xref: /netbsd-src/external/gpl3/gcc/dist/gcc/tree-tailcall.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Tail call optimization on trees.
2    Copyright (C) 2003-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10 
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 GNU General Public License for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "cgraph.h"
31 #include "gimple-pretty-print.h"
32 #include "fold-const.h"
33 #include "stor-layout.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-into-ssa.h"
38 #include "tree-dfa.h"
39 #include "except.h"
40 #include "tree-eh.h"
41 #include "dbgcnt.h"
42 #include "cfgloop.h"
43 #include "common/common-target.h"
44 #include "ipa-utils.h"
45 #include "tree-ssa-live.h"
46 
47 /* The file implements the tail recursion elimination.  It is also used to
48    analyze the tail calls in general, passing the results to the rtl level
49    where they are used for sibcall optimization.
50 
51    In addition to the standard tail recursion elimination, we handle the most
52    trivial cases of making the call tail recursive by creating accumulators.
53    For example the following function
54 
55    int sum (int n)
56    {
57      if (n > 0)
58        return n + sum (n - 1);
59      else
60        return 0;
61    }
62 
63    is transformed into
64 
65    int sum (int n)
66    {
67      int acc = 0;
68 
69      while (n > 0)
70        acc += n--;
71 
72      return acc;
73    }
74 
75    To do this, we maintain two accumulators (a_acc and m_acc) that indicate
76    when we reach the return x statement, we should return a_acc + x * m_acc
77    instead.  They are initially initialized to 0 and 1, respectively,
78    so the semantics of the function is obviously preserved.  If we are
79    guaranteed that the value of the accumulator never change, we
80    omit the accumulator.
81 
82    There are three cases how the function may exit.  The first one is
83    handled in adjust_return_value, the other two in adjust_accumulator_values
84    (the second case is actually a special case of the third one and we
85    present it separately just for clarity):
86 
87    1) Just return x, where x is not in any of the remaining special shapes.
88       We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
89 
90    2) return f (...), where f is the current function, is rewritten in a
91       classical tail-recursion elimination way, into assignment of arguments
92       and jump to the start of the function.  Values of the accumulators
93       are unchanged.
94 
95    3) return a + m * f(...), where a and m do not depend on call to f.
96       To preserve the semantics described before we want this to be rewritten
97       in such a way that we finally return
98 
99       a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
100 
101       I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
102       eliminate the tail call to f.  Special cases when the value is just
103       added or just multiplied are obtained by setting a = 0 or m = 1.
104 
105    TODO -- it is possible to do similar tricks for other operations.  */
106 
107 /* A structure that describes the tailcall.  */
108 
109 struct tailcall
110 {
111   /* The iterator pointing to the call statement.  */
112   gimple_stmt_iterator call_gsi;
113 
114   /* True if it is a call to the current function.  */
115   bool tail_recursion;
116 
117   /* The return value of the caller is mult * f + add, where f is the return
118      value of the call.  */
119   tree mult, add;
120 
121   /* Next tailcall in the chain.  */
122   struct tailcall *next;
123 };
124 
125 /* The variables holding the value of multiplicative and additive
126    accumulator.  */
127 static tree m_acc, a_acc;
128 
129 /* Bitmap with a bit for each function parameter which is set to true if we
130    have to copy the parameter for conversion of tail-recursive calls.  */
131 
132 static bitmap tailr_arg_needs_copy;
133 
134 /* Returns false when the function is not suitable for tail call optimization
135    from some reason (e.g. if it takes variable number of arguments).  */
136 
137 static bool
suitable_for_tail_opt_p(void)138 suitable_for_tail_opt_p (void)
139 {
140   if (cfun->stdarg)
141     return false;
142 
143   return true;
144 }
145 
146 /* Returns false when the function is not suitable for tail call optimization
147    for some reason (e.g. if it takes variable number of arguments).
148    This test must pass in addition to suitable_for_tail_opt_p in order to make
149    tail call discovery happen.  */
150 
151 static bool
suitable_for_tail_call_opt_p(void)152 suitable_for_tail_call_opt_p (void)
153 {
154   tree param;
155 
156   /* alloca (until we have stack slot life analysis) inhibits
157      sibling call optimizations, but not tail recursion.  */
158   if (cfun->calls_alloca)
159     return false;
160 
161   /* If we are using sjlj exceptions, we may need to add a call to
162      _Unwind_SjLj_Unregister at exit of the function.  Which means
163      that we cannot do any sibcall transformations.  */
164   if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
165       && current_function_has_exception_handlers ())
