xref: /netbsd-src/external/gpl3/gcc/dist/gcc/store-motion.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Store motion via Lazy Code Motion on the reverse CFG.
2    Copyright (C) 1997-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "predict.h"
27 #include "df.h"
28 #include "toplev.h"
29 
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "lcm.h"
33 #include "cfgcleanup.h"
34 #include "expr.h"
35 #include "tree-pass.h"
36 #include "dbgcnt.h"
37 #include "rtl-iter.h"
38 #include "print-rtl.h"
39 
40 /* This pass implements downward store motion.
41    As of May 1, 2009, the pass is not enabled by default on any target,
42    but bootstrap completes on ia64 and x86_64 with the pass enabled.  */
43 
44 /* TODO:
45    - remove_reachable_equiv_notes is an incomprehensible pile of goo and
46      a compile time hog that needs a rewrite (maybe cache st_exprs to
47      invalidate REG_EQUAL/REG_EQUIV notes for?).
48    - pattern_regs in st_expr should be a regset (on its own obstack).
49    - store_motion_mems should be a vec instead of a list.
50    - there should be an alloc pool for struct st_expr objects.
51    - investigate whether it is helpful to make the address of an st_expr
52      a cselib VALUE.
53    - when GIMPLE alias information is exported, the effectiveness of this
54      pass should be re-evaluated.
55 */
56 
57 /* This is a list of store expressions (MEMs).  The structure is used
58    as an expression table to track stores which look interesting, and
59    might be moveable towards the exit block.  */
60 
61 struct st_expr
62 {
63   /* Pattern of this mem.  */
64   rtx pattern;
65   /* List of registers mentioned by the mem.  */
66   vec<rtx> pattern_regs;
67   /* INSN list of stores that are locally anticipatable.  */
68   vec<rtx_insn *> antic_stores;
69   /* INSN list of stores that are locally available.  */
70   vec<rtx_insn *> avail_stores;
71   /* Next in the list.  */
72   struct st_expr * next;
73   /* Store ID in the dataflow bitmaps.  */
74   int index;
75   /* Hash value for the hash table.  */
76   unsigned int hash_index;
77   /* Register holding the stored expression when a store is moved.
78      This field is also used as a cache in find_moveable_store, see
79      LAST_AVAIL_CHECK_FAILURE below.  */
80   rtx reaching_reg;
81 };
82 
83 /* Head of the list of load/store memory refs.  */
84 static struct st_expr * store_motion_mems = NULL;
85 
86 /* These bitmaps will hold the local dataflow properties per basic block.  */
87 static sbitmap *st_kill, *st_avloc, *st_antloc, *st_transp;
88 
89 /* Nonzero for expressions which should be inserted on a specific edge.  */
90 static sbitmap *st_insert_map;
91 
92 /* Nonzero for expressions which should be deleted in a specific block.  */
93 static sbitmap *st_delete_map;
94 
95 /* Global holding the number of store expressions we are dealing with.  */
96 static int num_stores;
97 
98 /* Contains the edge_list returned by pre_edge_lcm.  */
99 static struct edge_list *edge_list;
100 
101 /* Hashtable helpers.  */
102 
103 struct st_expr_hasher : nofree_ptr_hash <st_expr>
104 {
105   static inline hashval_t hash (const st_expr *);
106   static inline bool equal (const st_expr *, const st_expr *);
107 };
108 
109 inline hashval_t
hash(const st_expr * x)110 st_expr_hasher::hash (const st_expr *x)
111 {
112   int do_not_record_p = 0;
113   return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
114 }
115 
116 inline bool
equal(const st_expr * ptr1,const st_expr * ptr2)117 st_expr_hasher::equal (const st_expr *ptr1, const st_expr *ptr2)
118 {
119   return exp_equiv_p (ptr1->pattern, ptr2->pattern, 0, true);
120 }
121 
122 /* Hashtable for the load/store memory refs.  */
123 static hash_table<st_expr_hasher> *store_motion_mems_table;
124 
125 /* This will search the st_expr list for a matching expression. If it
126    doesn't find one, we create one and initialize it.  */
127 
128 static struct st_expr *
st_expr_entry(rtx x)129 st_expr_entry (rtx x)
130 {
131   int do_not_record_p = 0;
132   struct st_expr * ptr;
133   unsigned int hash;
134   st_expr **slot;
135   struct st_expr e;
136 
137   hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
138 		   NULL,  /*have_reg_qty=*/false);
139 
140   e.pattern = x;
141   slot = store_motion_mems_table->find_slot_with_hash (&e, hash, INSERT);
142   if (*slot)
143     return *slot;
144 
145   ptr = XNEW (struct st_expr);
146 
147   ptr->next         = store_motion_mems;
148   ptr->pattern      = x;
149   ptr->pattern_regs.create (0);
150   ptr->antic_stores.create (0);
151   ptr->avail_stores.create (0);
152   ptr->reaching_reg = NULL_RTX;
153   ptr->index        = 0;
154   ptr->hash_index   = hash;
155   store_motion_mems = ptr;
156   *slot = ptr;
157 
158   return ptr;
159 }
160 
161 /* Free up an individual st_expr entry.  */
162 
163 static void
free_st_expr_entry(struct st_expr * ptr)164 free_st_expr_entry (struct st_expr * ptr)
165 {
166   ptr->antic_stores.release ();
167   ptr->avail_stores.release ();
168   ptr->pattern_regs.release ();
169 
170   free (ptr);
171 }
172 
173 /* Free up all memory associated with the st_expr list.  */
174 
175 static void
free_store_motion_mems(void)176 free_store_motion_mems (void)
177 {
178   delete store_motion_mems_table;
179   store_motion_mems_table = NULL;
