1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2022 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "fold-const.h"
40 #include "varasm.h"
41 #include "stor-layout.h"
42 #include "cfganal.h"
43 #include "gimplify.h"
44 #include "gimple-iterator.h"
45 #include "gimplify-me.h"
46 #include "gimple-fold.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 #include "alloc-pool.h"
50 #include "target.h"
51 #include "tree-into-ssa.h"
52 #include "omp-general.h"
53 #include "gimple-range.h"
54
55 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
56 type in the GIMPLE type system that is language-independent? */
57 #include "langhooks.h"
58
59 #include "tree-switch-conversion.h"
60
61 using namespace tree_switch_conversion;
62
63 /* Constructor. */
64
switch_conversion()65 switch_conversion::switch_conversion (): m_final_bb (NULL),
66 m_constructors (NULL), m_default_values (NULL),
67 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
68 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
69 {
70 }
71
72 /* Collection information about SWTCH statement. */
73
74 void
collect(gswitch * swtch)75 switch_conversion::collect (gswitch *swtch)
76 {
77 unsigned int branch_num = gimple_switch_num_labels (swtch);
78 tree min_case, max_case;
79 unsigned int i;
80 edge e, e_default, e_first;
81 edge_iterator ei;
82
83 m_switch = swtch;
84
85 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
86 is a default label which is the first in the vector.
87 Collect the bits we can deduce from the CFG. */
88 m_index_expr = gimple_switch_index (swtch);
89 m_switch_bb = gimple_bb (swtch);
90 e_default = gimple_switch_default_edge (cfun, swtch);
91 m_default_bb = e_default->dest;
92 m_default_prob = e_default->probability;
93
94 /* Get upper and lower bounds of case values, and the covered range. */
95 min_case = gimple_switch_label (swtch, 1);
96 max_case = gimple_switch_label (swtch, branch_num - 1);
97
98 m_range_min = CASE_LOW (min_case);
99 if (CASE_HIGH (max_case) != NULL_TREE)
100 m_range_max = CASE_HIGH (max_case);
101 else
102 m_range_max = CASE_LOW (max_case);
103
104 m_contiguous_range = true;
105 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
106 for (i = 2; i < branch_num; i++)
107 {
108 tree elt = gimple_switch_label (swtch, i);
109 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
110 {
111 m_contiguous_range = false;
112 break;
113 }
114 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
115 }
116
117 if (m_contiguous_range)
118 e_first = gimple_switch_edge (cfun, swtch, 1);
119 else
120 e_first = e_default;
121
122 /* See if there is one common successor block for all branch
123 targets. If it exists, record it in FINAL_BB.
124 Start with the destination of the first non-default case
125 if the range is contiguous and default case otherwise as
126 guess or its destination in case it is a forwarder block. */
127 if (! single_pred_p (e_first->dest))
128 m_final_bb = e_first->dest;
129 else if (single_succ_p (e_first->dest)
130 && ! single_pred_p (single_succ (e_first->dest)))
131 m_final_bb = single_succ (e_first->dest);
132 /* Require that all switch destinations are either that common
133 FINAL_BB or a forwarder to it, except for the default
134 case if contiguous range. */
135 if (m_final_bb)
136 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
137 {
138 if (e->dest == m_final_bb)
139 continue;
140
141 if (single_pred_p (e->dest)
142 && single_succ_p (e->dest)
143 && single_succ (e->dest) == m_final_bb)
144 continue;
145
146 if (e == e_default && m_contiguous_range)
147 {
148 m_default_case_nonstandard = true;
149 continue;
150 }
151
152 m_final_bb = NULL;
153 break;
154 }
155
156 m_range_size
157 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
158
159 /* Get a count of the number of case labels. Single-valued case labels
160 simply count as one, but a case range counts double, since it may
161 require two compares if it gets lowered as a branching tree. */
162 m_count = 0;
163 for (i = 1; i < branch_num; i++)
164 {
165 tree elt = gimple_switch_label (swtch, i);
166 m_count++;
167 if (CASE_HIGH (elt)
168 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
169 m_count++;
170 }
171
172 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
173 block. Assume a CFG cleanup would have already removed degenerate
174 switch statements, this allows us to just use EDGE_COUNT. */
175 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
176 }
177
178 /* Checks whether the range given by individual case statements of the switch
179 switch statement isn't too big and whether the number of branches actually
180 satisfies the size of the new array. */
181
182 bool
check_range()183 switch_conversion::check_range ()
184 {
185 gcc_assert (m_range_size);
186 if (!tree_fits_uhwi_p (m_range_size))
187 {
188 m_reason = "index range way too large or otherwise unusable";
189 return false;
190 }
191
192 if (tree_to_uhwi (m_range_size)
193 > ((unsigned) m_count * param_switch_conversion_branch_ratio))
194 {
195 m_reason = "the maximum range-branch ratio exceeded";
196 return false;
197 }
198
199 return true;
200 }
201
202 /* Checks whether all but the final BB basic blocks are empty. */
203
204 bool
check_all_empty_except_final()205 switch_conversion::check_all_empty_except_final ()
206 {
207 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
208 edge_iterator ei;
209
210 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
211 {
212 if (e->dest == m_final_bb)
213 continue;
214
215 if (!empty_block_p (e->dest))
216 {
217 if (m_contiguous_range && e == e_default)
218 {
219 m_default_case_nonstandard = true;
220 continue;
221 }
222
223 m_reason = "bad case - a non-final BB not empty";
224 return false;
225 }
226 }
227
228 return true;
229 }
230
231 /* This function checks whether all required values in phi nodes in final_bb
232 are constants. Required values are those that correspond to a basic block
233 which is a part of the examined switch statement. It returns true if the
234 phi nodes are OK, otherwise false. */
235
236 bool
check_final_bb()237 switch_conversion::check_final_bb ()
238 {
239 gphi_iterator gsi;
240
241 m_phi_count = 0;
242 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
243 {
244 gphi *phi = gsi.phi ();
245 unsigned int i;
246
247 if (virtual_operand_p (gimple_phi_result (phi)))
248 continue;
249
250 m_phi_count++;
251
252 for (i = 0; i < gimple_phi_num_args (phi); i++)
253 {
254 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
255
256 if (bb == m_switch_bb
257 || (single_pred_p (bb)
258 && single_pred (bb) == m_switch_bb
259 && (!m_default_case_nonstandard
260 || empty_block_p (bb))))
261 {
262 tree reloc, val;
263 const char *reason = NULL;
264
265 val = gimple_phi_arg_def (phi, i);
266 if (!is_gimple_ip_invariant (val))
267 reason = "non-invariant value from a case";
268 else
269 {
270 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
271 if ((flag_pic && reloc != null_pointer_node)
272 || (!flag_pic && reloc == NULL_TREE))
273 {
274 if (reloc)
275 reason
276 = "value from a case would need runtime relocations";
277 else
278 reason
279 = "value from a case is not a valid initializer";
280 }
281 }
282 if (reason)
283 {
284 /* For contiguous range, we can allow non-constant
285 or one that needs relocation, as long as it is
286 only reachable from the default case. */
287 if (bb == m_switch_bb)
288 bb = m_final_bb;
289 if (!m_contiguous_range || bb != m_default_bb)
290 {
291 m_reason = reason;
292 return false;
293 }
294
295 unsigned int branch_num = gimple_switch_num_labels (m_switch);
296 for (unsigned int i = 1; i < branch_num; i++)
297 {
298 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
299 {
300 m_reason = reason;
301 return false;
302 }
303 }
304 m_default_case_nonstandard = true;
305 }
306 }
307 }
308 }
309
310 return true;
311 }
312
313 /* The following function allocates default_values, target_{in,out}_names and
314 constructors arrays. The last one is also populated with pointers to
315 vectors that will become constructors of new arrays. */
316
317 void
create_temp_arrays()318 switch_conversion::create_temp_arrays ()
319 {
320 int i;
321
322 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
323 /* ??? Macros do not support multi argument templates in their
324 argument list. We create a typedef to work around that problem. */
325 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
326 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
327 m_target_inbound_names = m_default_values + m_phi_count;
328 m_target_outbound_names = m_target_inbound_names + m_phi_count;
329 for (i = 0; i < m_phi_count; i++)
330 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
331 }
332
333 /* Populate the array of default values in the order of phi nodes.