166     return false;
167 
168   /* Any function that calls setjmp might have longjmp called from
169      any called function.  ??? We really should represent this
170      properly in the CFG so that this needn't be special cased.  */
171   if (cfun->calls_setjmp)
172     return false;
173 
174   /* Various targets don't handle tail calls correctly in functions
175      that call __builtin_eh_return.  */
176   if (cfun->calls_eh_return)
177     return false;
178 
179   /* ??? It is OK if the argument of a function is taken in some cases,
180      but not in all cases.  See PR15387 and PR19616.  Revisit for 4.1.  */
181   for (param = DECL_ARGUMENTS (current_function_decl);
182        param;
183        param = DECL_CHAIN (param))
184     if (TREE_ADDRESSABLE (param))
185       return false;
186 
187   return true;
188 }
189 
190 /* Checks whether the expression EXPR in stmt AT is independent of the
191    statement pointed to by GSI (in a sense that we already know EXPR's value
192    at GSI).  We use the fact that we are only called from the chain of
193    basic blocks that have only single successor.  Returns the expression
194    containing the value of EXPR at GSI.  */
195 
196 static tree
independent_of_stmt_p(tree expr,gimple * at,gimple_stmt_iterator gsi,bitmap to_move)197 independent_of_stmt_p (tree expr, gimple *at, gimple_stmt_iterator gsi,
198 		       bitmap to_move)
199 {
200   basic_block bb, call_bb, at_bb;
201   edge e;
202   edge_iterator ei;
203 
204   if (is_gimple_min_invariant (expr))
205     return expr;
206 
207   if (TREE_CODE (expr) != SSA_NAME)
208     return NULL_TREE;
209 
210   if (bitmap_bit_p (to_move, SSA_NAME_VERSION (expr)))
211     return expr;
212 
213   /* Mark the blocks in the chain leading to the end.  */
214   at_bb = gimple_bb (at);
215   call_bb = gimple_bb (gsi_stmt (gsi));
216   for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
217     bb->aux = &bb->aux;
218   bb->aux = &bb->aux;
219 
220   while (1)
221     {
222       at = SSA_NAME_DEF_STMT (expr);
223       bb = gimple_bb (at);
224 
225       /* The default definition or defined before the chain.  */
226       if (!bb || !bb->aux)
227 	break;
228 
229       if (bb == call_bb)
230 	{
231 	  for (; !gsi_end_p (gsi); gsi_next (&gsi))
232 	    if (gsi_stmt (gsi) == at)
233 	      break;
234 
235 	  if (!gsi_end_p (gsi))
236 	    expr = NULL_TREE;
237 	  break;
238 	}
239 
240       if (gimple_code (at) != GIMPLE_PHI)
241 	{
242 	  expr = NULL_TREE;
243 	  break;
244 	}
245 
246       FOR_EACH_EDGE (e, ei, bb->preds)
247 	if (e->src->aux)
248 	  break;
249       gcc_assert (e);
250 
251       expr = PHI_ARG_DEF_FROM_EDGE (at, e);
252       if (TREE_CODE (expr) != SSA_NAME)
253 	{
254 	  /* The value is a constant.  */
255 	  break;
256 	}
257     }
258 
259   /* Unmark the blocks.  */
260   for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
261     bb->aux = NULL;
262   bb->aux = NULL;
263 
264   return expr;
265 }
266 
267 enum par { FAIL, OK, TRY_MOVE };
268 
269 /* Simulates the effect of an assignment STMT on the return value of the tail
270    recursive CALL passed in ASS_VAR.  M and A are the multiplicative and the
271    additive factor for the real return value.  */
272 
273 static par
process_assignment(gassign * stmt,gimple_stmt_iterator call,tree * m,tree * a,tree * ass_var,bitmap to_move)274 process_assignment (gassign *stmt,
275 		    gimple_stmt_iterator call, tree *m,
276 		    tree *a, tree *ass_var, bitmap to_move)
277 {
278   tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
279   tree dest = gimple_assign_lhs (stmt);
280   enum tree_code code = gimple_assign_rhs_code (stmt);
281   enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
282   tree src_var = gimple_assign_rhs1 (stmt);
283 
284   /* See if this is a simple copy operation of an SSA name to the function
285      result.  In that case we may have a simple tail call.  Ignore type
286      conversions that can never produce extra code between the function
287      call and the function return.  */
288   if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
289       && src_var == *ass_var)
290     {
291       /* Reject a tailcall if the type conversion might need
292 	 additional code.  */
293       if (gimple_assign_cast_p (stmt))
294 	{
295 	  if (TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
296 	    return FAIL;
297 
298 	  /* Even if the type modes are the same, if the precision of the
299 	     type is smaller than mode's precision,
300 	     reduce_to_bit_field_precision would generate additional code.  */
301 	  if (INTEGRAL_TYPE_P (TREE_TYPE (dest))
302 	      && !type_has_mode_precision_p (TREE_TYPE (dest)))
303 	    return FAIL;
304 	}
305 
306       *ass_var = dest;
307       return OK;
308     }
309 
310   switch (rhs_class)
311     {
312     case GIMPLE_BINARY_RHS:
313       op1 = gimple_assign_rhs2 (stmt);
314 
315       /* Fall through.  */
316 
317     case GIMPLE_UNARY_RHS:
318       op0 = gimple_assign_rhs1 (stmt);
319       break;
320 
321     default:
322       return FAIL;
323     }
324 
325   /* Accumulator optimizations will reverse the order of operations.