180 
181   while (store_motion_mems)
182     {
183       struct st_expr * tmp = store_motion_mems;
184       store_motion_mems = store_motion_mems->next;
185       free_st_expr_entry (tmp);
186     }
187   store_motion_mems = NULL;
188 }
189 
190 /* Assign each element of the list of mems a monotonically increasing value.  */
191 
192 static int
enumerate_store_motion_mems(void)193 enumerate_store_motion_mems (void)
194 {
195   struct st_expr * ptr;
196   int n = 0;
197 
198   for (ptr = store_motion_mems; ptr != NULL; ptr = ptr->next)
199     ptr->index = n++;
200 
201   return n;
202 }
203 
204 /* Return first item in the list.  */
205 
206 static inline struct st_expr *
first_st_expr(void)207 first_st_expr (void)
208 {
209   return store_motion_mems;
210 }
211 
212 /* Return the next item in the list after the specified one.  */
213 
214 static inline struct st_expr *
next_st_expr(struct st_expr * ptr)215 next_st_expr (struct st_expr * ptr)
216 {
217   return ptr->next;
218 }
219 
220 /* Dump debugging info about the store_motion_mems list.  */
221 
222 static void
print_store_motion_mems(FILE * file)223 print_store_motion_mems (FILE * file)
224 {
225   struct st_expr * ptr;
226 
227   fprintf (dump_file, "STORE_MOTION list of MEM exprs considered:\n");
228 
229   for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
230     {
231       fprintf (file, "  Pattern (%3d): ", ptr->index);
232 
233       print_rtl (file, ptr->pattern);
234 
235       fprintf (file, "\n	 ANTIC stores : ");
236       print_rtx_insn_vec (file, ptr->antic_stores);
237 
238       fprintf (file, "\n	 AVAIL stores : ");
239 
240 	print_rtx_insn_vec (file, ptr->avail_stores);
241 
242       fprintf (file, "\n\n");
243     }
244 
245   fprintf (file, "\n");
246 }
247 
248 /* Return zero if some of the registers in list X are killed
249    due to set of registers in bitmap REGS_SET.  */
250 
251 static bool
store_ops_ok(const vec<rtx> & x,int * regs_set)252 store_ops_ok (const vec<rtx> &x, int *regs_set)
253 {
254   for (rtx temp : x)
255     if (regs_set[REGNO (temp)])
256       return false;
257 
258   return true;
259 }
260 
261 /* Returns a list of registers mentioned in X.
262    FIXME: A regset would be prettier and less expensive.  */
263 
264 static void
extract_mentioned_regs(rtx x,vec<rtx> * mentioned_regs)265 extract_mentioned_regs (rtx x, vec<rtx> *mentioned_regs)
266 {
267   subrtx_var_iterator::array_type array;
268   FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
269     {
270       rtx x = *iter;
271       if (REG_P (x))
272 	mentioned_regs->safe_push (x);
273     }
274 }
275 
276 /* Check to see if the load X is aliased with STORE_PATTERN.
277    AFTER is true if we are checking the case when STORE_PATTERN occurs
278    after the X.  */
279 
280 static bool
load_kills_store(const_rtx x,const_rtx store_pattern,int after)281 load_kills_store (const_rtx x, const_rtx store_pattern, int after)
282 {
283   if (after)
284     return anti_dependence (x, store_pattern);
285   else
286     return true_dependence (store_pattern, GET_MODE (store_pattern), x);
287 }
288 
289 /* Go through the entire rtx X, looking for any loads which might alias
290    STORE_PATTERN.  Return true if found.
291    AFTER is true if we are checking the case when STORE_PATTERN occurs
292    after the insn X.  */
293 
294 static bool
find_loads(const_rtx x,const_rtx store_pattern,int after)295 find_loads (const_rtx x, const_rtx store_pattern, int after)
296 {
297   const char * fmt;
298   int i, j;
299   int ret = false;
300 
301   if (!x)
302     return false;
303 
304   if (GET_CODE (x) == SET)
305     x = SET_SRC (x);
306 
307   if (MEM_P (x))
308     {
309       if (load_kills_store (x, store_pattern, after))
310 	return true;
311     }
312 
313   /* Recursively process the insn.  */
314   fmt = GET_RTX_FORMAT (GET_CODE (x));
315 
316   for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0 && !ret; i--)
317     {
318       if (fmt[i] == 'e')
319 	ret |= find_loads (XEXP (x, i), store_pattern, after);
320       else if (fmt[i] == 'E')
321 	for (j = XVECLEN (x, i) - 1; j >= 0; j--)
322 	  ret |= find_loads (XVECEXP (x, i, j), store_pattern, after);
323     }
324   return ret;
325 }
326 
327 /* Go through pattern PAT looking for any loads which might kill the
328    store in X.  Return true if found.
329    AFTER is true if we are checking the case when loads kill X occurs
330    after the insn for PAT.  */
331 
332 static inline bool
store_killed_in_pat(const_rtx x,const_rtx pat,int after)333 store_killed_in_pat (const_rtx x, const_rtx pat, int after)
334 {
335   if (GET_CODE (pat) == SET)
336     {
337       rtx dest = SET_DEST (pat);
338 
339       if (GET_CODE (dest) == ZERO_EXTRACT)
340 	dest = XEXP (dest, 0);
341 
342       /* Check for memory stores to aliased objects.  */
343       if (MEM_P (dest)
344 	  && !exp_equiv_p (dest, x, 0, true))
345 	{
346 	  if (after)
347 	    {
348 	      if (output_dependence (dest, x))
349 		return true;
350 	    }
351 	  else
352 	    {
353 	      if (output_dependence (x, dest))
354 		return true;
355 	    }
356 	}
357     }
358 
359   if (find_loads (pat, x, after))
360     return true;
361 
362   return false;
363 }
364 
365 /* Check if INSN kills the store pattern X (is aliased with it).