334 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
335 if the range is non-contiguous or the default case has standard
336 structure, otherwise it is the first non-default case instead. */
337
338 void
gather_default_values(tree default_case)339 switch_conversion::gather_default_values (tree default_case)
340 {
341 gphi_iterator gsi;
342 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
343 edge e;
344 int i = 0;
345
346 gcc_assert (CASE_LOW (default_case) == NULL_TREE
347 || m_default_case_nonstandard);
348
349 if (bb == m_final_bb)
350 e = find_edge (m_switch_bb, bb);
351 else
352 e = single_succ_edge (bb);
353
354 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
355 {
356 gphi *phi = gsi.phi ();
357 if (virtual_operand_p (gimple_phi_result (phi)))
358 continue;
359 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
360 gcc_assert (val);
361 m_default_values[i++] = val;
362 }
363 }
364
365 /* The following function populates the vectors in the constructors array with
366 future contents of the static arrays. The vectors are populated in the
367 order of phi nodes. */
368
369 void
build_constructors()370 switch_conversion::build_constructors ()
371 {
372 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
373 tree pos = m_range_min;
374 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
375
376 for (i = 1; i < branch_num; i++)
377 {
378 tree cs = gimple_switch_label (m_switch, i);
379 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
380 edge e;
381 tree high;
382 gphi_iterator gsi;
383 int j;
384
385 if (bb == m_final_bb)
386 e = find_edge (m_switch_bb, bb);
387 else
388 e = single_succ_edge (bb);
389 gcc_assert (e);
390
391 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
392 {
393 int k;
394 for (k = 0; k < m_phi_count; k++)
395 {
396 constructor_elt elt;
397
398 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
399 elt.value
400 = unshare_expr_without_location (m_default_values[k]);
401 m_constructors[k]->quick_push (elt);
402 }
403
404 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
405 }
406 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
407
408 j = 0;
409 if (CASE_HIGH (cs))
410 high = CASE_HIGH (cs);
411 else
412 high = CASE_LOW (cs);
413 for (gsi = gsi_start_phis (m_final_bb);
414 !gsi_end_p (gsi); gsi_next (&gsi))
415 {
416 gphi *phi = gsi.phi ();
417 if (virtual_operand_p (gimple_phi_result (phi)))
418 continue;
419 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
420 tree low = CASE_LOW (cs);
421 pos = CASE_LOW (cs);
422
423 do
424 {
425 constructor_elt elt;
426
427 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
428 elt.value = unshare_expr_without_location (val);
429 m_constructors[j]->quick_push (elt);
430
431 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
432 } while (!tree_int_cst_lt (high, pos)
433 && tree_int_cst_lt (low, pos));
434 j++;
435 }
436 }
437 }
438
439 /* If all values in the constructor vector are products of a linear function
440 a * x + b, then return true. When true, COEFF_A and COEFF_B and
441 coefficients of the linear function. Note that equal values are special
442 case of a linear function with a and b equal to zero. */
443
444 bool
contains_linear_function_p(vec<constructor_elt,va_gc> * vec,wide_int * coeff_a,wide_int * coeff_b)445 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
446 wide_int *coeff_a,
447 wide_int *coeff_b)
448 {
449 unsigned int i;
450 constructor_elt *elt;
451
452 gcc_assert (vec->length () >= 2);
453
454 /* Let's try to find any linear function a * x + y that can apply to
455 given values. 'a' can be calculated as follows:
456
457 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
458 a = y2 - y1
459
460 and
461
462 b = y2 - a * x2
463
464 */
465
466 tree elt0 = (*vec)[0].value;
467 tree elt1 = (*vec)[1].value;
468
469 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
470 return false;
471
472 wide_int range_min
473 = wide_int::from (wi::to_wide (m_range_min),
474 TYPE_PRECISION (TREE_TYPE (elt0)),
475 TYPE_SIGN (TREE_TYPE (m_range_min)));
476 wide_int y1 = wi::to_wide (elt0);
477 wide_int y2 = wi::to_wide (elt1);
478 wide_int a = y2 - y1;
479 wide_int b = y2 - a * (range_min + 1);
480
481 /* Verify that all values fulfill the linear function. */
482 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
483 {
484 if (TREE_CODE (elt->value) != INTEGER_CST)
485 return false;
486
487 wide_int value = wi::to_wide (elt->value);
488 if (a * range_min + b != value)
489 return false;
490
491 ++range_min;
492 }
493
494 *coeff_a = a;
495 *coeff_b = b;
496
497 return true;
498 }
499
500 /* Return type which should be used for array elements, either TYPE's
501 main variant or, for integral types, some smaller integral type
502 that can still hold all the constants. */
503
504 tree
array_value_type(tree type,int num)505 switch_conversion::array_value_type (tree type, int num)
506 {
507 unsigned int i, len = vec_safe_length (m_constructors[num]);
508 constructor_elt *elt;
509 int sign = 0;
510 tree smaller_type;
511
512 /* Types with alignments greater than their size can reach here, e.g. out of
513 SRA. We couldn't use these as an array component type so get back to the
514 main variant first, which, for our purposes, is fine for other types as
515 well. */
516
517 type = TYPE_MAIN_VARIANT (type);
518
519 if (!INTEGRAL_TYPE_P (type))
520 return type;
521
522 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
523 scalar_int_mode mode = get_narrowest_mode (type_mode);
524 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
525 return type;
526
527 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
528 return type;
529
530 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
531 {
532 wide_int cst;
533
534 if (TREE_CODE (elt->value) != INTEGER_CST)
535 return type;
536
537 cst = wi::to_wide (elt->value);
538 while (1)
539 {
540 unsigned int prec = GET_MODE_BITSIZE (mode);
541 if (prec > HOST_BITS_PER_WIDE_INT)
542 return type;
543
544 if (sign >= 0 && cst == wi::zext (cst, prec))
545 {
546 if (sign == 0 && cst == wi::sext (cst, prec))
547 break;
548 sign = 1;
549 break;
550 }
551 if (sign <= 0 && cst == wi::sext (cst, prec))
552 {
553 sign = -1;
554 break;
555 }
556
557 if (sign == 1)
558 sign = 0;
559
560 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
561 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
562 return type;
563 }
564 }
565
566 if (sign == 0)
567 sign = TYPE_UNSIGNED (type) ? 1 : -1;
568 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
569 if (GET_MODE_SIZE (type_mode)
570 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
571 return type;
572
573 return smaller_type;
574 }
575
576 /* Create an appropriate array type and declaration and assemble a static
577 array variable. Also create a load statement that initializes
578 the variable in question with a value from the static array. SWTCH is
579 the switch statement being converted, NUM is the index to
580 arrays of constructors, default values and target SSA names
581 for this particular array. ARR_INDEX_TYPE is the type of the index
582 of the new array, PHI is the phi node of the final BB that corresponds
583 to the value that will be loaded from the created array. TIDX
584 is an ssa name of a temporary variable holding the index for loads from the
585 new array. */
586
587 void
build_one_array(int num,tree arr_index_type,gphi * phi,tree tidx)588 switch_conversion::build_one_array (int num, tree arr_index_type,
589 gphi *phi, tree tidx)
590 {
591 tree name;
592 gimple *load;
593 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
594 location_t loc = gimple_location (m_switch);
595
596 gcc_assert (m_default_values[num]);
597
598 name = copy_ssa_name (PHI_RESULT (phi));
599 m_target_inbound_names[num] = name;
600
601 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
602 wide_int coeff_a, coeff_b;
603 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
604 tree type;
605 if (linear_p
606 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
607 {
608 if (dump_file && coeff_a.to_uhwi () > 0)
609 fprintf (dump_file, "Linear transformation with A = %" PRId64
610 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
611 coeff_b.to_shwi ());
612
613 /* We must use type of constructor values. */
614 gimple_seq seq = NULL;
615 tree tmp = gimple_convert (&seq, type, m_index_expr);
616 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
617 wide_int_to_tree (type, coeff_a), tmp);
618 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
619 wide_int_to_tree (type, coeff_b));
620 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
621 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
622 load = gimple_build_assign (name, tmp4);
623 }
624 else
625 {
626 tree array_type, ctor, decl, value_type, fetch, default_type;
627
628 default_type = TREE_TYPE (m_default_values[num]);
629 value_type = array_value_type (default_type, num);
630 array_type = build_array_type (value_type, arr_index_type);
631 if (default_type != value_type)
632 {
633 unsigned int i;
634 constructor_elt *elt;
635
636 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
637 elt->value = fold_convert (value_type, elt->value);
638 }
639 ctor = build_constructor (array_type, constructor);
640 TREE_CONSTANT (ctor) = true;
641 TREE_STATIC (ctor) = true;
642
643 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
644 TREE_STATIC (decl) = 1;
645 DECL_INITIAL (decl) = ctor;
646
647 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
648 DECL_ARTIFICIAL (decl) = 1;
649 DECL_IGNORED_P (decl) = 1;
650 TREE_CONSTANT (decl) = 1;
651 TREE_READONLY (decl) = 1;
652 DECL_IGNORED_P (decl) = 1;
653 if (offloading_function_p (cfun->decl))
654 DECL_ATTRIBUTES (decl)
655 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
656 NULL_TREE);
657 varpool_node::finalize_decl (decl);
658
659 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
660 NULL_TREE);
661 if (default_type != value_type)
662 {
663 fetch = fold_convert (default_type, fetch);
664 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
665 true, GSI_SAME_STMT);
666 }
667 load = gimple_build_assign (name, fetch);
668 }
669
670 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
671 update_stmt (load);
672 m_arr_ref_last = load;
673 }
674
675 /* Builds and initializes static arrays initialized with values gathered from
676 the switch statement. Also creates statements that load values from
677 them. */
678
679 void
build_arrays()680 switch_conversion::build_arrays ()
681 {
682 tree arr_index_type;
683 tree tidx, sub, utype;
684 gimple *stmt;
685 gimple_stmt_iterator gsi;
686 gphi_iterator gpi;
687 int i;
688 location_t loc = gimple_location (m_switch);
689
690 gsi = gsi_for_stmt (m_switch);
691
692 /* Make sure we do not generate arithmetics in a subrange. */
693 utype = TREE_TYPE (m_index_expr);
694 if (TREE_TYPE (utype))
695 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
696 else
697 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
698
699 arr_index_type = build_index_type (m_range_size);
700 tidx = make_ssa_name (utype);
701 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
702 fold_convert_loc (loc, utype, m_index_expr),
703 fold_convert_loc (loc, utype, m_range_min));
704 sub = force_gimple_operand_gsi (&gsi, sub,
705 false, NULL, true, GSI_SAME_STMT);
706 stmt = gimple_build_assign (tidx, sub);
707
708 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
709 update_stmt (stmt);
710 m_arr_ref_first = stmt;
711
712 for (gpi = gsi_start_phis (m_final_bb), i = 0;
713 !gsi_end_p (gpi); gsi_next (&gpi))
714 {
715 gphi *phi = gpi.phi ();
716 if (!virtual_operand_p (gimple_phi_result (phi)))
717 build_one_array (i++, arr_index_type, phi, tidx);
718 else
719 {
720 edge e;
721 edge_iterator ei;
722 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
723 {
724 if (e->dest == m_final_bb)
