xref: /netbsd-src/sys/arch/sparc/dev/sxreg.h (revision bc92ec78d908edc3f02d7094246e73ff02f6aed6)
1 /*	$NetBSD: sxreg.h,v 1.22 2024/05/12 13:43:27 macallan Exp $	*/
2 
3 /*-
4  * Copyright (c) 2013 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Michael Lorenz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /* register definitions for Sun's SX / SPAM rendering engine */
33 
34 #ifndef SXREG_H
35 #define SXREG_H
36 
37 /* SX control registers */
38 #define SX_CONTROL_STATUS	0x00000000
39 #define SX_ERROR		0x00000004
40 #define SX_PAGE_BOUND_LOWER	0x00000008
41 #define SX_PAGE_BOUND_UPPER	0x0000000c
42 #define SX_PLANEMASK		0x00000010
43 #define SX_ROP_CONTROL		0x00000014	/* 8 bit ROP */
44 #define SX_IQ_OVERFLOW_COUNTER	0x00000018
45 #define SX_DIAGNOSTICS		0x0000001c
46 #define SX_INSTRUCTIONS		0x00000020
47 #define SX_ID			0x00000028
48 #define SX_R0_INIT		0x0000002c
49 #define SX_SOFTRESET		0x00000030
50 #define SX_SYNC			0x00000034	/* write will stall CPU until */
51 						/* SX is idle		      */
52 /* write registers directly, only when processor is stopped */
53 #define SX_DIRECT_R0		0x00000100
54 #define SX_DIRECT_R1		0x00000104	/* and so on until R127 */
55 /* write registers via pseudo instructions */
56 #define SX_QUEUED_R0		0x00000300
57 #define SX_QUEUED_R1		0x00000304	/* and so on until R127 */
58 #define SX_QUEUED(r)		(0x300 + ((r) << 2))
59 
60 /* special purpose registers */
61 #define R_ZERO	0
62 #define R_SCAM	1
63 #define R_MASK	2	/* bitmask for SX_STORE_SELECT */
64 
65 /*
66  * registers are repeated at 0x1000 with certain parts read only
67  * ( like the PAGE_BOUND registers ) which userland has no business writing to
68  */
69 
70 /* SX_CONTROL_STATUS */
71 #define SX_EE1		0x00000001	/* illegal instruction */
72 #define SX_EE2		0x00000002	/* page bound error */
73 #define SX_EE3		0x00000004	/* illegal memory access */
74 #define SX_EE4		0x00000008	/* illegal register access */
75 #define SX_EE5		0x00000010	/* alignment violation */
76 #define SX_EE6		0x00000020	/* illegal instruction queue write */
77 #define SX_EI		0x00000080	/* interrupt on error */
78 /*
79  * XXX
80  * the following bit definitions are from the SX manual. They're defined in a
81  * different way in SunOS's sxreg.h, the hardware seems to follow the latter.
82  */
83 #if 0
84 #define SX_PB		0x00001000	/* enable page bound checking */
85 #define SX_WO		0x00002000	/* write occurred ( by SX ) */
86 #define SX_GO		0x00004000	/* start/stop the processor */
87 #define SX_MT		0x00008000	/* instruction queue is empty */
88 #endif
89 
90 #define SX_PB		0x00000400	/* enable page bound checking */
91 #define SX_WO		0x00000800	/* write occurred ( by SX ) */
92 #define SX_GO		0x00001000	/* start/stop the processor */
93 #define SX_JB		0x00002000	/* Jammed/Busy specifies the type of events */
94 					/* which increment the SX timer */
95 #define SX_MT		0x00004000	/* instruction queue is empty */
96 #define SX_BZ		0x00008000	/* Busy bit. When set it indicates that SX */
97 					/* is processing an instruction or an */
98 					/* instruction is pending in the Q      */
99 #define SX_B0MOD	0x00010000	/* When set by SX it indicates that a write */
100 					/* to bank zero of the SX registers (0-31) */
101 					/* occurred */
102 #define SX_B1MOD	0x00020000	/* When set by SX it indicates that a write */
103 					/* to bank 1 of the SX registers (32-63) */
104 					/* occurred */
105 #define SX_B2MOD	0x00040000	/* When set by SX it indicates that a write */
