1 /* $NetBSD: ttm_page_alloc_dma.c,v 1.3 2021/12/18 23:45:44 riastradh Exp $ */
2
3 /*
4 * Copyright 2011 (c) Oracle Corp.
5
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the "Software"),
8 * to deal in the Software without restriction, including without limitation
9 * the rights to use, copy, modify, merge, publish, distribute, sub license,
10 * and/or sell copies of the Software, and to permit persons to whom the
11 * Software is furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
23 * DEALINGS IN THE SOFTWARE.
24 *
25 * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
26 */
27
28 /*
29 * A simple DMA pool losely based on dmapool.c. It has certain advantages
30 * over the DMA pools:
31 * - Pool collects resently freed pages for reuse (and hooks up to
32 * the shrinker).
33 * - Tracks currently in use pages
34 * - Tracks whether the page is UC, WB or cached (and reverts to WB
35 * when freed).
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: ttm_page_alloc_dma.c,v 1.3 2021/12/18 23:45:44 riastradh Exp $");
40
41 #define pr_fmt(fmt) "[TTM] " fmt
42
43 #include <linux/dma-mapping.h>
44 #include <linux/list.h>
45 #include <linux/seq_file.h> /* for seq_printf */
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/highmem.h>
49 #include <linux/mm_types.h>
50 #include <linux/module.h>
51 #include <linux/mm.h>
52 #include <linux/atomic.h>
53 #include <linux/device.h>
54 #include <linux/kthread.h>
55 #include <drm/ttm/ttm_bo_driver.h>
56 #include <drm/ttm/ttm_page_alloc.h>
57 #include <drm/ttm/ttm_set_memory.h>
58
59 #define NUM_PAGES_TO_ALLOC (PAGE_SIZE/sizeof(struct page *))
60 #define SMALL_ALLOCATION 4
61 #define FREE_ALL_PAGES (~0U)
62 #define VADDR_FLAG_HUGE_POOL 1UL
63 #define VADDR_FLAG_UPDATED_COUNT 2UL
64
65 enum pool_type {
66 IS_UNDEFINED = 0,
67 IS_WC = 1 << 1,
68 IS_UC = 1 << 2,
69 IS_CACHED = 1 << 3,
70 IS_DMA32 = 1 << 4,
71 IS_HUGE = 1 << 5
72 };
73
74 /*
75 * The pool structure. There are up to nine pools:
76 * - generic (not restricted to DMA32):
77 * - write combined, uncached, cached.
78 * - dma32 (up to 2^32 - so up 4GB):
79 * - write combined, uncached, cached.
80 * - huge (not restricted to DMA32):
81 * - write combined, uncached, cached.
82 * for each 'struct device'. The 'cached' is for pages that are actively used.
83 * The other ones can be shrunk by the shrinker API if neccessary.
84 * @pools: The 'struct device->dma_pools' link.
85 * @type: Type of the pool
86 * @lock: Protects the free_list from concurrnet access. Must be
87 * used with irqsave/irqrestore variants because pool allocator maybe called
88 * from delayed work.
89 * @free_list: Pool of pages that are free to be used. No order requirements.
90 * @dev: The device that is associated with these pools.
91 * @size: Size used during DMA allocation.
92 * @npages_free: Count of available pages for re-use.
93 * @npages_in_use: Count of pages that are in use.
94 * @nfrees: Stats when pool is shrinking.
95 * @nrefills: Stats when the pool is grown.
96 * @gfp_flags: Flags to pass for alloc_page.
97 * @name: Name of the pool.
98 * @dev_name: Name derieved from dev - similar to how dev_info works.
99 * Used during shutdown as the dev_info during release is unavailable.
100 */
101 struct dma_pool {
102 struct list_head pools; /* The 'struct device->dma_pools link */
103 enum pool_type type;
104 spinlock_t lock;
105 struct list_head free_list;
106 struct device *dev;
107 unsigned size;
108 unsigned npages_free;
109 unsigned npages_in_use;
110 unsigned long nfrees; /* Stats when shrunk. */
111 unsigned long nrefills; /* Stats when grown. */
112 gfp_t gfp_flags;
113 char name[13]; /* "cached dma32" */
114 char dev_name[64]; /* Constructed from dev */
115 };
116
117 /*
118 * The accounting page keeping track of the allocated page along with
119 * the DMA address.
120 * @page_list: The link to the 'page_list' in 'struct dma_pool'.
121 * @vaddr: The virtual address of the page and a flag if the page belongs to a
122 * huge pool
123 * @dma: The bus address of the page. If the page is not allocated
124 * via the DMA API, it will be -1.
125 */
126 struct dma_page {
127 struct list_head page_list;
128 unsigned long vaddr;
129 struct page *p;
130 dma_addr_t dma;
131 };
132
133 /*
134 * Limits for the pool. They are handled without locks because only place where
135 * they may change is in sysfs store. They won't have immediate effect anyway
136 * so forcing serialization to access them is pointless.
