cpu __cacheline_aligned;
332 	psize_t freepages, pagecount, bucketsize, n;
333 	struct pgflbucket *pgb;
334 	struct vm_page *pagearray;
335 	char *bucketarray;
336 	uvm_physseg_t bank;
337 	int fl, b;
338 
339 	KASSERT(ncpu <= 1);
340 
341 	/*
342 	 * init the page queues and free page queue locks, except the
343 	 * free list; we allocate that later (with the initial vm_page
344 	 * structures).
345 	 */
346 
347 	curcpu()->ci_data.cpu_uvm = &uvm_boot_cpu;
348 	uvmpdpol_init();
349 	for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
350 		mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
351 	}
352 
353 	/*
354 	 * allocate vm_page structures.
355 	 */
356 
357 	/*
358 	 * sanity check:
359 	 * before calling this function the MD code is expected to register
360 	 * some free RAM with the uvm_page_physload() function.   our job
361 	 * now is to allocate vm_page structures for this memory.
362 	 */
363 
364 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
365 		panic("uvm_page_bootstrap: no memory pre-allocated");
366 
367 	/*
368 	 * first calculate the number of free pages...
369 	 *
370 	 * note that we use start/end rather than avail_start/avail_end.
371 	 * this allows us to allocate extra vm_page structures in case we
372 	 * want to return some memory to the pool after booting.
373 	 */
374 
375 	freepages = 0;
376 
377 	for (bank = uvm_physseg_get_first();
378 	     uvm_physseg_valid_p(bank) ;
379 	     bank = uvm_physseg_get_next(bank)) {
380 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
381 	}
382 
383 	/*
384 	 * Let MD code initialize the number of colors, or default
385 	 * to 1 color if MD code doesn't care.
386 	 */
387 	if (uvmexp.ncolors == 0)
388 		uvmexp.ncolors = 1;
389 	uvmexp.colormask = uvmexp.ncolors - 1;
390 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
391 
392 	/* We always start with only 1 bucket. */
393 	uvm.bucketcount = 1;
394 
395 	/*
396 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
397 	 * use.   for each page of memory we use we need a vm_page structure.
398 	 * thus, the total number of pages we can use is the total size of
399 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
400 	 * structure.   we add one to freepages as a fudge factor to avoid
401 	 * truncation errors (since we can only allocate in terms of whole
402 	 * pages).
403 	 */
404 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
405 	    (PAGE_SIZE + sizeof(struct vm_page));
406 	bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
407 	bucketsize = roundup2(bucketsize, coherency_unit);
408 	bucketarray = (void *)uvm_pageboot_alloc(
409 	    bucketsize * VM_NFREELIST +
410 	    pagecount * sizeof(struct vm_page));
411 	pagearray = (struct vm_page *)
412 	    (bucketarray + bucketsize * VM_NFREELIST);
413 
414 	for (fl = 0; fl < VM_NFREELIST; fl++) {
415 		pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
416 		uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
417 	}
418 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
419 
420 	/*
421 	 * init the freelist cache in the disabled state.
422 	 */
423 	uvm_pgflcache_init();
424 
425 	/*
426 	 * init the vm_page structures and put them in the correct place.
427 	 */
428 	/* First init the extent */
429 
430 	for (bank = uvm_physseg_get_first(),
431 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
432 	     uvm_physseg_valid_p(bank);
433 	     bank = uvm_physseg_get_next(bank)) {
434 
435 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
436 		uvm_physseg_seg_alloc_from_slab(bank, n);
437 		uvm_physseg_init_seg(bank, pagearray);
438 
439 		/* set up page array pointers */
440 		pagearray += n;
441 		pagecount -= n;
442 	}
443 
444 	/*
445 	 * pass up the values of virtual_space_start and
446 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
447 	 * layers of the VM.
448 	 */
449 
450 	*kvm_startp = round_page(virtual_space_start);
451 	*kvm_endp = trunc_page(virtual_space_end);
452 
453 	/*
454 	 * init various thresholds.
455 	 */
456 
457 	uvmexp.reserve_pagedaemon = 1;
458 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
459 
460 	/*
461 	 * done!
462 	 */
463 
464 	uvm.page_init_done = true;
465 }
466 
467 /*
468  * uvm_pgfl_lock: lock all freelist buckets
469  */
470 
471 void
uvm_pgfl_lock(void)472 uvm_pgfl_lock(void)
473 {
474 	int i;
475 
476 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
477 		mutex_spin_enter(&uvm_freelist_locks[i].lock);
478 	}
479 }
480 
481 /*
482  * uvm_pgfl_unlock: unlock all freelist buckets
483  */
484 
485 void
uvm_pgfl_unlock(void)486 uvm_pgfl_unlock(void)
487 {
488 	int i;
489 
490 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
491 		mutex_spin_exit(&uvm_freelist_locks[i].lock);
492 	}
493 }
494 
495 /*
496  * uvm_setpagesize: set the page size
497  *
498  * => sets page_shift and page_mask from uvmexp.pagesize.
499  */
500 
501 void
uvm_setpagesize(void)502 uvm_setpagesize(void)
503 {
504 
505 	/*
506 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
507 	 * to be a constant (indicated by being a non-zero value).
508 	 */
509 	if (uvmexp.pagesize == 0) {
510 		if (PAGE_SIZE == 0)
511 			panic("uvm_setpagesize: uvmexp.pagesize not set");
512 		uvmexp.pagesize = PAGE_SIZE;
513 	}
514 	uvmexp.pagemask = uvmexp.pagesize - 1;
515 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
516 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
517 		    uvmexp.pagesize, uvmexp.pagesize);
518 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
519 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
520 			break;
521 }
522 
523 /*
524  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
525  */
526 
527 vaddr_t
uvm_pageboot_alloc(vsize_t size)528 uvm_pageboot_alloc(vsize_t size)
529 {
530 	static bool initialized = false;
531 	vaddr_t addr;
532 #if !defined(PMAP_STEAL_MEMORY)
533 	vaddr_t vaddr;
534 	paddr_t paddr;
535 #endif
536 
537 	/*
538 	 * on first call to this function, initialize ourselves.
539 	 */
540 	if (initialized == false) {
541 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
542 
543 		/* round it the way we like it */
544 		virtual_space_start = round_page(virtual_space_start);
545 		virtual_space_end = trunc_page(virtual_space_end);
546 
547 		initialized = true;
548 	}
549 
550 	/* round to page size */
551 	size = round_page(size);
552 	uvmexp.bootpages += atop(size);
553 
554 #if defined(PMAP_STEAL_MEMORY)
555 
556 	/*
557 	 * defer bootstrap allocation to MD code (it may want to allocate
558 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
559 	 * virtual_space_start/virtual_space_end if necessary.
560 	 */
561 
562 	addr = pmap_steal_memory(size, &virtual_space_start,
563 	    &virtual_space_end);
564 
565 	return addr;
566 
567 #else /* !PMAP_STEAL_MEMORY */
568 
569 	/*
570 	 * allocate virtual memory for this request
571 	 */
572 	if (virtual_space_start == virtual_space_end ||
573 	    (virtual_space_end - virtual_space_start) < size)
574 		panic("uvm_pageboot_alloc: out of virtual space");
575 
576 	addr = virtual_space_start;
577 
578 #ifdef PMAP_GROWKERNEL
579 	/*
580 	 * If the kernel pmap can't map the requested space,
581 	 * then allocate more resources for it.
582 	 */
583 	if (uvm_maxkaddr < (addr + size)) {
584 		uvm_maxkaddr = pmap_growkernel(addr + size);
585 		if (uvm_maxkaddr < (addr + size))
586 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
587 	}
588 #endif
589 
590 	virtual_space_start += size;
591 
592 	/*
593 	 * allocate and mapin physical pages to back new virtual pages
594 	 */
595 
596 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
597 	    vaddr += PAGE_SIZE) {
598 
599 		if (!uvm_page_physget(&paddr))
600 			panic("uvm_pageboot_alloc: out of memory");
601 
602 		/*
603 		 * Note this memory is no longer managed, so using
604 		 * pmap_kenter is safe.
