1 /* $NetBSD: sljitNativePPC_64.c,v 1.4 2019/01/20 23:14:16 alnsn Exp $ */
2
3 /*
4 * Stack-less Just-In-Time compiler
5 *
6 * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without modification, are
9 * permitted provided that the following conditions are met:
10 *
11 * 1. Redistributions of source code must retain the above copyright notice, this list of
12 * conditions and the following disclaimer.
13 *
14 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
15 * of conditions and the following disclaimer in the documentation and/or other materials
16 * provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
19 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
21 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
23 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
24 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
26 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /* ppc 64-bit arch dependent functions. */
30
31 #if defined(__GNUC__) || (defined(__IBM_GCC_ASM) && __IBM_GCC_ASM)
32 #define ASM_SLJIT_CLZ(src, dst) \
33 __asm__ volatile ( "cntlzd %0, %1" : "=r"(dst) : "r"(src) )
34 #elif defined(__xlc__)
35 #error "Please enable GCC syntax for inline assembly statements"
36 #else
37 #error "Must implement count leading zeroes"
38 #endif
39
40 #define RLDI(dst, src, sh, mb, type) \
41 (HI(30) | S(src) | A(dst) | ((type) << 2) | (((sh) & 0x1f) << 11) | (((sh) & 0x20) >> 4) | (((mb) & 0x1f) << 6) | ((mb) & 0x20))
42
43 #define PUSH_RLDICR(reg, shift) \
44 push_inst(compiler, RLDI(reg, reg, 63 - shift, shift, 1))
45
load_immediate(struct sljit_compiler * compiler,sljit_s32 reg,sljit_sw imm)46 static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm)
47 {
48 sljit_uw tmp;
49 sljit_uw shift;
50 sljit_uw tmp2;
51 sljit_uw shift2;
52
53 if (imm <= SIMM_MAX && imm >= SIMM_MIN)
54 return push_inst(compiler, ADDI | D(reg) | A(0) | IMM(imm));
55
56 if (!(imm & ~0xffff))
57 return push_inst(compiler, ORI | S(TMP_ZERO) | A(reg) | IMM(imm));
58
59 if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
60 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 16)));
61 return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm)) : SLJIT_SUCCESS;
62 }
63
64 /* Count leading zeroes. */
65 tmp = (imm >= 0) ? imm : ~imm;
66 ASM_SLJIT_CLZ(tmp, shift);
67 SLJIT_ASSERT(shift > 0);
68 shift--;
69 tmp = (imm << shift);
70
71 if ((tmp & ~0xffff000000000000ul) == 0) {
72 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
73 shift += 15;
74 return PUSH_RLDICR(reg, shift);
75 }
76
77 if ((tmp & ~0xffffffff00000000ul) == 0) {
78 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(tmp >> 48)));
79 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp >> 32)));
80 shift += 31;
81 return PUSH_RLDICR(reg, shift);
82 }
83
84 /* Cut out the 16 bit from immediate. */
85 shift += 15;
86 tmp2 = imm & ((1ul << (63 - shift)) - 1);
87
88 if (tmp2 <= 0xffff) {
89 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
90 FAIL_IF(PUSH_RLDICR(reg, shift));
91 return push_inst(compiler, ORI | S(reg) | A(reg) | tmp2);
92 }
93
94 if (tmp2 <= 0xffffffff) {
95 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
96 FAIL_IF(PUSH_RLDICR(reg, shift));
97 FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | (tmp2 >> 16)));
98 return (imm & 0xffff) ? push_inst(compiler, ORI | S(reg) | A(reg) | IMM(tmp2)) : SLJIT_SUCCESS;
99 }
100
101 ASM_SLJIT_CLZ(tmp2, shift2);
102 tmp2 <<= shift2;
103
104 if ((tmp2 & ~0xffff000000000000ul) == 0) {