137 */
138
139 struct ttm_pool_opts {
140 unsigned alloc_size;
141 unsigned max_size;
142 unsigned small;
143 };
144
145 /*
146 * Contains the list of all of the 'struct device' and their corresponding
147 * DMA pools. Guarded by _mutex->lock.
148 * @pools: The link to 'struct ttm_pool_manager->pools'
149 * @dev: The 'struct device' associated with the 'pool'
150 * @pool: The 'struct dma_pool' associated with the 'dev'
151 */
152 struct device_pools {
153 struct list_head pools;
154 struct device *dev;
155 struct dma_pool *pool;
156 };
157
158 /*
159 * struct ttm_pool_manager - Holds memory pools for fast allocation
160 *
161 * @lock: Lock used when adding/removing from pools
162 * @pools: List of 'struct device' and 'struct dma_pool' tuples.
163 * @options: Limits for the pool.
164 * @npools: Total amount of pools in existence.
165 * @shrinker: The structure used by [un|]register_shrinker
166 */
167 struct ttm_pool_manager {
168 struct mutex lock;
169 struct list_head pools;
170 struct ttm_pool_opts options;
171 unsigned npools;
172 struct shrinker mm_shrink;
173 struct kobject kobj;
174 };
175
176 static struct ttm_pool_manager *_manager;
177
178 static struct attribute ttm_page_pool_max = {
179 .name = "pool_max_size",
180 .mode = S_IRUGO | S_IWUSR
181 };
182 static struct attribute ttm_page_pool_small = {
183 .name = "pool_small_allocation",
184 .mode = S_IRUGO | S_IWUSR
185 };
186 static struct attribute ttm_page_pool_alloc_size = {
187 .name = "pool_allocation_size",
188 .mode = S_IRUGO | S_IWUSR
189 };
190
191 static struct attribute *ttm_pool_attrs[] = {
192 &ttm_page_pool_max,
193 &ttm_page_pool_small,
194 &ttm_page_pool_alloc_size,
195 NULL
196 };
197
ttm_pool_kobj_release(struct kobject * kobj)198 static void ttm_pool_kobj_release(struct kobject *kobj)
199 {
200 struct ttm_pool_manager *m =
201 container_of(kobj, struct ttm_pool_manager, kobj);
202 kfree(m);
203 }
204
ttm_pool_store(struct kobject * kobj,struct attribute * attr,const char * buffer,size_t size)205 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
206 const char *buffer, size_t size)
207 {
208 struct ttm_pool_manager *m =
209 container_of(kobj, struct ttm_pool_manager, kobj);
210 int chars;
211 unsigned val;
212
213 chars = sscanf(buffer, "%u", &val);
214 if (chars == 0)
215 return size;
216
217 /* Convert kb to number of pages */
218 val = val / (PAGE_SIZE >> 10);
219
220 if (attr == &ttm_page_pool_max) {
221 m->options.max_size = val;
222 } else if (attr == &ttm_page_pool_small) {
223 m->options.small = val;
224 } else if (attr == &ttm_page_pool_alloc_size) {
225 if (val > NUM_PAGES_TO_ALLOC*8) {
226 pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
227 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
228 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229 return size;
230 } else if (val > NUM_PAGES_TO_ALLOC) {
231 pr_warn("Setting allocation size to larger than %lu is not recommended\n",
232 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
233 }
234 m->options.alloc_size = val;
235 }
236
237 return size;
238 }
239
ttm_pool_show(struct kobject * kobj,struct attribute * attr,char * buffer)240 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
241 char *buffer)
242 {
243 struct ttm_pool_manager *m =
244 container_of(kobj, struct ttm_pool_manager, kobj);
245 unsigned val = 0;
246
247 if (attr == &ttm_page_pool_max)
248 val = m->options.max_size;
249 else if (attr == &ttm_page_pool_small)
250 val = m->options.small;
251 else if (attr == &ttm_page_pool_alloc_size)
252 val = m->options.alloc_size;
253
254 val = val * (PAGE_SIZE >> 10);
255
256 return snprintf(buffer, PAGE_SIZE, "%u\n", val);
257 }
258
259 static const struct sysfs_ops ttm_pool_sysfs_ops = {
260 .show = &ttm_pool_show,
261 .store = &ttm_pool_store,
262 };
263
264 static struct kobj_type ttm_pool_kobj_type = {
265 .release = &ttm_pool_kobj_release,
266 .sysfs_ops = &ttm_pool_sysfs_ops,
267 .default_attrs = ttm_pool_attrs,