605 		 */
606 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
607 	}
608 	pmap_update(pmap_kernel());
609 	return addr;
610 #endif	/* PMAP_STEAL_MEMORY */
611 }
612 
613 #if !defined(PMAP_STEAL_MEMORY)
614 /*
615  * uvm_page_physget: "steal" one page from the vm_physmem structure.
616  *
617  * => attempt to allocate it off the end of a segment in which the "avail"
618  *    values match the start/end values.   if we can't do that, then we
619  *    will advance both values (making them equal, and removing some
620  *    vm_page structures from the non-avail area).
621  * => return false if out of memory.
622  */
623 
624 /* subroutine: try to allocate from memory chunks on the specified freelist */
625 static bool uvm_page_physget_freelist(paddr_t *, int);
626 
627 static bool
uvm_page_physget_freelist(paddr_t * paddrp,int freelist)628 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
629 {
630 	uvm_physseg_t lcv;
631 
632 	/* pass 1: try allocating from a matching end */
633 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
634 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
635 #else
636 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
637 #endif
638 	{
639 		if (uvm.page_init_done == true)
640 			panic("uvm_page_physget: called _after_ bootstrap");
641 
642 		/* Try to match at front or back on unused segment */
643 		if (uvm_page_physunload(lcv, freelist, paddrp))
644 			return true;
645 	}
646 
647 	/* pass2: forget about matching ends, just allocate something */
648 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
649 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
650 #else
651 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
652 #endif
653 	{
654 		/* Try the front regardless. */
655 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
656 			return true;
657 	}
658 	return false;
659 }
660 
661 bool
uvm_page_physget(paddr_t * paddrp)662 uvm_page_physget(paddr_t *paddrp)
663 {
664 	int i;
665 
666 	/* try in the order of freelist preference */
667 	for (i = 0; i < VM_NFREELIST; i++)
668 		if (uvm_page_physget_freelist(paddrp, i) == true)
669 			return (true);
670 	return (false);
671 }
672 #endif /* PMAP_STEAL_MEMORY */
673 
674 paddr_t
uvm_vm_page_to_phys(const struct vm_page * pg)675 uvm_vm_page_to_phys(const struct vm_page *pg)
676 {
677 
678 	return pg->phys_addr & ~(PAGE_SIZE - 1);
679 }
680 
681 /*
682  * uvm_page_numa_load: load NUMA range description.
683  */
684 void
uvm_page_numa_load(paddr_t start,paddr_t size,u_int numa_id)685 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
686 {
687 	struct uvm_page_numa_region *d;
688 
689 	KASSERT(numa_id < PGFL_MAX_BUCKETS);
690 
691 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
692 	d->start = start;
693 	d->size = size;
694 	d->numa_id = numa_id;
695 	d->next = uvm_page_numa_region;
696 	uvm_page_numa_region = d;
697 }
698 
699 /*
700  * uvm_page_numa_lookup: lookup NUMA node for the given page.
701  */
702 static u_int
uvm_page_numa_lookup(struct vm_page * pg)703 uvm_page_numa_lookup(struct vm_page *pg)
704 {
705 	struct uvm_page_numa_region *d;
706 	static bool warned;
707 	paddr_t pa;
708 
709 	KASSERT(uvm_page_numa_region != NULL);
710 
711 	pa = VM_PAGE_TO_PHYS(pg);
712 	for (d = uvm_page_numa_region; d != NULL; d = d->next) {
713 		if (pa >= d->start && pa < d->start + d->size) {
714 			return d->numa_id;
715 		}
716 	}
717 
718 	if (!warned) {
719 		printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
720 		    PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
721 		warned = true;
722 	}
723 
724 	return 0;
725 }
726 
727 /*
728  * uvm_page_redim: adjust freelist dimensions if they have changed.
729  */
730 
731 static void
uvm_page_redim(int newncolors,int newnbuckets)732 uvm_page_redim(int newncolors, int newnbuckets)
733 {
734 	struct pgfreelist npgfl;
735 	struct pgflbucket *opgb, *npgb;
736 	struct pgflist *ohead, *nhead;
737 	struct vm_page *pg;
738 	size_t bucketsize, bucketmemsize, oldbucketmemsize;
739 	int fl, ob, oc, nb, nc, obuckets, ocolors;
740 	char *bucketarray, *oldbucketmem, *bucketmem;
741 
742 	KASSERT(((newncolors - 1) & newncolors) == 0);
743 
744 	/* Anything to do? */
745 	if (newncolors <= uvmexp.ncolors &&
746 	    newnbuckets == uvm.bucketcount) {
747 		return;
748 	}
749 	if (uvm.page_init_done == false) {
750 		uvmexp.ncolors = newncolors;
751 		return;
752 	}
753 
754 	bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
755 	bucketsize = roundup2(bucketsize, coherency_unit);
756 	bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
757 	    coherency_unit - 1;
758 	bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
759 	bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
760 
761 	ocolors = uvmexp.ncolors;
762 	obuckets = uvm.bucketcount;
763 
764 	/* Freelist cache mustn't be enabled. */
765 	uvm_pgflcache_pause();
766 
767 	/* Make sure we should still do this. */
768 	uvm_pgfl_lock();
769 	if (newncolors <= uvmexp.ncolors &&
770 	    newnbuckets == uvm.bucketcount) {
771 		uvm_pgfl_unlock();
772 		uvm_pgflcache_resume();
773 		kmem_free(bucketmem, bucketmemsize);
774 		return;
775 	}
776 
777 	uvmexp.ncolors = newncolors;
778 	uvmexp.colormask = uvmexp.ncolors - 1;
779 	uvm.bucketcount = newnbuckets;
780 
781 	for (fl = 0; fl < VM_NFREELIST; fl++) {
782 		/* Init new buckets in new freelist. */
783 		memset(&npgfl, 0, sizeof(npgfl));
784 		for (nb = 0; nb < newnbuckets; nb++) {
785 			npgb = (struct pgflbucket *)bucketarray;
786 			uvm_page_init_bucket(&npgfl, npgb, nb);
787 			bucketarray += bucketsize;
788 		}
789 		/* Now transfer pages from the old freelist. */
790 		for (nb = ob = 0; ob < obuckets; ob++) {
791 			opgb = uvm.page_free[fl].pgfl_buckets[ob];
792 			for (oc = 0; oc < ocolors; oc++) {
793 				ohead = &opgb->pgb_colors[oc];
794 				while ((pg = LIST_FIRST(ohead)) != NULL) {
795 					LIST_REMOVE(pg, pageq.list);
796 					/*
797 					 * Here we decide on the NEW color &
798 					 * bucket for the page.  For NUMA
799 					 * we'll use the info that the
800 					 * hardware gave us.  For non-NUMA
801 					 * assign take physical page frame
802 					 * number and cache color into
803 					 * account.  We do this to try and
804 					 * avoid defeating any memory
805 					 * interleaving in the hardware.
806 					 */
807 					KASSERT(
808 					    uvm_page_get_bucket(pg) == ob);
809 					KASSERT(fl ==
810 					    uvm_page_get_freelist(pg));
811 					if (uvm_page_numa_region != NULL) {
812 						nb = uvm_page_numa_lookup(pg);
813 					} else {
814 						nb = atop(VM_PAGE_TO_PHYS(pg))
815 						    / uvmexp.ncolors / 8
816 						    % newnbuckets;
817 					}
818 					uvm_page_set_bucket(pg, nb);
819 					npgb = npgfl.pgfl_buckets[nb];
820 					npgb->pgb_nfree++;
821 					nc = VM_PGCOLOR(pg);
822 					nhead = &npgb->pgb_colors[nc];
823 					LIST_INSERT_HEAD(nhead, pg, pageq.list);
824 				}
825 			}
826 		}
827 		/* Install the new freelist. */
828 		memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
829 	}
830 
831 	/* Unlock and free the old memory. */
832 	oldbucketmemsize = recolored_pages_memsize;
833 	oldbucketmem = recolored_pages_mem;
834 	recolored_pages_memsize = bucketmemsize;
835 	recolored_pages_mem = bucketmem;
836 
837 	uvm_pgfl_unlock();
838 	uvm_pgflcache_resume();
839 
840 	if (oldbucketmemsize) {
841 		kmem_free(oldbucketmem, oldbucketmemsize);
842 	}
843 
844 	/*
845 	 * this calls uvm_km_alloc() which may want to hold
846 	 * uvm_freelist_lock.