366    AFTER is true if we are checking the case when store X occurs
367    after the insn.  Return true if it does.  */
368 
369 static bool
store_killed_in_insn(const_rtx x,const vec<rtx> & x_regs,const rtx_insn * insn,int after)370 store_killed_in_insn (const_rtx x, const vec<rtx> &x_regs,
371 		      const rtx_insn *insn, int after)
372 {
373   const_rtx note, pat;
374 
375   if (! NONDEBUG_INSN_P (insn))
376     return false;
377 
378   if (CALL_P (insn))
379     {
380       /* A normal or pure call might read from pattern,
381 	 but a const call will not.  */
382       if (!RTL_CONST_CALL_P (insn))
383 	return true;
384 
385       /* But even a const call reads its parameters.  Check whether the
386 	 base of some of registers used in mem is stack pointer.  */
387       for (rtx temp : x_regs)
388 	if (may_be_sp_based_p (temp))
389 	  return true;
390 
391       return false;
392     }
393 
394   pat = PATTERN (insn);
395   if (GET_CODE (pat) == SET)
396     {
397       if (store_killed_in_pat (x, pat, after))
398 	return true;
399     }
400   else if (GET_CODE (pat) == PARALLEL)
401     {
402       int i;
403 
404       for (i = 0; i < XVECLEN (pat, 0); i++)
405 	if (store_killed_in_pat (x, XVECEXP (pat, 0, i), after))
406 	  return true;
407     }
408   else if (find_loads (PATTERN (insn), x, after))
409     return true;
410 
411   /* If this insn has a REG_EQUAL or REG_EQUIV note referencing a memory
412      location aliased with X, then this insn kills X.  */
413   note = find_reg_equal_equiv_note (insn);
414   if (! note)
415     return false;
416   note = XEXP (note, 0);
417 
418   /* However, if the note represents a must alias rather than a may
419      alias relationship, then it does not kill X.  */
420   if (exp_equiv_p (note, x, 0, true))
421     return false;
422 
423   /* See if there are any aliased loads in the note.  */
424   return find_loads (note, x, after);
425 }
426 
427 /* Returns true if the expression X is loaded or clobbered on or after INSN
428    within basic block BB.  REGS_SET_AFTER is bitmap of registers set in
429    or after the insn.  X_REGS is list of registers mentioned in X. If the store
430    is killed, return the last insn in that it occurs in FAIL_INSN.  */
431 
432 static bool
store_killed_after(const_rtx x,const vec<rtx> & x_regs,const rtx_insn * insn,const_basic_block bb,int * regs_set_after,rtx * fail_insn)433 store_killed_after (const_rtx x, const vec<rtx> &x_regs,
434 		    const rtx_insn *insn, const_basic_block bb,
435 		    int *regs_set_after, rtx *fail_insn)
436 {
437   rtx_insn *last = BB_END (bb), *act;
438 
439   if (!store_ops_ok (x_regs, regs_set_after))
440     {
441       /* We do not know where it will happen.  */
442       if (fail_insn)
443 	*fail_insn = NULL_RTX;
444       return true;
445     }
446 
447   /* Scan from the end, so that fail_insn is determined correctly.  */
448   for (act = last; act != PREV_INSN (insn); act = PREV_INSN (act))
449     if (store_killed_in_insn (x, x_regs, act, false))
450       {
451 	if (fail_insn)
452 	  *fail_insn = act;
453 	return true;
454       }
455 
456   return false;
457 }
458 
459 /* Returns true if the expression X is loaded or clobbered on or before INSN
460    within basic block BB. X_REGS is list of registers mentioned in X.
461    REGS_SET_BEFORE is bitmap of registers set before or in this insn.  */
462 static bool
store_killed_before(const_rtx x,const vec<rtx> & x_regs,const rtx_insn * insn,const_basic_block bb,int * regs_set_before)463 store_killed_before (const_rtx x, const vec<rtx> &x_regs,
464 		     const rtx_insn *insn, const_basic_block bb,
465 		     int *regs_set_before)
466 {
467   rtx_insn *first = BB_HEAD (bb);
468 
469   if (!store_ops_ok (x_regs, regs_set_before))
470     return true;
471 
472   for ( ; insn != PREV_INSN (first); insn = PREV_INSN (insn))
473     if (store_killed_in_insn (x, x_regs, insn, true))
474       return true;
475 
476   return false;
477 }
478 
479 /* The last insn in the basic block that compute_store_table is processing,
480    where store_killed_after is true for X.
481    Since we go through the basic block from BB_END to BB_HEAD, this is
482    also the available store at the end of the basic block.  Therefore
483    this is in effect a cache, to avoid calling store_killed_after for
484    equivalent aliasing store expressions.
485    This value is only meaningful during the computation of the store
486    table.  We hi-jack the REACHING_REG field of struct st_expr to save
487    a bit of memory.  */
488 #define LAST_AVAIL_CHECK_FAILURE(x)	((x)->reaching_reg)
489 
490 /* Determine whether INSN is MEM store pattern that we will consider moving.
491    REGS_SET_BEFORE is bitmap of registers set before (and including) the
492    current insn, REGS_SET_AFTER is bitmap of registers set after (and
493    including) the insn in this basic block.  We must be passing through BB from
494    head to end, as we are using this fact to speed things up.
495 
496    The results are stored this way:
497 
498    -- the first anticipatable expression is added into ANTIC_STORES
499    -- if the processed expression is not anticipatable, NULL_RTX is added
500       there instead, so that we can use it as indicator that no further
501       expression of this type may be anticipatable
502    -- if the expression is available, it is added as head of AVAIL_STORES;
503       consequently, all of them but this head are dead and may be deleted.
504    -- if the expression is not available, the insn due to that it fails to be
505       available is stored in REACHING_REG (via LAST_AVAIL_CHECK_FAILURE).
