xref: /minix3/common/dist/zlib/trees.c (revision 44bedb31d842b4b0444105519bcf929a69fe2dc1)
1 /*	$NetBSD: trees.c,v 1.3 2006/01/27 00:45:27 christos Exp $	*/
2 
3 /* trees.c -- output deflated data using Huffman coding
4  * Copyright (C) 1995-2005 Jean-loup Gailly
5  * For conditions of distribution and use, see copyright notice in zlib.h
6  */
7 
8 /*
9  *  ALGORITHM
10  *
11  *      The "deflation" process uses several Huffman trees. The more
12  *      common source values are represented by shorter bit sequences.
13  *
14  *      Each code tree is stored in a compressed form which is itself
15  * a Huffman encoding of the lengths of all the code strings (in
16  * ascending order by source values).  The actual code strings are
17  * reconstructed from the lengths in the inflate process, as described
18  * in the deflate specification.
19  *
20  *  REFERENCES
21  *
22  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
23  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
24  *
25  *      Storer, James A.
26  *          Data Compression:  Methods and Theory, pp. 49-50.
27  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
28  *
29  *      Sedgewick, R.
30  *          Algorithms, p290.
31  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
32  */
33 
34 /* @(#) Id */
35 
36 /* #define GEN_TREES_H */
37 
38 #include "deflate.h"
39 
40 #ifdef ZLIB_DEBUG
41 #  include <ctype.h>
42 #endif
43 
44 /* ===========================================================================
45  * Constants
46  */
47 
48 #define MAX_BL_BITS 7
49 /* Bit length codes must not exceed MAX_BL_BITS bits */
50 
51 #define END_BLOCK 256
52 /* end of block literal code */
53 
54 #define REP_3_6      16
55 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
56 
57 #define REPZ_3_10    17
58 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
59 
60 #define REPZ_11_138  18
61 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
62 
63 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
64    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
65 
66 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
67    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
68 
69 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
70    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
71 
72 local const uch bl_order[BL_CODES]
73    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
74 /* The lengths of the bit length codes are sent in order of decreasing
75  * probability, to avoid transmitting the lengths for unused bit length codes.
76  */
77 
78 #define Buf_size (8 * 2*sizeof(char))
79 /* Number of bits used within bi_buf. (bi_buf might be implemented on
80  * more than 16 bits on some systems.)
81  */
82 
83 /* ===========================================================================
84  * Local data. These are initialized only once.
85  */
86 
87 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
88 
89 #if defined(GEN_TREES_H) || !defined(STDC)
90 /* non ANSI compilers may not accept trees.h */
91 
92 local ct_data static_ltree[L_CODES+2];
93 /* The static literal tree. Since the bit lengths are imposed, there is no
94  * need for the L_CODES extra codes used during heap construction. However
95  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
96  * below).
97  */
98 
99 local ct_data static_dtree[D_CODES];
100 /* The static distance tree. (Actually a trivial tree since all codes use
101  * 5 bits.)
102  */
103 
104 uch _dist_code[DIST_CODE_LEN];
105 /* Distance codes. The first 256 values correspond to the distances
106  * 3 .. 258, the last 256 values correspond to the top 8 bits of
107  * the 15 bit distances.
108  */
109 
110 uch _length_code[MAX_MATCH-MIN_MATCH+1];
111 /* length code for each normalized match length (0 == MIN_MATCH) */
112 
113 local int base_length[LENGTH_CODES];
114 /* First normalized length for each code (0 = MIN_MATCH) */
115 
116 local int base_dist[D_CODES];
117 /* First normalized distance for each code (0 = distance of 1) */
118 
119 #else
120 #  include "trees.h"
121 #endif /* GEN_TREES_H */
122 
123 struct static_tree_desc_s {
124     const ct_data *static_tree;  /* static tree or NULL */
125     const intf *extra_bits;      /* extra bits for each code or NULL */
126     int     extra_base;          /* base index for extra_bits */
127     int     elems;               /* max number of elements in the tree */
128     int     max_length;          /* max bit length for the codes */
129 };
130 
131 local static_tree_desc  static_l_desc =
132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
133 
134 local static_tree_desc  static_d_desc =
135 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
136 
137 local static_tree_desc  static_bl_desc =
138 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
139 
140 /* ===========================================================================
141  * Local (static) routines in this file.
142  */
143 
144 local void tr_static_init OF((void));
145 local void init_block     OF((deflate_state *s));
146 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
147 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
148 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
149 local void build_tree     OF((deflate_state *s, tree_desc *desc));
150 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
151 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
152 local int  build_bl_tree  OF((deflate_state *s));
153 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
154                               int blcodes));
155 local void compress_block OF((deflate_state *s, ct_data *ltree,
156                               ct_data *dtree));
157 local void set_data_type  OF((deflate_state *s));
158 local unsigned bi_reverse OF((unsigned value, int length));
159 local void bi_windup      OF((deflate_state *s));
160 local void bi_flush       OF((deflate_state *s));
161 local void copy_block     OF((deflate_state *s, charf *buf, unsigned len,
162                               int header));
163 
164 #ifdef GEN_TREES_H
165 local void gen_trees_header OF((void));
166 #endif
167 
168 #ifndef ZLIB_DEBUG
169 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
170    /* Send a code of the given tree. c and tree must not have side effects */
171 
172 #else /* ZLIB_DEBUG */
173 #  define send_code(s, c, tree) \
174      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
175        send_bits(s, tree[c].Code, tree[c].Len); }
176 #endif
177 
178 /* ===========================================================================
179  * Output a short LSB first on the stream.
