xref: /netbsd-src/external/gpl3/gcc/dist/gcc/fortran/trans-common.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Common block and equivalence list handling
2    Copyright (C) 2000-2022 Free Software Foundation, Inc.
3    Contributed by Canqun Yang <canqun@nudt.edu.cn>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 /* The core algorithm is based on Andy Vaught's g95 tree.  Also the
22    way to build UNION_TYPE is borrowed from Richard Henderson.
23 
24    Transform common blocks.  An integral part of this is processing
25    equivalence variables.  Equivalenced variables that are not in a
26    common block end up in a private block of their own.
27 
28    Each common block or local equivalence list is declared as a union.
29    Variables within the block are represented as a field within the
30    block with the proper offset.
31 
32    So if two variables are equivalenced, they just point to a common
33    area in memory.
34 
35    Mathematically, laying out an equivalence block is equivalent to
36    solving a linear system of equations.  The matrix is usually a
37    sparse matrix in which each row contains all zero elements except
38    for a +1 and a -1, a sort of a generalized Vandermonde matrix.  The
39    matrix is usually block diagonal.  The system can be
40    overdetermined, underdetermined or have a unique solution.  If the
41    system is inconsistent, the program is not standard conforming.
42    The solution vector is integral, since all of the pivots are +1 or -1.
43 
44    How we lay out an equivalence block is a little less complicated.
45    In an equivalence list with n elements, there are n-1 conditions to
46    be satisfied.  The conditions partition the variables into what we
47    will call segments.  If A and B are equivalenced then A and B are
48    in the same segment.  If B and C are equivalenced as well, then A,
49    B and C are in a segment and so on.  Each segment is a block of
50    memory that has one or more variables equivalenced in some way.  A
51    common block is made up of a series of segments that are joined one
52    after the other.  In the linear system, a segment is a block
53    diagonal.
54 
55    To lay out a segment we first start with some variable and
56    determine its length.  The first variable is assumed to start at
57    offset one and extends to however long it is.  We then traverse the
58    list of equivalences to find an unused condition that involves at
59    least one of the variables currently in the segment.
60 
61    Each equivalence condition amounts to the condition B+b=C+c where B
62    and C are the offsets of the B and C variables, and b and c are
63    constants which are nonzero for array elements, substrings or
64    structure components.  So for
65 
66      EQUIVALENCE(B(2), C(3))
67    we have
68      B + 2*size of B's elements = C + 3*size of C's elements.
69 
70    If B and C are known we check to see if the condition already
71    holds.  If B is known we can solve for C.  Since we know the length
72    of C, we can see if the minimum and maximum extents of the segment
73    are affected.  Eventually, we make a full pass through the
74    equivalence list without finding any new conditions and the segment
75    is fully specified.
76 
77    At this point, the segment is added to the current common block.
78    Since we know the minimum extent of the segment, everything in the
79    segment is translated to its position in the common block.  The
80    usual case here is that there are no equivalence statements and the
81    common block is series of segments with one variable each, which is
82    a diagonal matrix in the matrix formulation.
83 
84    Each segment is described by a chain of segment_info structures.  Each
85    segment_info structure describes the extents of a single variable within
86    the segment.  This list is maintained in the order the elements are
87    positioned within the segment.  If two elements have the same starting
88    offset the smaller will come first.  If they also have the same size their
89    ordering is undefined.
90 
91    Once all common blocks have been created, the list of equivalences
92    is examined for still-unused equivalence conditions.  We create a
93    block for each merged equivalence list.  */
94 
95 #include "config.h"
96 #define INCLUDE_MAP
97 #include "system.h"
98 #include "coretypes.h"
99 #include "tm.h"
100 #include "tree.h"
101 #include "gfortran.h"
102 #include "trans.h"
103 #include "stringpool.h"
104 #include "fold-const.h"
105 #include "stor-layout.h"
106 #include "varasm.h"
107 #include "trans-types.h"
108 #include "trans-const.h"
109 #include "target-memory.h"
110 
111 
112 /* Holds a single variable in an equivalence set.  */
113 typedef struct segment_info
114 {
115   gfc_symbol *sym;
116   HOST_WIDE_INT offset;
117   HOST_WIDE_INT length;
118   /* This will contain the field type until the field is created.  */
119   tree field;
120   struct segment_info *next;
121 } segment_info;
122 
123 static segment_info * current_segment;
124 
125 /* Store decl of all common blocks in this translation unit; the first
126    tree is the identifier.  */
127 static std::map<tree, tree> gfc_map_of_all_commons;
128 
129 
130 /* Make a segment_info based on a symbol.  */
131 
132 static segment_info *
get_segment_info(gfc_symbol * sym,HOST_WIDE_INT offset)133 get_segment_info (gfc_symbol * sym, HOST_WIDE_INT offset)
134 {
135   segment_info *s;
136 
137   /* Make sure we've got the character length.  */
138   if (sym->ts.type == BT_CHARACTER)
139     gfc_conv_const_charlen (sym->ts.u.cl);
140 
141   /* Create the segment_info and fill it in.  */
142   s = XCNEW (segment_info);
143   s->sym = sym;
144   /* We will use this type when building the segment aggregate type.  */
145   s->field = gfc_sym_type (sym);
146   s->length = int_size_in_bytes (s->field);
147   s->offset = offset;
148 
149   return s;
150 }
151 
152 
153 /* Add a copy of a segment list to the namespace.  This is specifically for
154    equivalence segments, so that dependency checking can be done on
155    equivalence group members.  */
156 
157 static void
copy_equiv_list_to_ns(segment_info * c)158 copy_equiv_list_to_ns (segment_info *c)
159 {
160   segment_info *f;
161   gfc_equiv_info *s;
162   gfc_equiv_list *l;
163 
164   l = XCNEW (gfc_equiv_list);
165 
166   l->next = c->sym->ns->equiv_lists;
167   c->sym->ns->equiv_lists = l;
168 
169   for (f = c; f; f = f->next)
170     {
171       s = XCNEW (gfc_equiv_info);
172       s->next = l->equiv;
173       l->equiv = s;
174       s->sym = f->sym;
175       s->offset = f->offset;
176       s->length = f->length;
177     }
178 }
179 
180 
181 /* Add combine segment V and segment LIST.  */
182 
183 static segment_info *
add_segments(segment_info * list,segment_info * v)184 add_segments (segment_info *list, segment_info *v)
185 {
186   segment_info *s;
187   segment_info *p;
188   segment_info *next;
189 
190   p = NULL;
191   s = list;
192 
193   while (v)
194     {
195       /* Find the location of the new element.  */
196       while (s)
197 	{
198 	  if (v->offset < s->offset)
199 	    break;
200 	  if (v->offset == s->offset
201 	      && v->length <= s->length)
202 	    break;
203 
204 	  p = s;
205 	  s = s->next;
206 	}
207 
208       /* Insert the new element in between p and s.  */
209       next = v->next;
210       v->next = s;
211       if (p == NULL)
212 	list = v;
213       else
214 	p->next = v;
215 
216       p = v;
217       v = next;
218     }
219 
220   return list;
221 }
222 
223 
224 /* Construct mangled common block name from symbol name.  */
225 
226 /* We need the bind(c) flag to tell us how/if we should mangle the symbol
227    name.  There are few calls to this function, so few places that this
228    would need to be added.  At the moment, there is only one call, in
229    build_common_decl().  We can't attempt to look up the common block
230    because we may be building it for the first time and therefore, it won't
231    be in the common_root.  We also need the binding label, if it's bind(c).