506 
507    The things are complicated a bit by fact that there already may be stores
508    to the same MEM from other blocks; also caller must take care of the
509    necessary cleanup of the temporary markers after end of the basic block.
510    */
511 
512 static void
find_moveable_store(rtx_insn * insn,int * regs_set_before,int * regs_set_after)513 find_moveable_store (rtx_insn *insn, int *regs_set_before, int *regs_set_after)
514 {
515   struct st_expr * ptr;
516   rtx dest, set;
517   int check_anticipatable, check_available;
518   basic_block bb = BLOCK_FOR_INSN (insn);
519 
520   set = single_set (insn);
521   if (!set)
522     return;
523 
524   dest = SET_DEST (set);
525 
526   if (! MEM_P (dest) || MEM_VOLATILE_P (dest)
527       || GET_MODE (dest) == BLKmode)
528     return;
529 
530   if (side_effects_p (dest))
531     return;
532 
533   /* If we are handling exceptions, we must be careful with memory references
534      that may trap.  If we are not, the behavior is undefined, so we may just
535      continue.  */
536   if (cfun->can_throw_non_call_exceptions && may_trap_p (dest))
537     return;
538 
539   /* Even if the destination cannot trap, the source may.  In this case we'd
540      need to handle updating the REG_EH_REGION note.  */
541   if (find_reg_note (insn, REG_EH_REGION, NULL_RTX))
542     return;
543 
544   /* Make sure that the SET_SRC of this store insns can be assigned to
545      a register, or we will fail later on in replace_store_insn, which
546      assumes that we can do this.  But sometimes the target machine has
547      oddities like MEM read-modify-write instruction.  See for example
548      PR24257.  */
549   if (!can_assign_to_reg_without_clobbers_p (SET_SRC (set),
550 					      GET_MODE (SET_SRC (set))))
551     return;
552 
553   ptr = st_expr_entry (dest);
554   if (ptr->pattern_regs.is_empty ())
555     extract_mentioned_regs (dest, &ptr->pattern_regs);
556 
557   /* Do not check for anticipatability if we either found one anticipatable
558      store already, or tested for one and found out that it was killed.  */
559   check_anticipatable = 0;
560   if (ptr->antic_stores.is_empty ())
561     check_anticipatable = 1;
562   else
563     {
564       rtx_insn *tmp = ptr->antic_stores.last ();
565       if (tmp != NULL_RTX
566 	  && BLOCK_FOR_INSN (tmp) != bb)
567 	check_anticipatable = 1;
568     }
569   if (check_anticipatable)
570     {
571       rtx_insn *tmp;
572       if (store_killed_before (dest, ptr->pattern_regs, insn, bb, regs_set_before))
573 	tmp = NULL;
574       else
575 	tmp = insn;
576       ptr->antic_stores.safe_push (tmp);
577     }
578 
579   /* It is not necessary to check whether store is available if we did
580      it successfully before; if we failed before, do not bother to check
581      until we reach the insn that caused us to fail.  */
582   check_available = 0;
583   if (ptr->avail_stores.is_empty ())
584     check_available = 1;
585   else
586     {
587       rtx_insn *tmp = ptr->avail_stores.last ();
588       if (BLOCK_FOR_INSN (tmp) != bb)
589 	check_available = 1;
590     }
591   if (check_available)
592     {
593       /* Check that we have already reached the insn at that the check
594 	 failed last time.  */
595       if (LAST_AVAIL_CHECK_FAILURE (ptr))
596 	{
597 	  rtx_insn *tmp;
598 	  for (tmp = BB_END (bb);
599 	       tmp != insn && tmp != LAST_AVAIL_CHECK_FAILURE (ptr);
600 	       tmp = PREV_INSN (tmp))
601 	    continue;
602 	  if (tmp == insn)
603 	    check_available = 0;
604 	}
605       else
606 	check_available = store_killed_after (dest, ptr->pattern_regs, insn,
607 					      bb, regs_set_after,
608 					      &LAST_AVAIL_CHECK_FAILURE (ptr));
609     }
610   if (!check_available)
611     ptr->avail_stores.safe_push (insn);
612 }
613 
614 /* Find available and anticipatable stores.  */
615 
616 static int
compute_store_table(void)617 compute_store_table (void)
618 {
619   int ret;
620   basic_block bb;
621   rtx_insn *insn;
622   rtx_insn *tmp;
623   df_ref def;
624   int *last_set_in, *already_set;
625   struct st_expr * ptr, **prev_next_ptr_ptr;
626   unsigned int max_gcse_regno = max_reg_num ();
627 
628   store_motion_mems = NULL;
629   store_motion_mems_table = new hash_table<st_expr_hasher> (13);
630   last_set_in = XCNEWVEC (int, max_gcse_regno);
631   already_set = XNEWVEC (int, max_gcse_regno);
632 
633   /* Find all the stores we care about.  */
634   FOR_EACH_BB_FN (bb, cfun)
635     {
636       /* First compute the registers set in this block.  */
637       FOR_BB_INSNS (bb, insn)
638 	{
639 
640 	  if (! NONDEBUG_INSN_P (insn))
641 	    continue;
642 
643 	  FOR_EACH_INSN_DEF (def, insn)
644 	    last_set_in[DF_REF_REGNO (def)] = INSN_UID (insn);
645 	}
646 
647       /* Now find the stores.  */
648       memset (already_set, 0, sizeof (int) * max_gcse_regno);
649       FOR_BB_INSNS (bb, insn)
650 	{
651 	  if (! NONDEBUG_INSN_P (insn))
652 	    continue;
653 
654 	  FOR_EACH_INSN_DEF (def, insn)
655 	    already_set[DF_REF_REGNO (def)] = INSN_UID (insn);
656 
657 	  /* Now that we've marked regs, look for stores.  */
658 	  find_moveable_store (insn, already_set, last_set_in);
659 