180  * IN assertion: there is enough room in pendingBuf.
181  */
182 #define put_short(s, w) { \
183     put_byte(s, (uch)((w) & 0xff)); \
184     put_byte(s, (uch)((ush)(w) >> 8)); \
185 }
186 
187 /* ===========================================================================
188  * Send a value on a given number of bits.
189  * IN assertion: length <= 16 and value fits in length bits.
190  */
191 #ifdef ZLIB_DEBUG
192 local void send_bits      OF((deflate_state *s, int value, int length));
193 
send_bits(s,value,length)194 local void send_bits(s, value, length)
195     deflate_state *s;
196     int value;  /* value to send */
197     int length; /* number of bits */
198 {
199     Tracevv((stderr," l %2d v %4x ", length, value));
200     Assert(length > 0 && length <= 15, "invalid length");
201     s->bits_sent += (ulg)length;
202 
203     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
204      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
205      * unused bits in value.
206      */
207     if (s->bi_valid > (int)Buf_size - length) {
208         s->bi_buf |= (value << s->bi_valid);
209         put_short(s, s->bi_buf);
210         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
211         s->bi_valid += length - Buf_size;
212     } else {
213         s->bi_buf |= value << s->bi_valid;
214         s->bi_valid += length;
215     }
216 }
217 #else /* !ZLIB_DEBUG */
218 
219 #define send_bits(s, value, length) \
220 { int len = length;\
221   if (s->bi_valid > (int)Buf_size - len) {\
222     int val = value;\
223     s->bi_buf |= (val << s->bi_valid);\
224     put_short(s, s->bi_buf);\
225     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
226     s->bi_valid += len - Buf_size;\
227   } else {\
228     s->bi_buf |= (value) << s->bi_valid;\
229     s->bi_valid += len;\
230   }\
231 }
232 #endif /* ZLIB_DEBUG */
233 
234 
235 /* the arguments must not have side effects */
236 
237 /* ===========================================================================
238  * Initialize the various 'constant' tables.
239  */
tr_static_init()240 local void tr_static_init()
241 {
242 #if defined(GEN_TREES_H) || !defined(STDC)
243     static int static_init_done = 0;
244     int n;        /* iterates over tree elements */
245     int bits;     /* bit counter */
246     int length;   /* length value */
247     int code;     /* code value */
248     int dist;     /* distance index */
249     ush bl_count[MAX_BITS+1];
250     /* number of codes at each bit length for an optimal tree */
251 
252     if (static_init_done) return;
253 
254     /* For some embedded targets, global variables are not initialized: */
255     static_l_desc.static_tree = static_ltree;
256     static_l_desc.extra_bits = extra_lbits;
257     static_d_desc.static_tree = static_dtree;
258     static_d_desc.extra_bits = extra_dbits;
259     static_bl_desc.extra_bits = extra_blbits;
260 
261     /* Initialize the mapping length (0..255) -> length code (0..28) */
262     length = 0;
263     for (code = 0; code < LENGTH_CODES-1; code++) {
264         base_length[code] = length;
265         for (n = 0; n < (1<<extra_lbits[code]); n++) {
266             _length_code[length++] = (uch)code;
267         }
268     }
269     Assert (length == 256, "tr_static_init: length != 256");
270     /* Note that the length 255 (match length 258) can be represented
271      * in two different ways: code 284 + 5 bits or code 285, so we
272      * overwrite length_code[255] to use the best encoding:
273      */
274     _length_code[length-1] = (uch)code;
275 
276     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
277     dist = 0;
278     for (code = 0 ; code < 16; code++) {
279         base_dist[code] = dist;
280         for (n = 0; n < (1<<extra_dbits[code]); n++) {
281             _dist_code[dist++] = (uch)code;
282         }
283     }
284     Assert (dist == 256, "tr_static_init: dist != 256");
285     dist >>= 7; /* from now on, all distances are divided by 128 */
286     for ( ; code < D_CODES; code++) {
287         base_dist[code] = dist << 7;
288         for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
289             _dist_code[256 + dist++] = (uch)code;
290         }
291     }
292     Assert (dist == 256, "tr_static_init: 256+dist != 512");
293 
294     /* Construct the codes of the static literal tree */
295     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
296     n = 0;
297     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
298     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
299     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
300     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
301     /* Codes 286 and 287 do not exist, but we must include them in the
302      * tree construction to get a canonical Huffman tree (longest code
303      * all ones)
304      */
305     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
306 
307     /* The static distance tree is trivial: */
308     for (n = 0; n < D_CODES; n++) {
309         static_dtree[n].Len = 5;
310         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
311     }
312     static_init_done = 1;
313 
314 #  ifdef GEN_TREES_H
315     gen_trees_header();
316 #  endif
317 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
318 }
319 
320 /* ===========================================================================
321  * Genererate the file trees.h describing the static trees.