725 break;
726 if (!m_default_case_nonstandard
727 || e->dest != m_default_bb)
728 {
729 e = single_succ_edge (e->dest);
730 break;
731 }
732 }
733 gcc_assert (e && e->dest == m_final_bb);
734 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
735 }
736 }
737 }
738
739 /* Generates and appropriately inserts loads of default values at the position
740 given by GSI. Returns the last inserted statement. */
741
742 gassign *
gen_def_assigns(gimple_stmt_iterator * gsi)743 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
744 {
745 int i;
746 gassign *assign = NULL;
747
748 for (i = 0; i < m_phi_count; i++)
749 {
750 tree name = copy_ssa_name (m_target_inbound_names[i]);
751 m_target_outbound_names[i] = name;
752 assign = gimple_build_assign (name, m_default_values[i]);
753 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
754 update_stmt (assign);
755 }
756 return assign;
757 }
758
759 /* Deletes the unused bbs and edges that now contain the switch statement and
760 its empty branch bbs. BBD is the now dead BB containing
761 the original switch statement, FINAL is the last BB of the converted
762 switch statement (in terms of succession). */
763
764 void
prune_bbs(basic_block bbd,basic_block final,basic_block default_bb)765 switch_conversion::prune_bbs (basic_block bbd, basic_block final,
766 basic_block default_bb)
767 {
768 edge_iterator ei;
769 edge e;
770
771 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
772 {
773 basic_block bb;
774 bb = e->dest;
775 remove_edge (e);
776 if (bb != final && bb != default_bb)
777 delete_basic_block (bb);
778 }
779 delete_basic_block (bbd);
780 }
781
782 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
783 from the basic block loading values from an array and E2F from the basic
784 block loading default values. BBF is the last switch basic block (see the
785 bbf description in the comment below). */
786
787 void
fix_phi_nodes(edge e1f,edge e2f,basic_block bbf)788 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
789 {
790 gphi_iterator gsi;
791 int i;
792
793 for (gsi = gsi_start_phis (bbf), i = 0;
794 !gsi_end_p (gsi); gsi_next (&gsi))
795 {
796 gphi *phi = gsi.phi ();
797 tree inbound, outbound;
798 if (virtual_operand_p (gimple_phi_result (phi)))
799 inbound = outbound = m_target_vop;
800 else
801 {
802 inbound = m_target_inbound_names[i];
803 outbound = m_target_outbound_names[i++];
804 }
805 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
806 if (!m_default_case_nonstandard)
807 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
808 }
809 }
810
811 /* Creates a check whether the switch expression value actually falls into the
812 range given by all the cases. If it does not, the temporaries are loaded
813 with default values instead. */
814
815 void
gen_inbound_check()816 switch_conversion::gen_inbound_check ()
817 {
818 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
819 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
820 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
821 glabel *label1, *label2, *label3;
822 tree utype, tidx;
823 tree bound;
824
825 gcond *cond_stmt;
826
827 gassign *last_assign = NULL;
828 gimple_stmt_iterator gsi;
829 basic_block bb0, bb1, bb2, bbf, bbd;
830 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
831 location_t loc = gimple_location (m_switch);
832
833 gcc_assert (m_default_values);
834
835 bb0 = gimple_bb (m_switch);
836
837 tidx = gimple_assign_lhs (m_arr_ref_first);
838 utype = TREE_TYPE (tidx);
839
840 /* (end of) block 0 */
841 gsi = gsi_for_stmt (m_arr_ref_first);
842 gsi_next (&gsi);
843
844 bound = fold_convert_loc (loc, utype, m_range_size);
845 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
846 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
847 update_stmt (cond_stmt);
848
849 /* block 2 */
850 if (!m_default_case_nonstandard)
851 {
852 label2 = gimple_build_label (label_decl2);
853 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
854 last_assign = gen_def_assigns (&gsi);
855 }
856
857 /* block 1 */
858 label1 = gimple_build_label (label_decl1);
859 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
860
861 /* block F */
862 gsi = gsi_start_bb (m_final_bb);
863 label3 = gimple_build_label (label_decl3);
864 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
865
866 /* cfg fix */
867 e02 = split_block (bb0, cond_stmt);
868 bb2 = e02->dest;
869
870 if (m_default_case_nonstandard)
871 {
872 bb1 = bb2;
873 bb2 = m_default_bb;
874 e01 = e02;
875 e01->flags = EDGE_TRUE_VALUE;
876 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
877 edge e_default = find_edge (bb1, bb2);
878 for (gphi_iterator gsi = gsi_start_phis (bb2);
879 !gsi_end_p (gsi); gsi_next (&gsi))
880 {
881 gphi *phi = gsi.phi ();
882 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
883 add_phi_arg (phi, arg, e02,
884 gimple_phi_arg_location_from_edge (phi, e_default));
885 }
886 /* Partially fix the dominator tree, if it is available. */
887 if (dom_info_available_p (CDI_DOMINATORS))
888 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
889 }
890 else
891 {
892 e21 = split_block (bb2, last_assign);
893 bb1 = e21->dest;
894 remove_edge (e21);
895 }
896
897 e1d = split_block (bb1, m_arr_ref_last);
898 bbd = e1d->dest;
899 remove_edge (e1d);
900
901 /* Flags and profiles of the edge for in-range values. */
902 if (!m_default_case_nonstandard)
903 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
904 e01->probability = m_default_prob.invert ();
905
906 /* Flags and profiles of the edge taking care of out-of-range values. */
907 e02->flags &= ~EDGE_FALLTHRU;
908 e02->flags |= EDGE_FALSE_VALUE;
909 e02->probability = m_default_prob;
910
911 bbf = m_final_bb;
912
913 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
914 e1f->probability = profile_probability::always ();
915
916 if (m_default_case_nonstandard)
917 e2f = NULL;
918 else
919 {
920 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
921 e2f->probability = profile_probability::always ();
922 }
923
924 /* frequencies of the new BBs */
925 bb1->count = e01->count ();
926 bb2->count = e02->count ();
927 if (!m_default_case_nonstandard)
928 bbf->count = e1f->count () + e2f->count ();
929
930 /* Tidy blocks that have become unreachable. */
931 prune_bbs (bbd, m_final_bb,
932 m_default_case_nonstandard ? m_default_bb : NULL);
933
934 /* Fixup the PHI nodes in bbF. */
935 fix_phi_nodes (e1f, e2f, bbf);
936
937 /* Fix the dominator tree, if it is available. */
938 if (dom_info_available_p (CDI_DOMINATORS))
939 {
940 vec<basic_block> bbs_to_fix_dom;
941
942 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
943 if (!m_default_case_nonstandard)
944 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
945 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
946 /* If bbD was the immediate dominator ... */
947 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
948
949 bbs_to_fix_dom.create (3 + (bb2 != bbf));
950 bbs_to_fix_dom.quick_push (bb0);
951 bbs_to_fix_dom.quick_push (bb1);
952 if (bb2 != bbf)
953 bbs_to_fix_dom.quick_push (bb2);
954 bbs_to_fix_dom.quick_push (bbf);
955
956 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
957 bbs_to_fix_dom.release ();
958 }
959 }
960
961 /* The following function is invoked on every switch statement (the current
962 one is given in SWTCH) and runs the individual phases of switch
963 conversion on it one after another until one fails or the conversion
964 is completed. On success, NULL is in m_reason, otherwise points
965 to a string with the reason why the conversion failed. */
966
967 void
expand(gswitch * swtch)968 switch_conversion::expand (gswitch *swtch)
969 {
970 /* Group case labels so that we get the right results from the heuristics
971 that decide on the code generation approach for this switch. */
972 m_cfg_altered |= group_case_labels_stmt (swtch);
973
974 /* If this switch is now a degenerate case with only a default label,
975 there is nothing left for us to do. */
976 if (gimple_switch_num_labels (swtch) < 2)
977 {
978 m_reason = "switch is a degenerate case";
979 return;
980 }
981
982 collect (swtch);
983
984 /* No error markers should reach here (they should be filtered out
985 during gimplification). */
986 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
987
988 /* Prefer bit test if possible. */
989 if (tree_fits_uhwi_p (m_range_size)
990 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
991 && bit_test_cluster::is_beneficial (m_count, m_uniq))
992 {
993 m_reason = "expanding as bit test is preferable";
994 return;
995 }
996
997 if (m_uniq <= 2)
998 {
999 /* This will be expanded as a decision tree . */
1000 m_reason = "expanding as jumps is preferable";
1001 return;
1002 }
1003
1004 /* If there is no common successor, we cannot do the transformation. */
1005 if (!m_final_bb)
1006 {
1007 m_reason = "no common successor to all case label target blocks found";
1008 return;
1009 }
1010
1011 /* Check the case label values are within reasonable range: */
1012 if (!check_range ())
1013 {
1014 gcc_assert (m_reason);
1015 return;
1016 }
1017
1018 /* For all the cases, see whether they are empty, the assignments they
1019 represent constant and so on... */
1020 if (!check_all_empty_except_final ())
1021 {
1022 gcc_assert (m_reason);
1023 return;
1024 }
1025 if (!check_final_bb ())
1026 {
1027 gcc_assert (m_reason);
1028 return;
1029 }
1030
1031 /* At this point all checks have passed and we can proceed with the
1032 transformation. */
1033
1034 create_temp_arrays ();
1035 gather_default_values (m_default_case_nonstandard
1036 ? gimple_switch_label (swtch, 1)
1037 : gimple_switch_default_label (swtch));
1038 build_constructors ();
1039
1040 build_arrays (); /* Build the static arrays and assignments. */
1041 gen_inbound_check (); /* Build the bounds check. */
1042
1043 m_cfg_altered = true;
1044 }
1045
1046 /* Destructor. */
1047
~switch_conversion()1048 switch_conversion::~switch_conversion ()
1049 {
1050 XDELETEVEC (m_constructors);
1051 XDELETEVEC (m_default_values);
1052 }
1053
1054 /* Constructor. */
1055
group_cluster(vec<cluster * > & clusters,unsigned start,unsigned end)1056 group_cluster::group_cluster (vec<cluster *> &clusters,
1057 unsigned start, unsigned end)
1058 {
1059 gcc_checking_assert (end - start + 1 >= 1);
1060 m_prob = profile_probability::never ();
1061 m_cases.create (end - start + 1);
1062 for (unsigned i = start; i <= end; i++)
1063 {
1064 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1065 m_prob += clusters[i]->m_prob;
1066 }
1067 m_subtree_prob = m_prob;
1068 }
1069
1070 /* Destructor. */
1071
~group_cluster()1072 group_cluster::~group_cluster ()
1073 {
1074 for (unsigned i = 0; i < m_cases.length (); i++)
1075 delete m_cases[i];
1076
1077 m_cases.release ();
1078 }
1079
1080 /* Dump content of a cluster. */
1081
1082 void
dump(FILE * f,bool details)1083 group_cluster::dump (FILE *f, bool details)
1084 {
1085 unsigned total_values = 0;
1086 for (unsigned i = 0; i < m_cases.length (); i++)
1087 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1088 m_cases[i]->get_high ());
1089
1090 unsigned comparison_count = 0;
1091 for (unsigned i = 0; i < m_cases.length (); i++)
1092 {
1093 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1094 comparison_count += sc->get_comparison_count ();
1095 }
1096
1097 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1098 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
1099
1100 if (details)
1101 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1102 " density: %.2f%%)", total_values, comparison_count, range,
1103 100.0f * comparison_count / range);
1104
1105 fprintf (f, ":");
1106 PRINT_CASE (f, get_low ());
1107 fprintf (f, "-");
1108 PRINT_CASE (f, get_high ());
1109 fprintf (f, " ");
1110 }
1111
1112 /* Emit GIMPLE code to handle the cluster. */
1113
1114 void