232    Therefore, send in the pointer to the common block, so whatever info we
233    have so far can be used.  All of the necessary info should be available
234    in the gfc_common_head by now, so it should be accurate to test the
235    isBindC flag and use the binding label given if it is bind(c).
236 
237    We may NOT know yet if it's bind(c) or not, but we can try at least.
238    Will have to figure out what to do later if it's labeled bind(c)
239    after this is called.  */
240 
241 static tree
gfc_sym_mangled_common_id(gfc_common_head * com)242 gfc_sym_mangled_common_id (gfc_common_head *com)
243 {
244   int has_underscore;
245   /* Provide sufficient space to hold "symbol.symbol.eq.1234567890__".  */
246   char mangled_name[2*GFC_MAX_MANGLED_SYMBOL_LEN + 1 + 16 + 1];
247   char name[sizeof (mangled_name) - 2];
248 
249   /* Get the name out of the common block pointer.  */
250   size_t len = strlen (com->name);
251   gcc_assert (len < sizeof (name));
252   strcpy (name, com->name);
253 
254   /* If we're suppose to do a bind(c).  */
255   if (com->is_bind_c == 1 && com->binding_label)
256     return get_identifier (com->binding_label);
257 
258   if (strcmp (name, BLANK_COMMON_NAME) == 0)
259     return get_identifier (name);
260 
261   if (flag_underscoring)
262     {
263       has_underscore = strchr (name, '_') != 0;
264       if (flag_second_underscore && has_underscore)
265         snprintf (mangled_name, sizeof mangled_name, "%s__", name);
266       else
267         snprintf (mangled_name, sizeof mangled_name, "%s_", name);
268 
269       return get_identifier (mangled_name);
270     }
271   else
272     return get_identifier (name);
273 }
274 
275 
276 /* Build a field declaration for a common variable or a local equivalence
277    object.  */
278 
279 static void
build_field(segment_info * h,tree union_type,record_layout_info rli)280 build_field (segment_info *h, tree union_type, record_layout_info rli)
281 {
282   tree field;
283   tree name;
284   HOST_WIDE_INT offset = h->offset;
285   unsigned HOST_WIDE_INT desired_align, known_align;
286 
287   name = get_identifier (h->sym->name);
288   field = build_decl (gfc_get_location (&h->sym->declared_at),
289 		      FIELD_DECL, name, h->field);
290   known_align = (offset & -offset) * BITS_PER_UNIT;
291   if (known_align == 0 || known_align > BIGGEST_ALIGNMENT)
292     known_align = BIGGEST_ALIGNMENT;
293 
294   desired_align = update_alignment_for_field (rli, field, known_align);
295   if (desired_align > known_align)
296     DECL_PACKED (field) = 1;
297 
298   DECL_FIELD_CONTEXT (field) = union_type;
299   DECL_FIELD_OFFSET (field) = size_int (offset);
300   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
301   SET_DECL_OFFSET_ALIGN (field, known_align);
302 
303   rli->offset = size_binop (MAX_EXPR, rli->offset,
304                             size_binop (PLUS_EXPR,
305                                         DECL_FIELD_OFFSET (field),
306                                         DECL_SIZE_UNIT (field)));
307   /* If this field is assigned to a label, we create another two variables.
308      One will hold the address of target label or format label. The other will
309      hold the length of format label string.  */
310   if (h->sym->attr.assign)
311     {
312       tree len;
313       tree addr;
314 
315       gfc_allocate_lang_decl (field);
316       GFC_DECL_ASSIGN (field) = 1;
317       len = gfc_create_var_np (gfc_charlen_type_node,h->sym->name);
318       addr = gfc_create_var_np (pvoid_type_node, h->sym->name);
319       TREE_STATIC (len) = 1;
320       TREE_STATIC (addr) = 1;
321       DECL_INITIAL (len) = build_int_cst (gfc_charlen_type_node, -2);
322       gfc_set_decl_location (len, &h->sym->declared_at);
323       gfc_set_decl_location (addr, &h->sym->declared_at);
324       GFC_DECL_STRING_LEN (field) = pushdecl_top_level (len);
325       GFC_DECL_ASSIGN_ADDR (field) = pushdecl_top_level (addr);
326     }
327 
328   /* If this field is volatile, mark it.  */
329   if (h->sym->attr.volatile_)
330     {
331       tree new_type;
332       TREE_THIS_VOLATILE (field) = 1;
333       TREE_SIDE_EFFECTS (field) = 1;
334       new_type = build_qualified_type (TREE_TYPE (field), TYPE_QUAL_VOLATILE);
335       TREE_TYPE (field) = new_type;
336     }
337 
338   h->field = field;
339 }
340 
341 #if !defined (NO_DOT_IN_LABEL)
342 #define GFC_EQUIV_FMT "equiv.%d"
343 #elif !defined (NO_DOLLAR_IN_LABEL)
344 #define GFC_EQUIV_FMT "_Equiv$%d"
345 #else
346 #define GFC_EQUIV_FMT "_Equiv_%d"
347 #endif
348 
349 /* Get storage for local equivalence.  */
350 
351 static tree
build_equiv_decl(tree union_type,bool is_init,bool is_saved,bool is_auto)352 build_equiv_decl (tree union_type, bool is_init, bool is_saved, bool is_auto)
353 {
354   tree decl;
355   char name[18];
356   static int serial = 0;
357 
358   if (is_init)
359     {
360       decl = gfc_create_var (union_type, "equiv");
361       TREE_STATIC (decl) = 1;
362       GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
363       return decl;
364     }
365 
366   snprintf (name, sizeof (name), GFC_EQUIV_FMT, serial++);
367   decl = build_decl (input_location,
368 		     VAR_DECL, get_identifier (name), union_type);
369   DECL_ARTIFICIAL (decl) = 1;
370   DECL_IGNORED_P (decl) = 1;
371 
372   if (!is_auto && (!gfc_can_put_var_on_stack (DECL_SIZE_UNIT (decl))
373       || is_saved))
374     TREE_STATIC (decl) = 1;
375 
376   TREE_ADDRESSABLE (decl) = 1;
377   TREE_USED (decl) = 1;
378   GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
379 
380   /* The source location has been lost, and doesn't really matter.