322  */
323 #ifdef GEN_TREES_H
324 #  ifndef ZLIB_DEBUG
325 #    include <stdio.h>
326 #  endif
327 
328 #  define SEPARATOR(i, last, width) \
329       ((i) == (last)? "\n};\n\n" :    \
330        ((i) % (width) == (width)-1 ? ",\n" : ", "))
331 
gen_trees_header()332 void gen_trees_header()
333 {
334     FILE *header = fopen("trees.h", "w");
335     int i;
336 
337     Assert (header != NULL, "Can't open trees.h");
338     fprintf(header,
339             "/* header created automatically with -DGEN_TREES_H */\n\n");
340 
341     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
342     for (i = 0; i < L_CODES+2; i++) {
343         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
344                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
345     }
346 
347     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
348     for (i = 0; i < D_CODES; i++) {
349         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
350                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
351     }
352 
353     fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
354     for (i = 0; i < DIST_CODE_LEN; i++) {
355         fprintf(header, "%2u%s", _dist_code[i],
356                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
357     }
358 
359     fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
360     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
361         fprintf(header, "%2u%s", _length_code[i],
362                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
363     }
364 
365     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
366     for (i = 0; i < LENGTH_CODES; i++) {
367         fprintf(header, "%1u%s", base_length[i],
368                 SEPARATOR(i, LENGTH_CODES-1, 20));
369     }
370 
371     fprintf(header, "local const int base_dist[D_CODES] = {\n");
372     for (i = 0; i < D_CODES; i++) {
373         fprintf(header, "%5u%s", base_dist[i],
374                 SEPARATOR(i, D_CODES-1, 10));
375     }
376 
377     fclose(header);
378 }
379 #endif /* GEN_TREES_H */
380 
381 /* ===========================================================================
382  * Initialize the tree data structures for a new zlib stream.
383  */
_tr_init(s)384 void _tr_init(s)
385     deflate_state *s;
386 {
387     tr_static_init();
388 
389     s->l_desc.dyn_tree = s->dyn_ltree;
390     s->l_desc.stat_desc = &static_l_desc;
391 
392     s->d_desc.dyn_tree = s->dyn_dtree;
393     s->d_desc.stat_desc = &static_d_desc;
394 
395     s->bl_desc.dyn_tree = s->bl_tree;
396     s->bl_desc.stat_desc = &static_bl_desc;
397 
398     s->bi_buf = 0;
399     s->bi_valid = 0;
400     s->last_eob_len = 8; /* enough lookahead for inflate */
401 #ifdef ZLIB_DEBUG
402     s->compressed_len = 0L;
403     s->bits_sent = 0L;
404 #endif
405 
406     /* Initialize the first block of the first file: */
407     init_block(s);
408 }
409 
410 /* ===========================================================================
411  * Initialize a new block.
412  */
init_block(s)413 local void init_block(s)
414     deflate_state *s;
415 {
416     int n; /* iterates over tree elements */
417 
418     /* Initialize the trees. */
419     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
420     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
421     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
422 
423     s->dyn_ltree[END_BLOCK].Freq = 1;
424     s->opt_len = s->static_len = 0L;
425     s->last_lit = s->matches = 0;
426 }
427 
428 #define SMALLEST 1
429 /* Index within the heap array of least frequent node in the Huffman tree */
430 
431 
432 /* ===========================================================================
433  * Remove the smallest element from the heap and recreate the heap with
434  * one less element. Updates heap and heap_len.
435  */
436 #define pqremove(s, tree, top) \
437 {\
438     top = s->heap[SMALLEST]; \
439     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
440     pqdownheap(s, tree, SMALLEST); \
441 }
442 
443 /* ===========================================================================
444  * Compares to subtrees, using the tree depth as tie breaker when
445  * the subtrees have equal frequency. This minimizes the worst case length.
446  */
447 #define smaller(tree, n, m, depth) \
448    (tree[n].Freq < tree[m].Freq || \
449    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
450 
451 /* ===========================================================================
452  * Restore the heap property by moving down the tree starting at node k,
453  * exchanging a node with the smallest of its two sons if necessary, stopping
454  * when the heap property is re-established (each father smaller than its
455  * two sons).
456  */
pqdownheap(s,tree,k)457 local void pqdownheap(s, tree, k)
458     deflate_state *s;
459     ct_data *tree;  /* the tree to restore */
460     int k;               /* node to move down */
461 {
462     int v = s->heap[k];
463     int j = k << 1;  /* left son of k */
464     while (j <= s->heap_len) {
465         /* Set j to the smallest of the two sons: */
466         if (j < s->heap_len &&
467             smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
468             j++;
469         }
470         /* Exit if v is smaller than both sons */
471         if (smaller(tree, v, s->heap[j], s->depth)) break;
472 
473         /* Exchange v with the smallest son */
474         s->heap[k] = s->heap[j];  k = j;
475 
476         /* And continue down the tree, setting j to the left son of k */
477         j <<= 1;
478     }
479     s->heap[k] = v;
480 }
481 
482 /* ===========================================================================
483  * Compute the optimal bit lengths for a tree and update the total bit length
484  * for the current block.
485  * IN assertion: the fields freq and dad are set, heap[heap_max] and
486  *    above are the tree nodes sorted by increasing frequency.
487  * OUT assertions: the field len is set to the optimal bit length, the
488  *     array bl_count contains the frequencies for each bit length.