660 	  /* Unmark regs that are no longer set.  */
661 	  FOR_EACH_INSN_DEF (def, insn)
662 	    if (last_set_in[DF_REF_REGNO (def)] == INSN_UID (insn))
663 	      last_set_in[DF_REF_REGNO (def)] = 0;
664 	}
665 
666       if (flag_checking)
667 	{
668 	  /* last_set_in should now be all-zero.  */
669 	  for (unsigned regno = 0; regno < max_gcse_regno; regno++)
670 	    gcc_assert (!last_set_in[regno]);
671 	}
672 
673       /* Clear temporary marks.  */
674       for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
675 	{
676 	  LAST_AVAIL_CHECK_FAILURE (ptr) = NULL_RTX;
677 	  if (!ptr->antic_stores.is_empty ()
678 	      && (tmp = ptr->antic_stores.last ()) == NULL)
679 	    ptr->antic_stores.pop ();
680 	}
681     }
682 
683   /* Remove the stores that are not available anywhere, as there will
684      be no opportunity to optimize them.  */
685   for (ptr = store_motion_mems, prev_next_ptr_ptr = &store_motion_mems;
686        ptr != NULL;
687        ptr = *prev_next_ptr_ptr)
688     {
689       if (ptr->avail_stores.is_empty ())
690 	{
691 	  *prev_next_ptr_ptr = ptr->next;
692 	  store_motion_mems_table->remove_elt_with_hash (ptr, ptr->hash_index);
693 	  free_st_expr_entry (ptr);
694 	}
695       else
696 	prev_next_ptr_ptr = &ptr->next;
697     }
698 
699   ret = enumerate_store_motion_mems ();
700 
701   if (dump_file)
702     print_store_motion_mems (dump_file);
703 
704   free (last_set_in);
705   free (already_set);
706   return ret;
707 }
708 
709 /* In all code following after this, REACHING_REG has its original
710    meaning again.  Avoid confusion, and undef the accessor macro for
711    the temporary marks usage in compute_store_table.  */
712 #undef LAST_AVAIL_CHECK_FAILURE
713 
714 /* Insert an instruction at the beginning of a basic block, and update
715    the BB_HEAD if needed.  */
716 
717 static void
insert_insn_start_basic_block(rtx_insn * insn,basic_block bb)718 insert_insn_start_basic_block (rtx_insn *insn, basic_block bb)
719 {
720   /* Insert at start of successor block.  */
721   rtx_insn *prev = PREV_INSN (BB_HEAD (bb));
722   rtx_insn *before = BB_HEAD (bb);
723   while (before != 0)
724     {
725       if (! LABEL_P (before)
726 	  && !NOTE_INSN_BASIC_BLOCK_P (before))
727 	break;
728       prev = before;
729       if (prev == BB_END (bb))
730 	break;
731       before = NEXT_INSN (before);
732     }
733 
734   insn = emit_insn_after_noloc (insn, prev, bb);
735 
736   if (dump_file)
737     {
738       fprintf (dump_file, "STORE_MOTION  insert store at start of BB %d:\n",
739 	       bb->index);
740       print_inline_rtx (dump_file, insn, 6);
741       fprintf (dump_file, "\n");
742     }
743 }
744 
745 /* This routine will insert a store on an edge. EXPR is the st_expr entry for
746    the memory reference, and E is the edge to insert it on.  Returns nonzero
747    if an edge insertion was performed.  */
748 
749 static int
insert_store(struct st_expr * expr,edge e)750 insert_store (struct st_expr * expr, edge e)
751 {
752   rtx reg;
753   rtx_insn *insn;
754   basic_block bb;
755   edge tmp;
756   edge_iterator ei;
757 
758   /* We did all the deleted before this insert, so if we didn't delete a
759      store, then we haven't set the reaching reg yet either.  */
760   if (expr->reaching_reg == NULL_RTX)
761     return 0;
762 
763   if (e->flags & EDGE_FAKE)
764     return 0;
765 
766   reg = expr->reaching_reg;
767   insn = gen_move_insn (copy_rtx (expr->pattern), reg);
768 
769   /* If we are inserting this expression on ALL predecessor edges of a BB,
770      insert it at the start of the BB, and reset the insert bits on the other
771      edges so we don't try to insert it on the other edges.  */
772   bb = e->dest;
773   FOR_EACH_EDGE (tmp, ei, e->dest->preds)
774     if (!(tmp->flags & EDGE_FAKE))
775       {
776 	int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
777 
778 	gcc_assert (index != EDGE_INDEX_NO_EDGE);
779 	if (! bitmap_bit_p (st_insert_map[index], expr->index))
780 	  break;
781       }
782 
783   /* If tmp is NULL, we found an insertion on every edge, blank the
784      insertion vector for these edges, and insert at the start of the BB.  */
785   if (!tmp && bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
786     {
787       FOR_EACH_EDGE (tmp, ei, e->dest->preds)
788 	{
789 	  int index = EDGE_INDEX (edge_list, tmp->src, tmp->dest);
790 	  bitmap_clear_bit (st_insert_map[index], expr->index);
791 	}
792       insert_insn_start_basic_block (insn, bb);
793       return 0;
794     }
795 
796   /* We can't put stores in the front of blocks pointed to by abnormal
797      edges since that may put a store where one didn't used to be.  */
798   gcc_assert (!(e->flags & EDGE_ABNORMAL));
799 
800   insert_insn_on_edge (insn, e);
801 
802   if (dump_file)
803     {
804       fprintf (dump_file, "STORE_MOTION  insert insn on edge (%d, %d):\n",
805 	       e->src->index, e->dest->index);
806       print_inline_rtx (dump_file, insn, 6);
807       fprintf (dump_file, "\n");
808     }
809 
810   return 1;
811 }
812 
813 /* Remove any REG_EQUAL or REG_EQUIV notes containing a reference to the
814    memory location in SMEXPR set in basic block BB.