381      We need to set it to something though.  */
382   gfc_set_decl_location (decl, &gfc_current_locus);
383 
384   gfc_add_decl_to_function (decl);
385 
386   return decl;
387 }
388 
389 
390 /* Get storage for common block.  */
391 
392 static tree
build_common_decl(gfc_common_head * com,tree union_type,bool is_init)393 build_common_decl (gfc_common_head *com, tree union_type, bool is_init)
394 {
395   tree decl, identifier;
396 
397   identifier = gfc_sym_mangled_common_id (com);
398   decl = gfc_map_of_all_commons.count(identifier)
399 	 ? gfc_map_of_all_commons[identifier] : NULL_TREE;
400 
401   /* Update the size of this common block as needed.  */
402   if (decl != NULL_TREE)
403     {
404       tree size = TYPE_SIZE_UNIT (union_type);
405 
406       /* Named common blocks of the same name shall be of the same size
407 	 in all scoping units of a program in which they appear, but
408 	 blank common blocks may be of different sizes.  */
409       if (!tree_int_cst_equal (DECL_SIZE_UNIT (decl), size)
410 	  && strcmp (com->name, BLANK_COMMON_NAME))
411 	gfc_warning (0, "Named COMMON block %qs at %L shall be of the "
412 		     "same size as elsewhere (%lu vs %lu bytes)", com->name,
413 		     &com->where,
414 		     (unsigned long) TREE_INT_CST_LOW (size),
415 		     (unsigned long) TREE_INT_CST_LOW (DECL_SIZE_UNIT (decl)));
416 
417       if (tree_int_cst_lt (DECL_SIZE_UNIT (decl), size))
418 	{
419 	  DECL_SIZE (decl) = TYPE_SIZE (union_type);
420 	  DECL_SIZE_UNIT (decl) = size;
421 	  SET_DECL_MODE (decl, TYPE_MODE (union_type));
422 	  TREE_TYPE (decl) = union_type;
423 	  layout_decl (decl, 0);
424 	}
425      }
426 
427   /* If this common block has been declared in a previous program unit,
428      and either it is already initialized or there is no new initialization
429      for it, just return.  */
430   if ((decl != NULL_TREE) && (!is_init || DECL_INITIAL (decl)))
431     return decl;
432 
433   /* If there is no backend_decl for the common block, build it.  */
434   if (decl == NULL_TREE)
435     {
436       tree omp_clauses = NULL_TREE;
437 
438       if (com->is_bind_c == 1 && com->binding_label)
439 	decl = build_decl (input_location, VAR_DECL, identifier, union_type);
440       else
441 	{
442 	  decl = build_decl (input_location, VAR_DECL, get_identifier (com->name),
443 			     union_type);
444 	  gfc_set_decl_assembler_name (decl, identifier);
445 	}
446 
447       TREE_PUBLIC (decl) = 1;
448       TREE_STATIC (decl) = 1;
449       DECL_IGNORED_P (decl) = 1;
450       if (!com->is_bind_c)
451 	SET_DECL_ALIGN (decl, BIGGEST_ALIGNMENT);
452       else
453         {
454 	  /* Do not set the alignment for bind(c) common blocks to
455 	     BIGGEST_ALIGNMENT because that won't match what C does.  Also,
456 	     for common blocks with one element, the alignment must be
457 	     that of the field within the common block in order to match
458 	     what C will do.  */
459 	  tree field = NULL_TREE;
460 	  field = TYPE_FIELDS (TREE_TYPE (decl));
461 	  if (DECL_CHAIN (field) == NULL_TREE)
462 	    SET_DECL_ALIGN (decl, TYPE_ALIGN (TREE_TYPE (field)));
463 	}
464       DECL_USER_ALIGN (decl) = 0;
465       GFC_DECL_COMMON_OR_EQUIV (decl) = 1;
466 
467       gfc_set_decl_location (decl, &com->where);
468 
469       if (com->threadprivate)
470 	set_decl_tls_model (decl, decl_default_tls_model (decl));
471 
472       if (com->omp_device_type != OMP_DEVICE_TYPE_UNSET)
473 	{
474 	  tree c = build_omp_clause (UNKNOWN_LOCATION, OMP_CLAUSE_DEVICE_TYPE);
475 	  switch (com->omp_device_type)
476 	    {
477 	    case OMP_DEVICE_TYPE_HOST:
478 	      OMP_CLAUSE_DEVICE_TYPE_KIND (c) = OMP_CLAUSE_DEVICE_TYPE_HOST;
479 	      break;
480 	    case OMP_DEVICE_TYPE_NOHOST:
481 	      OMP_CLAUSE_DEVICE_TYPE_KIND (c) = OMP_CLAUSE_DEVICE_TYPE_NOHOST;
482 	      break;
483 	    case OMP_DEVICE_TYPE_ANY:
484 	      OMP_CLAUSE_DEVICE_TYPE_KIND (c) = OMP_CLAUSE_DEVICE_TYPE_ANY;
485 	      break;
486 	    default:
487 	      gcc_unreachable ();
488 	    }
489 	  omp_clauses = c;
490 	}
491       if (com->omp_declare_target_link)
492 	DECL_ATTRIBUTES (decl)
493 	  = tree_cons (get_identifier ("omp declare target link"),
494 		       omp_clauses, DECL_ATTRIBUTES (decl));
495       else if (com->omp_declare_target)
496 	DECL_ATTRIBUTES (decl)
497 	  = tree_cons (get_identifier ("omp declare target"),
498 		       omp_clauses, DECL_ATTRIBUTES (decl));
499 
500       /* Place the back end declaration for this common block in
501          GLOBAL_BINDING_LEVEL.  */
502       gfc_map_of_all_commons[identifier] = pushdecl_top_level (decl);
503     }
504 
505   /* Has no initial values.  */
506   if (!is_init)
507     {
508       DECL_INITIAL (decl) = NULL_TREE;
509       DECL_COMMON (decl) = 1;
510       DECL_DEFER_OUTPUT (decl) = 1;
511     }
512   else
513     {
514       DECL_INITIAL (decl) = error_mark_node;
515       DECL_COMMON (decl) = 0;
516       DECL_DEFER_OUTPUT (decl) = 0;
517     }
518   return decl;
519 }
520 
521 
522 /* Return a field that is the size of the union, if an equivalence has
523    overlapping initializers.  Merge the initializers into a single
524    initializer for this new field, then free the old ones.  */
525 
526 static tree
get_init_field(segment_info * head,tree union_type,tree * field_init,record_layout_info rli)527 get_init_field (segment_info *head, tree union_type, tree *field_init,
528 		record_layout_info rli)
529 {
530   segment_info *s;
531   HOST_WIDE_INT length = 0;
532   HOST_WIDE_INT offset = 0;
533   unsigned HOST_WIDE_INT known_align, desired_align;
534   bool overlap = false;
535   tree tmp, field;
536   tree init;
537   unsigned char *data, *chk;
538   vec<constructor_elt, va_gc> *v = NULL;
539 
540   tree type = unsigned_char_type_node;