489  *     The length opt_len is updated; static_len is also updated if stree is
490  *     not null.
491  */
gen_bitlen(s,desc)492 local void gen_bitlen(s, desc)
493     deflate_state *s;
494     tree_desc *desc;    /* the tree descriptor */
495 {
496     ct_data *tree        = desc->dyn_tree;
497     int max_code         = desc->max_code;
498     const ct_data *stree = desc->stat_desc->static_tree;
499     const intf *extra    = desc->stat_desc->extra_bits;
500     int base             = desc->stat_desc->extra_base;
501     int max_length       = desc->stat_desc->max_length;
502     int h;              /* heap index */
503     int n, m;           /* iterate over the tree elements */
504     int bits;           /* bit length */
505     int xbits;          /* extra bits */
506     ush f;              /* frequency */
507     int overflow = 0;   /* number of elements with bit length too large */
508 
509     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
510 
511     /* In a first pass, compute the optimal bit lengths (which may
512      * overflow in the case of the bit length tree).
513      */
514     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
515 
516     for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
517         n = s->heap[h];
518         bits = tree[tree[n].Dad].Len + 1;
519         if (bits > max_length) bits = max_length, overflow++;
520         tree[n].Len = (ush)bits;
521         /* We overwrite tree[n].Dad which is no longer needed */
522 
523         if (n > max_code) continue; /* not a leaf node */
524 
525         s->bl_count[bits]++;
526         xbits = 0;
527         if (n >= base) xbits = extra[n-base];
528         f = tree[n].Freq;
529         s->opt_len += (ulg)f * (bits + xbits);
530         if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
531     }
532     if (overflow == 0) return;
533 
534     Trace((stderr,"\nbit length overflow\n"));
535     /* This happens for example on obj2 and pic of the Calgary corpus */
536 
537     /* Find the first bit length which could increase: */
538     do {
539         bits = max_length-1;
540         while (s->bl_count[bits] == 0) bits--;
541         s->bl_count[bits]--;      /* move one leaf down the tree */
542         s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
543         s->bl_count[max_length]--;
544         /* The brother of the overflow item also moves one step up,
545          * but this does not affect bl_count[max_length]
546          */
547         overflow -= 2;
548     } while (overflow > 0);
549 
550     /* Now recompute all bit lengths, scanning in increasing frequency.
551      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
552      * lengths instead of fixing only the wrong ones. This idea is taken
553      * from 'ar' written by Haruhiko Okumura.)
554      */
555     for (bits = max_length; bits != 0; bits--) {
556         n = s->bl_count[bits];
557         while (n != 0) {
558             m = s->heap[--h];
559             if (m > max_code) continue;
560             if ((unsigned) tree[m].Len != (unsigned) bits) {
561                 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
562                 s->opt_len += ((long)bits - (long)tree[m].Len)
563                               *(long)tree[m].Freq;
564                 tree[m].Len = (ush)bits;
565             }
566             n--;
567         }
568     }
569 }
570 
571 /* ===========================================================================
572  * Generate the codes for a given tree and bit counts (which need not be
573  * optimal).
574  * IN assertion: the array bl_count contains the bit length statistics for
575  * the given tree and the field len is set for all tree elements.
576  * OUT assertion: the field code is set for all tree elements of non
577  *     zero code length.
578  */
gen_codes(tree,max_code,bl_count)579 local void gen_codes (tree, max_code, bl_count)
580     ct_data *tree;             /* the tree to decorate */
581     int max_code;              /* largest code with non zero frequency */
582     ushf *bl_count;            /* number of codes at each bit length */
583 {
584     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
585     ush code = 0;              /* running code value */
586     int bits;                  /* bit index */
587     int n;                     /* code index */
588 
589     /* The distribution counts are first used to generate the code values
590      * without bit reversal.
591      */
592     for (bits = 1; bits <= MAX_BITS; bits++) {
593         next_code[bits] = code = (code + bl_count[bits-1]) << 1;
594     }
595     /* Check that the bit counts in bl_count are consistent. The last code
596      * must be all ones.
597      */
598     Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
599             "inconsistent bit counts");
600     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
601 
602     for (n = 0;  n <= max_code; n++) {
603         int len = tree[n].Len;
604         if (len == 0) continue;
605         /* Now reverse the bits */
606         tree[n].Code = bi_reverse(next_code[len]++, len);
607 
608         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
609              n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
610     }
611 }
612 
613 /* ===========================================================================
614  * Construct one Huffman tree and assigns the code bit strings and lengths.
615  * Update the total bit length for the current block.
616  * IN assertion: the field freq is set for all tree elements.
617  * OUT assertions: the fields len and code are set to the optimal bit length
618  *     and corresponding code. The length opt_len is updated; static_len is
619  *     also updated if stree is not null. The field max_code is set.
620  */
build_tree(s,desc)621 local void build_tree(s, desc)
622     deflate_state *s;
623     tree_desc *desc; /* the tree descriptor */
624 {
625     ct_data *tree         = desc->dyn_tree;
626     const ct_data *stree  = desc->stat_desc->static_tree;
627     int elems             = desc->stat_desc->elems;
628     int n, m;          /* iterate over heap elements */
629     int max_code = -1; /* largest code with non zero frequency */
630     int node;          /* new node being created */
631 
632     /* Construct the initial heap, with least frequent element in
633      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
634      * heap[0] is not used.