326      We can only do that for floating-point types if we're assuming
327      that addition and multiplication are associative.  */
328   if (!flag_associative_math)
329     if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
330       return FAIL;
331 
332   if (rhs_class == GIMPLE_UNARY_RHS
333       && op0 == *ass_var)
334     ;
335   else if (op0 == *ass_var
336 	   && (non_ass_var = independent_of_stmt_p (op1, stmt, call,
337 						    to_move)))
338     ;
339   else if (*ass_var
340 	   && op1 == *ass_var
341 	   && (non_ass_var = independent_of_stmt_p (op0, stmt, call,
342 						    to_move)))
343     ;
344   else
345     return TRY_MOVE;
346 
347   switch (code)
348     {
349     case PLUS_EXPR:
350       *a = non_ass_var;
351       *ass_var = dest;
352       return OK;
353 
354     case POINTER_PLUS_EXPR:
355       if (op0 != *ass_var)
356 	return FAIL;
357       *a = non_ass_var;
358       *ass_var = dest;
359       return OK;
360 
361     case MULT_EXPR:
362       *m = non_ass_var;
363       *ass_var = dest;
364       return OK;
365 
366     case NEGATE_EXPR:
367       *m = build_minus_one_cst (TREE_TYPE (op0));
368       *ass_var = dest;
369       return OK;
370 
371     case MINUS_EXPR:
372       if (*ass_var == op0)
373         *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
374       else
375         {
376 	  *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
377           *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
378         }
379 
380       *ass_var = dest;
381       return OK;
382 
383     default:
384       return FAIL;
385     }
386 }
387 
388 /* Propagate VAR through phis on edge E.  */
389 
390 static tree
propagate_through_phis(tree var,edge e)391 propagate_through_phis (tree var, edge e)
392 {
393   basic_block dest = e->dest;
394   gphi_iterator gsi;
395 
396   for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
397     {
398       gphi *phi = gsi.phi ();
399       if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
400         return PHI_RESULT (phi);
401     }
402   return var;
403 }
404 
405 /* Argument for compute_live_vars/live_vars_at_stmt and what compute_live_vars
406    returns.  Computed lazily, but just once for the function.  */
407 static live_vars_map *live_vars;
408 static vec<bitmap_head> live_vars_vec;
409 
410 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
411    added to the start of RET.  */
412 
413 static void
find_tail_calls(basic_block bb,struct tailcall ** ret)414 find_tail_calls (basic_block bb, struct tailcall **ret)
415 {
416   tree ass_var = NULL_TREE, ret_var, func, param;
417   gimple *stmt;
418   gcall *call = NULL;
419   gimple_stmt_iterator gsi, agsi;
420   bool tail_recursion;
421   struct tailcall *nw;
422   edge e;
423   tree m, a;
424   basic_block abb;
425   size_t idx;
426   tree var;
427 
428   if (!single_succ_p (bb))
429     return;
430 
431   for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
432     {
433       stmt = gsi_stmt (gsi);
434 
435       /* Ignore labels, returns, nops, clobbers and debug stmts.  */
436       if (gimple_code (stmt) == GIMPLE_LABEL
437 	  || gimple_code (stmt) == GIMPLE_RETURN
438 	  || gimple_code (stmt) == GIMPLE_NOP
439 	  || gimple_code (stmt) == GIMPLE_PREDICT
440 	  || gimple_clobber_p (stmt)
441 	  || is_gimple_debug (stmt))
442 	continue;
443 
444       /* Check for a call.  */
445       if (is_gimple_call (stmt))
446 	{
447 	  call = as_a <gcall *> (stmt);
448 	  ass_var = gimple_call_lhs (call);
449 	  break;
450 	}
451 
452       /* Allow simple copies between local variables, even if they're
453 	 aggregates.  */
454       if (is_gimple_assign (stmt)
455 	  && auto_var_in_fn_p (gimple_assign_lhs (stmt), cfun->decl)
456 	  && auto_var_in_fn_p (gimple_assign_rhs1 (stmt), cfun->decl))
457 	continue;
458 
459       /* If the statement references memory or volatile operands, fail.  */
460       if (gimple_references_memory_p (stmt)
461 	  || gimple_has_volatile_ops (stmt))
462 	return;
463     }
464 
465   if (gsi_end_p (gsi))
466     {
467       edge_iterator ei;
468       /* Recurse to the predecessors.  */
469       FOR_EACH_EDGE (e, ei, bb->preds)
470 	find_tail_calls (e->src, ret);
471 
472       return;
473     }
474 
475   /* If the LHS of our call is not just a simple register or local
476      variable, we can't transform this into a tail or sibling call.
477      This situation happens, in (e.g.) "*p = foo()" where foo returns a
478      struct.  In this case we won't have a temporary here, but we need
479      to carry out the side effect anyway, so tailcall is impossible.
480 
481      ??? In some situations (when the struct is returned in memory via
482      invisible argument) we could deal with this, e.g. by passing 'p'
483      itself as that argument to foo, but it's too early to do this here,
484      and expand_call() will not handle it anyway.  If it ever can, then
485      we need to revisit this here, to allow that situation.  */
486   if (ass_var
487       && !is_gimple_reg (ass_var)
488       && !auto_var_in_fn_p (ass_var, cfun->decl))
489     return;
490 
491   /* If the call might throw an exception that wouldn't propagate out of
492      cfun, we can't transform to a tail or sibling call (82081).  */
493   if (stmt_could_throw_p (cfun, stmt)
494       && !stmt_can_throw_external (cfun, stmt))
495     return;
496 
497   /* If the function returns a value, then at present, the tail call
498      must return the same type of value.  There is conceptually a copy
499      between the object returned by the tail call candidate and the
500      object returned by CFUN itself.
501 
502      This means that if we have:
503 
504 	 lhs = f (&<retval>);    // f reads from <retval>
505 				 // (lhs is usually also <retval>)
506 
507      there is a copy between the temporary object returned by f and lhs,
508      meaning that any use of <retval> in f occurs before the assignment
509      to lhs begins.  Thus the <retval> that is live on entry to the call
510      to f is really an independent local variable V that happens to be
511      stored in the RESULT_DECL rather than a local VAR_DECL.
512 
513      Turning this into a tail call would remove the copy and make the
514      lifetimes of the return value and V overlap.  The same applies to
515      tail recursion, since if f can read from <retval>, we have to assume
516      that CFUN might already have written to <retval> before the call.