106 					/* to bank 2 of the SX registers (64-95) */
107 					/* occurred */
108 #define SX_B3MOD	0x00080000	/* When set by SX it indicates that a write */
109 					/* to bank 3 of the SX registers (96-127) */
110 					/* occurred */
111 
112 /* SX_ERROR */
113 #define SX_SE1		0x00000001	/* illegal instruction */
114 #define SX_SE2		0x00000002	/* page bound error */
115 #define SX_SE3		0x00000004	/* illegal memory access */
116 #define SX_SE4		0x00000008	/* illegal register access */
117 #define SX_SE5		0x00000010	/* alignment violation */
118 #define SX_SE6		0x00000020	/* illegal instruction queue write */
119 #define SX_SI		0x00000080	/* interrupt on error */
120 
121 /* SX_ID from the manual */
122 #if 0
123 #define SX_ARCHITECTURE_MASK	0x000000ff
124 #define SX_CHIP_REVISION	0x0000ff00
125 #endif
126 
127 #define SX_ARCHITECTURE_MASK	0x00000003
128 #define SX_CHIP_REVISION	0x000000f8
129 
130 /* SX_DIAGNOSTICS */
131 #define SX_IQ_FIFO_ACCESS	0x00000001	/* allow memory instructions
132 						 * in SX_INSTRUCTIONS */
133 #define SX_SERIAL_INSTRUCTIONS	0x00000002	/* force inst. serializing */
134 #define SX_RAM_PAGE_CROSS	0x00000004	/* indicates page crossing */
135 #define SX_ARRAY_CONSTRAINING	0x00000008	/* When set constrains VRAM */
136 						/* array offset effective */
137 						/* address calculation  */
138 #define SX_UPG_MPG_DISABLE	0x00000010	/* When set, disables page */
139 						/* cross input into ld/st */
140 						/* state machines */
141 #define SX_DIAG_INIT		0x4804		/* Setting of the diag reg */
142 						/* upon reset */
143 
144 
145 /*
146  * memory referencing instructions are written to 0x800000000 + PA
147  * so we have to go through ASI 0x28 ( ASI_BYPASS + 8 )
148  */
149 #define ASI_SX	0x28
150 
151 /* load / store instructions */
152 #define SX_STORE_COND	(0x4 << 19)	/* conditional write with mask */
153 #define SX_STORE_CLAMP	(0x2 << 19)
154 #define SX_STORE_MASK	(0x1 << 19)	/* apply plane mask */
155 #define SX_STORE_SELECT	(0x8 << 19)	/* expand with plane reg dest[0]/dest[1] */
156 #define SX_LOAD		(0xa << 19)
157 #define SX_STORE	(0x0 << 19)
158 
159 /* data type */
160 #define SX_UBYTE_0	(0x00 << 14)
161 #define SX_UBYTE_8	(0x01 << 14)
162 #define SX_UBYTE_16	(0x02 << 14)
163 #define SX_UBYTE_24	(0x03 << 14)
164 #define SX_SBYTE_0	(0x04 << 14)
165 #define SX_SBYTE_8	(0x05 << 14)
166 #define SX_SBYTE_16	(0x06 << 14)
167 #define SX_SBYTE_24	(0x07 << 14)
168 #define SX_UQUAD_0	(0x08 << 14)
169 #define SX_UQUAD_8	(0x09 << 14)
170 #define SX_UQUAD_16	(0x0a << 14)
171 #define SX_UQUAD_24	(0x0b << 14)
172 #define SX_SQUAD_0	(0x0c << 14)
173 #define SX_SQUAD_8	(0x0d << 14)
174 #define SX_SQUAD_16	(0x0e << 14)
175 #define SX_SQUAD_24	(0x0f << 14)
176 #define SX_UCHAN_0	(0x10 << 14)
177 #define SX_UCHAN_8	(0x11 << 14)
178 #define SX_UCHAN_16	(0x12 << 14)
179 #define SX_UCHAN_24	(0x13 << 14)
180 #define SX_SCHAN_0	(0x14 << 14)
181 #define SX_SCHAN_8	(0x15 << 14)
182 #define SX_SCHAN_16	(0x16 << 14)
183 #define SX_SCHAN_24	(0x17 << 14)
184 #define SX_USHORT_0	(0x18 << 14)
185 #define SX_USHORT_8	(0x19 << 14)
186 #define SX_USHORT_16	(0x1a << 14)
187 #define SX_SSHORT_0	(0x1c << 14)
188 #define SX_SSHORT_8	(0x1d << 14)
189 #define SX_SSHORT_16	(0x1e << 14)
190 #define SX_LONG		(0x1b << 14)
191 #define SX_PACKED	(0x1f << 14)
192 
193 
194 #define SX_LD(dreg, cnt, o)  (0x80000000 | ((cnt) << 23) | SX_LOAD | \
195 				SX_LONG | (dreg << 7) | (o))
196 #define SX_LDB(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