541   int i;
542 
543   /* Obtain the size of the union and check if there are any overlapping
544      initializers.  */
545   for (s = head; s; s = s->next)
546     {
547       HOST_WIDE_INT slen = s->offset + s->length;
548       if (s->sym->value)
549 	{
550 	  if (s->offset < offset)
551             overlap = true;
552 	  offset = slen;
553 	}
554       length = length < slen ? slen : length;
555     }
556 
557   if (!overlap)
558     return NULL_TREE;
559 
560   /* Now absorb all the initializer data into a single vector,
561      whilst checking for overlapping, unequal values.  */
562   data = XCNEWVEC (unsigned char, (size_t)length);
563   chk = XCNEWVEC (unsigned char, (size_t)length);
564 
565   /* TODO - change this when default initialization is implemented.  */
566   memset (data, '\0', (size_t)length);
567   memset (chk, '\0', (size_t)length);
568   for (s = head; s; s = s->next)
569     if (s->sym->value)
570       {
571 	locus *loc = NULL;
572 	if (s->sym->ns->equiv && s->sym->ns->equiv->eq)
573 	  loc = &s->sym->ns->equiv->eq->expr->where;
574 	gfc_merge_initializers (s->sym->ts, s->sym->value, loc,
575 			      &data[s->offset],
576 			      &chk[s->offset],
577 			     (size_t)s->length);
578       }
579 
580   for (i = 0; i < length; i++)
581     CONSTRUCTOR_APPEND_ELT (v, NULL, build_int_cst (type, data[i]));
582 
583   free (data);
584   free (chk);
585 
586   /* Build a char[length] array to hold the initializers.  Much of what
587      follows is borrowed from build_field, above.  */
588 
589   tmp = build_int_cst (gfc_array_index_type, length - 1);
590   tmp = build_range_type (gfc_array_index_type,
591 			  gfc_index_zero_node, tmp);
592   tmp = build_array_type (type, tmp);
593   field = build_decl (gfc_get_location (&gfc_current_locus),
594 		      FIELD_DECL, NULL_TREE, tmp);
595 
596   known_align = BIGGEST_ALIGNMENT;
597 
598   desired_align = update_alignment_for_field (rli, field, known_align);
599   if (desired_align > known_align)
600     DECL_PACKED (field) = 1;
601 
602   DECL_FIELD_CONTEXT (field) = union_type;
603   DECL_FIELD_OFFSET (field) = size_int (0);
604   DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
605   SET_DECL_OFFSET_ALIGN (field, known_align);
606 
607   rli->offset = size_binop (MAX_EXPR, rli->offset,
608                             size_binop (PLUS_EXPR,
609                                         DECL_FIELD_OFFSET (field),
610                                         DECL_SIZE_UNIT (field)));
611 
612   init = build_constructor (TREE_TYPE (field), v);
613   TREE_CONSTANT (init) = 1;
614 
615   *field_init = init;
616 
617   for (s = head; s; s = s->next)
618     {
619       if (s->sym->value == NULL)
620 	continue;
621 
622       gfc_free_expr (s->sym->value);
623       s->sym->value = NULL;
624     }
625 
626   return field;
627 }
628 
629 
630 /* Declare memory for the common block or local equivalence, and create
631    backend declarations for all of the elements.  */
632 
633 static void
create_common(gfc_common_head * com,segment_info * head,bool saw_equiv)634 create_common (gfc_common_head *com, segment_info *head, bool saw_equiv)
635 {
636   segment_info *s, *next_s;
637   tree union_type;
638   tree *field_link;
639   tree field;
640   tree field_init = NULL_TREE;
641   record_layout_info rli;
642   tree decl;
643   bool is_init = false;
644   bool is_saved = false;
645   bool is_auto = false;
646 
647   /* Declare the variables inside the common block.
648      If the current common block contains any equivalence object, then
649      make a UNION_TYPE node, otherwise RECORD_TYPE. This will let the
650      alias analyzer work well when there is no address overlapping for
651      common variables in the current common block.  */
652   if (saw_equiv)
653     union_type = make_node (UNION_TYPE);
654   else
655     union_type = make_node (RECORD_TYPE);
656 
657   rli = start_record_layout (union_type);
658   field_link = &TYPE_FIELDS (union_type);
659 
660   /* Check for overlapping initializers and replace them with a single,
661      artificial field that contains all the data.  */
662   if (saw_equiv)
663     field = get_init_field (head, union_type, &field_init, rli);
664   else
665     field = NULL_TREE;
666 
667   if (field != NULL_TREE)
668     {
669       is_init = true;
670       *field_link = field;
671       field_link = &DECL_CHAIN (field);
672     }
673 
674   for (s = head; s; s = s->next)
675     {
676       build_field (s, union_type, rli);
677 
678       /* Link the field into the type.  */
679       *field_link = s->field;
680       field_link = &DECL_CHAIN (s->field);
681 
682       /* Has initial value.  */
683       if (s->sym->value)
684         is_init = true;
685 
686       /* Has SAVE attribute.  */
687       if (s->sym->attr.save)
688         is_saved = true;
689 
690       /* Has AUTOMATIC attribute.  */
691       if (s->sym->attr.automatic)
692 	is_auto = true;
693     }
694 
695   finish_record_layout (rli, true);
696 
697   if (com)
698     decl = build_common_decl (com, union_type, is_init);
699   else
700     decl = build_equiv_decl (union_type, is_init, is_saved, is_auto);
701 
702   if (is_init)
703     {
704       tree ctor, tmp;
705       vec<constructor_elt, va_gc> *v = NULL;
706 
707       if (field != NULL_TREE && field_init != NULL_TREE)
708 	CONSTRUCTOR_APPEND_ELT (v, field, field_init);
709       else
710 	for (s = head; s; s = s->next)
711 	  {
712 	    if (s->sym->value)
713 	      {
714 		/* Add the initializer for this field.  */
715 		tmp = gfc_conv_initializer (s->sym->value, &s->sym->ts,
716 					    TREE_TYPE (s->field),
717 					    s->sym->attr.dimension,
718 					    s->sym->attr.pointer
719 					    || s->sym->attr.allocatable, false);