517 
518      The problem doesn't apply when <retval> is passed by value, but that
519      isn't a case we handle anyway.  */
520   tree result_decl = DECL_RESULT (cfun->decl);
521   if (result_decl
522       && may_be_aliased (result_decl)
523       && ref_maybe_used_by_stmt_p (call, result_decl, false))
524     return;
525 
526   /* We found the call, check whether it is suitable.  */
527   tail_recursion = false;
528   func = gimple_call_fndecl (call);
529   if (func
530       && !fndecl_built_in_p (func)
531       && recursive_call_p (current_function_decl, func))
532     {
533       tree arg;
534 
535       for (param = DECL_ARGUMENTS (current_function_decl), idx = 0;
536 	   param && idx < gimple_call_num_args (call);
537 	   param = DECL_CHAIN (param), idx ++)
538 	{
539 	  arg = gimple_call_arg (call, idx);
540 	  if (param != arg)
541 	    {
542 	      /* Make sure there are no problems with copying.  The parameter
543 	         have a copyable type and the two arguments must have reasonably
544 	         equivalent types.  The latter requirement could be relaxed if
545 	         we emitted a suitable type conversion statement.  */
546 	      if (!is_gimple_reg_type (TREE_TYPE (param))
547 		  || !useless_type_conversion_p (TREE_TYPE (param),
548 					         TREE_TYPE (arg)))
549 		break;
550 
551 	      /* The parameter should be a real operand, so that phi node
552 		 created for it at the start of the function has the meaning
553 		 of copying the value.  This test implies is_gimple_reg_type
554 		 from the previous condition, however this one could be
555 		 relaxed by being more careful with copying the new value
556 		 of the parameter (emitting appropriate GIMPLE_ASSIGN and
557 		 updating the virtual operands).  */
558 	      if (!is_gimple_reg (param))
559 		break;
560 	    }
561 	}
562       if (idx == gimple_call_num_args (call) && !param)
563 	tail_recursion = true;
564     }
565 
566   /* Compute live vars if not computed yet.  */
567   if (live_vars == NULL)
568     {
569       unsigned int cnt = 0;
570       FOR_EACH_LOCAL_DECL (cfun, idx, var)
571 	if (VAR_P (var)
572 	    && auto_var_in_fn_p (var, cfun->decl)
573 	    && may_be_aliased (var))
574 	  {
575 	    if (live_vars == NULL)
576 	      live_vars = new live_vars_map;
577 	    live_vars->put (DECL_UID (var), cnt++);
578 	  }
579       if (live_vars)
580 	live_vars_vec = compute_live_vars (cfun, live_vars);
581     }
582 
583   /* Determine a bitmap of variables which are still in scope after the
584      call.  */
585   bitmap local_live_vars = NULL;
586   if (live_vars)
587     local_live_vars = live_vars_at_stmt (live_vars_vec, live_vars, call);
588 
589   /* Make sure the tail invocation of this function does not indirectly
590      refer to local variables.  (Passing variables directly by value
591      is OK.)  */
592   FOR_EACH_LOCAL_DECL (cfun, idx, var)
593     {
594       if (TREE_CODE (var) != PARM_DECL
595 	  && auto_var_in_fn_p (var, cfun->decl)
596 	  && may_be_aliased (var)
597 	  && (ref_maybe_used_by_stmt_p (call, var, false)
598 	      || call_may_clobber_ref_p (call, var, false)))
599 	{
600 	  if (!VAR_P (var))
601 	    {
602 	      if (local_live_vars)
603 		BITMAP_FREE (local_live_vars);
604 	      return;
605 	    }
606 	  else
607 	    {
608 	      unsigned int *v = live_vars->get (DECL_UID (var));
609 	      if (bitmap_bit_p (local_live_vars, *v))
610 		{
611 		  BITMAP_FREE (local_live_vars);
612 		  return;
613 		}
614 	    }
615 	}
616     }
617 
618   if (local_live_vars)
619     BITMAP_FREE (local_live_vars);
620 
621   /* Now check the statements after the call.  None of them has virtual
622      operands, so they may only depend on the call through its return
623      value.  The return value should also be dependent on each of them,
624      since we are running after dce.  */
625   m = NULL_TREE;
626   a = NULL_TREE;
627   auto_bitmap to_move_defs;
628   auto_vec<gimple *> to_move_stmts;
629 
630   abb = bb;
631   agsi = gsi;
632   while (1)
633     {
634       tree tmp_a = NULL_TREE;
635       tree tmp_m = NULL_TREE;
636       gsi_next (&agsi);
637 
638       while (gsi_end_p (agsi))
639 	{
640 	  ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
641 	  abb = single_succ (abb);
642 	  agsi = gsi_start_bb (abb);
643 	}
644 
645       stmt = gsi_stmt (agsi);
646       if (gimple_code (stmt) == GIMPLE_RETURN)
647 	break;
648 
649       if (gimple_code (stmt) == GIMPLE_LABEL
650 	  || gimple_code (stmt) == GIMPLE_NOP
651 	  || gimple_code (stmt) == GIMPLE_PREDICT
652 	  || gimple_clobber_p (stmt)
653 	  || is_gimple_debug (stmt))
654 	continue;
655 
656       if (gimple_code (stmt) != GIMPLE_ASSIGN)
657 	return;
658 
659       /* This is a gimple assign. */
660       par ret = process_assignment (as_a <gassign *> (stmt), gsi,
661 				    &tmp_m, &tmp_a, &ass_var, to_move_defs);
662       if (ret == FAIL)
663 	return;
664       else if (ret == TRY_MOVE)
665 	{
666 	  if (! tail_recursion)
667 	    return;
668 	  /* Do not deal with checking dominance, the real fix is to
669 	     do path isolation for the transform phase anyway, removing
670 	     the need to compute the accumulators with new stmts.  */
671 	  if (abb != bb)
672 	    return;
673 	  for (unsigned opno = 1; opno < gimple_num_ops (stmt); ++opno)
674 	    {
675 	      tree op = gimple_op (stmt, opno);
676 	      if (independent_of_stmt_p (op, stmt, gsi, to_move_defs) != op)
677 		return;
678 	    }
679 	  bitmap_set_bit (to_move_defs,
680 			  SSA_NAME_VERSION (gimple_assign_lhs (stmt)));
681 	  to_move_stmts.safe_push (stmt);
682 	  continue;