815 
816    This could be rather expensive.  */
817 
818 static void
remove_reachable_equiv_notes(basic_block bb,struct st_expr * smexpr)819 remove_reachable_equiv_notes (basic_block bb, struct st_expr *smexpr)
820 {
821   edge_iterator *stack, ei;
822   int sp;
823   edge act;
824   auto_sbitmap visited (last_basic_block_for_fn (cfun));
825   rtx note;
826   rtx_insn *insn;
827   rtx mem = smexpr->pattern;
828 
829   stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun));
830   sp = 0;
831   ei = ei_start (bb->succs);
832 
833   bitmap_clear (visited);
834 
835   act = (EDGE_COUNT (ei_container (ei))
836 	 ? EDGE_I (ei_container (ei), 0)
837 	 : NULL);
838   for (;;)
839     {
840       if (!act)
841 	{
842 	  if (!sp)
843 	    {
844 	      free (stack);
845 	      return;
846 	    }
847 	  act = ei_edge (stack[--sp]);
848 	}
849       bb = act->dest;
850 
851       if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
852 	  || bitmap_bit_p (visited, bb->index))
853 	{
854 	  if (!ei_end_p (ei))
855 	      ei_next (&ei);
856 	  act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
857 	  continue;
858 	}
859       bitmap_set_bit (visited, bb->index);
860 
861       rtx_insn *last;
862       if (bitmap_bit_p (st_antloc[bb->index], smexpr->index))
863 	{
864 	  unsigned int i;
865 	  FOR_EACH_VEC_ELT_REVERSE (smexpr->antic_stores, i, last)
866 	    if (BLOCK_FOR_INSN (last) == bb)
867 	      break;
868 	}
869       else
870 	last = NEXT_INSN (BB_END (bb));
871 
872       for (insn = BB_HEAD (bb); insn != last; insn = NEXT_INSN (insn))
873 	if (NONDEBUG_INSN_P (insn))
874 	  {
875 	    note = find_reg_equal_equiv_note (insn);
876 	    if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
877 	      continue;
878 
879 	    if (dump_file)
880 	      fprintf (dump_file,
881 		       "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
882 		       INSN_UID (insn));
883 	    remove_note (insn, note);
884 	  }
885 
886       if (!ei_end_p (ei))
887 	ei_next (&ei);
888       act = (! ei_end_p (ei)) ? ei_edge (ei) : NULL;
889 
890       if (EDGE_COUNT (bb->succs) > 0)
891 	{
892 	  if (act)
893 	    stack[sp++] = ei;
894 	  ei = ei_start (bb->succs);
895 	  act = (EDGE_COUNT (ei_container (ei))
896 		 ? EDGE_I (ei_container (ei), 0)
897 		 : NULL);
898 	}
899     }
900 }
901 
902 /* This routine will replace a store with a SET to a specified register.  */
903 
904 static void
replace_store_insn(rtx reg,rtx_insn * del,basic_block bb,struct st_expr * smexpr)905 replace_store_insn (rtx reg, rtx_insn *del, basic_block bb,
906 		    struct st_expr *smexpr)
907 {
908   rtx_insn *insn;
909   rtx mem, note, set;
910 
911   insn = prepare_copy_insn (reg, SET_SRC (single_set (del)));
912 
913   unsigned int i;
914   rtx_insn *temp;
915   FOR_EACH_VEC_ELT_REVERSE (smexpr->antic_stores, i, temp)
916     if (temp == del)
917       {
918 	smexpr->antic_stores[i] = insn;
919 	break;
920       }
921 
922   /* Move the notes from the deleted insn to its replacement.  */
923   REG_NOTES (insn) = REG_NOTES (del);
924 
925   /* Emit the insn AFTER all the notes are transferred.
926      This is cheaper since we avoid df rescanning for the note change.  */
927   insn = emit_insn_after (insn, del);
928 
929   if (dump_file)
930     {
931       fprintf (dump_file,
932 	       "STORE_MOTION  delete insn in BB %d:\n      ", bb->index);
933       print_inline_rtx (dump_file, del, 6);
934       fprintf (dump_file, "\nSTORE_MOTION  replaced with insn:\n      ");
935       print_inline_rtx (dump_file, insn, 6);
936       fprintf (dump_file, "\n");
937     }
938 
939   delete_insn (del);
940 
941   /* Now we must handle REG_EQUAL notes whose contents is equal to the mem;
942      they are no longer accurate provided that they are reached by this
943      definition, so drop them.  */
944   mem = smexpr->pattern;
945   for (; insn != NEXT_INSN (BB_END (bb)); insn = NEXT_INSN (insn))
946     if (NONDEBUG_INSN_P (insn))
947       {
948 	set = single_set (insn);
949 	if (!set)
950 	  continue;
951 	if (exp_equiv_p (SET_DEST (set), mem, 0, true))
952 	  return;
953 	note = find_reg_equal_equiv_note (insn);
954 	if (!note || !exp_equiv_p (XEXP (note, 0), mem, 0, true))
955 	  continue;
956 
957 	if (dump_file)
958 	  fprintf (dump_file, "STORE_MOTION  drop REG_EQUAL note at insn %d:\n",
959 		   INSN_UID (insn));
960 	remove_note (insn, note);
961       }
962   remove_reachable_equiv_notes (bb, smexpr);
963 }
964 
965 
966 /* Delete a store, but copy the value that would have been stored into
967    the reaching_reg for later storing.  */
968 
969 static void
delete_store(struct st_expr * expr,basic_block bb)970 delete_store (struct st_expr * expr, basic_block bb)
971 {
972   rtx reg;
973 
974   if (expr->reaching_reg == NULL_RTX)
975     expr->reaching_reg = gen_reg_rtx_and_attrs (expr->pattern);
976 
977   reg = expr->reaching_reg;
978 
979   unsigned int len = expr->avail_stores.length ();
980   for (unsigned int i = len - 1; i < len; i--)
981     {
982       rtx_insn *del = expr->avail_stores[i];