720 
721 		CONSTRUCTOR_APPEND_ELT (v, s->field, tmp);
722 	      }
723 	  }
724 
725       gcc_assert (!v->is_empty ());
726       ctor = build_constructor (union_type, v);
727       TREE_CONSTANT (ctor) = 1;
728       TREE_STATIC (ctor) = 1;
729       DECL_INITIAL (decl) = ctor;
730 
731       if (flag_checking)
732 	{
733 	  tree field, value;
734 	  unsigned HOST_WIDE_INT idx;
735 	  FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, field, value)
736 	    gcc_assert (TREE_CODE (field) == FIELD_DECL);
737 	}
738     }
739 
740   /* Build component reference for each variable.  */
741   for (s = head; s; s = next_s)
742     {
743       tree var_decl;
744 
745       var_decl = build_decl (gfc_get_location (&s->sym->declared_at),
746 			     VAR_DECL, DECL_NAME (s->field),
747 			     TREE_TYPE (s->field));
748       TREE_STATIC (var_decl) = TREE_STATIC (decl);
749       /* Mark the variable as used in order to avoid warnings about
750 	 unused variables.  */
751       TREE_USED (var_decl) = 1;
752       if (s->sym->attr.use_assoc)
753 	DECL_IGNORED_P (var_decl) = 1;
754       if (s->sym->attr.target)
755 	TREE_ADDRESSABLE (var_decl) = 1;
756       /* Fake variables are not visible from other translation units.  */
757       TREE_PUBLIC (var_decl) = 0;
758       gfc_finish_decl_attrs (var_decl, &s->sym->attr);
759 
760       /* To preserve identifier names in COMMON, chain to procedure
761          scope unless at top level in a module definition.  */
762       if (com
763           && s->sym->ns->proc_name
764           && s->sym->ns->proc_name->attr.flavor == FL_MODULE)
765 	var_decl = pushdecl_top_level (var_decl);
766       else
767 	gfc_add_decl_to_function (var_decl);
768 
769       tree comp = build3_loc (input_location, COMPONENT_REF,
770 			      TREE_TYPE (s->field), decl, s->field, NULL_TREE);
771       if (TREE_THIS_VOLATILE (s->field))
772 	TREE_THIS_VOLATILE (comp) = 1;
773       SET_DECL_VALUE_EXPR (var_decl, comp);
774       DECL_HAS_VALUE_EXPR_P (var_decl) = 1;
775       GFC_DECL_COMMON_OR_EQUIV (var_decl) = 1;
776 
777       if (s->sym->attr.assign)
778 	{
779 	  gfc_allocate_lang_decl (var_decl);
780 	  GFC_DECL_ASSIGN (var_decl) = 1;
781 	  GFC_DECL_STRING_LEN (var_decl) = GFC_DECL_STRING_LEN (s->field);
782 	  GFC_DECL_ASSIGN_ADDR (var_decl) = GFC_DECL_ASSIGN_ADDR (s->field);
783 	}
784 
785       s->sym->backend_decl = var_decl;
786 
787       next_s = s->next;
788       free (s);
789     }
790 }
791 
792 
793 /* Given a symbol, find it in the current segment list. Returns NULL if
794    not found.  */
795 
796 static segment_info *
find_segment_info(gfc_symbol * symbol)797 find_segment_info (gfc_symbol *symbol)
798 {
799   segment_info *n;
800 
801   for (n = current_segment; n; n = n->next)
802     {
803       if (n->sym == symbol)
804 	return n;
805     }
806 
807   return NULL;
808 }
809 
810 
811 /* Given an expression node, make sure it is a constant integer and return
812    the mpz_t value.  */
813 
814 static mpz_t *
get_mpz(gfc_expr * e)815 get_mpz (gfc_expr *e)
816 {
817 
818   if (e->expr_type != EXPR_CONSTANT)
819     gfc_internal_error ("get_mpz(): Not an integer constant");
820 
821   return &e->value.integer;
822 }
823 
824 
825 /* Given an array specification and an array reference, figure out the
826    array element number (zero based). Bounds and elements are guaranteed
827    to be constants.  If something goes wrong we generate an error and
828    return zero.  */
829 
830 static HOST_WIDE_INT
element_number(gfc_array_ref * ar)831 element_number (gfc_array_ref *ar)
832 {
833   mpz_t multiplier, offset, extent, n;
834   gfc_array_spec *as;
835   HOST_WIDE_INT i, rank;
836 
837   as = ar->as;
838   rank = as->rank;
839   mpz_init_set_ui (multiplier, 1);
840   mpz_init_set_ui (offset, 0);
841   mpz_init (extent);
842   mpz_init (n);
843 
844   for (i = 0; i < rank; i++)
845     {
846       if (ar->dimen_type[i] != DIMEN_ELEMENT)
847         gfc_internal_error ("element_number(): Bad dimension type");
848 
849       if (as && as->lower[i])
850 	mpz_sub (n, *get_mpz (ar->start[i]), *get_mpz (as->lower[i]));
851       else
852 	mpz_sub_ui (n, *get_mpz (ar->start[i]), 1);
853 
854       mpz_mul (n, n, multiplier);
855       mpz_add (offset, offset, n);
856 
857       if (as && as->upper[i] && as->lower[i])
858 	{
859 	  mpz_sub (extent, *get_mpz (as->upper[i]), *get_mpz (as->lower[i]));
860 	  mpz_add_ui (extent, extent, 1);
861 	}
862       else
863 	mpz_set_ui (extent, 0);
864 
865       if (mpz_sgn (extent) < 0)
866         mpz_set_ui (extent, 0);
867 
868       mpz_mul (multiplier, multiplier, extent);
869     }
870 
871   i = mpz_get_ui (offset);
872 
873   mpz_clear (multiplier);
874   mpz_clear (offset);
875   mpz_clear (extent);
876   mpz_clear (n);
877 
878   return i;
879 }
880 
881 
882 /* Given a single element of an equivalence list, figure out the offset
883    from the base symbol.  For simple variables or full arrays, this is
884    simply zero.  For an array element we have to calculate the array
885    element number and multiply by the element size. For a substring we
886    have to calculate the further reference.  */
887 
888 static HOST_WIDE_INT
calculate_offset(gfc_expr * e)889 calculate_offset (gfc_expr *e)
890 {
891   HOST_WIDE_INT n, element_size, offset;
892   gfc_typespec *element_type;
893   gfc_ref *reference;
894 
895   offset = 0;
896   element_type = &e->symtree->n.sym->ts;
897 
898   for (reference = e->ref; reference; reference = reference->next)
899     switch (reference->type)
900       {
901       case REF_ARRAY:
902         switch (reference->u.ar.type)
903           {
904           case AR_FULL:
905 	    break;
906 
907           case AR_ELEMENT:
908 	    n = element_number (&reference->u.ar);