197 				SX_UBYTE_0 | (dreg << 7) | (o))
198 #define SX_LDW(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
199 				SX_USHORT_0 | (dreg << 7) | (o))
200 #define SX_LDP(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
201 				SX_PACKED | (dreg << 7) | (o))
202 #define SX_LDUQ0(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
203 				SX_UQUAD_0 | (dreg << 7) | (o))
204 #define SX_LDUQ8(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
205 				SX_UQUAD_8 | (dreg << 7) | (o))
206 #define SX_LDUQ16(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
207 				SX_UQUAD_16 | (dreg << 7) | (o))
208 #define SX_LDUQ24(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
209 				SX_UQUAD_24 | (dreg << 7) | (o))
210 #define SX_LDUC0(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
211 				SX_UCHAN_0 | (dreg << 7) | (o))
212 #define SX_LDUC8(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
213 				SX_UCHAN_8 | (dreg << 7) | (o))
214 #define SX_LDUC16(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
215 				SX_UCHAN_16 | (dreg << 7) | (o))
216 #define SX_LDUC24(dreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_LOAD | \
217 				SX_UCHAN_24 | (dreg << 7) | (o))
218 #define SX_ST(sreg, cnt, o)  (0x80000000 | ((cnt) << 23) | SX_STORE | \
219 				SX_LONG | (sreg << 7) | (o))
220 #define SX_STM(sreg, cnt, o)  (0x80000000 | ((cnt) << 23) | SX_STORE_MASK | \
221 				SX_LONG | (sreg << 7) | (o))
222 #define SX_STB(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
223 				SX_UBYTE_0 | (sreg << 7) | (o))
224 #define SX_STBM(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_MASK | \
225 				SX_UBYTE_0 | (sreg << 7) | (o))
226 #define SX_STBC(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_CLAMP | \
227 				SX_UBYTE_0 | (sreg << 7) | (o))
228 #define SX_STW(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
229 				SX_USHORT_0 | (sreg << 7) | (o))
230 #define SX_STP(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
231 				SX_PACKED | (sreg << 7) | (o))
232 #define SX_STPS(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_SELECT | \
233 				SX_PACKED | (sreg << 7) | (o))
234 #define SX_STS(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_SELECT \
235 				| SX_LONG | (sreg << 7) | (o))
236 #define SX_STBS(reg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_SELECT \
237 				| SX_UBYTE_0 | (reg << 7) | (o))
238 #define SX_STUQ0(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
239 				SX_UQUAD_0 | (sreg << 7) | (o))
240 #define SX_STUQ0C(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_CLAMP | \
241 				SX_UQUAD_0 | (sreg << 7) | (o))
242 #define SX_STUQ8(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
243 				SX_UQUAD_8 | (sreg << 7) | (o))
244 #define SX_STUQ16(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
245 				SX_UQUAD_16 | (sreg << 7) | (o))
246 #define SX_STUQ24(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
247 				SX_UQUAD_24 | (sreg << 7) | (o))
248 #define SX_STUC0(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
249 				SX_UCHAN_0 | (sreg << 7) | (o))
250 #define SX_STUC0C(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE_CLAMP | \
251 				SX_UCHAN_0 | (sreg << 7) | (o))
252 #define SX_STUC8(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
253 				SX_UCHAN_8 | (sreg << 7) | (o))
254 #define SX_STUC16(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
255 				SX_UCHAN_16 | (sreg << 7) | (o))