268 };
269
ttm_set_pages_caching(struct dma_pool * pool,struct page ** pages,unsigned cpages)270 static int ttm_set_pages_caching(struct dma_pool *pool,
271 struct page **pages, unsigned cpages)
272 {
273 int r = 0;
274 /* Set page caching */
275 if (pool->type & IS_UC) {
276 r = ttm_set_pages_array_uc(pages, cpages);
277 if (r)
278 pr_err("%s: Failed to set %d pages to uc!\n",
279 pool->dev_name, cpages);
280 }
281 if (pool->type & IS_WC) {
282 r = ttm_set_pages_array_wc(pages, cpages);
283 if (r)
284 pr_err("%s: Failed to set %d pages to wc!\n",
285 pool->dev_name, cpages);
286 }
287 return r;
288 }
289
__ttm_dma_free_page(struct dma_pool * pool,struct dma_page * d_page)290 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
291 {
292 unsigned long attrs = 0;
293 dma_addr_t dma = d_page->dma;
294 d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
295 if (pool->type & IS_HUGE)
296 attrs = DMA_ATTR_NO_WARN;
297
298 dma_free_attrs(pool->dev, pool->size, (void *)d_page->vaddr, dma, attrs);
299
300 kfree(d_page);
301 d_page = NULL;
302 }
__ttm_dma_alloc_page(struct dma_pool * pool)303 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
304 {
305 struct dma_page *d_page;
306 unsigned long attrs = 0;
307 void *vaddr;
308
309 d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
310 if (!d_page)
311 return NULL;
312
313 if (pool->type & IS_HUGE)
314 attrs = DMA_ATTR_NO_WARN;
315
316 vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
317 pool->gfp_flags, attrs);
318 if (vaddr) {
319 if (is_vmalloc_addr(vaddr))
320 d_page->p = vmalloc_to_page(vaddr);
321 else
322 d_page->p = virt_to_page(vaddr);
323 d_page->vaddr = (unsigned long)vaddr;
324 if (pool->type & IS_HUGE)
325 d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
326 } else {
327 kfree(d_page);
328 d_page = NULL;
329 }
330 return d_page;
331 }
ttm_to_type(int flags,enum ttm_caching_state cstate)332 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
333 {
334 enum pool_type type = IS_UNDEFINED;
335
336 if (flags & TTM_PAGE_FLAG_DMA32)
337 type |= IS_DMA32;
338 if (cstate == tt_cached)
339 type |= IS_CACHED;
340 else if (cstate == tt_uncached)
341 type |= IS_UC;
342 else
343 type |= IS_WC;
344
345 return type;
346 }
347
ttm_pool_update_free_locked(struct dma_pool * pool,unsigned freed_pages)348 static void ttm_pool_update_free_locked(struct dma_pool *pool,
349 unsigned freed_pages)
350 {
351 pool->npages_free -= freed_pages;
352 pool->nfrees += freed_pages;
353
354 }
355
356 /* set memory back to wb and free the pages. */
ttm_dma_page_put(struct dma_pool * pool,struct dma_page * d_page)357 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
358 {
359 struct page *page = d_page->p;
360 unsigned num_pages;
361
362 /* Don't set WB on WB page pool. */
363 if (!(pool->type & IS_CACHED)) {
364 num_pages = pool->size / PAGE_SIZE;
365 if (ttm_set_pages_wb(page, num_pages))
366 pr_err("%s: Failed to set %d pages to wb!\n",
367 pool->dev_name, num_pages);
368 }
369
370 list_del(&d_page->page_list);
371 __ttm_dma_free_page(pool, d_page);
372 }
373
ttm_dma_pages_put(struct dma_pool * pool,struct list_head * d_pages,struct page * pages[],unsigned npages)374 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
375 struct page *pages[], unsigned npages)
376 {
377 struct dma_page *d_page, *tmp;
378
379 if (pool->type & IS_HUGE) {
380 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
381 ttm_dma_page_put(pool, d_page);
382
383 return;
384 }
385
386 /* Don't set WB on WB page pool. */
387 if (npages && !(pool->type & IS_CACHED) &&
388 ttm_set_pages_array_wb(pages, npages))
389 pr_err("%s: Failed to set %d pages to wb!\n",
390 pool->dev_name, npages);
391
392 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
393 list_del(&d_page->page_list);
394 __ttm_dma_free_page(pool, d_page);
395 }
396 }
397
398 /*
399 * Free pages from pool.
400 *
401 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
402 * number of pages in one go.