847 	 */
848 	uvm_pager_realloc_emerg();
849 }
850 
851 /*
852  * uvm_page_recolor: Recolor the pages if the new color count is
853  * larger than the old one.
854  */
855 
856 void
uvm_page_recolor(int newncolors)857 uvm_page_recolor(int newncolors)
858 {
859 
860 	uvm_page_redim(newncolors, uvm.bucketcount);
861 }
862 
863 /*
864  * uvm_page_rebucket: Determine a bucket structure and redim the free
865  * lists to match.
866  */
867 
868 void
uvm_page_rebucket(void)869 uvm_page_rebucket(void)
870 {
871 	u_int min_numa, max_numa, npackage, shift;
872 	struct cpu_info *ci, *ci2, *ci3;
873 	CPU_INFO_ITERATOR cii;
874 
875 	/*
876 	 * If we have more than one NUMA node, and the maximum NUMA node ID
877 	 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
878 	 * for free pages.
879 	 */
880 	min_numa = (u_int)-1;
881 	max_numa = 0;
882 	for (CPU_INFO_FOREACH(cii, ci)) {
883 		if (ci->ci_numa_id < min_numa) {
884 			min_numa = ci->ci_numa_id;
885 		}
886 		if (ci->ci_numa_id > max_numa) {
887 			max_numa = ci->ci_numa_id;
888 		}
889 	}
890 	if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
891 		aprint_debug("UVM: using NUMA allocation scheme\n");
892 		for (CPU_INFO_FOREACH(cii, ci)) {
893 			ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
894 		}
895 	 	uvm_page_redim(uvmexp.ncolors, max_numa + 1);
896 	 	return;
897 	}
898 
899 	/*
900 	 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
901 	 * and minimise lock contention.  Count the total number of CPU
902 	 * packages, and then try to distribute the buckets among CPU
903 	 * packages evenly.
904 	 */
905 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
906 
907 	/*
908 	 * Figure out how to arrange the packages & buckets, and the total
909 	 * number of buckets we need.  XXX 2 may not be the best factor.
910 	 */
911 	for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
912 		npackage >>= 1;
913 	}
914  	uvm_page_redim(uvmexp.ncolors, npackage);
915 
916  	/*
917  	 * Now tell each CPU which bucket to use.  In the outer loop, scroll
918  	 * through all CPU packages.
919  	 */
920  	npackage = 0;
921 	ci = curcpu();
922 	ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
923 	do {
924 		/*
925 		 * In the inner loop, scroll through all CPUs in the package
926 		 * and assign the same bucket ID.
927 		 */
928 		ci3 = ci2;
929 		do {
930 			ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
931 			ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
932 		} while (ci3 != ci2);
933 		npackage++;
934 		ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
935 	} while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
936 
937 	aprint_debug("UVM: using package allocation scheme, "
938 	    "%d package(s) per bucket\n", 1 << shift);
939 }
940 
941 /*
942  * uvm_cpu_attach: initialize per-CPU data structures.
943  */
944 
945 void
uvm_cpu_attach(struct cpu_info * ci)946 uvm_cpu_attach(struct cpu_info *ci)
947 {
948 	struct uvm_cpu *ucpu;
949 
950 	/* Already done in uvm_page_init(). */
951 	if (!CPU_IS_PRIMARY(ci)) {
952 		/* Add more reserve pages for this CPU. */
953 		uvmexp.reserve_kernel += vm_page_reserve_kernel;
954 
955 		/* Allocate per-CPU data structures. */
956 		ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
957 		    KM_SLEEP);
958 		ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
959 		    coherency_unit);
960 		ci->ci_data.cpu_uvm = ucpu;
961 	} else {
962 		ucpu = ci->ci_data.cpu_uvm;
963 	}
964 
965 	uvmpdpol_init_cpu(ucpu);
966 }
967 
968 /*
969  * uvm_availmem: fetch the total amount of free memory in pages.  this can
970  * have a detrimental effect on performance due to false sharing; don't call
971  * unless needed.
972  *
973  * some users can request the amount of free memory so often that it begins
974  * to impact upon performance.  if calling frequently and an inexact value
975  * is okay, call with cached = true.
976  */
977 
978 int
uvm_availmem(bool cached)979 uvm_availmem(bool cached)
980 {
981 	int64_t fp;
982 
983 	cpu_count_sync(cached);
984 	if ((fp = cpu_count_get(CPU_COUNT_FREEPAGES)) < 0) {
985 		/*
986 		 * XXXAD could briefly go negative because it's impossible
987 		 * to get a clean snapshot.  address this for other counters
988 		 * used as running totals before NetBSD 10 although less
989 		 * important for those.
990 		 */
991 		fp = 0;
992 	}
993 	return (int)fp;
994 }
995 
996 /*
997  * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
998  * specific freelist and specific bucket only.
999  *
1000  * => must be at IPL_VM or higher to protect per-CPU data structures.
1001  */
1002 
1003 static struct vm_page *
uvm_pagealloc_pgb(struct uvm_cpu * ucpu,int f,int b,int * trycolorp,int flags)1004 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
1005 {
1006 	int c, trycolor, colormask;
1007 	struct pgflbucket *pgb;
1008 	struct vm_page *pg;
1009 	kmutex_t *lock;
1010 	bool fill;
1011 
1012 	/*
1013 	 * Skip the bucket if empty, no lock needed.  There could be many
1014 	 * empty freelists/buckets.
1015 	 */
1016 	pgb = uvm.page_free[f].pgfl_buckets[b];
1017 	if (pgb->pgb_nfree == 0) {
1018 		return NULL;
1019 	}
1020 
1021 	/* Skip bucket if low on memory. */
1022 	lock = &uvm_freelist_locks[b].lock;
1023 	mutex_spin_enter(lock);
1024 	if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
1025 		if ((flags & UVM_PGA_USERESERVE) == 0 ||
1026 		    (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
1027 		     curlwp != uvm.pagedaemon_lwp)) {
1028 			mutex_spin_exit(lock);
1029 		     	return NULL;
1030 		}
1031 		fill = false;
1032 	} else {
1033 		fill = true;
1034 	}
1035 
1036 	/* Try all page colors as needed. */
1037 	c = trycolor = *trycolorp;
1038 	colormask = uvmexp.colormask;
1039 	do {
1040 		pg = LIST_FIRST(&pgb->pgb_colors[c]);
1041 		if (__predict_true(pg != NULL)) {
1042 			/*
1043 			 * Got a free page!  PG_FREE must be cleared under
1044 			 * lock because of uvm_pglistalloc().
1045 			 */
1046 			LIST_REMOVE(pg, pageq.list);
1047 			KASSERT(pg->flags == PG_FREE);
1048 			pg->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
1049 			pgb->pgb_nfree--;
1050 			CPU_COUNT(CPU_COUNT_FREEPAGES, -1);
1051 
1052 			/*
1053 			 * While we have the bucket locked and our data
1054 			 * structures fresh in L1 cache, we have an ideal
1055 			 * opportunity to grab some pages for the freelist
1056 			 * cache without causing extra contention.  Only do
1057 			 * so if we found pages in this CPU's preferred
1058 			 * bucket.
1059 			 */
1060 			if (__predict_true(b == ucpu->pgflbucket && fill)) {
1061 				uvm_pgflcache_fill(ucpu, f, b, c);
1062 			}
1063 			mutex_spin_exit(lock);
1064 			KASSERT(uvm_page_get_bucket(pg) == b);
1065 			CPU_COUNT(c == trycolor ?
1066 			    CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
1067 			CPU_COUNT(CPU_COUNT_CPUMISS, 1);
1068 			*trycolorp = c;
1069 			return pg;
1070 		}
1071 		c = (c + 1) & colormask;
1072 	} while (c != trycolor);
1073 	mutex_spin_exit(lock);
1074 
1075 	return NULL;
1076 }
1077 
1078 /*
1079  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
1080  * any color from any bucket, in a specific freelist.
1081  *
1082  * => must be at IPL_VM or higher to protect per-CPU data structures.