683 	}
684 
685       if (tmp_a)
686 	{
687 	  tree type = TREE_TYPE (tmp_a);
688 	  if (a)
689 	    a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
690 	  else
691 	    a = tmp_a;
692 	}
693       if (tmp_m)
694 	{
695 	  tree type = TREE_TYPE (tmp_m);
696 	  if (m)
697 	    m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
698 	  else
699 	    m = tmp_m;
700 
701 	  if (a)
702 	    a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
703 	}
704     }
705 
706   /* See if this is a tail call we can handle.  */
707   ret_var = gimple_return_retval (as_a <greturn *> (stmt));
708 
709   /* We may proceed if there either is no return value, or the return value
710      is identical to the call's return or if the return decl is an empty type
711      variable and the call's return was not assigned. */
712   if (ret_var
713       && (ret_var != ass_var
714 	  && !(is_empty_type (TREE_TYPE (ret_var)) && !ass_var)))
715     return;
716 
717   /* If this is not a tail recursive call, we cannot handle addends or
718      multiplicands.  */
719   if (!tail_recursion && (m || a))
720     return;
721 
722   /* For pointers only allow additions.  */
723   if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
724     return;
725 
726   /* Move queued defs.  */
727   if (tail_recursion)
728     {
729       unsigned i;
730       FOR_EACH_VEC_ELT (to_move_stmts, i, stmt)
731 	{
732 	  gimple_stmt_iterator mgsi = gsi_for_stmt (stmt);
733 	  gsi_move_before (&mgsi, &gsi);
734 	}
735       if (!tailr_arg_needs_copy)
736 	tailr_arg_needs_copy = BITMAP_ALLOC (NULL);
737       for (param = DECL_ARGUMENTS (current_function_decl), idx = 0;
738 	   param;
739 	   param = DECL_CHAIN (param), idx++)
740 	{
741 	  tree ddef, arg = gimple_call_arg (call, idx);
742 	  if (is_gimple_reg (param)
743 	      && (ddef = ssa_default_def (cfun, param))
744 	      && (arg != ddef))
745 	    bitmap_set_bit (tailr_arg_needs_copy, idx);
746 	}
747     }
748 
749   nw = XNEW (struct tailcall);
750 
751   nw->call_gsi = gsi;
752 
753   nw->tail_recursion = tail_recursion;
754 
755   nw->mult = m;
756   nw->add = a;
757 
758   nw->next = *ret;
759   *ret = nw;
760 }
761 
762 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E.  */
763 
764 static void
add_successor_phi_arg(edge e,tree var,tree phi_arg)765 add_successor_phi_arg (edge e, tree var, tree phi_arg)
766 {
767   gphi_iterator gsi;
768 
769   for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
770     if (PHI_RESULT (gsi.phi ()) == var)
771       break;
772 
773   gcc_assert (!gsi_end_p (gsi));
774   add_phi_arg (gsi.phi (), phi_arg, e, UNKNOWN_LOCATION);
775 }
776 
777 /* Creates a GIMPLE statement which computes the operation specified by
778    CODE, ACC and OP1 to a new variable with name LABEL and inserts the
779    statement in the position specified by GSI.  Returns the
780    tree node of the statement's result.  */
781 
782 static tree
adjust_return_value_with_ops(enum tree_code code,const char * label,tree acc,tree op1,gimple_stmt_iterator gsi)783 adjust_return_value_with_ops (enum tree_code code, const char *label,
784 			      tree acc, tree op1, gimple_stmt_iterator gsi)
785 {
786 
787   tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
788   tree result = make_temp_ssa_name (ret_type, NULL, label);
789   gassign *stmt;
790 
791   if (POINTER_TYPE_P (ret_type))
792     {
793       gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
794       code = POINTER_PLUS_EXPR;
795     }
796   if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
797       && code != POINTER_PLUS_EXPR)
798     stmt = gimple_build_assign (result, code, acc, op1);
799   else
800     {
801       tree tem;
802       if (code == POINTER_PLUS_EXPR)
803 	tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
804       else
805 	tem = fold_build2 (code, TREE_TYPE (op1),
806 			   fold_convert (TREE_TYPE (op1), acc), op1);
807       tree rhs = fold_convert (ret_type, tem);
808       rhs = force_gimple_operand_gsi (&gsi, rhs,
809 				      false, NULL, true, GSI_SAME_STMT);
810       stmt = gimple_build_assign (result, rhs);
811     }
812 
813   gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
814   return result;
815 }
816 
817 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
818    the computation specified by CODE and OP1 and insert the statement
819    at the position specified by GSI as a new statement.  Returns new SSA name
820    of updated accumulator.  */
821 
822 static tree
update_accumulator_with_ops(enum tree_code code,tree acc,tree op1,gimple_stmt_iterator gsi)823 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
824 			     gimple_stmt_iterator gsi)
825 {
826   gassign *stmt;
827   tree var = copy_ssa_name (acc);
828   if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
829     stmt = gimple_build_assign (var, code, acc, op1);
830   else
831     {
832       tree rhs = fold_convert (TREE_TYPE (acc),
833 			       fold_build2 (code,
834 					    TREE_TYPE (op1),
835 					    fold_convert (TREE_TYPE (op1), acc),
836 					    op1));
837       rhs = force_gimple_operand_gsi (&gsi, rhs,
838 				      false, NULL, false, GSI_CONTINUE_LINKING);
839       stmt = gimple_build_assign (var, rhs);
840     }
841   gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
842   return var;
843 }
844 
845 /* Adjust the accumulator values according to A and M after GSI, and update
846    the phi nodes on edge BACK.  */
847 
848 static void
adjust_accumulator_values(gimple_stmt_iterator gsi,tree m,tree a,edge back)849 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
850 {