403 *
404 * @pool: to free the pages from
405 * @nr_free: If set to true will free all pages in pool
406 * @use_static: Safe to use static buffer
407 **/
ttm_dma_page_pool_free(struct dma_pool * pool,unsigned nr_free,bool use_static)408 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
409 bool use_static)
410 {
411 static struct page *static_buf[NUM_PAGES_TO_ALLOC];
412 unsigned long irq_flags;
413 struct dma_page *dma_p, *tmp;
414 struct page **pages_to_free;
415 struct list_head d_pages;
416 unsigned freed_pages = 0,
417 npages_to_free = nr_free;
418
419 if (NUM_PAGES_TO_ALLOC < nr_free)
420 npages_to_free = NUM_PAGES_TO_ALLOC;
421
422 if (use_static)
423 pages_to_free = static_buf;
424 else
425 pages_to_free = kmalloc_array(npages_to_free,
426 sizeof(struct page *),
427 GFP_KERNEL);
428
429 if (!pages_to_free) {
430 pr_debug("%s: Failed to allocate memory for pool free operation\n",
431 pool->dev_name);
432 return 0;
433 }
434 INIT_LIST_HEAD(&d_pages);
435 restart:
436 spin_lock_irqsave(&pool->lock, irq_flags);
437
438 /* We picking the oldest ones off the list */
439 list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
440 page_list) {
441 if (freed_pages >= npages_to_free)
442 break;
443
444 /* Move the dma_page from one list to another. */
445 list_move(&dma_p->page_list, &d_pages);
446
447 pages_to_free[freed_pages++] = dma_p->p;
448 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
449 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
450
451 ttm_pool_update_free_locked(pool, freed_pages);
452 /**
453 * Because changing page caching is costly
454 * we unlock the pool to prevent stalling.
455 */
456 spin_unlock_irqrestore(&pool->lock, irq_flags);
457
458 ttm_dma_pages_put(pool, &d_pages, pages_to_free,
459 freed_pages);
460
461 INIT_LIST_HEAD(&d_pages);
462
463 if (likely(nr_free != FREE_ALL_PAGES))
464 nr_free -= freed_pages;
465
466 if (NUM_PAGES_TO_ALLOC >= nr_free)
467 npages_to_free = nr_free;
468 else
469 npages_to_free = NUM_PAGES_TO_ALLOC;
470
471 freed_pages = 0;
472
473 /* free all so restart the processing */
474 if (nr_free)
475 goto restart;
476
477 /* Not allowed to fall through or break because
478 * following context is inside spinlock while we are
479 * outside here.
480 */
481 goto out;
482
483 }
484 }
485
486 /* remove range of pages from the pool */
487 if (freed_pages) {
488 ttm_pool_update_free_locked(pool, freed_pages);
489 nr_free -= freed_pages;
490 }
491
492 spin_unlock_irqrestore(&pool->lock, irq_flags);
493
494 if (freed_pages)
495 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
496 out:
497 if (pages_to_free != static_buf)
498 kfree(pages_to_free);
499 return nr_free;
500 }
501
ttm_dma_free_pool(struct device * dev,enum pool_type type)502 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
503 {
504 struct device_pools *p;
505 struct dma_pool *pool;
506
507 if (!dev)
508 return;
509
510 mutex_lock(&_manager->lock);
511 list_for_each_entry_reverse(p, &_manager->pools, pools) {
512 if (p->dev != dev)
513 continue;
514 pool = p->pool;
515 if (pool->type != type)
516 continue;
517
518 list_del(&p->pools);
519 kfree(p);
520 _manager->npools--;
521 break;
522 }
523 list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
524 if (pool->type != type)
525 continue;
526 /* Takes a spinlock.. */
527 /* OK to use static buffer since global mutex is held. */
528 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
529 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
530 /* This code path is called after _all_ references to the
531 * struct device has been dropped - so nobody should be
532 * touching it. In case somebody is trying to _add_ we are
533 * guarded by the mutex. */
534 list_del(&pool->pools);
535 kfree(pool);
536 break;
537 }
538 mutex_unlock(&_manager->lock);
539 }
540
541 /*
542 * On free-ing of the 'struct device' this deconstructor is run.
543 * Albeit the pool might have already been freed earlier.
544 */
ttm_dma_pool_release(struct device * dev,void * res)545 static void ttm_dma_pool_release(struct device *dev, void *res)
546 {
547 struct dma_pool *pool = *(struct dma_pool **)res;
548
549 if (pool)
550 ttm_dma_free_pool(dev, pool->type);
551 }
552
ttm_dma_pool_match(struct device * dev,void * res,void * match_data)553 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
554 {
555 return *(struct dma_pool **)res == match_data;
556 }
557
ttm_dma_pool_init(struct device * dev,gfp_t flags,enum pool_type type)558 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
559 enum pool_type type)
560 {
561 const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
562 enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
563 struct device_pools *sec_pool = NULL;
564 struct dma_pool *pool = NULL, **ptr;
565 unsigned i;
566 int ret = -ENODEV;
567 char *p;
568
569 if (!dev)
570 return NULL;
571
572 ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
573 if (!ptr)
574 return NULL;
575
576 ret = -ENOMEM;
577
578 pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
579 dev_to_node(dev));
580 if (!pool)
581 goto err_mem;
582
583 sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
584 dev_to_node(dev));
585 if (!sec_pool)
586 goto err_mem;
587
588 INIT_LIST_HEAD(&sec_pool->pools);
589 sec_pool->dev = dev;
590 sec_pool->pool = pool;
591
592 INIT_LIST_HEAD(&pool->free_list);
593 INIT_LIST_HEAD(&pool->pools);
594 spin_lock_init(&pool->lock);
595 pool->dev = dev;
596 pool->npages_free = pool->npages_in_use = 0;
597 pool->nfrees = 0;
598 pool->gfp_flags = flags;