909 	    if (element_type->type == BT_CHARACTER)
910 	      gfc_conv_const_charlen (element_type->u.cl);
911 	    element_size =
912               int_size_in_bytes (gfc_typenode_for_spec (element_type));
913 	    offset += n * element_size;
914 	    break;
915 
916           default:
917 	    gfc_error ("Bad array reference at %L", &e->where);
918           }
919         break;
920       case REF_SUBSTRING:
921         if (reference->u.ss.start != NULL)
922 	  offset += mpz_get_ui (*get_mpz (reference->u.ss.start)) - 1;
923         break;
924       default:
925         gfc_error ("Illegal reference type at %L as EQUIVALENCE object",
926                    &e->where);
927     }
928   return offset;
929 }
930 
931 
932 /* Add a new segment_info structure to the current segment.  eq1 is already
933    in the list, eq2 is not.  */
934 
935 static void
new_condition(segment_info * v,gfc_equiv * eq1,gfc_equiv * eq2)936 new_condition (segment_info *v, gfc_equiv *eq1, gfc_equiv *eq2)
937 {
938   HOST_WIDE_INT offset1, offset2;
939   segment_info *a;
940 
941   offset1 = calculate_offset (eq1->expr);
942   offset2 = calculate_offset (eq2->expr);
943 
944   a = get_segment_info (eq2->expr->symtree->n.sym,
945 			v->offset + offset1 - offset2);
946 
947   current_segment = add_segments (current_segment, a);
948 }
949 
950 
951 /* Given two equivalence structures that are both already in the list, make
952    sure that this new condition is not violated, generating an error if it
953    is.  */
954 
955 static void
confirm_condition(segment_info * s1,gfc_equiv * eq1,segment_info * s2,gfc_equiv * eq2)956 confirm_condition (segment_info *s1, gfc_equiv *eq1, segment_info *s2,
957                    gfc_equiv *eq2)
958 {
959   HOST_WIDE_INT offset1, offset2;
960 
961   offset1 = calculate_offset (eq1->expr);
962   offset2 = calculate_offset (eq2->expr);
963 
964   if (s1->offset + offset1 != s2->offset + offset2)
965     gfc_error ("Inconsistent equivalence rules involving %qs at %L and "
966 	       "%qs at %L", s1->sym->name, &s1->sym->declared_at,
967 	       s2->sym->name, &s2->sym->declared_at);
968 }
969 
970 
971 /* Process a new equivalence condition. eq1 is know to be in segment f.
972    If eq2 is also present then confirm that the condition holds.
973    Otherwise add a new variable to the segment list.  */
974 
975 static void
add_condition(segment_info * f,gfc_equiv * eq1,gfc_equiv * eq2)976 add_condition (segment_info *f, gfc_equiv *eq1, gfc_equiv *eq2)
977 {
978   segment_info *n;
979 
980   n = find_segment_info (eq2->expr->symtree->n.sym);
981 
982   if (n == NULL)
983     new_condition (f, eq1, eq2);
984   else
985     confirm_condition (f, eq1, n, eq2);
986 }
987 
988 static void
accumulate_equivalence_attributes(symbol_attribute * dummy_symbol,gfc_equiv * e)989 accumulate_equivalence_attributes (symbol_attribute *dummy_symbol, gfc_equiv *e)
990 {
991   symbol_attribute attr = e->expr->symtree->n.sym->attr;
992 
993   dummy_symbol->dummy |= attr.dummy;
994   dummy_symbol->pointer |= attr.pointer;
995   dummy_symbol->target |= attr.target;
996   dummy_symbol->external |= attr.external;
997   dummy_symbol->intrinsic |= attr.intrinsic;
998   dummy_symbol->allocatable |= attr.allocatable;
999   dummy_symbol->elemental |= attr.elemental;
1000   dummy_symbol->recursive |= attr.recursive;
1001   dummy_symbol->in_common |= attr.in_common;
1002   dummy_symbol->result |= attr.result;
1003   dummy_symbol->in_namelist |= attr.in_namelist;
1004   dummy_symbol->optional |= attr.optional;
1005   dummy_symbol->entry |= attr.entry;
1006   dummy_symbol->function |= attr.function;
1007   dummy_symbol->subroutine |= attr.subroutine;
1008   dummy_symbol->dimension |= attr.dimension;
1009   dummy_symbol->in_equivalence |= attr.in_equivalence;
1010   dummy_symbol->use_assoc |= attr.use_assoc;
1011   dummy_symbol->cray_pointer |= attr.cray_pointer;
1012   dummy_symbol->cray_pointee |= attr.cray_pointee;
1013   dummy_symbol->data |= attr.data;
1014   dummy_symbol->value |= attr.value;
1015   dummy_symbol->volatile_ |= attr.volatile_;
1016   dummy_symbol->is_protected |= attr.is_protected;
1017   dummy_symbol->is_bind_c |= attr.is_bind_c;
1018   dummy_symbol->procedure |= attr.procedure;
1019   dummy_symbol->proc_pointer |= attr.proc_pointer;
1020   dummy_symbol->abstract |= attr.abstract;
1021   dummy_symbol->asynchronous |= attr.asynchronous;
1022   dummy_symbol->codimension |= attr.codimension;
1023   dummy_symbol->contiguous |= attr.contiguous;
1024   dummy_symbol->generic |= attr.generic;
1025   dummy_symbol->automatic |= attr.automatic;
1026   dummy_symbol->threadprivate |= attr.threadprivate;
1027   dummy_symbol->omp_declare_target |= attr.omp_declare_target;
1028   dummy_symbol->omp_declare_target_link |= attr.omp_declare_target_link;
1029   dummy_symbol->oacc_declare_copyin |= attr.oacc_declare_copyin;
1030   dummy_symbol->oacc_declare_create |= attr.oacc_declare_create;
1031   dummy_symbol->oacc_declare_deviceptr |= attr.oacc_declare_deviceptr;
1032   dummy_symbol->oacc_declare_device_resident
1033     |= attr.oacc_declare_device_resident;
1034 
1035   /* Not strictly correct, but probably close enough.  */
1036   if (attr.save > dummy_symbol->save)
1037     dummy_symbol->save = attr.save;
1038   if (attr.access > dummy_symbol->access)
1039     dummy_symbol->access = attr.access;
1040 }
1041 
1042 /* Given a segment element, search through the equivalence lists for unused
1043    conditions that involve the symbol.  Add these rules to the segment.  */
1044 
1045 static bool
find_equivalence(segment_info * n)1046 find_equivalence (segment_info *n)
1047 {
1048   gfc_equiv *e1, *e2, *eq;
1049   bool found;
1050 
1051   found = FALSE;
1052 