851   tree var, a_acc_arg, m_acc_arg;
852 
853   if (m)
854     m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
855   if (a)
856     a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
857 
858   a_acc_arg = a_acc;
859   m_acc_arg = m_acc;
860   if (a)
861     {
862       if (m_acc)
863 	{
864 	  if (integer_onep (a))
865 	    var = m_acc;
866 	  else
867 	    var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
868 						a, gsi);
869 	}
870       else
871 	var = a;
872 
873       a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
874     }
875 
876   if (m)
877     m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
878 
879   if (a_acc)
880     add_successor_phi_arg (back, a_acc, a_acc_arg);
881 
882   if (m_acc)
883     add_successor_phi_arg (back, m_acc, m_acc_arg);
884 }
885 
886 /* Adjust value of the return at the end of BB according to M and A
887    accumulators.  */
888 
889 static void
adjust_return_value(basic_block bb,tree m,tree a)890 adjust_return_value (basic_block bb, tree m, tree a)
891 {
892   tree retval;
893   greturn *ret_stmt = as_a <greturn *> (gimple_seq_last_stmt (bb_seq (bb)));
894   gimple_stmt_iterator gsi = gsi_last_bb (bb);
895 
896   gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
897 
898   retval = gimple_return_retval (ret_stmt);
899   if (!retval || retval == error_mark_node)
900     return;
901 
902   if (m)
903     retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
904 					   gsi);
905   if (a)
906     retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
907 					   gsi);
908   gimple_return_set_retval (ret_stmt, retval);
909   update_stmt (ret_stmt);
910 }
911 
912 /* Subtract COUNT and FREQUENCY from the basic block and it's
913    outgoing edge.  */
914 static void
decrease_profile(basic_block bb,profile_count count)915 decrease_profile (basic_block bb, profile_count count)
916 {
917   bb->count = bb->count - count;
918   if (!single_succ_p (bb))
919     {
920       gcc_assert (!EDGE_COUNT (bb->succs));
921       return;
922     }
923 }
924 
925 /* Eliminates tail call described by T.  TMP_VARS is a list of
926    temporary variables used to copy the function arguments.
927    Allocates *NEW_LOOP if not already done and initializes it.  */
928 
929 static void
eliminate_tail_call(struct tailcall * t,class loop * & new_loop)930 eliminate_tail_call (struct tailcall *t, class loop *&new_loop)
931 {
932   tree param, rslt;
933   gimple *stmt, *call;
934   tree arg;
935   size_t idx;
936   basic_block bb, first;
937   edge e;
938   gphi *phi;
939   gphi_iterator gpi;
940   gimple_stmt_iterator gsi;
941   gimple *orig_stmt;
942 
943   stmt = orig_stmt = gsi_stmt (t->call_gsi);
944   bb = gsi_bb (t->call_gsi);
945 
946   if (dump_file && (dump_flags & TDF_DETAILS))
947     {
948       fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
949 	       bb->index);
950       print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
951       fprintf (dump_file, "\n");
952     }
953 
954   gcc_assert (is_gimple_call (stmt));
955 
956   first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
957 
958   /* Remove the code after call_gsi that will become unreachable.  The
959      possibly unreachable code in other blocks is removed later in
960      cfg cleanup.  */
961   gsi = t->call_gsi;
962   gimple_stmt_iterator gsi2 = gsi_last_bb (gimple_bb (gsi_stmt (gsi)));
963   while (gsi_stmt (gsi2) != gsi_stmt (gsi))
964     {
965       gimple *t = gsi_stmt (gsi2);
966       /* Do not remove the return statement, so that redirect_edge_and_branch
967 	 sees how the block ends.  */
968       if (gimple_code (t) != GIMPLE_RETURN)
969 	{
970 	  gimple_stmt_iterator gsi3 = gsi2;
971 	  gsi_prev (&gsi2);
972 	  gsi_remove (&gsi3, true);
973 	  release_defs (t);
974 	}
975       else
976 	gsi_prev (&gsi2);
977     }
978 
979   /* Number of executions of function has reduced by the tailcall.  */
980   e = single_succ_edge (gsi_bb (t->call_gsi));
981 
982   profile_count count = e->count ();
983 
984   /* When profile is inconsistent and the recursion edge is more frequent
985      than number of executions of functions, scale it down, so we do not end
986      up with 0 executions of entry block.  */
987   if (count >= ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
988     count = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (7, 8);
989   decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), count);
990   decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), count);
991   if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
992     decrease_profile (e->dest, count);
993 
994   /* Replace the call by a jump to the start of function.  */
995   e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
996 				first);
997   gcc_assert (e);
998   PENDING_STMT (e) = NULL;
999 
1000   /* Add the new loop.  */
1001   if (!new_loop)
1002     {
1003       new_loop = alloc_loop ();
1004       new_loop->header = first;
1005       new_loop->finite_p = true;
1006     }
1007   else
1008     gcc_assert (new_loop->header == first);
1009 
1010   /* Add phi node entries for arguments.  The ordering of the phi nodes should
1011      be the same as the ordering of the arguments.  */
1012   for (param = DECL_ARGUMENTS (current_function_decl),
1013 	 idx = 0, gpi = gsi_start_phis (first);
1014        param;
1015        param = DECL_CHAIN (param), idx++)
1016     {
1017       if (!bitmap_bit_p (tailr_arg_needs_copy, idx))
1018 	continue;
1019 
1020       arg = gimple_call_arg (stmt, idx);
1021       phi = gpi.phi ();
1022       gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