983       if (BLOCK_FOR_INSN (del) == bb)
984 	{
985 	  /* We know there is only one since we deleted redundant
986 	     ones during the available computation.  */
987 	  replace_store_insn (reg, del, bb, expr);
988 	  break;
989 	}
990     }
991 }
992 
993 /* Fill in available, anticipatable, transparent and kill vectors in
994    STORE_DATA, based on lists of available and anticipatable stores.  */
995 static void
build_store_vectors(void)996 build_store_vectors (void)
997 {
998   basic_block bb;
999   int *regs_set_in_block;
1000   rtx_insn *insn;
1001   struct st_expr * ptr;
1002   unsigned int max_gcse_regno = max_reg_num ();
1003 
1004   /* Build the gen_vector. This is any store in the table which is not killed
1005      by aliasing later in its block.  */
1006   st_avloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1007 				   num_stores);
1008   bitmap_vector_clear (st_avloc, last_basic_block_for_fn (cfun));
1009 
1010   st_antloc = sbitmap_vector_alloc (last_basic_block_for_fn (cfun),
1011 				    num_stores);
1012   bitmap_vector_clear (st_antloc, last_basic_block_for_fn (cfun));
1013 
1014   for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1015     {
1016       unsigned int len = ptr->avail_stores.length ();
1017       for (unsigned int i = len - 1; i < len; i--)
1018 	{
1019 	  insn = ptr->avail_stores[i];
1020 	  bb = BLOCK_FOR_INSN (insn);
1021 
1022 	  /* If we've already seen an available expression in this block,
1023 	     we can delete this one (It occurs earlier in the block). We'll
1024 	     copy the SRC expression to an unused register in case there
1025 	     are any side effects.  */
1026 	  if (bitmap_bit_p (st_avloc[bb->index], ptr->index))
1027 	    {
1028 	      rtx r = gen_reg_rtx_and_attrs (ptr->pattern);
1029 	      if (dump_file)
1030 		fprintf (dump_file, "Removing redundant store:\n");
1031 	      replace_store_insn (r, insn, bb, ptr);
1032 	      continue;
1033 	    }
1034 	  bitmap_set_bit (st_avloc[bb->index], ptr->index);
1035 	}
1036 
1037       unsigned int i;
1038       FOR_EACH_VEC_ELT_REVERSE (ptr->antic_stores, i, insn)
1039 	{
1040 	  bb = BLOCK_FOR_INSN (insn);
1041 	  bitmap_set_bit (st_antloc[bb->index], ptr->index);
1042 	}
1043     }
1044 
1045   st_kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
1046   bitmap_vector_clear (st_kill, last_basic_block_for_fn (cfun));
1047 
1048   st_transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), num_stores);
1049   bitmap_vector_clear (st_transp, last_basic_block_for_fn (cfun));
1050   regs_set_in_block = XNEWVEC (int, max_gcse_regno);
1051 
1052   FOR_EACH_BB_FN (bb, cfun)
1053     {
1054       memset (regs_set_in_block, 0, sizeof (int) * max_gcse_regno);
1055 
1056       FOR_BB_INSNS (bb, insn)
1057 	if (NONDEBUG_INSN_P (insn))
1058 	  {
1059 	    df_ref def;
1060 	    FOR_EACH_INSN_DEF (def, insn)
1061 	      {
1062 		unsigned int ref_regno = DF_REF_REGNO (def);
1063 		if (ref_regno < max_gcse_regno)
1064 		  regs_set_in_block[DF_REF_REGNO (def)] = 1;
1065 	      }
1066 	  }
1067 
1068       for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1069 	{
1070 	  if (store_killed_after (ptr->pattern, ptr->pattern_regs, BB_HEAD (bb),
1071 				  bb, regs_set_in_block, NULL))
1072 	    {
1073 	      /* It should not be necessary to consider the expression
1074 		 killed if it is both anticipatable and available.  */
1075 	      if (!bitmap_bit_p (st_antloc[bb->index], ptr->index)
1076 		  || !bitmap_bit_p (st_avloc[bb->index], ptr->index))
1077 		bitmap_set_bit (st_kill[bb->index], ptr->index);
1078 	    }
1079 	  else
1080 	    bitmap_set_bit (st_transp[bb->index], ptr->index);
1081 	}
1082     }
1083 
1084   free (regs_set_in_block);
1085 
1086   if (dump_file)
1087     {
1088       dump_bitmap_vector (dump_file, "st_antloc", "", st_antloc,
1089 			  last_basic_block_for_fn (cfun));
1090       dump_bitmap_vector (dump_file, "st_kill", "", st_kill,
1091 			  last_basic_block_for_fn (cfun));
1092       dump_bitmap_vector (dump_file, "st_transp", "", st_transp,
1093 			  last_basic_block_for_fn (cfun));
1094       dump_bitmap_vector (dump_file, "st_avloc", "", st_avloc,
1095 			  last_basic_block_for_fn (cfun));
1096     }
1097 }
1098 
1099 /* Free memory used by store motion.  */
1100 
1101 static void
free_store_memory(void)1102 free_store_memory (void)
1103 {
1104   free_store_motion_mems ();
1105 
1106   if (st_avloc)
1107     sbitmap_vector_free (st_avloc);
1108   if (st_kill)
1109     sbitmap_vector_free (st_kill);
1110   if (st_transp)
1111     sbitmap_vector_free (st_transp);
1112   if (st_antloc)
1113     sbitmap_vector_free (st_antloc);
1114   if (st_insert_map)
1115     sbitmap_vector_free (st_insert_map);
1116   if (st_delete_map)
1117     sbitmap_vector_free (st_delete_map);
1118 
1119   st_avloc = st_kill = st_transp = st_antloc = NULL;
1120   st_insert_map = st_delete_map = NULL;
1121 }
1122 
1123 /* Perform store motion. Much like gcse, except we move expressions the
1124    other way by looking at the flowgraph in reverse.