1053   for (e1 = n->sym->ns->equiv; e1; e1 = e1->next)
1054     {
1055       eq = NULL;
1056 
1057       /* Search the equivalence list, including the root (first) element
1058 	 for the symbol that owns the segment.  */
1059       symbol_attribute dummy_symbol;
1060       memset (&dummy_symbol, 0, sizeof (dummy_symbol));
1061       for (e2 = e1; e2; e2 = e2->eq)
1062 	{
1063 	  accumulate_equivalence_attributes (&dummy_symbol, e2);
1064 	  if (!e2->used && e2->expr->symtree->n.sym == n->sym)
1065 	    {
1066 	      eq = e2;
1067 	      break;
1068 	    }
1069 	}
1070 
1071       gfc_check_conflict (&dummy_symbol, e1->expr->symtree->name, &e1->expr->where);
1072 
1073       /* Go to the next root element.  */
1074       if (eq == NULL)
1075 	continue;
1076 
1077       eq->used = 1;
1078 
1079       /* Now traverse the equivalence list matching the offsets.  */
1080       for (e2 = e1; e2; e2 = e2->eq)
1081 	{
1082 	  if (!e2->used && e2 != eq)
1083 	    {
1084 	      add_condition (n, eq, e2);
1085 	      e2->used = 1;
1086 	      found = TRUE;
1087 	    }
1088 	}
1089     }
1090   return found;
1091 }
1092 
1093 
1094 /* Add all symbols equivalenced within a segment.  We need to scan the
1095    segment list multiple times to include indirect equivalences.  Since
1096    a new segment_info can inserted at the beginning of the segment list,
1097    depending on its offset, we have to force a final pass through the
1098    loop by demanding that completion sees a pass with no matches; i.e.,
1099    all symbols with equiv_built set and no new equivalences found.  */
1100 
1101 static void
add_equivalences(bool * saw_equiv)1102 add_equivalences (bool *saw_equiv)
1103 {
1104   segment_info *f;
1105   bool more = TRUE;
1106 
1107   while (more)
1108     {
1109       more = FALSE;
1110       for (f = current_segment; f; f = f->next)
1111 	{
1112 	  if (!f->sym->equiv_built)
1113 	    {
1114 	      f->sym->equiv_built = 1;
1115 	      bool seen_one = find_equivalence (f);
1116 	      if (seen_one)
1117 		{
1118 		  *saw_equiv = true;
1119 		  more = true;
1120 		}
1121 	    }
1122 	}
1123     }
1124 
1125   /* Add a copy of this segment list to the namespace.  */
1126   copy_equiv_list_to_ns (current_segment);
1127 }
1128 
1129 
1130 /* Returns the offset necessary to properly align the current equivalence.
1131    Sets *palign to the required alignment.  */
1132 
1133 static HOST_WIDE_INT
align_segment(unsigned HOST_WIDE_INT * palign)1134 align_segment (unsigned HOST_WIDE_INT *palign)
1135 {
1136   segment_info *s;
1137   unsigned HOST_WIDE_INT offset;
1138   unsigned HOST_WIDE_INT max_align;
1139   unsigned HOST_WIDE_INT this_align;
1140   unsigned HOST_WIDE_INT this_offset;
1141 
1142   max_align = 1;
1143   offset = 0;
1144   for (s = current_segment; s; s = s->next)
1145     {
1146       this_align = TYPE_ALIGN_UNIT (s->field);
1147       if (s->offset & (this_align - 1))
1148 	{
1149 	  /* Field is misaligned.  */
1150 	  this_offset = this_align - ((s->offset + offset) & (this_align - 1));
1151 	  if (this_offset & (max_align - 1))
1152 	    {
1153 	      /* Aligning this field would misalign a previous field.  */
1154 	      gfc_error ("The equivalence set for variable %qs "
1155 			 "declared at %L violates alignment requirements",
1156 			 s->sym->name, &s->sym->declared_at);
1157 	    }
1158 	  offset += this_offset;
1159 	}
1160       max_align = this_align;
1161     }
1162   if (palign)
1163     *palign = max_align;
1164   return offset;
1165 }
1166 
1167 
1168 /* Adjust segment offsets by the given amount.  */
1169 
1170 static void
apply_segment_offset(segment_info * s,HOST_WIDE_INT offset)1171 apply_segment_offset (segment_info *s, HOST_WIDE_INT offset)
1172 {
1173   for (; s; s = s->next)
1174     s->offset += offset;
1175 }
1176 
1177 
1178 /* Lay out a symbol in a common block.  If the symbol has already been seen
1179    then check the location is consistent.  Otherwise create segments
1180    for that symbol and all the symbols equivalenced with it.  */
1181 
1182 /* Translate a single common block.  */
1183 
1184 static void
translate_common(gfc_common_head * common,gfc_symbol * var_list)1185 translate_common (gfc_common_head *common, gfc_symbol *var_list)
1186 {
1187   gfc_symbol *sym;
1188   segment_info *s;
1189   segment_info *common_segment;
1190   HOST_WIDE_INT offset;
1191   HOST_WIDE_INT current_offset;
1192   unsigned HOST_WIDE_INT align;
1193   bool saw_equiv;
1194 
1195   common_segment = NULL;
1196   offset = 0;
1197   current_offset = 0;
1198   align = 1;
1199   saw_equiv = false;
1200 
1201   /* Add symbols to the segment.  */
1202   for (sym = var_list; sym; sym = sym->common_next)
1203     {
1204       current_segment = common_segment;
1205       s = find_segment_info (sym);
1206 
1207       /* Symbol has already been added via an equivalence.  Multiple
1208 	 use associations of the same common block result in equiv_built
1209 	 being set but no information about the symbol in the segment.  */
1210       if (s && sym->equiv_built)
1211 	{
1212 	  /* Ensure the current location is properly aligned.  */
1213 	  align = TYPE_ALIGN_UNIT (s->field);
1214 	  current_offset = (current_offset + align - 1) &~ (align - 1);
1215 
1216 	  /* Verify that it ended up where we expect it.  */
1217 	  if (s->offset != current_offset)
1218 	    {
1219 	      gfc_error ("Equivalence for %qs does not match ordering of "
1220 			 "COMMON %qs at %L", sym->name,
1221 			 common->name, &common->where);
1222 	    }
1223 	}
1224       else
1225 	{
1226 	  /* A symbol we haven't seen before.  */
1227 	  s = current_segment = get_segment_info (sym, current_offset);
1228 
1229 	  /* Add all objects directly or indirectly equivalenced with this
1230 	     symbol.  */