emit(tree index_expr,tree,tree default_label_expr,basic_block default_bb,location_t loc)1115 jump_table_cluster::emit (tree index_expr, tree,
1116 tree default_label_expr, basic_block default_bb,
1117 location_t loc)
1118 {
1119 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1120 unsigned HOST_WIDE_INT nondefault_range = 0;
1121
1122 /* For jump table we just emit a new gswitch statement that will
1123 be latter lowered to jump table. */
1124 auto_vec <tree> labels;
1125 labels.create (m_cases.length ());
1126
1127 make_edge (m_case_bb, default_bb, 0);
1128 for (unsigned i = 0; i < m_cases.length (); i++)
1129 {
1130 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1131 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1132 }
1133
1134 gswitch *s = gimple_build_switch (index_expr,
1135 unshare_expr (default_label_expr), labels);
1136 gimple_set_location (s, loc);
1137 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1138 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
1139
1140 /* Set up even probabilities for all cases. */
1141 for (unsigned i = 0; i < m_cases.length (); i++)
1142 {
1143 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1144 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1145 unsigned HOST_WIDE_INT case_range
1146 = sc->get_range (sc->get_low (), sc->get_high ());
1147 nondefault_range += case_range;
1148
1149 /* case_edge->aux is number of values in a jump-table that are covered
1150 by the case_edge. */
1151 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1152 }
1153
1154 edge default_edge = gimple_switch_default_edge (cfun, s);
1155 default_edge->probability = profile_probability::never ();
1156
1157 for (unsigned i = 0; i < m_cases.length (); i++)
1158 {
1159 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1160 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1161 case_edge->probability
1162 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1163 range);
1164 }
1165
1166 /* Number of non-default values is probability of default edge. */
1167 default_edge->probability
1168 += profile_probability::always ().apply_scale (nondefault_range,
1169 range).invert ();
1170
1171 switch_decision_tree::reset_out_edges_aux (s);
1172 }
1173
1174 /* Find jump tables of given CLUSTERS, where all members of the vector
1175 are of type simple_cluster. New clusters are returned. */
1176
1177 vec<cluster *>
find_jump_tables(vec<cluster * > & clusters)1178 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1179 {
1180 if (!is_enabled ())
1181 return clusters.copy ();
1182
1183 unsigned l = clusters.length ();
1184 auto_vec<min_cluster_item> min;
1185 min.reserve (l + 1);
1186
1187 min.quick_push (min_cluster_item (0, 0, 0));
1188
1189 unsigned HOST_WIDE_INT max_ratio
1190 = (optimize_insn_for_size_p ()
1191 ? param_jump_table_max_growth_ratio_for_size
1192 : param_jump_table_max_growth_ratio_for_speed);
1193
1194 for (unsigned i = 1; i <= l; i++)
1195 {
1196 /* Set minimal # of clusters with i-th item to infinite. */
1197 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1198
1199 /* Pre-calculate number of comparisons for the clusters. */
1200 HOST_WIDE_INT comparison_count = 0;
1201 for (unsigned k = 0; k <= i - 1; k++)
1202 {
1203 simple_cluster *sc = static_cast<simple_cluster *> (clusters[k]);
1204 comparison_count += sc->get_comparison_count ();
1205 }
1206
1207 for (unsigned j = 0; j < i; j++)
1208 {
1209 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1210 if (i - j < case_values_threshold ())
1211 s += i - j;
1212
1213 /* Prefer clusters with smaller number of numbers covered. */
1214 if ((min[j].m_count + 1 < min[i].m_count
1215 || (min[j].m_count + 1 == min[i].m_count
1216 && s < min[i].m_non_jt_cases))
1217 && can_be_handled (clusters, j, i - 1, max_ratio,
1218 comparison_count))
1219 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1220
1221 simple_cluster *sc = static_cast<simple_cluster *> (clusters[j]);
1222 comparison_count -= sc->get_comparison_count ();
1223 }
1224
1225 gcc_checking_assert (comparison_count == 0);
1226 gcc_checking_assert (min[i].m_count != INT_MAX);
1227 }
1228
1229 /* No result. */
1230 if (min[l].m_count == l)
1231 return clusters.copy ();
1232
1233 vec<cluster *> output;
1234 output.create (4);
1235
1236 /* Find and build the clusters. */
1237 for (unsigned int end = l;;)
1238 {
1239 int start = min[end].m_start;
1240
1241 /* Do not allow clusters with small number of cases. */
1242 if (is_beneficial (clusters, start, end - 1))
1243 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1244 else
1245 for (int i = end - 1; i >= start; i--)
1246 output.safe_push (clusters[i]);
1247
1248 end = start;
1249
1250 if (start <= 0)
1251 break;
1252 }
1253
1254 output.reverse ();
1255 return output;
1256 }
1257
1258 /* Return true when cluster starting at START and ending at END (inclusive)
1259 can build a jump-table. */
1260
1261 bool
can_be_handled(const vec<cluster * > & clusters,unsigned start,unsigned end,unsigned HOST_WIDE_INT max_ratio,unsigned HOST_WIDE_INT comparison_count)1262 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1263 unsigned start, unsigned end,
1264 unsigned HOST_WIDE_INT max_ratio,
1265 unsigned HOST_WIDE_INT comparison_count)
1266 {
1267 /* If the switch is relatively small such that the cost of one
1268 indirect jump on the target are higher than the cost of a
1269 decision tree, go with the decision tree.
1270
1271 If range of values is much bigger than number of values,
1272 or if it is too large to represent in a HOST_WIDE_INT,
1273 make a sequence of conditional branches instead of a dispatch.
1274
1275 The definition of "much bigger" depends on whether we are
1276 optimizing for size or for speed.
1277
1278 For algorithm correctness, jump table for a single case must return
1279 true. We bail out in is_beneficial if it's called just for
1280 a single case. */
1281 if (start == end)
1282 return true;
1283
1284 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1285 clusters[end]->get_high ());
1286 /* Check overflow. */
1287 if (range == 0)
1288 return false;
1289
1290 if (range > HOST_WIDE_INT_M1U / 100)
1291 return false;
1292
1293 unsigned HOST_WIDE_INT lhs = 100 * range;
1294 if (lhs < range)
1295 return false;
1296
1297 return lhs <= max_ratio * comparison_count;
1298 }
1299
1300 /* Return true if cluster starting at START and ending at END (inclusive)
1301 is profitable transformation. */
1302
1303 bool
is_beneficial(const vec<cluster * > &,unsigned start,unsigned end)1304 jump_table_cluster::is_beneficial (const vec<cluster *> &,
1305 unsigned start, unsigned end)
1306 {
1307 /* Single case bail out. */
1308 if (start == end)
1309 return false;
1310
1311 return end - start + 1 >= case_values_threshold ();
1312 }
1313
1314 /* Find bit tests of given CLUSTERS, where all members of the vector
1315 are of type simple_cluster. New clusters are returned. */
1316
1317 vec<cluster *>
find_bit_tests(vec<cluster * > & clusters)1318 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1319 {
1320 if (!is_enabled ())
1321 return clusters.copy ();
1322
1323 unsigned l = clusters.length ();
1324 auto_vec<min_cluster_item> min;
1325 min.reserve (l + 1);
1326
1327 min.quick_push (min_cluster_item (0, 0, 0));
1328
1329 for (unsigned i = 1; i <= l; i++)
1330 {
1331 /* Set minimal # of clusters with i-th item to infinite. */
1332 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1333
1334 for (unsigned j = 0; j < i; j++)
1335 {
1336 if (min[j].m_count + 1 < min[i].m_count
1337 && can_be_handled (clusters, j, i - 1))
1338 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1339 }
1340
1341 gcc_checking_assert (min[i].m_count != INT_MAX);
1342 }
1343
1344 /* No result. */
1345 if (min[l].m_count == l)
1346 return clusters.copy ();
1347
1348 vec<cluster *> output;
1349 output.create (4);
1350
1351 /* Find and build the clusters. */
1352 for (unsigned end = l;;)
1353 {
1354 int start = min[end].m_start;
1355
1356 if (is_beneficial (clusters, start, end - 1))
1357 {
1358 bool entire = start == 0 && end == clusters.length ();
1359 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1360 entire));
1361 }
1362 else
1363 for (int i = end - 1; i >= start; i--)
1364 output.safe_push (clusters[i]);
1365
1366 end = start;
1367
1368 if (start <= 0)
1369 break;
1370 }
1371
1372 output.reverse ();
1373 return output;
1374 }
1375
1376 /* Return true when RANGE of case values with UNIQ labels
1377 can build a bit test. */
1378
1379 bool
can_be_handled(unsigned HOST_WIDE_INT range,unsigned int uniq)1380 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1381 unsigned int uniq)
1382 {
1383 /* Check overflow. */
1384 if (range == 0)
1385 return false;
1386
1387 if (range >= GET_MODE_BITSIZE (word_mode))
1388 return false;
1389
1390 return uniq <= m_max_case_bit_tests;
1391 }
1392
1393 /* Return true when cluster starting at START and ending at END (inclusive)
1394 can build a bit test. */
1395
1396 bool
can_be_handled(const vec<cluster * > & clusters,unsigned start,unsigned end)1397 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1398 unsigned start, unsigned end)
1399 {
1400 auto_vec<int, m_max_case_bit_tests> dest_bbs;
1401 /* For algorithm correctness, bit test for a single case must return
1402 true. We bail out in is_beneficial if it's called just for
1403 a single case. */
1404 if (start == end)
1405 return true;
1406
1407 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1408 clusters[end]->get_high ());
1409
1410 /* Make a guess first. */
1411 if (!can_be_handled (range, m_max_case_bit_tests))
1412 return false;
1413
1414 for (unsigned i = start; i <= end; i++)
1415 {
1416 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1417 /* m_max_case_bit_tests is very small integer, thus the operation
1418 is constant. */
1419 if (!dest_bbs.contains (sc->m_case_bb->index))
1420 {
1421 if (dest_bbs.length () >= m_max_case_bit_tests)
1422 return false;
1423 dest_bbs.quick_push (sc->m_case_bb->index);
1424 }
1425 }
1426
1427 return true;
1428 }
1429
1430 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1431 transformation. */
1432
1433 bool
is_beneficial(unsigned count,unsigned uniq)1434 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
1435 {
1436 return (((uniq == 1 && count >= 3)
1437 || (uniq == 2 && count >= 5)
1438 || (uniq == 3 && count >= 6)));
1439 }
1440
1441 /* Return true if cluster starting at START and ending at END (inclusive)
1442 is profitable transformation. */
1443
1444 bool
is_beneficial(const vec<cluster * > & clusters,unsigned start,unsigned end)1445 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1446 unsigned start, unsigned end)
1447 {
1448 /* Single case bail out. */
1449 if (start == end)
1450 return false;
1451
1452 auto_bitmap dest_bbs;
1453
1454 for (unsigned i = start; i <= end; i++)
1455 {
1456 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1457 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1458 }
1459
1460 unsigned uniq = bitmap_count_bits (dest_bbs);
1461 unsigned count = end - start + 1;
1462 return is_beneficial (count, uniq);
1463 }
1464
1465 /* Comparison function for qsort to order bit tests by decreasing
1466 probability of execution. */
1467
1468 int
cmp(const void * p1,const void * p2)1469 case_bit_test::cmp (const void *p1, const void *p2)
1470 {
1471 const case_bit_test *const d1 = (const case_bit_test *) p1;
1472 const case_bit_test *const d2 = (const case_bit_test *) p2;
1473
1474 if (d2->bits != d1->bits)
1475 return d2->bits - d1->bits;
1476
1477 /* Stabilize the sort. */
1478 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1479 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1480 }
1481
1482 /* Expand a switch statement by a short sequence of bit-wise
1483 comparisons. "switch(x)" is effectively converted into
1484 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1485 integer constants.