635      */
636     s->heap_len = 0, s->heap_max = HEAP_SIZE;
637 
638     for (n = 0; n < elems; n++) {
639         if (tree[n].Freq != 0) {
640             s->heap[++(s->heap_len)] = max_code = n;
641             s->depth[n] = 0;
642         } else {
643             tree[n].Len = 0;
644         }
645     }
646 
647     /* The pkzip format requires that at least one distance code exists,
648      * and that at least one bit should be sent even if there is only one
649      * possible code. So to avoid special checks later on we force at least
650      * two codes of non zero frequency.
651      */
652     while (s->heap_len < 2) {
653         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
654         tree[node].Freq = 1;
655         s->depth[node] = 0;
656         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
657         /* node is 0 or 1 so it does not have extra bits */
658     }
659     desc->max_code = max_code;
660 
661     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
662      * establish sub-heaps of increasing lengths:
663      */
664     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
665 
666     /* Construct the Huffman tree by repeatedly combining the least two
667      * frequent nodes.
668      */
669     node = elems;              /* next internal node of the tree */
670     do {
671         pqremove(s, tree, n);  /* n = node of least frequency */
672         m = s->heap[SMALLEST]; /* m = node of next least frequency */
673 
674         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
675         s->heap[--(s->heap_max)] = m;
676 
677         /* Create a new node father of n and m */
678         tree[node].Freq = tree[n].Freq + tree[m].Freq;
679         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
680                                 s->depth[n] : s->depth[m]) + 1);
681         tree[n].Dad = tree[m].Dad = (ush)node;
682 #ifdef DUMP_BL_TREE
683         if (tree == s->bl_tree) {
684             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
685                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
686         }
687 #endif
688         /* and insert the new node in the heap */
689         s->heap[SMALLEST] = node++;
690         pqdownheap(s, tree, SMALLEST);
691 
692     } while (s->heap_len >= 2);
693 
694     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
695 
696     /* At this point, the fields freq and dad are set. We can now
697      * generate the bit lengths.
698      */
699     gen_bitlen(s, (tree_desc *)desc);
700 
701     /* The field len is now set, we can generate the bit codes */
702     gen_codes ((ct_data *)tree, max_code, s->bl_count);
703 }
704 
705 /* ===========================================================================
706  * Scan a literal or distance tree to determine the frequencies of the codes
707  * in the bit length tree.
708  */
scan_tree(s,tree,max_code)709 local void scan_tree (s, tree, max_code)
710     deflate_state *s;
711     ct_data *tree;   /* the tree to be scanned */
712     int max_code;    /* and its largest code of non zero frequency */
713 {
714     int n;                     /* iterates over all tree elements */
715     int prevlen = -1;          /* last emitted length */
716     int curlen;                /* length of current code */
717     int nextlen = tree[0].Len; /* length of next code */
718     int count = 0;             /* repeat count of the current code */
719     int max_count = 7;         /* max repeat count */
720     int min_count = 4;         /* min repeat count */
721 
722     if (nextlen == 0) max_count = 138, min_count = 3;
723     tree[max_code+1].Len = (ush)0xffff; /* guard */
724 
725     for (n = 0; n <= max_code; n++) {
726         curlen = nextlen; nextlen = tree[n+1].Len;
727         if (++count < max_count && curlen == nextlen) {
728             continue;
729         } else if (count < min_count) {
730             s->bl_tree[curlen].Freq += count;
731         } else if (curlen != 0) {
732             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
733             s->bl_tree[REP_3_6].Freq++;
734         } else if (count <= 10) {
735             s->bl_tree[REPZ_3_10].Freq++;
736         } else {
737             s->bl_tree[REPZ_11_138].Freq++;
738         }
739         count = 0; prevlen = curlen;
740         if (nextlen == 0) {
741             max_count = 138, min_count = 3;
742         } else if (curlen == nextlen) {
743             max_count = 6, min_count = 3;
744         } else {
745             max_count = 7, min_count = 4;
746         }
747     }
748 }
749 
750 /* ===========================================================================
751  * Send a literal or distance tree in compressed form, using the codes in
752  * bl_tree.
753  */
send_tree(s,tree,max_code)754 local void send_tree (s, tree, max_code)
755     deflate_state *s;
756     ct_data *tree; /* the tree to be scanned */
757     int max_code;       /* and its largest code of non zero frequency */
758 {
759     int n;                     /* iterates over all tree elements */
760     int prevlen = -1;          /* last emitted length */
761     int curlen;                /* length of current code */
762     int nextlen = tree[0].Len; /* length of next code */
763     int count = 0;             /* repeat count of the current code */
764     int max_count = 7;         /* max repeat count */
765     int min_count = 4;         /* min repeat count */
766 
767     /* tree[max_code+1].Len = -1; */  /* guard already set */
768     if (nextlen == 0) max_count = 138, min_count = 3;
769 
770     for (n = 0; n <= max_code; n++) {
771         curlen = nextlen; nextlen = tree[n+1].Len;
772         if (++count < max_count && curlen == nextlen) {
773             continue;
774         } else if (count < min_count) {
775             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
776 
777         } else if (curlen != 0) {
778             if (curlen != prevlen) {
779                 send_code(s, curlen, s->bl_tree); count--;
780             }
781             Assert(count >= 3 && count <= 6, " 3_6?");
782             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
783 
784         } else if (count <= 10) {
785             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
786 
787         } else {
788             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
789         }
790         count = 0; prevlen = curlen;
791         if (nextlen == 0) {
792             max_count = 138, min_count = 3;
793         } else if (curlen == nextlen) {
794             max_count = 6, min_count = 3;
795         } else {
796             max_count = 7, min_count = 4;
797         }
798     }
799 }
800 
801 /* ===========================================================================
802  * Construct the Huffman tree for the bit lengths and return the index in
803  * bl_order of the last bit length code to send.