599 if (type & IS_HUGE)
600 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
601 pool->size = HPAGE_PMD_SIZE;
602 #else
603 BUG();
604 #endif
605 else
606 pool->size = PAGE_SIZE;
607 pool->type = type;
608 pool->nrefills = 0;
609 p = pool->name;
610 for (i = 0; i < ARRAY_SIZE(t); i++) {
611 if (type & t[i]) {
612 p += snprintf(p, sizeof(pool->name) - (p - pool->name),
613 "%s", n[i]);
614 }
615 }
616 *p = 0;
617 /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
618 * - the kobj->name has already been deallocated.*/
619 snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
620 dev_driver_string(dev), dev_name(dev));
621 mutex_lock(&_manager->lock);
622 /* You can get the dma_pool from either the global: */
623 list_add(&sec_pool->pools, &_manager->pools);
624 _manager->npools++;
625 /* or from 'struct device': */
626 list_add(&pool->pools, &dev->dma_pools);
627 mutex_unlock(&_manager->lock);
628
629 *ptr = pool;
630 devres_add(dev, ptr);
631
632 return pool;
633 err_mem:
634 devres_free(ptr);
635 kfree(sec_pool);
636 kfree(pool);
637 return ERR_PTR(ret);
638 }
639
ttm_dma_find_pool(struct device * dev,enum pool_type type)640 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
641 enum pool_type type)
642 {
643 struct dma_pool *pool, *tmp;
644
645 if (type == IS_UNDEFINED)
646 return NULL;
647
648 /* NB: We iterate on the 'struct dev' which has no spinlock, but
649 * it does have a kref which we have taken. The kref is taken during
650 * graphic driver loading - in the drm_pci_init it calls either
651 * pci_dev_get or pci_register_driver which both end up taking a kref
652 * on 'struct device'.
653 *
654 * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
655 * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
656 * thing is at that point of time there are no pages associated with the
657 * driver so this function will not be called.
658 */
659 list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
660 if (pool->type == type)
661 return pool;
662 return NULL;
663 }
664
665 /*
666 * Free pages the pages that failed to change the caching state. If there
667 * are pages that have changed their caching state already put them to the
668 * pool.
669 */
ttm_dma_handle_caching_state_failure(struct dma_pool * pool,struct list_head * d_pages,struct page ** failed_pages,unsigned cpages)670 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
671 struct list_head *d_pages,
672 struct page **failed_pages,
673 unsigned cpages)
674 {
675 struct dma_page *d_page, *tmp;
676 struct page *p;
677 unsigned i = 0;
678
679 p = failed_pages[0];
680 if (!p)
681 return;
682 /* Find the failed page. */
683 list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
684 if (d_page->p != p)
685 continue;
686 /* .. and then progress over the full list. */
687 list_del(&d_page->page_list);
688 __ttm_dma_free_page(pool, d_page);
689 if (++i < cpages)
690 p = failed_pages[i];
691 else
692 break;
693 }
694
695 }
696
697 /*
698 * Allocate 'count' pages, and put 'need' number of them on the
699 * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
700 * The full list of pages should also be on 'd_pages'.
701 * We return zero for success, and negative numbers as errors.
702 */
ttm_dma_pool_alloc_new_pages(struct dma_pool * pool,struct list_head * d_pages,unsigned count)703 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
704 struct list_head *d_pages,
705 unsigned count)
706 {
707 struct page **caching_array;
708 struct dma_page *dma_p;
709 struct page *p;
710 int r = 0;
711 unsigned i, j, npages, cpages;
712 unsigned max_cpages = min(count,
713 (unsigned)(PAGE_SIZE/sizeof(struct page *)));
714
715 /* allocate array for page caching change */
716 caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
717 GFP_KERNEL);
718
719 if (!caching_array) {
720 pr_debug("%s: Unable to allocate table for new pages\n",
721 pool->dev_name);
722 return -ENOMEM;
723 }
724
725 if (count > 1)
726 pr_debug("%s: (%s:%d) Getting %d pages\n",
727 pool->dev_name, pool->name, current->pid, count);
728
729 for (i = 0, cpages = 0; i < count; ++i) {
730 dma_p = __ttm_dma_alloc_page(pool);
731 if (!dma_p) {
732 pr_debug("%s: Unable to get page %u\n",
733 pool->dev_name, i);
734
735 /* store already allocated pages in the pool after
736 * setting the caching state */
737 if (cpages) {
738 r = ttm_set_pages_caching(pool, caching_array,
739 cpages);
740 if (r)
741 ttm_dma_handle_caching_state_failure(
742 pool, d_pages, caching_array,
743 cpages);
744 }
745 r = -ENOMEM;
746 goto out;
747 }
748 p = dma_p->p;
749 list_add(&dma_p->page_list, d_pages);
750
751 #ifdef CONFIG_HIGHMEM
752 /* gfp flags of highmem page should never be dma32 so we
753 * we should be fine in such case
754 */
755 if (PageHighMem(p))
756 continue;
757 #endif
758
759 npages = pool->size / PAGE_SIZE;
760 for (j = 0; j < npages; ++j) {
761 caching_array[cpages++] = p + j;
762 if (cpages == max_cpages) {
763 /* Note: Cannot hold the spinlock */
764 r = ttm_set_pages_caching(pool, caching_array,
765 cpages);
766 if (r) {
767 ttm_dma_handle_caching_state_failure(
768 pool, d_pages, caching_array,
769 cpages);
770 goto out;
771 }
772 cpages = 0;
773 }
774 }
775 }
776
777 if (cpages) {
778 r = ttm_set_pages_caching(pool, caching_array, cpages);
779 if (r)
780 ttm_dma_handle_caching_state_failure(pool, d_pages,
781 caching_array, cpages);
782 }
783 out:
784 kfree(caching_array);
785 return r;
786 }
787
788 /*
789 * @return count of pages still required to fulfill the request.