1083  */
1084 
1085 static struct vm_page *
uvm_pagealloc_pgfl(struct uvm_cpu * ucpu,int f,int * trycolorp,int flags)1086 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
1087 {
1088 	int b, trybucket, bucketcount;
1089 	struct vm_page *pg;
1090 
1091 	/* Try for the exact thing in the per-CPU cache. */
1092 	if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
1093 		CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1094 		CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1095 		return pg;
1096 	}
1097 
1098 	/* Walk through all buckets, trying our preferred bucket first. */
1099 	trybucket = ucpu->pgflbucket;
1100 	b = trybucket;
1101 	bucketcount = uvm.bucketcount;
1102 	do {
1103 		pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
1104 		if (pg != NULL) {
1105 			return pg;
1106 		}
1107 		b = (b + 1 == bucketcount ? 0 : b + 1);
1108 	} while (b != trybucket);
1109 
1110 	return NULL;
1111 }
1112 
1113 /*
1114  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1115  *
1116  * => return null if no pages free
1117  * => wake up pagedaemon if number of free pages drops below low water mark
1118  * => if obj != NULL, obj must be locked (to put in obj's tree)
1119  * => if anon != NULL, anon must be locked (to put in anon)
1120  * => only one of obj or anon can be non-null
1121  * => caller must activate/deactivate page if it is not wired.
1122  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1123  * => policy decision: it is more important to pull a page off of the
1124  *	appropriate priority free list than it is to get a page from the
1125  *	correct bucket or color bin.  This is because we live with the
1126  *	consequences of a bad free list decision for the entire
1127  *	lifetime of the page, e.g. if the page comes from memory that
1128  *	is slower to access.
1129  */
1130 
1131 struct vm_page *
uvm_pagealloc_strat(struct uvm_object * obj,voff_t off,struct vm_anon * anon,int flags,int strat,int free_list)1132 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1133     int flags, int strat, int free_list)
1134 {
1135 	int color, lcv, error, s;
1136 	struct uvm_cpu *ucpu;
1137 	struct vm_page *pg;
1138 	lwp_t *l;
1139 
1140 	KASSERT(obj == NULL || anon == NULL);
1141 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1142 	KASSERT(off == trunc_page(off));
1143 	KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
1144 	KASSERT(anon == NULL || anon->an_lock == NULL ||
1145 	    rw_write_held(anon->an_lock));
1146 
1147 	/*
1148 	 * This implements a global round-robin page coloring
1149 	 * algorithm.
1150 	 */
1151 
1152 	s = splvm();
1153 	ucpu = curcpu()->ci_data.cpu_uvm;
1154 	if (flags & UVM_FLAG_COLORMATCH) {
1155 		color = atop(off) & uvmexp.colormask;
1156 	} else {
1157 		color = ucpu->pgflcolor;
1158 	}
1159 
1160 	/*
1161 	 * fail if any of these conditions is true:
1162 	 * [1]  there really are no free pages, or
1163 	 * [2]  only kernel "reserved" pages remain and
1164 	 *        reserved pages have not been requested.
1165 	 * [3]  only pagedaemon "reserved" pages remain and
1166 	 *        the requestor isn't the pagedaemon.
1167 	 * we make kernel reserve pages available if called by a
1168 	 * kernel thread.
1169 	 */
1170 	l = curlwp;
1171 	if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
1172 		flags |= UVM_PGA_USERESERVE;
1173 	}
1174 
1175  again:
1176 	switch (strat) {
1177 	case UVM_PGA_STRAT_NORMAL:
1178 		/* Check freelists: descending priority (ascending id) order. */
1179 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1180 			pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
1181 			if (pg != NULL) {
1182 				goto gotit;
1183 			}
1184 		}
1185 
1186 		/* No pages free!  Have pagedaemon free some memory. */
1187 		splx(s);
1188 		uvm_kick_pdaemon();
1189 		return NULL;
1190 
1191 	case UVM_PGA_STRAT_ONLY:
1192 	case UVM_PGA_STRAT_FALLBACK:
1193 		/* Attempt to allocate from the specified free list. */
1194 		KASSERT(free_list >= 0);
1195 		KASSERT(free_list < VM_NFREELIST);
1196 		pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
1197 		if (pg != NULL) {
1198 			goto gotit;
1199 		}
1200 
1201 		/* Fall back, if possible. */
1202 		if (strat == UVM_PGA_STRAT_FALLBACK) {
1203 			strat = UVM_PGA_STRAT_NORMAL;
1204 			goto again;
1205 		}
1206 
1207 		/* No pages free!  Have pagedaemon free some memory. */
1208 		splx(s);
1209 		uvm_kick_pdaemon();
1210 		return NULL;
1211 
1212 	case UVM_PGA_STRAT_NUMA:
1213 		/*
1214 		 * NUMA strategy (experimental): allocating from the correct
1215 		 * bucket is more important than observing freelist
1216 		 * priority.  Look only to the current NUMA node; if that
1217 		 * fails, we need to look to other NUMA nodes, so retry with
1218 		 * the normal strategy.
1219 		 */
1220 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1221 			pg = uvm_pgflcache_alloc(ucpu, lcv, color);
1222 			if (pg != NULL) {
1223 				CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1224 				CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1225 				goto gotit;
1226 			}
1227 			pg = uvm_pagealloc_pgb(ucpu, lcv,
1228 			    ucpu->pgflbucket, &color, flags);
1229 			if (pg != NULL) {
1230 				goto gotit;
1231 			}
1232 		}
1233 		strat = UVM_PGA_STRAT_NORMAL;
1234 		goto again;
1235 
1236 	default:
1237 		panic("uvm_pagealloc_strat: bad strat %d", strat);
1238 		/* NOTREACHED */
1239 	}
1240 
1241  gotit:
1242 	/*
1243 	 * We now know which color we actually allocated from; set
1244 	 * the next color accordingly.
1245 	 */
1246 
1247 	ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
1248 
1249 	/*
1250 	 * while still at IPL_VM, update allocation statistics.
1251 	 */
1252 
1253 	if (anon) {
1254 		CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
1255 	}
1256 	splx(s);
1257 	KASSERT(pg->flags == (PG_BUSY|PG_CLEAN|PG_FAKE));
1258 
1259 	/*
1260 	 * assign the page to the object.  as the page was free, we know
1261 	 * that pg->uobject and pg->uanon are NULL.  we only need to take
1262 	 * the page's interlock if we are changing the values.
1263 	 */
1264 	if (anon != NULL || obj != NULL) {
1265 		mutex_enter(&pg->interlock);
1266 	}
1267 	pg->offset = off;
1268 	pg->uobject = obj;
1269 	pg->uanon = anon;
1270 	KASSERT(uvm_page_owner_locked_p(pg, true));
1271 	if (anon) {
1272 		anon->an_page = pg;
1273 		pg->flags |= PG_ANON;
1274 		mutex_exit(&pg->interlock);
1275 	} else if (obj) {
1276 		/*
1277 		 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
1278 		 */
1279 		if (UVM_OBJ_IS_VNODE(obj)) {
1280 			pg->flags |= PG_FILE;
1281 		} else if (UVM_OBJ_IS_AOBJ(obj)) {
1282 			pg->flags |= PG_AOBJ;
1283 		}
1284 		uvm_pageinsert_object(obj, pg);
1285 		mutex_exit(&pg->interlock);
1286 		error = uvm_pageinsert_tree(obj, pg);
1287 		if (error != 0) {
1288 			mutex_enter(&pg->interlock);
1289 			uvm_pageremove_object(obj, pg);
1290 			mutex_exit(&pg->interlock);
1291 			uvm_pagefree(pg);
1292 			return NULL;
1293 		}
1294 	}
1295 
1296 #if defined(UVM_PAGE_TRKOWN)
1297 	pg->owner_tag = NULL;
1298 #endif
1299 	UVM_PAGE_OWN(pg, "new alloc");
1300 
1301 	if (flags & UVM_PGA_ZERO) {
1302 		/* A zero'd page is not clean. */
1303 		if (obj != NULL || anon != NULL) {
1304 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1305 		}
1306 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1307 	}
1308 
1309 	return(pg);
1310 }
1311 
1312 /*
1313  * uvm_pagereplace: replace a page with another
1314  *
1315  * => object must be locked
1316  * => page interlocks must be held
1317  */
1318 
1319 void
uvm_pagereplace(struct vm_page * oldpg,struct vm_page * newpg)1320 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1321 {
1322 	struct uvm_object *uobj = oldpg->uobject;
1323 	struct vm_page *pg __diagused;
1324 	uint64_t idx;
1325 
1326 	KASSERT((oldpg->flags & PG_TABLED) != 0);
1327 	KASSERT(uobj != NULL);
1328 	KASSERT((newpg->flags & PG_TABLED) == 0);
1329 	KASSERT(newpg->uobject == NULL);
1330 	KASSERT(rw_write_held(uobj->vmobjlock));
1331 	KASSERT(mutex_owned(&oldpg->interlock));
1332 	KASSERT(mutex_owned(&newpg->interlock));
1333 
1334 	newpg->uobject = uobj;
1335 	newpg->offset = oldpg->offset;
1336 	idx = newpg->offset >> PAGE_SHIFT;
1337 	pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
1338 	KASSERT(pg == oldpg);
1339 	if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
1340 		if ((newpg->flags & PG_CLEAN) != 0) {
1341 			uvm_obj_page_clear_dirty(newpg);
1342 		} else {
1343 			uvm_obj_page_set_dirty(newpg);
1344 		}
1345 	}
1346 	/*
1347 	 * oldpg's PG_STAT is stable.  newpg is not reachable by others yet.