256 #define SX_STUC24(sreg, cnt, o) (0x80000000 | ((cnt) << 23) | SX_STORE | \
257 				SX_UCHAN_24 | (sreg << 7) | (o))
258 
259 /* ROP and SELECT instructions */
260 #define SX_ROP_B	(0x0 << 21)	/* mask bits apply to bytes */
261 #define SX_ROP_M	(0x1 << 21)	/* mask bits apply to each bit */
262 #define SX_ROP_L	(0x2 << 21)	/* mask bits apply per register */
263 #define SX_SEL_B	(0x4 << 21)	/* byte select scalar */
264 #define SX_SEL_V	(0x6 << 21)	/* register select vector */
265 #define SX_SEL_S	(0x7 << 21)	/* register select scalar */
266 
267 #define SX_ROP(sa, sb, d, cnt) (0x90000000 | ((cnt) << 24) | SX_ROP_L | \
268 		((sa) << 14) | (sb) | ((d) << 7))
269 #define SX_ROPB(sa, sb, d, cnt) (0x90000000 | ((cnt) << 24) | SX_ROP_B | \
270 		((sa) << 14) | (sb) | ((d) << 7))
271 #define SX_SELECT_S(sa, sb, d, cnt) (0x90000000 | ((cnt) << 24) | SX_SEL_S | \
272 		((sa) << 14) | (sb) | ((d) << 7))
273 
274 /* multiply group */
275 #define SX_M16X16SR0	(0x0 << 28)	/* 16bit multiply, no shift */
276 #define SX_M16X16SR8	(0x1 << 28)	/* 16bit multiply, shift right 8 */
277 #define SX_M16X16SR16	(0x2 << 28)	/* 16bit multiply, shift right 16 */
278 #define SX_M32X16SR0	(0x4 << 28)	/* 32x16bit multiply, no shift */
279 #define SX_M32X16SR8	(0x5 << 28)	/* 32x16bit multiply, shift right 8 */
280 #define SX_M32X16SR16	(0x6 << 28)	/* 32x16bit multiply, shift right 16 */
281 
282 #define SX_MULTIPLY	(0x0 << 21)	/* normal multiplication */
283 #define SX_DOT		(0x1 << 21)	/* dot product of A and B */
284 #define SX_SAXP		(0x2 << 21)	/* A * SCAM + B */
285 
286 #define SX_ROUND	(0x1 << 23)	/* round results */
287 
288 #define SX_MUL16X16(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
289 		SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb))
290 #define SX_MUL16X16R(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
291 		SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
292 #define SX_MUL16X16SR8(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
293 		SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb))
294 #define SX_MUL16X16SR8R(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
295 		SX_MULTIPLY | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
296 
297 #define SX_SAXP16X16(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
298 		SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb))
299 #define SX_SAXP16X16R(sa, sb, d, cnt) (SX_M16X16SR0 | ((cnt) << 24) | \
300 		SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
301 #define SX_SAXP16X16SR8(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
302 		SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb))
303 #define SX_SAXP16X16SR8R(sa, sb, d, cnt) (SX_M16X16SR8 | ((cnt) << 24) | \
304 		SX_SAXP | ((sa) << 14) | ((d) << 7) | (sb) | SX_ROUND)
305 
306 /* logic group */
307 #define SX_AND_V	(0x0 << 21)	/* vector AND vector */
308 #define SX_AND_S	(0x1 << 21)	/* vector AND scalar */
309 #define SX_AND_I	(0x2 << 21)	/* vector AND immediate */
310 #define SX_XOR_V	(0x3 << 21)	/* vector XOR vector */
311 #define SX_XOR_S	(0x4 << 21)	/* vector XOR scalar */
312 #define SX_XOR_I	(0x5 << 21)	/* vector XOR immediate */
313 #define SX_OR_V		(0x6 << 21)	/* vector OR vector */
314 #define SX_OR_S		(0x7 << 21)	/* vector OR scalar */
315 /* immediates are 7bit sign extended to 32bit */
316 
317 #define SX_ANDV(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_AND_V | \
318 		((sa) << 14) | ((d) << 7) | (sb))
319 #define SX_ANDS(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_AND_S | \