790 */
ttm_dma_page_pool_fill_locked(struct dma_pool * pool,unsigned long * irq_flags)791 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
792 unsigned long *irq_flags)
793 {
794 unsigned count = _manager->options.small;
795 int r = pool->npages_free;
796
797 if (count > pool->npages_free) {
798 struct list_head d_pages;
799
800 INIT_LIST_HEAD(&d_pages);
801
802 spin_unlock_irqrestore(&pool->lock, *irq_flags);
803
804 /* Returns how many more are neccessary to fulfill the
805 * request. */
806 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
807
808 spin_lock_irqsave(&pool->lock, *irq_flags);
809 if (!r) {
810 /* Add the fresh to the end.. */
811 list_splice(&d_pages, &pool->free_list);
812 ++pool->nrefills;
813 pool->npages_free += count;
814 r = count;
815 } else {
816 struct dma_page *d_page;
817 unsigned cpages = 0;
818
819 pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
820 pool->dev_name, pool->name, r);
821
822 list_for_each_entry(d_page, &d_pages, page_list) {
823 cpages++;
824 }
825 list_splice_tail(&d_pages, &pool->free_list);
826 pool->npages_free += cpages;
827 r = cpages;
828 }
829 }
830 return r;
831 }
832
833 /*
834 * The populate list is actually a stack (not that is matters as TTM
835 * allocates one page at a time.
836 * return dma_page pointer if success, otherwise NULL.
837 */
ttm_dma_pool_get_pages(struct dma_pool * pool,struct ttm_dma_tt * ttm_dma,unsigned index)838 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
839 struct ttm_dma_tt *ttm_dma,
840 unsigned index)
841 {
842 struct dma_page *d_page = NULL;
843 struct ttm_tt *ttm = &ttm_dma->ttm;
844 unsigned long irq_flags;
845 int count;
846
847 spin_lock_irqsave(&pool->lock, irq_flags);
848 count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
849 if (count) {
850 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
851 ttm->pages[index] = d_page->p;
852 ttm_dma->dma_address[index] = d_page->dma;
853 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
854 pool->npages_in_use += 1;
855 pool->npages_free -= 1;
856 }
857 spin_unlock_irqrestore(&pool->lock, irq_flags);
858 return d_page;
859 }
860
ttm_dma_pool_gfp_flags(struct ttm_dma_tt * ttm_dma,bool huge)861 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
862 {
863 struct ttm_tt *ttm = &ttm_dma->ttm;
864 gfp_t gfp_flags;
865
866 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
867 gfp_flags = GFP_USER | GFP_DMA32;
868 else
869 gfp_flags = GFP_HIGHUSER;
870 if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
871 gfp_flags |= __GFP_ZERO;
872
873 if (huge) {
874 gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
875 __GFP_KSWAPD_RECLAIM;
876 gfp_flags &= ~__GFP_MOVABLE;
877 gfp_flags &= ~__GFP_COMP;
878 }
879
880 if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
881 gfp_flags |= __GFP_RETRY_MAYFAIL;
882
883 return gfp_flags;
884 }
885
886 /*
887 * On success pages list will hold count number of correctly
888 * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
889 */
ttm_dma_populate(struct ttm_dma_tt * ttm_dma,struct device * dev,struct ttm_operation_ctx * ctx)890 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
891 struct ttm_operation_ctx *ctx)
892 {
893 struct ttm_mem_global *mem_glob = &ttm_mem_glob;
894 struct ttm_tt *ttm = &ttm_dma->ttm;
895 unsigned long num_pages = ttm->num_pages;
896 struct dma_pool *pool;
897 struct dma_page *d_page;
898 enum pool_type type;
899 unsigned i;
900 int ret;
901
902 if (ttm->state != tt_unpopulated)
903 return 0;
904
905 if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
906 return -ENOMEM;
907
908 INIT_LIST_HEAD(&ttm_dma->pages_list);
909 i = 0;
910
911 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
912
913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
914 if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
915 goto skip_huge;
916
917 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
918 if (!pool) {
919 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
920
921 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
922 if (IS_ERR_OR_NULL(pool))
923 goto skip_huge;
924 }
925
926 while (num_pages >= HPAGE_PMD_NR) {
927 unsigned j;
928
929 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
930 if (!d_page)
931 break;
932
933 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
934 pool->size, ctx);
935 if (unlikely(ret != 0)) {