1348 	 */
1349 	newpg->flags |=
1350 	    (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
1351 	uvm_pageinsert_object(uobj, newpg);
1352 	uvm_pageremove_object(uobj, oldpg);
1353 }
1354 
1355 /*
1356  * uvm_pagerealloc: reallocate a page from one object to another
1357  *
1358  * => both objects must be locked
1359  */
1360 
1361 int
uvm_pagerealloc(struct vm_page * pg,struct uvm_object * newobj,voff_t newoff)1362 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1363 {
1364 	int error = 0;
1365 
1366 	/*
1367 	 * remove it from the old object
1368 	 */
1369 
1370 	if (pg->uobject) {
1371 		uvm_pageremove_tree(pg->uobject, pg);
1372 		uvm_pageremove_object(pg->uobject, pg);
1373 	}
1374 
1375 	/*
1376 	 * put it in the new object
1377 	 */
1378 
1379 	if (newobj) {
1380 		mutex_enter(&pg->interlock);
1381 		pg->uobject = newobj;
1382 		pg->offset = newoff;
1383 		if (UVM_OBJ_IS_VNODE(newobj)) {
1384 			pg->flags |= PG_FILE;
1385 		} else if (UVM_OBJ_IS_AOBJ(newobj)) {
1386 			pg->flags |= PG_AOBJ;
1387 		}
1388 		uvm_pageinsert_object(newobj, pg);
1389 		mutex_exit(&pg->interlock);
1390 		error = uvm_pageinsert_tree(newobj, pg);
1391 		if (error != 0) {
1392 			mutex_enter(&pg->interlock);
1393 			uvm_pageremove_object(newobj, pg);
1394 			mutex_exit(&pg->interlock);
1395 		}
1396 	}
1397 
1398 	return error;
1399 }
1400 
1401 /*
1402  * uvm_pagefree: free page
1403  *
1404  * => erase page's identity (i.e. remove from object)
1405  * => put page on free list
1406  * => caller must lock owning object (either anon or uvm_object)
1407  * => assumes all valid mappings of pg are gone
1408  */
1409 
1410 void
uvm_pagefree(struct vm_page * pg)1411 uvm_pagefree(struct vm_page *pg)
1412 {
1413 	struct pgfreelist *pgfl;
1414 	struct pgflbucket *pgb;
1415 	struct uvm_cpu *ucpu;
1416 	kmutex_t *lock;
1417 	int bucket, s;
1418 	bool locked;
1419 
1420 #ifdef DEBUG
1421 	if (pg->uobject == (void *)0xdeadbeef &&
1422 	    pg->uanon == (void *)0xdeadbeef) {
1423 		panic("uvm_pagefree: freeing free page %p", pg);
1424 	}
1425 #endif /* DEBUG */
1426 
1427 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1428 	KASSERT(!(pg->flags & PG_FREE));
1429 	KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
1430 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1431 		rw_write_held(pg->uanon->an_lock));
1432 
1433 	/*
1434 	 * remove the page from the object's tree before acquiring any page
1435 	 * interlocks: this can acquire locks to free radixtree nodes.
1436 	 */
1437 	if (pg->uobject != NULL) {
1438 		uvm_pageremove_tree(pg->uobject, pg);
1439 	}
1440 
1441 	/*
1442 	 * if the page is loaned, resolve the loan instead of freeing.
1443 	 */
1444 
1445 	if (pg->loan_count) {
1446 		KASSERT(pg->wire_count == 0);
1447 
1448 		/*
1449 		 * if the page is owned by an anon then we just want to
1450 		 * drop anon ownership.  the kernel will free the page when
1451 		 * it is done with it.  if the page is owned by an object,
1452 		 * remove it from the object and mark it dirty for the benefit
1453 		 * of possible anon owners.
1454 		 *
1455 		 * regardless of previous ownership, wakeup any waiters,
1456 		 * unbusy the page, and we're done.
1457 		 */
1458 
1459 		uvm_pagelock(pg);
1460 		locked = true;
1461 		if (pg->uobject != NULL) {
1462 			uvm_pageremove_object(pg->uobject, pg);
1463 			pg->flags &= ~(PG_FILE|PG_AOBJ);
1464 		} else if (pg->uanon != NULL) {
1465 			if ((pg->flags & PG_ANON) == 0) {
1466 				pg->loan_count--;
1467 			} else {
1468 				const unsigned status = uvm_pagegetdirty(pg);
1469 				pg->flags &= ~PG_ANON;
1470 				cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
1471 			}
1472 			pg->uanon->an_page = NULL;
1473 			pg->uanon = NULL;
1474 		}
1475 		if (pg->pqflags & PQ_WANTED) {
1476 			wakeup(pg);
1477 		}
1478 		pg->pqflags &= ~PQ_WANTED;
1479 		pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
1480 #ifdef UVM_PAGE_TRKOWN
1481 		pg->owner_tag = NULL;
1482 #endif
1483 		KASSERT((pg->flags & PG_STAT) == 0);
1484 		if (pg->loan_count) {
1485 			KASSERT(pg->uobject == NULL);
1486 			if (pg->uanon == NULL) {
1487 				uvm_pagedequeue(pg);
1488 			}
1489 			uvm_pageunlock(pg);
1490 			return;
1491 		}
1492 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
1493 	           pg->wire_count != 0) {
1494 		uvm_pagelock(pg);
1495 		locked = true;
1496 	} else {
1497 		locked = false;
1498 	}
1499 
1500 	/*
1501 	 * remove page from its object or anon.
1502 	 */
1503 	if (pg->uobject != NULL) {
1504 		uvm_pageremove_object(pg->uobject, pg);
1505 	} else if (pg->uanon != NULL) {
1506 		const unsigned int status = uvm_pagegetdirty(pg);
1507 		pg->uanon->an_page = NULL;
1508 		pg->uanon = NULL;
1509 		cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
1510 	}
1511 
1512 	/*
1513 	 * if the page was wired, unwire it now.
1514 	 */
1515 
1516 	if (pg->wire_count) {
1517 		pg->wire_count = 0;
1518 		atomic_dec_uint(&uvmexp.wired);
1519 	}
1520 	if (locked) {
1521 		/*
1522 		 * wake anyone waiting on the page.
1523 		 */
1524 		if ((pg->pqflags & PQ_WANTED) != 0) {
1525 			pg->pqflags &= ~PQ_WANTED;
1526 			wakeup(pg);
1527 		}
1528 
1529 		/*
1530 		 * now remove the page from the queues.