1231 	  add_equivalences (&saw_equiv);
1232 
1233 	  if (current_segment->offset < 0)
1234 	    gfc_error ("The equivalence set for %qs cause an invalid "
1235 		       "extension to COMMON %qs at %L", sym->name,
1236 		       common->name, &common->where);
1237 
1238 	  if (flag_align_commons)
1239 	    offset = align_segment (&align);
1240 
1241 	  if (offset)
1242 	    {
1243 	      /* The required offset conflicts with previous alignment
1244 		 requirements.  Insert padding immediately before this
1245 		 segment.  */
1246 	      if (warn_align_commons)
1247 		{
1248 		  if (strcmp (common->name, BLANK_COMMON_NAME))
1249 		    gfc_warning (OPT_Walign_commons,
1250 				 "Padding of %d bytes required before %qs in "
1251 				 "COMMON %qs at %L; reorder elements or use "
1252 				 "%<-fno-align-commons%>", (int)offset,
1253 				 s->sym->name, common->name, &common->where);
1254 		  else
1255 		    gfc_warning (OPT_Walign_commons,
1256 				 "Padding of %d bytes required before %qs in "
1257 				 "COMMON at %L; reorder elements or use "
1258 				 "%<-fno-align-commons%>", (int)offset,
1259 				 s->sym->name, &common->where);
1260 		}
1261 	    }
1262 
1263 	  /* Apply the offset to the new segments.  */
1264 	  apply_segment_offset (current_segment, offset);
1265 	  current_offset += offset;
1266 
1267 	  /* Add the new segments to the common block.  */
1268 	  common_segment = add_segments (common_segment, current_segment);
1269 	}
1270 
1271       /* The offset of the next common variable.  */
1272       current_offset += s->length;
1273     }
1274 
1275   if (common_segment == NULL)
1276     {
1277       gfc_error ("COMMON %qs at %L does not exist",
1278 		 common->name, &common->where);
1279       return;
1280     }
1281 
1282   if (common_segment->offset != 0 && warn_align_commons)
1283     {
1284       if (strcmp (common->name, BLANK_COMMON_NAME))
1285 	gfc_warning (OPT_Walign_commons,
1286 		     "COMMON %qs at %L requires %d bytes of padding; "
1287 		     "reorder elements or use %<-fno-align-commons%>",
1288 		     common->name, &common->where, (int)common_segment->offset);
1289       else
1290 	gfc_warning (OPT_Walign_commons,
1291 		     "COMMON at %L requires %d bytes of padding; "
1292 		     "reorder elements or use %<-fno-align-commons%>",
1293 		     &common->where, (int)common_segment->offset);
1294     }
1295 
1296   create_common (common, common_segment, saw_equiv);
1297 }
1298 
1299 
1300 /* Create a new block for each merged equivalence list.  */
1301 
1302 static void
finish_equivalences(gfc_namespace * ns)1303 finish_equivalences (gfc_namespace *ns)
1304 {
1305   gfc_equiv *z, *y;
1306   gfc_symbol *sym;
1307   gfc_common_head * c;
1308   HOST_WIDE_INT offset;
1309   unsigned HOST_WIDE_INT align;
1310   bool dummy;
1311 
1312   for (z = ns->equiv; z; z = z->next)
1313     for (y = z->eq; y; y = y->eq)
1314       {
1315         if (y->used)
1316 	  continue;
1317         sym = z->expr->symtree->n.sym;
1318         current_segment = get_segment_info (sym, 0);
1319 
1320         /* All objects directly or indirectly equivalenced with this
1321 	   symbol.  */
1322         add_equivalences (&dummy);
1323 
1324 	/* Align the block.  */
1325 	offset = align_segment (&align);
1326 
1327 	/* Ensure all offsets are positive.  */
1328 	offset -= current_segment->offset & ~(align - 1);
1329 
1330 	apply_segment_offset (current_segment, offset);
1331 
1332 	/* Create the decl.  If this is a module equivalence, it has a
1333 	   unique name, pointed to by z->module.  This is written to a
1334 	   gfc_common_header to push create_common into using
1335 	   build_common_decl, so that the equivalence appears as an
1336 	   external symbol.  Otherwise, a local declaration is built using
1337 	   build_equiv_decl.  */
1338 	if (z->module)
1339 	  {
1340 	    c = gfc_get_common_head ();
1341 	    /* We've lost the real location, so use the location of the
1342 	       enclosing procedure.  If we're in a BLOCK DATA block, then
1343 	       use the location in the sym_root.  */
1344 	    if (ns->proc_name)
1345 	      c->where = ns->proc_name->declared_at;
1346 	    else if (ns->is_block_data)
1347 	      c->where = ns->sym_root->n.sym->declared_at;
1348 
1349 	    size_t len = strlen (z->module);
1350 	    gcc_assert (len < sizeof (c->name));
1351 	    memcpy (c->name, z->module, len);
1352 	    c->name[len] = '\0';
1353 	  }
1354 	else
1355 	  c = NULL;
1356 
1357         create_common (c, current_segment, true);
1358         break;
1359       }
1360 }
1361 
1362 
1363 /* Work function for translating a named common block.  */
1364 
1365 static void
named_common(gfc_symtree * st)1366 named_common (gfc_symtree *st)
1367 {
1368   translate_common (st->n.common, st->n.common->head);
1369 }
1370 
1371 
1372 /* Translate the common blocks in a namespace. Unlike other variables,
1373    these have to be created before code, because the backend_decl depends
1374    on the rest of the common block.  */
1375 
1376 void
gfc_trans_common(gfc_namespace * ns)1377 gfc_trans_common (gfc_namespace *ns)
1378 {
1379   gfc_common_head *c;
1380 
1381   /* Translate the blank common block.  */
1382   if (ns->blank_common.head != NULL)
1383     {
1384       c = gfc_get_common_head ();
1385       c->where = ns->blank_common.head->common_head->where;
1386       strcpy (c->name, BLANK_COMMON_NAME);
1387       translate_common (c, ns->blank_common.head);
1388     }
1389 
1390   /* Translate all named common blocks.  */
1391   gfc_traverse_symtree (ns->common_root, named_common);
1392 
1393   /* Translate local equivalence.  */
1394   finish_equivalences (ns);
1395 
1396   /* Commit the newly created symbols for common blocks and module
1397      equivalences.  */
1398   gfc_commit_symbols ();
1399 }
1400