804  */
build_bl_tree(s)805 local int build_bl_tree(s)
806     deflate_state *s;
807 {
808     int max_blindex;  /* index of last bit length code of non zero freq */
809 
810     /* Determine the bit length frequencies for literal and distance trees */
811     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
812     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
813 
814     /* Build the bit length tree: */
815     build_tree(s, (tree_desc *)(&(s->bl_desc)));
816     /* opt_len now includes the length of the tree representations, except
817      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
818      */
819 
820     /* Determine the number of bit length codes to send. The pkzip format
821      * requires that at least 4 bit length codes be sent. (appnote.txt says
822      * 3 but the actual value used is 4.)
823      */
824     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
825         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
826     }
827     /* Update opt_len to include the bit length tree and counts */
828     s->opt_len += 3*(max_blindex+1) + 5+5+4;
829     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
830             s->opt_len, s->static_len));
831 
832     return max_blindex;
833 }
834 
835 /* ===========================================================================
836  * Send the header for a block using dynamic Huffman trees: the counts, the
837  * lengths of the bit length codes, the literal tree and the distance tree.
838  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
839  */
send_all_trees(s,lcodes,dcodes,blcodes)840 local void send_all_trees(s, lcodes, dcodes, blcodes)
841     deflate_state *s;
842     int lcodes, dcodes, blcodes; /* number of codes for each tree */
843 {
844     int rank;                    /* index in bl_order */
845 
846     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
847     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
848             "too many codes");
849     Tracev((stderr, "\nbl counts: "));
850     send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
851     send_bits(s, dcodes-1,   5);
852     send_bits(s, blcodes-4,  4); /* not -3 as stated in appnote.txt */
853     for (rank = 0; rank < blcodes; rank++) {
854         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
855         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
856     }
857     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
858 
859     send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
860     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
861 
862     send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
863     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
864 }
865 
866 /* ===========================================================================
867  * Send a stored block
868  */
_tr_stored_block(s,buf,stored_len,eof)869 void _tr_stored_block(s, buf, stored_len, eof)
870     deflate_state *s;
871     charf *buf;       /* input block */
872     ulg stored_len;   /* length of input block */
873     int eof;          /* true if this is the last block for a file */
874 {
875     send_bits(s, (STORED_BLOCK<<1)+eof, 3);  /* send block type */
876 #ifdef ZLIB_DEBUG
877     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
878     s->compressed_len += (stored_len + 4) << 3;
879 #endif
880     copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
881 }
882 
883 /* ===========================================================================
884  * Send one empty static block to give enough lookahead for inflate.
885  * This takes 10 bits, of which 7 may remain in the bit buffer.
886  * The current inflate code requires 9 bits of lookahead. If the
887  * last two codes for the previous block (real code plus EOB) were coded
888  * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
889  * the last real code. In this case we send two empty static blocks instead
890  * of one. (There are no problems if the previous block is stored or fixed.)
891  * To simplify the code, we assume the worst case of last real code encoded
892  * on one bit only.
893  */
_tr_align(s)894 void _tr_align(s)
895     deflate_state *s;
896 {
897     send_bits(s, STATIC_TREES<<1, 3);
898     send_code(s, END_BLOCK, static_ltree);
899 #ifdef ZLIB_DEBUG
900     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
901 #endif
902     bi_flush(s);
903     /* Of the 10 bits for the empty block, we have already sent
904      * (10 - bi_valid) bits. The lookahead for the last real code (before
905      * the EOB of the previous block) was thus at least one plus the length
906      * of the EOB plus what we have just sent of the empty static block.
907      */
908     if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
909         send_bits(s, STATIC_TREES<<1, 3);
910         send_code(s, END_BLOCK, static_ltree);
911 #ifdef ZLIB_DEBUG
912         s->compressed_len += 10L;
913 #endif
914         bi_flush(s);
915     }
916     s->last_eob_len = 7;
917 }
918 
919 /* ===========================================================================
920  * Determine the best encoding for the current block: dynamic trees, static
921  * trees or store, and output the encoded block to the zip file.
922  */
_tr_flush_block(s,buf,stored_len,eof)923 void _tr_flush_block(s, buf, stored_len, eof)
924     deflate_state *s;
925     charf *buf;       /* input block, or NULL if too old */
926     ulg stored_len;   /* length of input block */
927     int eof;          /* true if this is the last block for a file */
928 {
929     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
930     int max_blindex = 0;  /* index of last bit length code of non zero freq */
931 
932     /* Build the Huffman trees unless a stored block is forced */
933     if (s->level > 0) {
934 
935         /* Check if the file is binary or text */
936         if (stored_len > 0 && s->strm->data_type == Z_UNKNOWN)
937             set_data_type(s);
938 
939         /* Construct the literal and distance trees */
940         build_tree(s, (tree_desc *)(&(s->l_desc)));
941         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
942                 s->static_len));
943 
944         build_tree(s, (tree_desc *)(&(s->d_desc)));
945         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
946                 s->static_len));
947         /* At this point, opt_len and static_len are the total bit lengths of
948          * the compressed block data, excluding the tree representations.