1023 
1024       add_phi_arg (phi, arg, e, gimple_location (stmt));
1025       gsi_next (&gpi);
1026     }
1027 
1028   /* Update the values of accumulators.  */
1029   adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
1030 
1031   call = gsi_stmt (t->call_gsi);
1032   rslt = gimple_call_lhs (call);
1033   if (rslt != NULL_TREE && TREE_CODE (rslt) == SSA_NAME)
1034     {
1035       /* Result of the call will no longer be defined.  So adjust the
1036 	 SSA_NAME_DEF_STMT accordingly.  */
1037       SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
1038     }
1039 
1040   gsi_remove (&t->call_gsi, true);
1041   release_defs (call);
1042 }
1043 
1044 /* Optimizes the tailcall described by T.  If OPT_TAILCALLS is true, also
1045    mark the tailcalls for the sibcall optimization.  */
1046 
1047 static bool
optimize_tail_call(struct tailcall * t,bool opt_tailcalls,class loop * & new_loop)1048 optimize_tail_call (struct tailcall *t, bool opt_tailcalls,
1049 		    class loop *&new_loop)
1050 {
1051   if (t->tail_recursion)
1052     {
1053       eliminate_tail_call (t, new_loop);
1054       return true;
1055     }
1056 
1057   if (opt_tailcalls)
1058     {
1059       gcall *stmt = as_a <gcall *> (gsi_stmt (t->call_gsi));
1060 
1061       gimple_call_set_tail (stmt, true);
1062       cfun->tail_call_marked = true;
1063       if (dump_file && (dump_flags & TDF_DETAILS))
1064         {
1065 	  fprintf (dump_file, "Found tail call ");
1066 	  print_gimple_stmt (dump_file, stmt, 0, dump_flags);
1067 	  fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
1068 	}
1069     }
1070 
1071   return false;
1072 }
1073 
1074 /* Creates a tail-call accumulator of the same type as the return type of the
1075    current function.  LABEL is the name used to creating the temporary
1076    variable for the accumulator.  The accumulator will be inserted in the
1077    phis of a basic block BB with single predecessor with an initial value
1078    INIT converted to the current function return type.  */
1079 
1080 static tree
create_tailcall_accumulator(const char * label,basic_block bb,tree init)1081 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
1082 {
1083   tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
1084   if (POINTER_TYPE_P (ret_type))
1085     ret_type = sizetype;
1086 
1087   tree tmp = make_temp_ssa_name (ret_type, NULL, label);
1088   gphi *phi;
1089 
1090   phi = create_phi_node (tmp, bb);
1091   add_phi_arg (phi, init, single_pred_edge (bb),
1092 	       UNKNOWN_LOCATION);
1093   return PHI_RESULT (phi);
1094 }
1095 
1096 /* Optimizes tail calls in the function, turning the tail recursion
1097    into iteration.  */
1098 
1099 static unsigned int
tree_optimize_tail_calls_1(bool opt_tailcalls)1100 tree_optimize_tail_calls_1 (bool opt_tailcalls)
1101 {
1102   edge e;
1103   bool phis_constructed = false;
1104   struct tailcall *tailcalls = NULL, *act, *next;
1105   bool changed = false;
1106   basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1107   tree param;
1108   gimple *stmt;
1109   edge_iterator ei;
1110 
1111   if (!suitable_for_tail_opt_p ())
1112     return 0;
1113   if (opt_tailcalls)
1114     opt_tailcalls = suitable_for_tail_call_opt_p ();
1115 
1116   FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1117     {
1118       /* Only traverse the normal exits, i.e. those that end with return
1119 	 statement.  */
1120       stmt = last_stmt (e->src);
1121 
1122       if (stmt
1123 	  && gimple_code (stmt) == GIMPLE_RETURN)
1124 	find_tail_calls (e->src, &tailcalls);
1125     }
1126 
1127   if (live_vars)
1128     {
1129       destroy_live_vars (live_vars_vec);
1130       delete live_vars;
1131       live_vars = NULL;
1132     }
1133 
1134   /* Construct the phi nodes and accumulators if necessary.  */
1135   a_acc = m_acc = NULL_TREE;
1136   for (act = tailcalls; act; act = act->next)
1137     {
1138       if (!act->tail_recursion)
1139 	continue;
1140 
1141       if (!phis_constructed)
1142 	{
1143 	  /* Ensure that there is only one predecessor of the block
1144 	     or if there are existing degenerate PHI nodes.  */
1145 	  if (!single_pred_p (first)
1146 	      || !gimple_seq_empty_p (phi_nodes (first)))
1147 	    first =
1148 	      split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
1149 
1150 	  /* Copy the args if needed.  */
1151 	  unsigned idx;
1152 	  for (param = DECL_ARGUMENTS (current_function_decl), idx = 0;
1153 	       param;
1154 	       param = DECL_CHAIN (param), idx++)
1155 	    if (bitmap_bit_p (tailr_arg_needs_copy, idx))
1156 	      {
1157 		tree name = ssa_default_def (cfun, param);
1158 		tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
1159 		gphi *phi;
1160 
1161 		set_ssa_default_def (cfun, param, new_name);
1162 		phi = create_phi_node (name, first);
1163 		add_phi_arg (phi, new_name, single_pred_edge (first),
1164 			     EXPR_LOCATION (param));
1165 	      }
1166 	  phis_constructed = true;
1167 	}
1168       tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
1169       if (POINTER_TYPE_P (ret_type))
1170 	ret_type = sizetype;
1171 
1172       if (act->add && !a_acc)
1173 	a_acc = create_tailcall_accumulator ("add_acc", first,
1174 					     build_zero_cst (ret_type));
1175 
1176       if (act->mult && !m_acc)
1177 	m_acc = create_tailcall_accumulator ("mult_acc", first,
1178 					     build_one_cst (ret_type));
1179     }
1180 
1181   if (a_acc || m_acc)
1182     {
1183       /* When the tail call elimination using accumulators is performed,
1184 	 statements adding the accumulated value are inserted at all exits.