936 ttm_dma_unpopulate(ttm_dma, dev);
937 return -ENOMEM;
938 }
939
940 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
941 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
942 ttm->pages[j] = ttm->pages[j - 1] + 1;
943 ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
944 PAGE_SIZE;
945 }
946
947 i += HPAGE_PMD_NR;
948 num_pages -= HPAGE_PMD_NR;
949 }
950
951 skip_huge:
952 #endif
953
954 pool = ttm_dma_find_pool(dev, type);
955 if (!pool) {
956 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
957
958 pool = ttm_dma_pool_init(dev, gfp_flags, type);
959 if (IS_ERR_OR_NULL(pool))
960 return -ENOMEM;
961 }
962
963 while (num_pages) {
964 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
965 if (!d_page) {
966 ttm_dma_unpopulate(ttm_dma, dev);
967 return -ENOMEM;
968 }
969
970 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
971 pool->size, ctx);
972 if (unlikely(ret != 0)) {
973 ttm_dma_unpopulate(ttm_dma, dev);
974 return -ENOMEM;
975 }
976
977 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
978 ++i;
979 --num_pages;
980 }
981
982 if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
983 ret = ttm_tt_swapin(ttm);
984 if (unlikely(ret != 0)) {
985 ttm_dma_unpopulate(ttm_dma, dev);
986 return ret;
987 }
988 }
989
990 ttm->state = tt_unbound;
991 return 0;
992 }
993 EXPORT_SYMBOL_GPL(ttm_dma_populate);
994
995 /* Put all pages in pages list to correct pool to wait for reuse */
ttm_dma_unpopulate(struct ttm_dma_tt * ttm_dma,struct device * dev)996 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
997 {
998 struct ttm_mem_global *mem_glob = &ttm_mem_glob;
999 struct ttm_tt *ttm = &ttm_dma->ttm;
1000 struct dma_pool *pool;
1001 struct dma_page *d_page, *next;
1002 enum pool_type type;
1003 bool is_cached = false;
1004 unsigned count, i, npages = 0;
1005 unsigned long irq_flags;
1006
1007 type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1008
1009 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1010 pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1011 if (pool) {
1012 count = 0;
1013 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1014 page_list) {
1015 if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1016 continue;
1017
1018 count++;
1019 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1020 ttm_mem_global_free_page(mem_glob, d_page->p,
1021 pool->size);
1022 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1023 }
1024 ttm_dma_page_put(pool, d_page);
1025 }
1026
1027 spin_lock_irqsave(&pool->lock, irq_flags);
1028 pool->npages_in_use -= count;
1029 pool->nfrees += count;
1030 spin_unlock_irqrestore(&pool->lock, irq_flags);
1031 }
1032 #endif
1033
1034 pool = ttm_dma_find_pool(dev, type);
1035 if (!pool)
1036 return;
1037
1038 is_cached = (ttm_dma_find_pool(pool->dev,
1039 ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1040
1041 /* make sure pages array match list and count number of pages */
1042 count = 0;
1043 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1044 page_list) {
1045 ttm->pages[count] = d_page->p;
1046 count++;
1047
1048 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1049 ttm_mem_global_free_page(mem_glob, d_page->p,
1050 pool->size);
1051 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1052 }
1053
1054 if (is_cached)
1055 ttm_dma_page_put(pool, d_page);
1056 }
1057
1058 spin_lock_irqsave(&pool->lock, irq_flags);
1059 pool->npages_in_use -= count;
1060 if (is_cached) {
1061 pool->nfrees += count;
1062 } else {
1063 pool->npages_free += count;
1064 list_splice(&ttm_dma->pages_list, &pool->free_list);
1065 /*
1066 * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1067 * to free in order to minimize calls to set_memory_wb().
1068 */
1069 if (pool->npages_free >= (_manager->options.max_size +
1070 NUM_PAGES_TO_ALLOC))
1071 npages = pool->npages_free - _manager->options.max_size;
1072 }
1073 spin_unlock_irqrestore(&pool->lock, irq_flags);
1074
1075 INIT_LIST_HEAD(&ttm_dma->pages_list);
1076 for (i = 0; i < ttm->num_pages; i++) {
1077 ttm->pages[i] = NULL;
1078 ttm_dma->dma_address[i] = 0;
1079 }
1080
1081 /* shrink pool if necessary (only on !is_cached pools)*/
1082 if (npages)
1083 ttm_dma_page_pool_free(pool, npages, false);
1084 ttm->state = tt_unpopulated;
1085 }
1086 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1087
1088 /**
1089 * Callback for mm to request pool to reduce number of page held.