1486
1487 INDEX_EXPR is the value being switched on.
1488
1489 MINVAL is the lowest case value of in the case nodes,
1490 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1491 are not guaranteed to be of the same type as INDEX_EXPR
1492 (the gimplifier doesn't change the type of case label values,
1493 and MINVAL and RANGE are derived from those values).
1494 MAXVAL is MINVAL + RANGE.
1495
1496 There *MUST* be max_case_bit_tests or less unique case
1497 node targets. */
1498
1499 void
emit(tree index_expr,tree index_type,tree,basic_block default_bb,location_t loc)1500 bit_test_cluster::emit (tree index_expr, tree index_type,
1501 tree, basic_block default_bb, location_t loc)
1502 {
1503 case_bit_test test[m_max_case_bit_tests] = { {} };
1504 unsigned int i, j, k;
1505 unsigned int count;
1506
1507 tree unsigned_index_type = range_check_type (index_type);
1508
1509 gimple_stmt_iterator gsi;
1510 gassign *shift_stmt;
1511
1512 tree idx, tmp, csui;
1513 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1514 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1515 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1516 int prec = TYPE_PRECISION (word_type_node);
1517 wide_int wone = wi::one (prec);
1518
1519 tree minval = get_low ();
1520 tree maxval = get_high ();
1521 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
1522
1523 /* Go through all case labels, and collect the case labels, profile
1524 counts, and other information we need to build the branch tests. */
1525 count = 0;
1526 for (i = 0; i < m_cases.length (); i++)
1527 {
1528 unsigned int lo, hi;
1529 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1530 for (k = 0; k < count; k++)
1531 if (n->m_case_bb == test[k].target_bb)
1532 break;
1533
1534 if (k == count)
1535 {
1536 gcc_checking_assert (count < m_max_case_bit_tests);
1537 test[k].mask = wi::zero (prec);
1538 test[k].target_bb = n->m_case_bb;
1539 test[k].label = n->m_case_label_expr;
1540 test[k].bits = 0;
1541 count++;
1542 }
1543
1544 test[k].bits += n->get_range (n->get_low (), n->get_high ());
1545
1546 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1547 if (n->get_high () == NULL_TREE)
1548 hi = lo;
1549 else
1550 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1551 minval));
1552
1553 for (j = lo; j <= hi; j++)
1554 test[k].mask |= wi::lshift (wone, j);
1555 }
1556
1557 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1558
1559 /* If every possible relative value of the index expression is a valid shift
1560 amount, then we can merge the entry test in the bit test. */
1561 bool entry_test_needed;
1562 value_range r;
1563 if (TREE_CODE (index_expr) == SSA_NAME
1564 && get_range_query (cfun)->range_of_expr (r, index_expr)
1565 && r.kind () == VR_RANGE
1566 && wi::leu_p (r.upper_bound () - r.lower_bound (), prec - 1))
1567 {
1568 wide_int min = r.lower_bound ();
1569 wide_int max = r.upper_bound ();
1570 tree index_type = TREE_TYPE (index_expr);
1571 minval = fold_convert (index_type, minval);
1572 wide_int iminval = wi::to_wide (minval);
1573 if (wi::lt_p (min, iminval, TYPE_SIGN (index_type)))
1574 {
1575 minval = wide_int_to_tree (index_type, min);
1576 for (i = 0; i < count; i++)
1577 test[i].mask = wi::lshift (test[i].mask, iminval - min);
1578 }
1579 else if (wi::gt_p (min, iminval, TYPE_SIGN (index_type)))
1580 {
1581 minval = wide_int_to_tree (index_type, min);
1582 for (i = 0; i < count; i++)
1583 test[i].mask = wi::lrshift (test[i].mask, min - iminval);
1584 }
1585 maxval = wide_int_to_tree (index_type, max);
1586 entry_test_needed = false;
1587 }
1588 else
1589 entry_test_needed = true;
1590
1591 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1592 the minval subtractions, but it might make the mask constants more
1593 expensive. So, compare the costs. */
1594 if (compare_tree_int (minval, 0) > 0 && compare_tree_int (maxval, prec) < 0)
1595 {
1596 int cost_diff;
1597 HOST_WIDE_INT m = tree_to_uhwi (minval);
1598 rtx reg = gen_raw_REG (word_mode, 10000);
1599 bool speed_p = optimize_insn_for_speed_p ();
1600 cost_diff = set_src_cost (gen_rtx_PLUS (word_mode, reg,
1601 GEN_INT (-m)),
1602 word_mode, speed_p);
1603 for (i = 0; i < count; i++)
1604 {
1605 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1606 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1607 word_mode, speed_p);
1608 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1609 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1610 word_mode, speed_p);
1611 }
1612 if (cost_diff > 0)
1613 {
1614 for (i = 0; i < count; i++)
1615 test[i].mask = wi::lshift (test[i].mask, m);
1616 minval = build_zero_cst (TREE_TYPE (minval));
1617 }
1618 }
1619
1620 /* Now build the test-and-branch code. */
1621
1622 gsi = gsi_last_bb (m_case_bb);
1623
1624 /* idx = (unsigned)x - minval. */
1625 idx = fold_convert_loc (loc, unsigned_index_type, index_expr);
1626 idx = fold_build2_loc (loc, MINUS_EXPR, unsigned_index_type, idx,
1627 fold_convert_loc (loc, unsigned_index_type, minval));
1628 idx = force_gimple_operand_gsi (&gsi, idx,
1629 /*simple=*/true, NULL_TREE,
1630 /*before=*/true, GSI_SAME_STMT);
1631
1632 if (m_handles_entire_switch && entry_test_needed)
1633 {
1634 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
1635 /* if (idx > range) goto default */
1636 range
1637 = force_gimple_operand_gsi (&gsi,
1638 fold_convert (unsigned_index_type, range),
1639 /*simple=*/true, NULL_TREE,
1640 /*before=*/true, GSI_SAME_STMT);
1641 tmp = fold_build2_loc (loc, GT_EXPR, boolean_type_node, idx, range);
1642 basic_block new_bb
1643 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1644 profile_probability::unlikely (), loc);
1645 gsi = gsi_last_bb (new_bb);
1646 }
1647
1648 tmp = fold_build2_loc (loc, LSHIFT_EXPR, word_type_node, word_mode_one,
1649 fold_convert_loc (loc, word_type_node, idx));
1650
1651 /* csui = (1 << (word_mode) idx) */
1652 if (count > 1)
1653 {
1654 csui = make_ssa_name (word_type_node);
1655 tmp = force_gimple_operand_gsi (&gsi, tmp,
1656 /*simple=*/false, NULL_TREE,
1657 /*before=*/true, GSI_SAME_STMT);
1658 shift_stmt = gimple_build_assign (csui, tmp);
1659 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1660 update_stmt (shift_stmt);
1661 }
1662 else
1663 csui = tmp;
1664
1665 profile_probability prob = profile_probability::always ();
1666
1667 /* for each unique set of cases:
1668 if (const & csui) goto target */
1669 for (k = 0; k < count; k++)
1670 {
1671 prob = profile_probability::always ().apply_scale (test[k].bits,
1672 bt_range);
1673 bt_range -= test[k].bits;
1674 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1675 tmp = fold_build2_loc (loc, BIT_AND_EXPR, word_type_node, csui, tmp);
1676 tmp = fold_build2_loc (loc, NE_EXPR, boolean_type_node,
1677 tmp, word_mode_zero);
1678 tmp = force_gimple_operand_gsi (&gsi, tmp,
1679 /*simple=*/true, NULL_TREE,
1680 /*before=*/true, GSI_SAME_STMT);
1681 basic_block new_bb
1682 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb,
1683 prob, loc);
1684 gsi = gsi_last_bb (new_bb);
1685 }
1686
1687 /* We should have removed all edges now. */
1688 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
1689
1690 /* If nothing matched, go to the default label. */
1691 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1692 e->probability = profile_probability::always ();
1693 }
1694
1695 /* Split the basic block at the statement pointed to by GSIP, and insert
1696 a branch to the target basic block of E_TRUE conditional on tree
1697 expression COND.