949          */
950 
951         /* Build the bit length tree for the above two trees, and get the index
952          * in bl_order of the last bit length code to send.
953          */
954         max_blindex = build_bl_tree(s);
955 
956         /* Determine the best encoding. Compute the block lengths in bytes. */
957         opt_lenb = (s->opt_len+3+7)>>3;
958         static_lenb = (s->static_len+3+7)>>3;
959 
960         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
961                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
962                 s->last_lit));
963 
964         if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
965 
966     } else {
967         Assert(buf != (char*)0, "lost buf");
968         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
969     }
970 
971 #ifdef FORCE_STORED
972     if (buf != (char*)0) { /* force stored block */
973 #else
974     if (stored_len+4 <= opt_lenb && buf != (char*)0) {
975                        /* 4: two words for the lengths */
976 #endif
977         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
978          * Otherwise we can't have processed more than WSIZE input bytes since
979          * the last block flush, because compression would have been
980          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
981          * transform a block into a stored block.
982          */
983         _tr_stored_block(s, buf, stored_len, eof);
984 
985 #ifdef FORCE_STATIC
986     } else if (static_lenb >= 0) { /* force static trees */
987 #else
988     } else if (s->strategy == Z_FIXED || static_lenb == opt_lenb) {
989 #endif
990         send_bits(s, (STATIC_TREES<<1)+eof, 3);
991         compress_block(s, (ct_data *)__UNCONST(static_ltree),
992 	    (ct_data *)__UNCONST(static_dtree));
993 #ifdef ZLIB_DEBUG
994         s->compressed_len += 3 + s->static_len;
995 #endif
996     } else {
997         send_bits(s, (DYN_TREES<<1)+eof, 3);
998         send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
999                        max_blindex+1);
1000         compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1001 #ifdef ZLIB_DEBUG
1002         s->compressed_len += 3 + s->opt_len;
1003 #endif
1004     }
1005     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1006     /* The above check is made mod 2^32, for files larger than 512 MB
1007      * and uLong implemented on 32 bits.
1008      */
1009     init_block(s);
1010 
1011     if (eof) {
1012         bi_windup(s);
1013 #ifdef ZLIB_DEBUG
1014         s->compressed_len += 7;  /* align on byte boundary */
1015 #endif
1016     }
1017     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1018            s->compressed_len-7*eof));
1019 }
1020 
1021 /* ===========================================================================
1022  * Save the match info and tally the frequency counts. Return true if
1023  * the current block must be flushed.
1024  */
_tr_tally(s,dist,lc)1025 int _tr_tally (s, dist, lc)
1026     deflate_state *s;
1027     unsigned dist;  /* distance of matched string */
1028     unsigned lc;    /* match length-MIN_MATCH or unmatched char (if dist==0) */
1029 {
1030     s->d_buf[s->last_lit] = (ush)dist;
1031     s->l_buf[s->last_lit++] = (uch)lc;
1032     if (dist == 0) {
1033         /* lc is the unmatched char */
1034         s->dyn_ltree[lc].Freq++;
1035     } else {
1036         s->matches++;
1037         /* Here, lc is the match length - MIN_MATCH */
1038         dist--;             /* dist = match distance - 1 */
1039         Assert((ush)dist < (ush)MAX_DIST(s) &&
1040                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1041                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1042 
1043         s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1044         s->dyn_dtree[d_code(dist)].Freq++;
1045     }
1046 
1047 #ifdef TRUNCATE_BLOCK
1048     /* Try to guess if it is profitable to stop the current block here */
1049     if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1050         /* Compute an upper bound for the compressed length */
1051         ulg out_length = (ulg)s->last_lit*8L;
1052         ulg in_length = (ulg)((long)s->strstart - s->block_start);
1053         int dcode;
1054         for (dcode = 0; dcode < D_CODES; dcode++) {
1055             out_length += (ulg)s->dyn_dtree[dcode].Freq *
1056                 (5L+extra_dbits[dcode]);
1057         }
1058         out_length >>= 3;
1059         Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1060                s->last_lit, in_length, out_length,
1061                100L - out_length*100L/in_length));
1062         if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1063     }
1064 #endif
1065     return (s->last_lit == s->lit_bufsize-1);
1066     /* We avoid equality with lit_bufsize because of wraparound at 64K
1067      * on 16 bit machines and because stored blocks are restricted to
1068      * 64K-1 bytes.