1125    Return non-zero if transformations are performed by the pass.  */
1126 
1127 static int
one_store_motion_pass(void)1128 one_store_motion_pass (void)
1129 {
1130   basic_block bb;
1131   int x;
1132   struct st_expr * ptr;
1133   int did_edge_inserts = 0;
1134   int n_stores_deleted = 0;
1135   int n_stores_created = 0;
1136 
1137   init_alias_analysis ();
1138 
1139   /* Find all the available and anticipatable stores.  */
1140   num_stores = compute_store_table ();
1141   if (num_stores == 0)
1142     {
1143       delete store_motion_mems_table;
1144       store_motion_mems_table = NULL;
1145       end_alias_analysis ();
1146       return 0;
1147     }
1148 
1149   /* Now compute kill & transp vectors.  */
1150   build_store_vectors ();
1151   connect_infinite_loops_to_exit ();
1152 
1153   edge_list = pre_edge_rev_lcm (num_stores, st_transp, st_avloc,
1154 				st_antloc, st_kill, &st_insert_map,
1155 				&st_delete_map);
1156 
1157   /* Now we want to insert the new stores which are going to be needed.  */
1158   for (ptr = first_st_expr (); ptr != NULL; ptr = next_st_expr (ptr))
1159     {
1160       /* If any of the edges we have above are abnormal, we can't move this
1161 	 store.  */
1162       for (x = NUM_EDGES (edge_list) - 1; x >= 0; x--)
1163 	if (bitmap_bit_p (st_insert_map[x], ptr->index)
1164 	    && (INDEX_EDGE (edge_list, x)->flags & EDGE_ABNORMAL))
1165 	  break;
1166 
1167       if (x >= 0)
1168 	{
1169 	  if (dump_file != NULL)
1170 	    fprintf (dump_file,
1171 		     "Can't replace store %d: abnormal edge from %d to %d\n",
1172 		     ptr->index, INDEX_EDGE (edge_list, x)->src->index,
1173 		     INDEX_EDGE (edge_list, x)->dest->index);
1174 	  continue;
1175 	}
1176 
1177       /* Now we want to insert the new stores which are going to be needed.  */
1178 
1179       FOR_EACH_BB_FN (bb, cfun)
1180 	if (bitmap_bit_p (st_delete_map[bb->index], ptr->index))
1181 	  {
1182 	    delete_store (ptr, bb);
1183 	    n_stores_deleted++;
1184 	  }
1185 
1186       for (x = 0; x < NUM_EDGES (edge_list); x++)
1187 	if (bitmap_bit_p (st_insert_map[x], ptr->index))
1188 	  {
1189 	    did_edge_inserts |= insert_store (ptr, INDEX_EDGE (edge_list, x));
1190 	    n_stores_created++;
1191 	  }
1192     }
1193 
1194   if (did_edge_inserts)
1195     commit_edge_insertions ();
1196 
1197   free_store_memory ();
1198   free_edge_list (edge_list);
1199   remove_fake_exit_edges ();
1200   end_alias_analysis ();
1201 
1202   if (dump_file)
1203     {
1204       fprintf (dump_file, "STORE_MOTION of %s, %d basic blocks, ",
1205 	       current_function_name (), n_basic_blocks_for_fn (cfun));
1206       fprintf (dump_file, "%d insns deleted, %d insns created\n",
1207 	       n_stores_deleted, n_stores_created);
1208     }
1209 
1210   return (n_stores_deleted > 0 || n_stores_created > 0);
1211 }
1212 
1213 
1214 static unsigned int
execute_rtl_store_motion(void)1215 execute_rtl_store_motion (void)
1216 {
1217   delete_unreachable_blocks ();
1218   df_analyze ();
1219   flag_rerun_cse_after_global_opts |= one_store_motion_pass ();
1220   return 0;
1221 }
1222 
1223 namespace {
1224 
1225 const pass_data pass_data_rtl_store_motion =
1226 {
1227   RTL_PASS, /* type */
1228   "store_motion", /* name */
1229   OPTGROUP_NONE, /* optinfo_flags */
1230   TV_LSM, /* tv_id */
1231   PROP_cfglayout, /* properties_required */
1232   0, /* properties_provided */
1233   0, /* properties_destroyed */
1234   0, /* todo_flags_start */
1235   TODO_df_finish, /* todo_flags_finish */
1236 };
1237 
1238 class pass_rtl_store_motion : public rtl_opt_pass
1239 {
1240 public:
pass_rtl_store_motion(gcc::context * ctxt)1241   pass_rtl_store_motion (gcc::context *ctxt)
1242     : rtl_opt_pass (pass_data_rtl_store_motion, ctxt)
1243   {}
1244 
1245   /* opt_pass methods: */
1246   virtual bool gate (function *);
execute(function *)1247   virtual unsigned int execute (function *)
1248     {
1249       return execute_rtl_store_motion ();
1250     }
1251 
1252 }; // class pass_rtl_store_motion
1253 
1254 bool
gate(function * fun)1255 pass_rtl_store_motion::gate (function *fun)
1256 {
1257   return optimize > 0 && flag_gcse_sm
1258     && !fun->calls_setjmp
1259     && optimize_function_for_speed_p (fun)
1260     && dbg_cnt (store_motion);
1261 }
1262 
1263 } // anon namespace
1264 
1265 rtl_opt_pass *
make_pass_rtl_store_motion(gcc::context * ctxt)1266 make_pass_rtl_store_motion (gcc::context *ctxt)
1267 {
1268   return new pass_rtl_store_motion (ctxt);
1269 }
1270