1090 *
1091 * XXX: (dchinner) Deadlock warning!
1092 *
1093 * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1094 * shrinkers
1095 */
1096 static unsigned long
ttm_dma_pool_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1097 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1098 {
1099 static unsigned start_pool;
1100 unsigned idx = 0;
1101 unsigned pool_offset;
1102 unsigned shrink_pages = sc->nr_to_scan;
1103 struct device_pools *p;
1104 unsigned long freed = 0;
1105
1106 if (list_empty(&_manager->pools))
1107 return SHRINK_STOP;
1108
1109 if (!mutex_trylock(&_manager->lock))
1110 return SHRINK_STOP;
1111 if (!_manager->npools)
1112 goto out;
1113 pool_offset = ++start_pool % _manager->npools;
1114 list_for_each_entry(p, &_manager->pools, pools) {
1115 unsigned nr_free;
1116
1117 if (!p->dev)
1118 continue;
1119 if (shrink_pages == 0)
1120 break;
1121 /* Do it in round-robin fashion. */
1122 if (++idx < pool_offset)
1123 continue;
1124 nr_free = shrink_pages;
1125 /* OK to use static buffer since global mutex is held. */
1126 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1127 freed += nr_free - shrink_pages;
1128
1129 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1130 p->pool->dev_name, p->pool->name, current->pid,
1131 nr_free, shrink_pages);
1132 }
1133 out:
1134 mutex_unlock(&_manager->lock);
1135 return freed;
1136 }
1137
1138 static unsigned long
ttm_dma_pool_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1139 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1140 {
1141 struct device_pools *p;
1142 unsigned long count = 0;
1143
1144 if (!mutex_trylock(&_manager->lock))
1145 return 0;
1146 list_for_each_entry(p, &_manager->pools, pools)
1147 count += p->pool->npages_free;
1148 mutex_unlock(&_manager->lock);
1149 return count;
1150 }
1151
ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager * manager)1152 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1153 {
1154 manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1155 manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1156 manager->mm_shrink.seeks = 1;
1157 return register_shrinker(&manager->mm_shrink);
1158 }
1159
ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager * manager)1160 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1161 {
1162 unregister_shrinker(&manager->mm_shrink);
1163 }
1164
ttm_dma_page_alloc_init(struct ttm_mem_global * glob,unsigned max_pages)1165 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1166 {
1167 int ret;
1168
1169 WARN_ON(_manager);
1170
1171 pr_info("Initializing DMA pool allocator\n");
1172
1173 _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1174 if (!_manager)
1175 return -ENOMEM;
1176
1177 mutex_init(&_manager->lock);
1178 INIT_LIST_HEAD(&_manager->pools);
1179
1180 _manager->options.max_size = max_pages;
1181 _manager->options.small = SMALL_ALLOCATION;
1182 _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1183
1184 /* This takes care of auto-freeing the _manager */
1185 ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1186 &glob->kobj, "dma_pool");
1187 if (unlikely(ret != 0))
1188 goto error;
1189
1190 ret = ttm_dma_pool_mm_shrink_init(_manager);
1191 if (unlikely(ret != 0))
1192 goto error;
1193 return 0;
1194
1195 error:
1196 kobject_put(&_manager->kobj);
1197 _manager = NULL;
1198 return ret;
1199 }
1200
ttm_dma_page_alloc_fini(void)1201 void ttm_dma_page_alloc_fini(void)
1202 {
1203 struct device_pools *p, *t;
1204
1205 pr_info("Finalizing DMA pool allocator\n");
1206 ttm_dma_pool_mm_shrink_fini(_manager);
1207
1208 list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1209 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1210 current->pid);
1211 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1212 ttm_dma_pool_match, p->pool));
1213 ttm_dma_free_pool(p->dev, p->pool->type);
1214 }
1215 kobject_put(&_manager->kobj);
1216 _manager = NULL;
1217 }
1218
ttm_dma_page_alloc_debugfs(struct seq_file * m,void * data)1219 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1220 {
1221 struct device_pools *p;
1222 struct dma_pool *pool = NULL;
1223
1224 if (!_manager) {
1225 seq_printf(m, "No pool allocator running.\n");
1226 return 0;
1227 }
1228 seq_printf(m, " pool refills pages freed inuse available name\n");
1229 mutex_lock(&_manager->lock);
1230 list_for_each_entry(p, &_manager->pools, pools) {
1231 struct device *dev = p->dev;
1232 if (!dev)
1233 continue;
1234 pool = p->pool;
1235 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1236 pool->name, pool->nrefills,
1237 pool->nfrees, pool->npages_in_use,
1238 pool->npages_free,
1239 pool->dev_name);
1240 }
1241 mutex_unlock(&_manager->lock);
1242 return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1245