1531 		 */
1532 		uvm_pagedequeue(pg);
1533 		uvm_pageunlock(pg);
1534 	} else {
1535 		KASSERT(!uvmpdpol_pageisqueued_p(pg));
1536 	}
1537 
1538 	/*
1539 	 * and put on free queue
1540 	 */
1541 
1542 #ifdef DEBUG
1543 	pg->uobject = (void *)0xdeadbeef;
1544 	pg->uanon = (void *)0xdeadbeef;
1545 #endif /* DEBUG */
1546 
1547 	/* Try to send the page to the per-CPU cache. */
1548 	s = splvm();
1549 	ucpu = curcpu()->ci_data.cpu_uvm;
1550 	bucket = uvm_page_get_bucket(pg);
1551 	if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
1552 		splx(s);
1553 		return;
1554 	}
1555 
1556 	/* Didn't work.  Never mind, send it to a global bucket. */
1557 	pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
1558 	pgb = pgfl->pgfl_buckets[bucket];
1559 	lock = &uvm_freelist_locks[bucket].lock;
1560 
1561 	mutex_spin_enter(lock);
1562 	/* PG_FREE must be set under lock because of uvm_pglistalloc(). */
1563 	pg->flags = PG_FREE;
1564 	LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
1565 	pgb->pgb_nfree++;
1566     	CPU_COUNT(CPU_COUNT_FREEPAGES, 1);
1567 	mutex_spin_exit(lock);
1568 	splx(s);
1569 }
1570 
1571 /*
1572  * uvm_page_unbusy: unbusy an array of pages.
1573  *
1574  * => pages must either all belong to the same object, or all belong to anons.
1575  * => if pages are object-owned, object must be locked.
1576  * => if pages are anon-owned, anons must be locked.
1577  * => caller must make sure that anon-owned pages are not PG_RELEASED.
1578  */
1579 
1580 void
uvm_page_unbusy(struct vm_page ** pgs,int npgs)1581 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1582 {
1583 	struct vm_page *pg;
1584 	int i, pageout_done;
1585 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1586 
1587 	pageout_done = 0;
1588 	for (i = 0; i < npgs; i++) {
1589 		pg = pgs[i];
1590 		if (pg == NULL || pg == PGO_DONTCARE) {
1591 			continue;
1592 		}
1593 
1594 		KASSERT(uvm_page_owner_locked_p(pg, true));
1595 		KASSERT(pg->flags & PG_BUSY);
1596 
1597 		if (pg->flags & PG_PAGEOUT) {
1598 			pg->flags &= ~PG_PAGEOUT;
1599 			pg->flags |= PG_RELEASED;
1600 			pageout_done++;
1601 			atomic_inc_uint(&uvmexp.pdfreed);
1602 		}
1603 		if (pg->flags & PG_RELEASED) {
1604 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
1605 			    (uintptr_t)pg, 0, 0, 0);
1606 			KASSERT(pg->uobject != NULL ||
1607 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
1608 			pg->flags &= ~PG_RELEASED;
1609 			uvm_pagefree(pg);
1610 		} else {
1611 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1612 			    (uintptr_t)pg, 0, 0, 0);
1613 			KASSERT((pg->flags & PG_FAKE) == 0);
1614 			pg->flags &= ~PG_BUSY;
1615 			uvm_pagelock(pg);
1616 			uvm_pagewakeup(pg);
1617 			uvm_pageunlock(pg);
1618 			UVM_PAGE_OWN(pg, NULL);
1619 		}
1620 	}
1621 	if (pageout_done != 0) {
1622 		uvm_pageout_done(pageout_done);
1623 	}
1624 }
1625 
1626 /*
1627  * uvm_pagewait: wait for a busy page
1628  *
1629  * => page must be known PG_BUSY
1630  * => object must be read or write locked
1631  * => object will be unlocked on return
1632  */
1633 
1634 void
uvm_pagewait(struct vm_page * pg,krwlock_t * lock,const char * wmesg)1635 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
1636 {
1637 
1638 	KASSERT(rw_lock_held(lock));
1639 	KASSERT((pg->flags & PG_BUSY) != 0);
1640 	KASSERT(uvm_page_owner_locked_p(pg, false));
1641 
1642 	mutex_enter(&pg->interlock);
1643 	pg->pqflags |= PQ_WANTED;
1644 	rw_exit(lock);
1645 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
1646 }
1647 
1648 /*
1649  * uvm_pagewakeup: wake anyone waiting on a page
1650  *
1651  * => page interlock must be held
1652  */
1653 
1654 void
uvm_pagewakeup(struct vm_page * pg)1655 uvm_pagewakeup(struct vm_page *pg)
1656 {
1657 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1658 
1659 	KASSERT(mutex_owned(&pg->interlock));
1660 
1661 	UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
1662 
1663 	if ((pg->pqflags & PQ_WANTED) != 0) {
1664 		wakeup(pg);
1665 		pg->pqflags &= ~PQ_WANTED;
1666 	}
1667 }
1668 
1669 /*
1670  * uvm_pagewanted_p: return true if someone is waiting on the page
1671  *
1672  * => object must be write locked (lock out all concurrent access)
1673  */
1674 
1675 bool
uvm_pagewanted_p(struct vm_page * pg)1676 uvm_pagewanted_p(struct vm_page *pg)
1677 {
1678 
1679 	KASSERT(uvm_page_owner_locked_p(pg, true));
1680 
1681 	return (atomic_load_relaxed(&pg->pqflags) & PQ_WANTED) != 0;
1682 }
1683 
1684 #if defined(UVM_PAGE_TRKOWN)
1685 /*
1686  * uvm_page_own: set or release page ownership
1687  *
1688  * => this is a debugging function that keeps track of who sets PG_BUSY
1689  *	and where they do it.   it can be used to track down problems
1690  *	such a process setting "PG_BUSY" and never releasing it.
1691  * => page's object [if any] must be locked
1692  * => if "tag" is NULL then we are releasing page ownership
1693  */
1694 void
uvm_page_own(struct vm_page * pg,const char * tag)1695 uvm_page_own(struct vm_page *pg, const char *tag)
1696 {
1697 
1698 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1699 	KASSERT(uvm_page_owner_locked_p(pg, true));
1700 
1701 	/* gain ownership? */
1702 	if (tag) {
1703 		KASSERT((pg->flags & PG_BUSY) != 0);
1704 		if (pg->owner_tag) {
1705 			printf("uvm_page_own: page %p already owned "
1706 			    "by proc %d.%d [%s]\n", pg,
1707 			    pg->owner, pg->lowner, pg->owner_tag);
1708 			panic("uvm_page_own");
1709 		}
1710 		pg->owner = curproc->p_pid;
1711 		pg->lowner = curlwp->l_lid;
1712 		pg->owner_tag = tag;
1713 		return;
1714 	}
1715 
1716 	/* drop ownership */
1717 	KASSERT((pg->flags & PG_BUSY) == 0);
1718 	if (pg->owner_tag == NULL) {
1719 		printf("uvm_page_own: dropping ownership of an non-owned "
1720 		    "page (%p)\n", pg);
1721 		panic("uvm_page_own");
1722 	}
1723 	pg->owner_tag = NULL;
1724 }
1725 #endif
1726 
1727 /*
1728  * uvm_pagelookup: look up a page
1729  *
1730  * => caller should lock object to keep someone from pulling the page
1731  *	out from under it
1732  */
1733 
1734 struct vm_page *
uvm_pagelookup(struct uvm_object * obj,voff_t off)1735 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1736 {
1737 	struct vm_page *pg;
1738 
1739 	KASSERT(db_active || rw_lock_held(obj->vmobjlock));
1740 
1741 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1742 
1743 	KASSERT(pg == NULL || obj->uo_npages != 0);
1744 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1745 		(pg->flags & PG_BUSY) != 0);
1746 	return pg;
1747 }
1748 
1749 /*
1750  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1751  *
1752  * => caller must lock objects
1753  * => caller must hold pg->interlock
1754  */
1755 
1756 void
uvm_pagewire(struct vm_page * pg)1757 uvm_pagewire(struct vm_page *pg)
1758 {
1759 
1760 	KASSERT(uvm_page_owner_locked_p(pg, true));
1761 	KASSERT(mutex_owned(&pg->interlock));
1762 #if defined(READAHEAD_STATS)
1763 	if ((pg->flags & PG_READAHEAD) != 0) {
1764 		uvm_ra_hit.ev_count++;
1765 		pg->flags &= ~PG_READAHEAD;
1766 	}
1767 #endif /* defined(READAHEAD_STATS) */
1768 	if (pg->wire_count == 0) {
1769 		uvm_pagedequeue(pg);
1770 		atomic_inc_uint(&uvmexp.wired);
1771 	}
1772 	pg->wire_count++;
1773 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
1774 }
1775 
1776 /*
1777  * uvm_pageunwire: unwire the page.