1185 	 This turns all other tail calls to non-tail ones.  */
1186       opt_tailcalls = false;
1187     }
1188 
1189   class loop *new_loop = NULL;
1190   for (; tailcalls; tailcalls = next)
1191     {
1192       next = tailcalls->next;
1193       changed |= optimize_tail_call (tailcalls, opt_tailcalls, new_loop);
1194       free (tailcalls);
1195     }
1196   if (new_loop)
1197     add_loop (new_loop, loops_for_fn (cfun)->tree_root);
1198 
1199   if (a_acc || m_acc)
1200     {
1201       /* Modify the remaining return statements.  */
1202       FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1203 	{
1204 	  stmt = last_stmt (e->src);
1205 
1206 	  if (stmt
1207 	      && gimple_code (stmt) == GIMPLE_RETURN)
1208 	    adjust_return_value (e->src, m_acc, a_acc);
1209 	}
1210     }
1211 
1212   if (changed)
1213     free_dominance_info (CDI_DOMINATORS);
1214 
1215   /* Add phi nodes for the virtual operands defined in the function to the
1216      header of the loop created by tail recursion elimination.  Do so
1217      by triggering the SSA renamer.  */
1218   if (phis_constructed)
1219     mark_virtual_operands_for_renaming (cfun);
1220 
1221   if (tailr_arg_needs_copy)
1222     BITMAP_FREE (tailr_arg_needs_copy);
1223 
1224   if (changed)
1225     return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1226   return 0;
1227 }
1228 
1229 static bool
gate_tail_calls(void)1230 gate_tail_calls (void)
1231 {
1232   return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1233 }
1234 
1235 static unsigned int
execute_tail_calls(void)1236 execute_tail_calls (void)
1237 {
1238   return tree_optimize_tail_calls_1 (true);
1239 }
1240 
1241 namespace {
1242 
1243 const pass_data pass_data_tail_recursion =
1244 {
1245   GIMPLE_PASS, /* type */
1246   "tailr", /* name */
1247   OPTGROUP_NONE, /* optinfo_flags */
1248   TV_NONE, /* tv_id */
1249   ( PROP_cfg | PROP_ssa ), /* properties_required */
1250   0, /* properties_provided */
1251   0, /* properties_destroyed */
1252   0, /* todo_flags_start */
1253   0, /* todo_flags_finish */
1254 };
1255 
1256 class pass_tail_recursion : public gimple_opt_pass
1257 {
1258 public:
pass_tail_recursion(gcc::context * ctxt)1259   pass_tail_recursion (gcc::context *ctxt)
1260     : gimple_opt_pass (pass_data_tail_recursion, ctxt)
1261   {}
1262 
1263   /* opt_pass methods: */
clone()1264   opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
gate(function *)1265   virtual bool gate (function *) { return gate_tail_calls (); }
execute(function *)1266   virtual unsigned int execute (function *)
1267     {
1268       return tree_optimize_tail_calls_1 (false);
1269     }
1270 
1271 }; // class pass_tail_recursion
1272 
1273 } // anon namespace
1274 
1275 gimple_opt_pass *
make_pass_tail_recursion(gcc::context * ctxt)1276 make_pass_tail_recursion (gcc::context *ctxt)
1277 {
1278   return new pass_tail_recursion (ctxt);
1279 }
1280 
1281 namespace {
1282 
1283 const pass_data pass_data_tail_calls =
1284 {
1285   GIMPLE_PASS, /* type */
1286   "tailc", /* name */
1287   OPTGROUP_NONE, /* optinfo_flags */
1288   TV_NONE, /* tv_id */
1289   ( PROP_cfg | PROP_ssa ), /* properties_required */
1290   0, /* properties_provided */
1291   0, /* properties_destroyed */
1292   0, /* todo_flags_start */
1293   0, /* todo_flags_finish */
1294 };
1295 
1296 class pass_tail_calls : public gimple_opt_pass
1297 {
1298 public:
pass_tail_calls(gcc::context * ctxt)1299   pass_tail_calls (gcc::context *ctxt)
1300     : gimple_opt_pass (pass_data_tail_calls, ctxt)
1301   {}
1302 
1303   /* opt_pass methods: */
gate(function *)1304   virtual bool gate (function *) { return gate_tail_calls (); }
execute(function *)1305   virtual unsigned int execute (function *) { return execute_tail_calls (); }
1306 
1307 }; // class pass_tail_calls
1308 
1309 } // anon namespace
1310 
1311 gimple_opt_pass *
make_pass_tail_calls(gcc::context * ctxt)1312 make_pass_tail_calls (gcc::context *ctxt)
1313 {
1314   return new pass_tail_calls (ctxt);
1315 }
1316