1698
1699 It is assumed that there is already an edge from the to-be-split
1700 basic block to E_TRUE->dest block. This edge is removed, and the
1701 profile information on the edge is re-used for the new conditional
1702 jump.
1703
1704 The CFG is updated. The dominator tree will not be valid after
1705 this transformation, but the immediate dominators are updated if
1706 UPDATE_DOMINATORS is true.
1707
1708 Returns the newly created basic block. */
1709
1710 basic_block
hoist_edge_and_branch_if_true(gimple_stmt_iterator * gsip,tree cond,basic_block case_bb,profile_probability prob,location_t loc)1711 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
1712 tree cond, basic_block case_bb,
1713 profile_probability prob,
1714 location_t loc)
1715 {
1716 tree tmp;
1717 gcond *cond_stmt;
1718 edge e_false;
1719 basic_block new_bb, split_bb = gsi_bb (*gsip);
1720
1721 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
1722 e_true->probability = prob;
1723 gcc_assert (e_true->src == split_bb);
1724
1725 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1726 /*before=*/true, GSI_SAME_STMT);
1727 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1728 gimple_set_location (cond_stmt, loc);
1729 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
1730
1731 e_false = split_block (split_bb, cond_stmt);
1732 new_bb = e_false->dest;
1733 redirect_edge_pred (e_true, split_bb);
1734
1735 e_false->flags &= ~EDGE_FALLTHRU;
1736 e_false->flags |= EDGE_FALSE_VALUE;
1737 e_false->probability = e_true->probability.invert ();
1738 new_bb->count = e_false->count ();
1739
1740 return new_bb;
1741 }
1742
1743 /* Compute the number of case labels that correspond to each outgoing edge of
1744 switch statement. Record this information in the aux field of the edge. */
1745
1746 void
compute_cases_per_edge()1747 switch_decision_tree::compute_cases_per_edge ()
1748 {
1749 reset_out_edges_aux (m_switch);
1750 int ncases = gimple_switch_num_labels (m_switch);
1751 for (int i = ncases - 1; i >= 1; --i)
1752 {
1753 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
1754 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1755 }
1756 }
1757
1758 /* Analyze switch statement and return true when the statement is expanded
1759 as decision tree. */
1760
1761 bool
analyze_switch_statement()1762 switch_decision_tree::analyze_switch_statement ()
1763 {
1764 unsigned l = gimple_switch_num_labels (m_switch);
1765 basic_block bb = gimple_bb (m_switch);
1766 auto_vec<cluster *> clusters;
1767 clusters.create (l - 1);
1768
1769 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
1770 m_case_bbs.reserve (l);
1771 m_case_bbs.quick_push (default_bb);
1772
1773 compute_cases_per_edge ();
1774
1775 for (unsigned i = 1; i < l; i++)
1776 {
1777 tree elt = gimple_switch_label (m_switch, i);
1778 tree lab = CASE_LABEL (elt);
1779 basic_block case_bb = label_to_block (cfun, lab);
1780 edge case_edge = find_edge (bb, case_bb);
1781 tree low = CASE_LOW (elt);
1782 tree high = CASE_HIGH (elt);
1783
1784 profile_probability p
1785 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
1786 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1787 p));
1788 m_case_bbs.quick_push (case_edge->dest);
1789 }
1790
1791 reset_out_edges_aux (m_switch);
1792
1793 /* Find bit-test clusters. */
1794 vec<cluster *> output = bit_test_cluster::find_bit_tests (clusters);
1795
1796 /* Find jump table clusters. */
1797 vec<cluster *> output2;
1798 auto_vec<cluster *> tmp;
1799 output2.create (1);
1800 tmp.create (1);
1801
1802 for (unsigned i = 0; i < output.length (); i++)
1803 {
1804 cluster *c = output[i];
1805 if (c->get_type () != SIMPLE_CASE)
1806 {
1807 if (!tmp.is_empty ())
1808 {
1809 vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
1810 output2.safe_splice (n);
1811 n.release ();
1812 tmp.truncate (0);
1813 }
1814 output2.safe_push (c);
1815 }
1816 else
1817 tmp.safe_push (c);
1818 }
1819
1820 /* We still can have a temporary vector to test. */
1821 if (!tmp.is_empty ())
1822 {
1823 vec<cluster *> n = jump_table_cluster::find_jump_tables (tmp);
1824 output2.safe_splice (n);
1825 n.release ();
1826 }
1827
1828 if (dump_file)
1829 {
1830 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
1831 for (unsigned i = 0; i < output2.length (); i++)
1832 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
1833 fprintf (dump_file, "\n");
1834 }
1835
1836 output.release ();
1837
1838 bool expanded = try_switch_expansion (output2);
1839 release_clusters (output2);
1840 return expanded;
1841 }
1842
1843 /* Attempt to expand CLUSTERS as a decision tree. Return true when
1844 expanded. */
1845
1846 bool
try_switch_expansion(vec<cluster * > & clusters)1847 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1848 {
1849 tree index_expr = gimple_switch_index (m_switch);
1850 tree index_type = TREE_TYPE (index_expr);
1851 basic_block bb = gimple_bb (m_switch);
1852
1853 if (gimple_switch_num_labels (m_switch) == 1
1854 || range_check_type (index_type) == NULL_TREE)
1855 return false;
1856
1857 /* Find the default case target label. */
1858 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1859 m_default_bb = default_edge->dest;
1860
1861 /* Do the insertion of a case label into m_case_list. The labels are
1862 fed to us in descending order from the sorted vector of case labels used
1863 in the tree part of the middle end. So the list we construct is
1864 sorted in ascending order. */
1865
1866 for (int i = clusters.length () - 1; i >= 0; i--)
1867 {
1868 case_tree_node *r = m_case_list;
1869 m_case_list = m_case_node_pool.allocate ();
1870 m_case_list->m_right = r;
1871 m_case_list->m_c = clusters[i];
1872 }
1873
1874 record_phi_operand_mapping ();
1875
1876 /* Split basic block that contains the gswitch statement. */
1877 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1878 edge e;
1879 if (gsi_end_p (gsi))
1880 e = split_block_after_labels (bb);
1881 else
1882 {
1883 gsi_prev (&gsi);
1884 e = split_block (bb, gsi_stmt (gsi));
1885 }
1886 bb = split_edge (e);
1887
1888 /* Create new basic blocks for non-case clusters where specific expansion
1889 needs to happen. */
1890 for (unsigned i = 0; i < clusters.length (); i++)
1891 if (clusters[i]->get_type () != SIMPLE_CASE)
1892 {
1893 clusters[i]->m_case_bb = create_empty_bb (bb);
1894 clusters[i]->m_case_bb->count = bb->count;
1895 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1896 }
1897
1898 /* Do not do an extra work for a single cluster. */
1899 if (clusters.length () == 1
1900 && clusters[0]->get_type () != SIMPLE_CASE)
1901 {
1902 cluster *c = clusters[0];
1903 c->emit (index_expr, index_type,
1904 gimple_switch_default_label (m_switch), m_default_bb,
1905 gimple_location (m_switch));
1906 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1907 }
1908 else
1909 {
1910 emit (bb, index_expr, default_edge->probability, index_type);
1911
1912 /* Emit cluster-specific switch handling. */
1913 for (unsigned i = 0; i < clusters.length (); i++)
1914 if (clusters[i]->get_type () != SIMPLE_CASE)
1915 clusters[i]->emit (index_expr, index_type,
1916 gimple_switch_default_label (m_switch),
1917 m_default_bb, gimple_location (m_switch));
1918 }
1919
1920 fix_phi_operands_for_edges ();
1921
1922 return true;
1923 }
1924
1925 /* Before switch transformation, record all SSA_NAMEs defined in switch BB
1926 and used in a label basic block. */
1927
1928 void
record_phi_operand_mapping()1929 switch_decision_tree::record_phi_operand_mapping ()
1930 {
1931 basic_block switch_bb = gimple_bb (m_switch);
1932 /* Record all PHI nodes that have to be fixed after conversion. */
1933 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1934 {
1935 gphi_iterator gsi;
1936 basic_block bb = m_case_bbs[i];
1937 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1938 {
1939 gphi *phi = gsi.phi ();
1940
1941 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1942 {
1943 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1944 if (phi_src_bb == switch_bb)
1945 {
1946 tree def = gimple_phi_arg_def (phi, i);
1947 tree result = gimple_phi_result (phi);
1948 m_phi_mapping.put (result, def);
1949 break;
1950 }
1951 }
1952 }
1953 }
1954 }
1955
1956 /* Append new operands to PHI statements that were introduced due to
1957 addition of new edges to case labels. */
1958
1959 void
fix_phi_operands_for_edges()1960 switch_decision_tree::fix_phi_operands_for_edges ()
1961 {
1962 gphi_iterator gsi;
1963
1964 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1965 {
1966 basic_block bb = m_case_bbs[i];
1967 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1968 {
1969 gphi *phi = gsi.phi ();
1970 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1971 {
1972 tree def = gimple_phi_arg_def (phi, j);
1973 if (def == NULL_TREE)
1974 {
1975 edge e = gimple_phi_arg_edge (phi, j);
1976 tree *definition
1977 = m_phi_mapping.get (gimple_phi_result (phi));
1978 gcc_assert (definition);
1979 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1980 }
1981 }
1982 }
1983 }
1984 }
1985
1986 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1987 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1988
1989 We generate a binary decision tree to select the appropriate target
1990 code. */
1991
1992 void
emit(basic_block bb,tree index_expr,profile_probability default_prob,tree index_type)1993 switch_decision_tree::emit (basic_block bb, tree index_expr,
1994 profile_probability default_prob, tree index_type)
1995 {
1996 balance_case_nodes (&m_case_list, NULL);
1997
1998 if (dump_file)
1999 dump_function_to_file (current_function_decl, dump_file, dump_flags);
2000 if (dump_file && (dump_flags & TDF_DETAILS))
2001 {
2002 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
2003 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
2004 gcc_assert (m_case_list != NULL);
2005 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
2006 }
2007
2008 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
2009 gimple_location (m_switch));
2010
2011 if (bb)
2012 emit_jump (bb, m_default_bb);
2013
2014 /* Remove all edges and do just an edge that will reach default_bb. */
2015 bb = gimple_bb (m_switch);
2016 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2017 gsi_remove (&gsi, true);
2018
2019 delete_basic_block (bb);
2020 }
2021
2022 /* Take an ordered list of case nodes
2023 and transform them into a near optimal binary tree,
2024 on the assumption that any target code selection value is as
2025 likely as any other.