1778  *
1779  * => activate if wire count goes to zero.
1780  * => caller must lock objects
1781  * => caller must hold pg->interlock
1782  */
1783 
1784 void
uvm_pageunwire(struct vm_page * pg)1785 uvm_pageunwire(struct vm_page *pg)
1786 {
1787 
1788 	KASSERT(uvm_page_owner_locked_p(pg, true));
1789 	KASSERT(pg->wire_count != 0);
1790 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
1791 	KASSERT(mutex_owned(&pg->interlock));
1792 	pg->wire_count--;
1793 	if (pg->wire_count == 0) {
1794 		uvm_pageactivate(pg);
1795 		KASSERT(uvmexp.wired != 0);
1796 		atomic_dec_uint(&uvmexp.wired);
1797 	}
1798 }
1799 
1800 /*
1801  * uvm_pagedeactivate: deactivate page
1802  *
1803  * => caller must lock objects
1804  * => caller must check to make sure page is not wired
1805  * => object that page belongs to must be locked (so we can adjust pg->flags)
1806  * => caller must clear the reference on the page before calling
1807  * => caller must hold pg->interlock
1808  */
1809 
1810 void
uvm_pagedeactivate(struct vm_page * pg)1811 uvm_pagedeactivate(struct vm_page *pg)
1812 {
1813 
1814 	KASSERT(uvm_page_owner_locked_p(pg, false));
1815 	KASSERT(mutex_owned(&pg->interlock));
1816 	if (pg->wire_count == 0) {
1817 		KASSERT(uvmpdpol_pageisqueued_p(pg));
1818 		uvmpdpol_pagedeactivate(pg);
1819 	}
1820 }
1821 
1822 /*
1823  * uvm_pageactivate: activate page
1824  *
1825  * => caller must lock objects
1826  * => caller must hold pg->interlock
1827  */
1828 
1829 void
uvm_pageactivate(struct vm_page * pg)1830 uvm_pageactivate(struct vm_page *pg)
1831 {
1832 
1833 	KASSERT(uvm_page_owner_locked_p(pg, false));
1834 	KASSERT(mutex_owned(&pg->interlock));
1835 #if defined(READAHEAD_STATS)
1836 	if ((pg->flags & PG_READAHEAD) != 0) {
1837 		uvm_ra_hit.ev_count++;
1838 		pg->flags &= ~PG_READAHEAD;
1839 	}
1840 #endif /* defined(READAHEAD_STATS) */
1841 	if (pg->wire_count == 0) {
1842 		uvmpdpol_pageactivate(pg);
1843 	}
1844 }
1845 
1846 /*
1847  * uvm_pagedequeue: remove a page from any paging queue
1848  *
1849  * => caller must lock objects
1850  * => caller must hold pg->interlock
1851  */
1852 void
uvm_pagedequeue(struct vm_page * pg)1853 uvm_pagedequeue(struct vm_page *pg)
1854 {
1855 
1856 	KASSERT(uvm_page_owner_locked_p(pg, true));
1857 	KASSERT(mutex_owned(&pg->interlock));
1858 	if (uvmpdpol_pageisqueued_p(pg)) {
1859 		uvmpdpol_pagedequeue(pg);
1860 	}
1861 }
1862 
1863 /*
1864  * uvm_pageenqueue: add a page to a paging queue without activating.
1865  * used where a page is not really demanded (yet).  eg. read-ahead
1866  *
1867  * => caller must lock objects
1868  * => caller must hold pg->interlock
1869  */
1870 void
uvm_pageenqueue(struct vm_page * pg)1871 uvm_pageenqueue(struct vm_page *pg)
1872 {
1873 
1874 	KASSERT(uvm_page_owner_locked_p(pg, false));
1875 	KASSERT(mutex_owned(&pg->interlock));
1876 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1877 		uvmpdpol_pageenqueue(pg);
1878 	}
1879 }
1880 
1881 /*
1882  * uvm_pagelock: acquire page interlock
1883  */
1884 void
uvm_pagelock(struct vm_page * pg)1885 uvm_pagelock(struct vm_page *pg)
1886 {
1887 
1888 	mutex_enter(&pg->interlock);
1889 }
1890 
1891 /*
1892  * uvm_pagelock2: acquire two page interlocks
1893  */
1894 void
uvm_pagelock2(struct vm_page * pg1,struct vm_page * pg2)1895 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
1896 {
1897 
1898 	if (pg1 < pg2) {
1899 		mutex_enter(&pg1->interlock);
1900 		mutex_enter(&pg2->interlock);
1901 	} else {
1902 		mutex_enter(&pg2->interlock);
1903 		mutex_enter(&pg1->interlock);
1904 	}
1905 }
1906 
1907 /*
1908  * uvm_pageunlock: release page interlock, and if a page replacement intent
1909  * is set on the page, pass it to uvmpdpol to make real.
1910  *
1911  * => caller must hold pg->interlock
1912  */
1913 void
uvm_pageunlock(struct vm_page * pg)1914 uvm_pageunlock(struct vm_page *pg)
1915 {
1916 
1917 	if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
1918 	    (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
1919 	    	mutex_exit(&pg->interlock);
1920 	    	return;
1921 	}
1922 	pg->pqflags |= PQ_INTENT_QUEUED;
1923 	mutex_exit(&pg->interlock);
1924 	uvmpdpol_pagerealize(pg);
1925 }
1926 
1927 /*
1928  * uvm_pageunlock2: release two page interlocks, and for both pages if a
1929  * page replacement intent is set on the page, pass it to uvmpdpol to make
1930  * real.
1931  *
1932  * => caller must hold pg->interlock
1933  */
1934 void
uvm_pageunlock2(struct vm_page * pg1,struct vm_page * pg2)1935 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
1936 {
1937 
1938 	if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
1939 	    (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
1940 	    	mutex_exit(&pg1->interlock);
1941 	    	pg1 = NULL;
1942 	} else {
1943 		pg1->pqflags |= PQ_INTENT_QUEUED;
1944 		mutex_exit(&pg1->interlock);
1945 	}
1946 
1947 	if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
1948 	    (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
1949 	    	mutex_exit(&pg2->interlock);
1950 	    	pg2 = NULL;
1951 	} else {
1952 		pg2->pqflags |= PQ_INTENT_QUEUED;
1953 		mutex_exit(&pg2->interlock);
1954 	}
1955 
1956 	if (pg1 != NULL) {
1957 		uvmpdpol_pagerealize(pg1);
1958 	}
1959 	if (pg2 != NULL) {
1960 		uvmpdpol_pagerealize(pg2);
1961 	}
1962 }
1963 
1964 /*
1965  * uvm_pagezero: zero fill a page
1966  *
1967  * => if page is part of an object then the object should be locked
1968  *	to protect pg->flags.
1969  */
1970 
1971 void
uvm_pagezero(struct vm_page * pg)1972 uvm_pagezero(struct vm_page *pg)
1973 {
1974 
1975 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1976 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1977 }
1978 
1979 /*
1980  * uvm_pagecopy: copy a page
1981  *
1982  * => if page is part of an object then the object should be locked
1983  *	to protect pg->flags.
1984  */
1985 
1986 void
uvm_pagecopy(struct vm_page * src,struct vm_page * dst)1987 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1988 {
1989 
1990 	uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
1991 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1992 }
1993 
1994 /*
1995  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1996  */
1997 
1998 bool
uvm_pageismanaged(paddr_t pa)1999 uvm_pageismanaged(paddr_t pa)
2000 {
2001 
2002 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
2003 }
2004 
2005 /*
2006  * uvm_page_lookup_freelist: look up the free list for the specified page
2007  */
2008 
2009 int
uvm_page_lookup_freelist(struct vm_page * pg)2010 uvm_page_lookup_freelist(struct vm_page *pg)
2011 {
2012 	uvm_physseg_t upm;
2013 
2014 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2015 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
2016 	return uvm_physseg_get_free_list(upm);
2017 }
2018 
2019 /*
2020  * uvm_page_owner_locked_p: return true if object associated with page is
2021  * locked.  this is a weak check for runtime assertions only.