320 		((sa) << 14) | ((d) << 7) | (sb))
321 #define SX_ANDI(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_AND_I | \
322 		((sa) << 14) | ((d) << 7) | (sb))
323 #define SX_XORV(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_XOR_V | \
324 		((sa) << 14) | ((d) << 7) | (sb))
325 #define SX_XORS(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_XOR_S | \
326 		((sa) << 14) | ((d) << 7) | (sb))
327 #define SX_XORI(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_XOR_I | \
328 		((sa) << 14) | ((d) << 7) | (sb))
329 #define SX_ORV(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_OR_V | \
330 		((sa) << 14) | ((d) << 7) | (sb))
331 #define SX_ORS(sa, sb, d, cnt) (0xb0000000 | ((cnt) << 24) | SX_OR_S | \
332 		((sa) << 14) | ((d) << 7) | (sb))
333 
334 /* arithmetic group */
335 #define SX_ADD_V	(0x00 << 21)	/* vector + vector */
336 #define SX_ADD_S	(0x01 << 21)	/* vector + scalar */
337 #define SX_ADD_I	(0x02 << 21)	/* vector + immediate */
338 #define SX_SUM		(0x03 << 21)	/* sum of vector and scalar */
339 #define SX_SUB_V	(0x04 << 21)	/* vector - vector */
340 #define SX_SUB_S	(0x05 << 21)	/* vector - scalar */
341 #define SX_SUB_I	(0x06 << 21)	/* vector - immediate */
342 #define SX_ABS		(0x07 << 21)	/* abs(sb) with sa=R0 */
343 /* hardware does sa - sb for sb < 0 and sa + sb if sb > 0 */
344 
345 #define SX_ADDV(sa, sb, d, cnt) (0xa0000000 | ((cnt) << 24) | SX_ADD_V | \
346 		((sa) << 14) | ((d) << 7) | (sb))
347 
348 /* MISC group */
349 #define SX_GTHR		(3 << 21)	/* sa with spacing sb -> d */
350 #define SX_SCTR		(2 << 21)	/* sa -> d with spacing sb */
351 #define SX_GATHER(sa, sb, d, cnt) (0xe0000000 | ((cnt) << 24) | SX_GTHR | \
352 		 ((sa) << 14) | ((d) << 7) | (sb))
353 #define SX_SCATTER(sa, sb, d, cnt) (0xe0000000 | ((cnt) << 24) | SX_SCTR | \
354 		 ((sa) << 14) | ((d) << 7) | (sb))
355 
356 /* shift group */
357 #define SX_SRL_V 	(0 << 21)	/* shift right logical, by vector */
358 #define SX_SRL_I 	(1 << 21)	/* shift right logical, by immediate */
359 #define SX_SRA_V 	(2 << 21)	/* shift right arithmetic, by vector */
360 #define SX_SRA_I 	(3 << 21)	/* shift right arithmetic, by immediate */
361 #define SX_SLL_V 	(4 << 21)	/* shift left logical, by vector */
362 #define SX_SLL_I 	(5 << 21)	/* shift left logical, by immediate */
363 #define SX_SLF_S 	(6 << 21)	/* shift left funnel, by SRCB */
364 #define SX_SLF_I 	(7 << 21)	/* shift left funnel, by immediate */
365 
366 #define SX_SRLV(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRL_V | \
367 		  ((sa) << 14) | ((d) << 7) | (sb))
368 #define SX_SRLI(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRL_I | \
369 		  ((sa) << 14) | ((d) << 7) | (sb))
370 #define SX_SRAV(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRA_V | \
371 		  ((sa) << 14) | ((d) << 7) | (sb))
372 #define SX_SRAI(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SRA_I | \
373 		  ((sa) << 14) | ((d) << 7) | (sb))
374 #define SX_SLLV(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLL_V | \
375 		  ((sa) << 14) | ((d) << 7) | (sb))
376 #define SX_SLLI(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLL_I | \
377 		  ((sa) << 14) | ((d) << 7) | (sb))
378 #define SX_FUNNEL_S(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLF_S | \
379 		  ((sa) << 14) | ((d) << 7) | (sb))
380 #define SX_FUNNEL_I(sa, sb, d, cnt) (0xc0000000 | ((cnt) << 24) | SX_SLF_I | \
381 		  ((sa) << 14) | ((d) << 7) | (sb))
382 
383 #endif /* SXREG_H */
384