2026
2027 The transformation is performed by splitting the ordered
2028 list into two equal sections plus a pivot. The parts are
2029 then attached to the pivot as left and right branches. Each
2030 branch is then transformed recursively. */
2031
2032 void
balance_case_nodes(case_tree_node ** head,case_tree_node * parent)2033 switch_decision_tree::balance_case_nodes (case_tree_node **head,
2034 case_tree_node *parent)
2035 {
2036 case_tree_node *np;
2037
2038 np = *head;
2039 if (np)
2040 {
2041 int i = 0;
2042 int ranges = 0;
2043 case_tree_node **npp;
2044 case_tree_node *left;
2045 profile_probability prob = profile_probability::never ();
2046
2047 /* Count the number of entries on branch. Also count the ranges. */
2048
2049 while (np)
2050 {
2051 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
2052 ranges++;
2053
2054 i++;
2055 prob += np->m_c->m_prob;
2056 np = np->m_right;
2057 }
2058
2059 if (i > 2)
2060 {
2061 /* Split this list if it is long enough for that to help. */
2062 npp = head;
2063 left = *npp;
2064 profile_probability pivot_prob = prob.apply_scale (1, 2);
2065
2066 /* Find the place in the list that bisects the list's total cost,
2067 where ranges count as 2. */
2068 while (1)
2069 {
2070 /* Skip nodes while their probability does not reach
2071 that amount. */
2072 prob -= (*npp)->m_c->m_prob;
2073 if ((prob.initialized_p () && prob < pivot_prob)
2074 || ! (*npp)->m_right)
2075 break;
2076 npp = &(*npp)->m_right;
2077 }
2078
2079 np = *npp;
2080 *npp = 0;
2081 *head = np;
2082 np->m_parent = parent;
2083 np->m_left = left == np ? NULL : left;
2084
2085 /* Optimize each of the two split parts. */
2086 balance_case_nodes (&np->m_left, np);
2087 balance_case_nodes (&np->m_right, np);
2088 np->m_c->m_subtree_prob = np->m_c->m_prob;
2089 if (np->m_left)
2090 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2091 if (np->m_right)
2092 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2093 }
2094 else
2095 {
2096 /* Else leave this branch as one level,
2097 but fill in `parent' fields. */
2098 np = *head;
2099 np->m_parent = parent;
2100 np->m_c->m_subtree_prob = np->m_c->m_prob;
2101 for (; np->m_right; np = np->m_right)
2102 {
2103 np->m_right->m_parent = np;
2104 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2105 }
2106 }
2107 }
2108 }
2109
2110 /* Dump ROOT, a list or tree of case nodes, to file. */
2111
2112 void
dump_case_nodes(FILE * f,case_tree_node * root,int indent_step,int indent_level)2113 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2114 int indent_step, int indent_level)
2115 {
2116 if (root == 0)
2117 return;
2118 indent_level++;
2119
2120 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2121
2122 fputs (";; ", f);
2123 fprintf (f, "%*s", indent_step * indent_level, "");
2124 root->m_c->dump (f);
2125 root->m_c->m_prob.dump (f);
2126 fputs (" subtree: ", f);
2127 root->m_c->m_subtree_prob.dump (f);
2128 fputs (")\n", f);
2129
2130 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2131 }
2132
2133
2134 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2135
2136 void
emit_jump(basic_block bb,basic_block case_bb)2137 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2138 {
2139 edge e = single_succ_edge (bb);
2140 redirect_edge_succ (e, case_bb);
2141 }
2142
2143 /* Generate code to compare OP0 with OP1 so that the condition codes are
2144 set and to jump to LABEL_BB if the condition is true.
2145 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2146 PROB is the probability of jumping to LABEL_BB. */
2147
2148 basic_block
emit_cmp_and_jump_insns(basic_block bb,tree op0,tree op1,tree_code comparison,basic_block label_bb,profile_probability prob,location_t loc)2149 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2150 tree op1, tree_code comparison,
2151 basic_block label_bb,
2152 profile_probability prob,
2153 location_t loc)
2154 {
2155 // TODO: it's once called with lhs != index.
2156 op1 = fold_convert (TREE_TYPE (op0), op1);
2157
2158 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2159 gimple_set_location (cond, loc);
2160 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2161 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2162
2163 gcc_assert (single_succ_p (bb));
2164
2165 /* Make a new basic block where false branch will take place. */
2166 edge false_edge = split_block (bb, cond);
2167 false_edge->flags = EDGE_FALSE_VALUE;
2168 false_edge->probability = prob.invert ();
2169
2170 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2171 true_edge->probability = prob;
2172
2173 return false_edge->dest;
2174 }
2175
2176 /* Generate code to jump to LABEL if OP0 and OP1 are equal.
2177 PROB is the probability of jumping to LABEL_BB.
2178 BB is a basic block where the new condition will be placed. */
2179
2180 basic_block
do_jump_if_equal(basic_block bb,tree op0,tree op1,basic_block label_bb,profile_probability prob,location_t loc)2181 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2182 basic_block label_bb,
2183 profile_probability prob,
2184 location_t loc)
2185 {
2186 op1 = fold_convert (TREE_TYPE (op0), op1);
2187
2188 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2189 gimple_set_location (cond, loc);
2190 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2191 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2192
2193 gcc_assert (single_succ_p (bb));
2194
2195 /* Make a new basic block where false branch will take place. */
2196 edge false_edge = split_block (bb, cond);
2197 false_edge->flags = EDGE_FALSE_VALUE;
2198 false_edge->probability = prob.invert ();
2199
2200 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2201 true_edge->probability = prob;
2202
2203 return false_edge->dest;
2204 }
2205
2206 /* Emit step-by-step code to select a case for the value of INDEX.
2207 The thus generated decision tree follows the form of the
2208 case-node binary tree NODE, whose nodes represent test conditions.
2209 DEFAULT_PROB is probability of cases leading to default BB.
2210 INDEX_TYPE is the type of the index of the switch. */
2211
2212 basic_block
emit_case_nodes(basic_block bb,tree index,case_tree_node * node,profile_probability default_prob,tree index_type,location_t loc)2213 switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2214 case_tree_node *node,
2215 profile_probability default_prob,
2216 tree index_type, location_t loc)
2217 {
2218 profile_probability p;
2219
2220 /* If node is null, we are done. */
2221 if (node == NULL)
2222 return bb;
2223
2224 /* Single value case. */
2225 if (node->m_c->is_single_value_p ())
2226 {
2227 /* Node is single valued. First see if the index expression matches
2228 this node and then check our children, if any. */
2229 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2230 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
2231 node->m_c->m_case_bb, p, loc);
2232 /* Since this case is taken at this point, reduce its weight from
2233 subtree_weight. */
2234 node->m_c->m_subtree_prob -= p;
2235
2236 if (node->m_left != NULL && node->m_right != NULL)
2237 {
2238 /* 1) the node has both children
2239
2240 If both children are single-valued cases with no
2241 children, finish up all the work. This way, we can save
2242 one ordered comparison. */
2243
2244 if (!node->m_left->has_child ()
2245 && node->m_left->m_c->is_single_value_p ()
2246 && !node->m_right->has_child ()
2247 && node->m_right->m_c->is_single_value_p ())
2248 {
2249 p = (node->m_right->m_c->m_prob
2250 / (node->m_c->m_subtree_prob + default_prob));
2251 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2252 node->m_right->m_c->m_case_bb, p, loc);
2253
2254 p = (node->m_left->m_c->m_prob
2255 / (node->m_c->m_subtree_prob + default_prob));
2256 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2257 node->m_left->m_c->m_case_bb, p, loc);
2258 }
2259 else
2260 {
2261 /* Branch to a label where we will handle it later. */
2262 basic_block test_bb = split_edge (single_succ_edge (bb));
2263 redirect_edge_succ (single_pred_edge (test_bb),
2264 single_succ_edge (bb)->dest);
2265
2266 p = ((node->m_right->m_c->m_subtree_prob
2267 + default_prob.apply_scale (1, 2))
2268 / (node->m_c->m_subtree_prob + default_prob));
2269 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2270 GT_EXPR, test_bb, p, loc);
2271 default_prob = default_prob.apply_scale (1, 2);
2272
2273 /* Handle the left-hand subtree. */
2274 bb = emit_case_nodes (bb, index, node->m_left,
2275 default_prob, index_type, loc);
2276
2277 /* If the left-hand subtree fell through,
2278 don't let it fall into the right-hand subtree. */
2279 if (bb && m_default_bb)
2280 emit_jump (bb, m_default_bb);
2281
2282 bb = emit_case_nodes (test_bb, index, node->m_right,
2283 default_prob, index_type, loc);
2284 }
2285 }
2286 else if (node->m_left == NULL && node->m_right != NULL)
2287 {
2288 /* 2) the node has only right child. */
2289
2290 /* Here we have a right child but no left so we issue a conditional
2291 branch to default and process the right child.