2022  */
2023 
2024 bool
uvm_page_owner_locked_p(struct vm_page * pg,bool exclusive)2025 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
2026 {
2027 
2028 	if (pg->uobject != NULL) {
2029 		return exclusive
2030 		    ? rw_write_held(pg->uobject->vmobjlock)
2031 		    : rw_lock_held(pg->uobject->vmobjlock);
2032 	}
2033 	if (pg->uanon != NULL) {
2034 		return exclusive
2035 		    ? rw_write_held(pg->uanon->an_lock)
2036 		    : rw_lock_held(pg->uanon->an_lock);
2037 	}
2038 	return true;
2039 }
2040 
2041 /*
2042  * uvm_pagereadonly_p: return if the page should be mapped read-only
2043  */
2044 
2045 bool
uvm_pagereadonly_p(struct vm_page * pg)2046 uvm_pagereadonly_p(struct vm_page *pg)
2047 {
2048 	struct uvm_object * const uobj = pg->uobject;
2049 
2050 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
2051 	KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
2052 	if ((pg->flags & PG_RDONLY) != 0) {
2053 		return true;
2054 	}
2055 	if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
2056 		return true;
2057 	}
2058 	if (uobj == NULL) {
2059 		return false;
2060 	}
2061 	return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
2062 }
2063 
2064 #ifdef PMAP_DIRECT
2065 /*
2066  * Call pmap to translate physical address into a virtual and to run a callback
2067  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
2068  * or equivalent.
2069  */
2070 int
uvm_direct_process(struct vm_page ** pgs,u_int npages,voff_t off,vsize_t len,int (* process)(void *,size_t,void *),void * arg)2071 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
2072             int (*process)(void *, size_t, void *), void *arg)
2073 {
2074 	int error = 0;
2075 	paddr_t pa;
2076 	size_t todo;
2077 	voff_t pgoff = (off & PAGE_MASK);
2078 	struct vm_page *pg;
2079 
2080 	KASSERT(npages > 0);
2081 	KASSERT(len > 0);
2082 
2083 	for (int i = 0; i < npages; i++) {
2084 		pg = pgs[i];
2085 
2086 		KASSERT(len > 0);
2087 
2088 		/*
2089 		 * Caller is responsible for ensuring all the pages are
2090 		 * available.
2091 		 */
2092 		KASSERT(pg != NULL);
2093 		KASSERT(pg != PGO_DONTCARE);
2094 
2095 		pa = VM_PAGE_TO_PHYS(pg);
2096 		todo = MIN(len, PAGE_SIZE - pgoff);
2097 
2098 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
2099 		if (error)
2100 			break;
2101 
2102 		pgoff = 0;
2103 		len -= todo;
2104 	}
2105 
2106 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
2107 	return error;
2108 }
2109 #endif /* PMAP_DIRECT */
2110 
2111 #if defined(DDB) || defined(DEBUGPRINT)
2112 
2113 /*
2114  * uvm_page_printit: actually print the page
2115  */
2116 
2117 static const char page_flagbits[] = UVM_PGFLAGBITS;
2118 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2119 
2120 void
uvm_page_printit(struct vm_page * pg,bool full,void (* pr)(const char *,...))2121 uvm_page_printit(struct vm_page *pg, bool full,
2122     void (*pr)(const char *, ...))
2123 {
2124 	struct vm_page *tpg;
2125 	struct uvm_object *uobj;
2126 	struct pgflbucket *pgb;
2127 	struct pgflist *pgl;
2128 	char pgbuf[128];
2129 
2130 	(*pr)("PAGE %p:\n", pg);
2131 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2132 	(*pr)("  flags=%s\n", pgbuf);
2133 	snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
2134 	(*pr)("  pqflags=%s\n", pgbuf);
2135 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
2136 	    pg->uobject, pg->uanon, (long long)pg->offset);
2137 	(*pr)("  loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
2138 	    pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
2139 	    uvm_page_get_freelist(pg));
2140 	(*pr)("  pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
2141 #if defined(UVM_PAGE_TRKOWN)
2142 	if (pg->flags & PG_BUSY)
2143 		(*pr)("  owning process = %d.%d, tag=%s\n",
2144 		    pg->owner, pg->lowner, pg->owner_tag);
2145 	else
2146 		(*pr)("  page not busy, no owner\n");
2147 #else
2148 	(*pr)("  [page ownership tracking disabled]\n");
2149 #endif
2150 
2151 	if (!full)
2152 		return;
2153 
2154 	/* cross-verify object/anon */
2155 	if ((pg->flags & PG_FREE) == 0) {
2156 		if (pg->flags & PG_ANON) {
2157 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
2158 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2159 				(pg->uanon) ? pg->uanon->an_page : NULL);
2160 			else
2161 				(*pr)("  anon backpointer is OK\n");
2162 		} else {
2163 			uobj = pg->uobject;
2164 			if (uobj) {
2165 				(*pr)("  checking object list\n");
2166 				tpg = uvm_pagelookup(uobj, pg->offset);
2167 				if (tpg)
2168 					(*pr)("  page found on object list\n");
2169 				else
2170 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2171 			}
2172 		}
2173 	}
2174 
2175 	/* cross-verify page queue */
2176 	if (pg->flags & PG_FREE) {
2177 		int fl = uvm_page_get_freelist(pg);
2178 		int b = uvm_page_get_bucket(pg);
2179 		pgb = uvm.page_free[fl].pgfl_buckets[b];
2180 		pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
2181 		(*pr)("  checking pageq list\n");
2182 		LIST_FOREACH(tpg, pgl, pageq.list) {
2183 			if (tpg == pg) {
2184 				break;
2185 			}
2186 		}
2187 		if (tpg)
2188 			(*pr)("  page found on pageq list\n");
2189 		else
2190 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2191 	}
2192 }
2193 
2194 /*
2195  * uvm_page_printall - print a summary of all managed pages
2196  */
2197 
2198 void
uvm_page_printall(void (* pr)(const char *,...))2199 uvm_page_printall(void (*pr)(const char *, ...))
2200 {
2201 	uvm_physseg_t i;
2202 	paddr_t pfn;
2203 	struct vm_page *pg;
2204 
2205 	(*pr)("%18s %4s %4s %18s %18s"
2206 #ifdef UVM_PAGE_TRKOWN
2207 	    " OWNER"
2208 #endif
2209 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2210 	for (i = uvm_physseg_get_first();
2211 	     uvm_physseg_valid_p(i);
2212 	     i = uvm_physseg_get_next(i)) {
2213 		for (pfn = uvm_physseg_get_start(i);
2214 		     pfn < uvm_physseg_get_end(i);
2215 		     pfn++) {
2216 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
2217 
2218 			(*pr)("%18p %04x %08x %18p %18p",
2219 			    pg, pg->flags, pg->pqflags, pg->uobject,
2220 			    pg->uanon);
2221 #ifdef UVM_PAGE_TRKOWN
2222 			if (pg->flags & PG_BUSY)
2223 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2224 #endif
2225 			(*pr)("\n");
2226 		}
2227 	}
2228 }
2229 
2230 /*
2231  * uvm_page_print_freelists - print a summary freelists
2232  */
2233 
2234 void
uvm_page_print_freelists(void (* pr)(const char *,...))2235 uvm_page_print_freelists(void (*pr)(const char *, ...))
2236 {
2237 	struct pgfreelist *pgfl;
2238 	struct pgflbucket *pgb;
2239 	int fl, b, c;
2240 
2241 	(*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
2242 	    VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
2243 
2244 	for (fl = 0; fl < VM_NFREELIST; fl++) {
2245 		pgfl = &uvm.page_free[fl];
2246 		(*pr)("freelist(%d) @ %p\n", fl, pgfl);
2247 		for (b = 0; b < uvm.bucketcount; b++) {
2248 			pgb = uvm.page_free[fl].pgfl_buckets[b];
2249 			(*pr)("    bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
2250 			    b, pgb, pgb->pgb_nfree,
2251 			    &uvm_freelist_locks[b].lock);
2252 			for (c = 0; c < uvmexp.ncolors; c++) {
2253 				(*pr)("        color(%d) @ %p, ", c,
2254 				    &pgb->pgb_colors[c]);
2255 				(*pr)("first page = %p\n",
2256 				    LIST_FIRST(&pgb->pgb_colors[c]));
2257 			}
2258 		}
2259 	}
2260 }
2261 
2262 #endif /* DDB || DEBUGPRINT */
2263