1069      */
1070 }
1071 
1072 /* ===========================================================================
1073  * Send the block data compressed using the given Huffman trees
1074  */
compress_block(s,ltree,dtree)1075 local void compress_block(s, ltree, dtree)
1076     deflate_state *s;
1077     ct_data *ltree; /* literal tree */
1078     ct_data *dtree; /* distance tree */
1079 {
1080     unsigned dist;      /* distance of matched string */
1081     int lc;             /* match length or unmatched char (if dist == 0) */
1082     unsigned lx = 0;    /* running index in l_buf */
1083     unsigned code;      /* the code to send */
1084     int extra;          /* number of extra bits to send */
1085 
1086     if (s->last_lit != 0) do {
1087         dist = s->d_buf[lx];
1088         lc = s->l_buf[lx++];
1089         if (dist == 0) {
1090             send_code(s, lc, ltree); /* send a literal byte */
1091             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1092         } else {
1093             /* Here, lc is the match length - MIN_MATCH */
1094             code = _length_code[lc];
1095             send_code(s, code+LITERALS+1, ltree); /* send the length code */
1096             extra = extra_lbits[code];
1097             if (extra != 0) {
1098                 lc -= base_length[code];
1099                 send_bits(s, lc, extra);       /* send the extra length bits */
1100             }
1101             dist--; /* dist is now the match distance - 1 */
1102             code = d_code(dist);
1103             Assert (code < D_CODES, "bad d_code");
1104 
1105             send_code(s, code, dtree);       /* send the distance code */
1106             extra = extra_dbits[code];
1107             if (extra != 0) {
1108                 dist -= base_dist[code];
1109                 send_bits(s, dist, extra);   /* send the extra distance bits */
1110             }
1111         } /* literal or match pair ? */
1112 
1113         /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1114         Assert((uInt)(s->pending) < s->lit_bufsize + 2*lx,
1115                "pendingBuf overflow");
1116 
1117     } while (lx < s->last_lit);
1118 
1119     send_code(s, END_BLOCK, ltree);
1120     s->last_eob_len = ltree[END_BLOCK].Len;
1121 }
1122 
1123 /* ===========================================================================
1124  * Set the data type to BINARY or TEXT, using a crude approximation:
1125  * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1126  * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1127  * IN assertion: the fields Freq of dyn_ltree are set.
1128  */
set_data_type(s)1129 local void set_data_type(s)
1130     deflate_state *s;
1131 {
1132     int n;
1133 
1134     for (n = 0; n < 9; n++)
1135         if (s->dyn_ltree[n].Freq != 0)
1136             break;
1137     if (n == 9)
1138         for (n = 14; n < 32; n++)
1139             if (s->dyn_ltree[n].Freq != 0)
1140                 break;
1141     s->strm->data_type = (n == 32) ? Z_TEXT : Z_BINARY;
1142 }
1143 
1144 /* ===========================================================================
1145  * Reverse the first len bits of a code, using straightforward code (a faster
1146  * method would use a table)
1147  * IN assertion: 1 <= len <= 15
1148  */
bi_reverse(code,len)1149 local unsigned bi_reverse(code, len)
1150     unsigned code; /* the value to invert */
1151     int len;       /* its bit length */
1152 {
1153     register unsigned res = 0;
1154     do {
1155         res |= code & 1;
1156         code >>= 1, res <<= 1;
1157     } while (--len > 0);
1158     return res >> 1;
1159 }
1160 
1161 /* ===========================================================================
1162  * Flush the bit buffer, keeping at most 7 bits in it.
1163  */
bi_flush(s)1164 local void bi_flush(s)
1165     deflate_state *s;
1166 {
1167     if (s->bi_valid == 16) {
1168         put_short(s, s->bi_buf);
1169         s->bi_buf = 0;
1170         s->bi_valid = 0;
1171     } else if (s->bi_valid >= 8) {
1172         put_byte(s, (Byte)s->bi_buf);
1173         s->bi_buf >>= 8;
1174         s->bi_valid -= 8;
1175     }
1176 }
1177 
1178 /* ===========================================================================
1179  * Flush the bit buffer and align the output on a byte boundary
1180  */
bi_windup(s)1181 local void bi_windup(s)
1182     deflate_state *s;
1183 {
1184     if (s->bi_valid > 8) {
1185         put_short(s, s->bi_buf);
1186     } else if (s->bi_valid > 0) {
1187         put_byte(s, (Byte)s->bi_buf);
1188     }
1189     s->bi_buf = 0;
1190     s->bi_valid = 0;
1191 #ifdef ZLIB_DEBUG
1192     s->bits_sent = (s->bits_sent+7) & ~7;
1193 #endif
1194 }
1195 
1196 /* ===========================================================================
1197  * Copy a stored block, storing first the length and its
1198  * one's complement if requested.
1199  */
copy_block(s,buf,len,header)1200 local void copy_block(s, buf, len, header)
1201     deflate_state *s;
1202     charf    *buf;    /* the input data */
1203     unsigned len;     /* its length */
1204     int      header;  /* true if block header must be written */
1205 {
1206     bi_windup(s);        /* align on byte boundary */
1207     s->last_eob_len = 8; /* enough lookahead for inflate */
1208 
1209     if (header) {
1210         put_short(s, (ush)len);
1211         put_short(s, (ush)~len);
1212 #ifdef ZLIB_DEBUG
1213         s->bits_sent += 2*16;
1214 #endif
1215     }
1216 #ifdef ZLIB_DEBUG
1217     s->bits_sent += (ulg)len<<3;
1218 #endif
1219     while (len--) {
1220         put_byte(s, *buf++);
1221     }
1222 }
1223