2292
2293 Omit the conditional branch to default if the right child
2294 does not have any children and is single valued; it would
2295 cost too much space to save so little time. */
2296
2297 if (node->m_right->has_child ()
2298 || !node->m_right->m_c->is_single_value_p ())
2299 {
2300 p = (default_prob.apply_scale (1, 2)
2301 / (node->m_c->m_subtree_prob + default_prob));
2302 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2303 LT_EXPR, m_default_bb, p, loc);
2304 default_prob = default_prob.apply_scale (1, 2);
2305
2306 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
2307 index_type, loc);
2308 }
2309 else
2310 {
2311 /* We cannot process node->right normally
2312 since we haven't ruled out the numbers less than
2313 this node's value. So handle node->right explicitly. */
2314 p = (node->m_right->m_c->m_subtree_prob
2315 / (node->m_c->m_subtree_prob + default_prob));
2316 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2317 node->m_right->m_c->m_case_bb, p, loc);
2318 }
2319 }
2320 else if (node->m_left != NULL && node->m_right == NULL)
2321 {
2322 /* 3) just one subtree, on the left. Similar case as previous. */
2323
2324 if (node->m_left->has_child ()
2325 || !node->m_left->m_c->is_single_value_p ())
2326 {
2327 p = (default_prob.apply_scale (1, 2)
2328 / (node->m_c->m_subtree_prob + default_prob));
2329 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2330 GT_EXPR, m_default_bb, p, loc);
2331 default_prob = default_prob.apply_scale (1, 2);
2332
2333 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2334 index_type, loc);
2335 }
2336 else
2337 {
2338 /* We cannot process node->left normally
2339 since we haven't ruled out the numbers less than
2340 this node's value. So handle node->left explicitly. */
2341 p = (node->m_left->m_c->m_subtree_prob
2342 / (node->m_c->m_subtree_prob + default_prob));
2343 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2344 node->m_left->m_c->m_case_bb, p, loc);
2345 }
2346 }
2347 }
2348 else
2349 {
2350 /* Node is a range. These cases are very similar to those for a single
2351 value, except that we do not start by testing whether this node
2352 is the one to branch to. */
2353 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2354 {
2355 /* Branch to a label where we will handle it later. */
2356 basic_block test_bb = split_edge (single_succ_edge (bb));
2357 redirect_edge_succ (single_pred_edge (test_bb),
2358 single_succ_edge (bb)->dest);
2359
2360
2361 profile_probability right_prob = profile_probability::never ();
2362 if (node->m_right)
2363 right_prob = node->m_right->m_c->m_subtree_prob;
2364 p = ((right_prob + default_prob.apply_scale (1, 2))
2365 / (node->m_c->m_subtree_prob + default_prob));
2366
2367 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2368 GT_EXPR, test_bb, p, loc);
2369 default_prob = default_prob.apply_scale (1, 2);
2370
2371 /* Value belongs to this node or to the left-hand subtree. */
2372 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2373 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2374 GE_EXPR, node->m_c->m_case_bb, p, loc);
2375
2376 /* Handle the left-hand subtree. */
2377 bb = emit_case_nodes (bb, index, node->m_left,
2378 default_prob, index_type, loc);
2379
2380 /* If the left-hand subtree fell through,
2381 don't let it fall into the right-hand subtree. */
2382 if (bb && m_default_bb)
2383 emit_jump (bb, m_default_bb);
2384
2385 bb = emit_case_nodes (test_bb, index, node->m_right,
2386 default_prob, index_type, loc);
2387 }
2388 else
2389 {
2390 /* Node has no children so we check low and high bounds to remove
2391 redundant tests. Only one of the bounds can exist,
2392 since otherwise this node is bounded--a case tested already. */
2393 tree lhs, rhs;
2394 generate_range_test (bb, index, node->m_c->get_low (),
2395 node->m_c->get_high (), &lhs, &rhs);
2396 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2397
2398 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2399 m_default_bb, p, loc);
2400
2401 emit_jump (bb, node->m_c->m_case_bb);
2402 return NULL;
2403 }
2404 }
2405
2406 return bb;
2407 }
2408
2409 /* The main function of the pass scans statements for switches and invokes
2410 process_switch on them. */
2411
2412 namespace {
2413
2414 const pass_data pass_data_convert_switch =
2415 {
2416 GIMPLE_PASS, /* type */
2417 "switchconv", /* name */
2418 OPTGROUP_NONE, /* optinfo_flags */
2419 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2420 ( PROP_cfg | PROP_ssa ), /* properties_required */
2421 0, /* properties_provided */
2422 0, /* properties_destroyed */
2423 0, /* todo_flags_start */
2424 TODO_update_ssa, /* todo_flags_finish */
2425 };
2426
2427 class pass_convert_switch : public gimple_opt_pass
2428 {
2429 public:
pass_convert_switch(gcc::context * ctxt)2430 pass_convert_switch (gcc::context *ctxt)
2431 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2432 {}
2433
2434 /* opt_pass methods: */
gate(function *)2435 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2436 virtual unsigned int execute (function *);
2437
2438 }; // class pass_convert_switch
2439
2440 unsigned int
execute(function * fun)2441 pass_convert_switch::execute (function *fun)
2442 {
2443 basic_block bb;
2444 bool cfg_altered = false;
2445
2446 FOR_EACH_BB_FN (bb, fun)
2447 {
2448 gimple *stmt = last_stmt (bb);
2449 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2450 {
2451 if (dump_file)
2452 {
2453 expanded_location loc = expand_location (gimple_location (stmt));
2454
2455 fprintf (dump_file, "beginning to process the following "
2456 "SWITCH statement (%s:%d) : ------- \n",
2457 loc.file, loc.line);
2458 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2459 putc ('\n', dump_file);
2460 }
2461
2462 switch_conversion sconv;
2463 sconv.expand (as_a <gswitch *> (stmt));
2464 cfg_altered |= sconv.m_cfg_altered;
2465 if (!sconv.m_reason)
2466 {
2467 if (dump_file)
2468 {
2469 fputs ("Switch converted\n", dump_file);
2470 fputs ("--------------------------------\n", dump_file);
2471 }
2472
2473 /* Make no effort to update the post-dominator tree.
2474 It is actually not that hard for the transformations
2475 we have performed, but it is not supported
2476 by iterate_fix_dominators. */
2477 free_dominance_info (CDI_POST_DOMINATORS);
2478 }
2479 else
2480 {
2481 if (dump_file)
2482 {
2483 fputs ("Bailing out - ", dump_file);
2484 fputs (sconv.m_reason, dump_file);
2485 fputs ("\n--------------------------------\n", dump_file);
2486 }
2487 }
2488 }
2489 }
2490
2491 return cfg_altered ? TODO_cleanup_cfg : 0;;
2492 }
2493
2494 } // anon namespace
2495
2496 gimple_opt_pass *
make_pass_convert_switch(gcc::context * ctxt)2497 make_pass_convert_switch (gcc::context *ctxt)
2498 {
2499 return new pass_convert_switch (ctxt);
2500 }
2501
2502 /* The main function of the pass scans statements for switches and invokes
2503 process_switch on them. */
2504
2505 namespace {
2506
2507 template <bool O0> class pass_lower_switch: public gimple_opt_pass
2508 {
2509 public:
pass_lower_switch(gcc::context * ctxt)2510 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2511
2512 static const pass_data data;
2513 opt_pass *
clone()2514 clone ()
2515 {
2516 return new pass_lower_switch<O0> (m_ctxt);
2517 }
2518
2519 virtual bool
gate(function *)2520 gate (function *)
2521 {
2522 return !O0 || !optimize;
2523 }
2524
2525 virtual unsigned int execute (function *fun);
2526 }; // class pass_lower_switch
2527
2528 template <bool O0>
2529 const pass_data pass_lower_switch<O0>::data = {
2530 GIMPLE_PASS, /* type */
2531 O0 ? "switchlower_O0" : "switchlower", /* name */
2532 OPTGROUP_NONE, /* optinfo_flags */
2533 TV_TREE_SWITCH_LOWERING, /* tv_id */
2534 ( PROP_cfg | PROP_ssa ), /* properties_required */
2535 0, /* properties_provided */
2536 0, /* properties_destroyed */
2537 0, /* todo_flags_start */
2538 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2539 };
2540
2541 template <bool O0>
2542 unsigned int
execute(function * fun)2543 pass_lower_switch<O0>::execute (function *fun)
2544 {
2545 basic_block bb;
2546 bool expanded = false;
2547
2548 auto_vec<gimple *> switch_statements;
2549 switch_statements.create (1);
2550
2551 FOR_EACH_BB_FN (bb, fun)
2552 {
2553 gimple *stmt = last_stmt (bb);
2554 gswitch *swtch;
2555 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2556 {
2557 if (!O0)
2558 group_case_labels_stmt (swtch);
2559 switch_statements.safe_push (swtch);
2560 }
2561 }
2562
2563 for (unsigned i = 0; i < switch_statements.length (); i++)
2564 {
2565 gimple *stmt = switch_statements[i];
2566 if (dump_file)
2567 {
2568 expanded_location loc = expand_location (gimple_location (stmt));
2569
2570 fprintf (dump_file, "beginning to process the following "
2571 "SWITCH statement (%s:%d) : ------- \n",
2572 loc.file, loc.line);
2573 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2574 putc ('\n', dump_file);
2575 }
2576
2577 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2578 if (swtch)
2579 {
2580 switch_decision_tree dt (swtch);
2581 expanded |= dt.analyze_switch_statement ();
2582 }
2583 }
2584
2585 if (expanded)
2586 {
2587 free_dominance_info (CDI_DOMINATORS);
2588 free_dominance_info (CDI_POST_DOMINATORS);
2589 mark_virtual_operands_for_renaming (cfun);
2590 }
2591
2592 return 0;
2593 }
2594
2595 } // anon namespace
2596
2597 gimple_opt_pass *
make_pass_lower_switch_O0(gcc::context * ctxt)2598 make_pass_lower_switch_O0 (gcc::context *ctxt)
2599 {
2600 return new pass_lower_switch<true> (ctxt);
2601 }
2602 gimple_opt_pass *
make_pass_lower_switch(gcc::context * ctxt)2603 make_pass_lower_switch (gcc::context *ctxt)
2604 {
2605 return new pass_lower_switch<false> (ctxt);
2606 }
2607