105 FAIL_IF(push_inst(compiler, ADDI | D(reg) | A(0) | IMM(tmp >> 48)));
106 shift2 += 15;
107 shift += (63 - shift2);
108 FAIL_IF(PUSH_RLDICR(reg, shift));
109 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | (tmp2 >> 48)));
110 return PUSH_RLDICR(reg, shift2);
111 }
112
113 /* The general version. */
114 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(imm >> 48)));
115 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm >> 32)));
116 FAIL_IF(PUSH_RLDICR(reg, 31));
117 FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(imm >> 16)));
118 return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(imm));
119 }
120
121 /* Simplified mnemonics: clrldi. */
122 #define INS_CLEAR_LEFT(dst, src, from) \
123 (RLDICL | S(src) | A(dst) | ((from) << 6) | (1 << 5))
124
125 /* Sign extension for integer operations. */
126 #define UN_EXTS() \
127 if ((flags & (ALT_SIGN_EXT | REG2_SOURCE)) == (ALT_SIGN_EXT | REG2_SOURCE)) { \
128 FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
129 src2 = TMP_REG2; \
130 }
131
132 #define BIN_EXTS() \
133 if (flags & ALT_SIGN_EXT) { \
134 if (flags & REG1_SOURCE) { \
135 FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
136 src1 = TMP_REG1; \
137 } \
138 if (flags & REG2_SOURCE) { \
139 FAIL_IF(push_inst(compiler, EXTSW | S(src2) | A(TMP_REG2))); \
140 src2 = TMP_REG2; \
141 } \
142 }
143
144 #define BIN_IMM_EXTS() \
145 if ((flags & (ALT_SIGN_EXT | REG1_SOURCE)) == (ALT_SIGN_EXT | REG1_SOURCE)) { \
146 FAIL_IF(push_inst(compiler, EXTSW | S(src1) | A(TMP_REG1))); \
147 src1 = TMP_REG1; \
148 }
149
emit_single_op(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 flags,sljit_s32 dst,sljit_s32 src1,sljit_s32 src2)150 static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
151 sljit_s32 dst, sljit_s32 src1, sljit_s32 src2)
152 {
153 switch (op) {
154 case SLJIT_MOV:
155 case SLJIT_MOV_P:
156 SLJIT_ASSERT(src1 == TMP_REG1);
157 if (dst != src2)
158 return push_inst(compiler, OR | S(src2) | A(dst) | B(src2));
159 return SLJIT_SUCCESS;
160
161 case SLJIT_MOV_U32:
162 case SLJIT_MOV_S32:
163 SLJIT_ASSERT(src1 == TMP_REG1);
164 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
165 if (op == SLJIT_MOV_S32)
166 return push_inst(compiler, EXTSW | S(src2) | A(dst));
167 return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 0));
168 }
169 else {
170 SLJIT_ASSERT(dst == src2);
171 }
172 return SLJIT_SUCCESS;
173
174 case SLJIT_MOV_U8:
175 case SLJIT_MOV_S8:
176 SLJIT_ASSERT(src1 == TMP_REG1);
177 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
178 if (op == SLJIT_MOV_S8)
179 return push_inst(compiler, EXTSB | S(src2) | A(dst));
180 return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 24));
181 }
182 else if ((flags & REG_DEST) && op == SLJIT_MOV_S8)
183 return push_inst(compiler, EXTSB | S(src2) | A(dst));
184 else {
185 SLJIT_ASSERT(dst == src2);
186 }
187 return SLJIT_SUCCESS;
188
189 case SLJIT_MOV_U16:
190 case SLJIT_MOV_S16:
191 SLJIT_ASSERT(src1 == TMP_REG1);
192 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
193 if (op == SLJIT_MOV_S16)
194 return push_inst(compiler, EXTSH | S(src2) | A(dst));
195 return push_inst(compiler, INS_CLEAR_LEFT(dst, src2, 16));
196 }
197 else {
198 SLJIT_ASSERT(dst == src2);
199 }
200 return SLJIT_SUCCESS;
201
202 case SLJIT_NOT:
203 SLJIT_ASSERT(src1 == TMP_REG1);
204 UN_EXTS();
205 return push_inst(compiler, NOR | RC(flags) | S(src2) | A(dst) | B(src2));
206
207 case SLJIT_NEG:
208 SLJIT_ASSERT(src1 == TMP_REG1);
209 UN_EXTS();
210 return push_inst(compiler, NEG | OERC(flags) | D(dst) | A(src2));
211
212 case SLJIT_CLZ:
213 SLJIT_ASSERT(src1 == TMP_REG1);
214 if (flags & ALT_FORM1)
215 return push_inst(compiler, CNTLZW | RC(flags) | S(src2) | A(dst));
216 return push_inst(compiler, CNTLZD | RC(flags) | S(src2) | A(dst));
217
218 case SLJIT_ADD:
219 if (flags & ALT_FORM1) {
220 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
221 SLJIT_ASSERT(src2 == TMP_REG2);
222 return push_inst(compiler, ADDI | D(dst) | A(src1) | compiler->imm);
223 }
224 if (flags & ALT_FORM2) {
225 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
226 SLJIT_ASSERT(src2 == TMP_REG2);
227 return push_inst(compiler, ADDIS | D(dst) | A(src1) | compiler->imm);
228 }
229 if (flags & ALT_FORM3) {
230 SLJIT_ASSERT(src2 == TMP_REG2);
231 BIN_IMM_EXTS();
232 return push_inst(compiler, ADDIC | D(dst) | A(src1) | compiler->imm);
233 }
234 if (flags & ALT_FORM4) {
235 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
236 FAIL_IF(push_inst(compiler, ADDI | D(dst) | A(src1) | (compiler->imm & 0xffff)));
237 return push_inst(compiler, ADDIS | D(dst) | A(dst) | (((compiler->imm >> 16) & 0xffff) + ((compiler->imm >> 15) & 0x1)));
238 }
239 if (!(flags & ALT_SET_FLAGS))
240 return push_inst(compiler, ADD | D(dst) | A(src1) | B(src2));
241 BIN_EXTS();
242 return push_inst(compiler, ADDC | OERC(ALT_SET_FLAGS) | D(dst) | A(src1) | B(src2));
243
244 case SLJIT_ADDC:
245 BIN_EXTS();
246 return push_inst(compiler, ADDE | D(dst) | A(src1) | B(src2));
247
248 case SLJIT_SUB:
249 if (flags & ALT_FORM1) {
250 /* Flags does not set: BIN_IMM_EXTS unnecessary. */
251 SLJIT_ASSERT(src2 == TMP_REG2);
252 return push_inst(compiler, SUBFIC | D(dst) | A(src1) | compiler->imm);
253 }
254 if (flags & (ALT_FORM2 | ALT_FORM3)) {
255 SLJIT_ASSERT(src2 == TMP_REG2);
256 return push_inst(compiler, ((flags & ALT_FORM2) ? CMPI : CMPLI) | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm);
257 }
258 if (flags & (ALT_FORM4 | ALT_FORM5)) {
259 return push_inst(compiler, ((flags & ALT_FORM4) ? CMP : CMPL) | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2));
260 }
261 if (flags & ALT_FORM6) {
262 SLJIT_ASSERT(src2 == TMP_REG2);
263 FAIL_IF(push_inst(compiler, CMPLI | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | compiler->imm));
264 return push_inst(compiler, ADDI | D(dst) | A(src1) | (-compiler->imm & 0xffff));
265 }
266 if (flags & ALT_FORM7) {
267 FAIL_IF(push_inst(compiler, CMPL | CRD(0 | ((flags & ALT_SIGN_EXT) ? 0 : 1)) | A(src1) | B(src2)));
268 return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
269 }
270 if (!(flags & ALT_SET_FLAGS))
271 return push_inst(compiler, SUBF | D(dst) | A(src2) | B(src1));
272 BIN_EXTS();
273 return push_inst(compiler, SUBFC | OERC(ALT_SET_FLAGS) | D(dst) | A(src2) | B(src1));
274
275 case SLJIT_SUBC:
276 BIN_EXTS();
277 return push_inst(compiler, SUBFE | D(dst) | A(src2) | B(src1));
278
279 case SLJIT_MUL:
280 if (flags & ALT_FORM1) {
281 SLJIT_ASSERT(src2 == TMP_REG2);
282 return push_inst(compiler, MULLI | D(dst) | A(src1) | compiler->imm);
283 }
284 BIN_EXTS();
285 if (flags & ALT_FORM2)
286 return push_inst(compiler, MULLW | OERC(flags) | D(dst) | A(src2) | B(src1));
287 return push_inst(compiler, MULLD | OERC(flags) | D(dst) | A(src2) | B(src1));
288
289 case SLJIT_AND:
290 if (flags & ALT_FORM1) {
291 SLJIT_ASSERT(src2 == TMP_REG2);
292 return push_inst(compiler, ANDI | S(src1) | A(dst) | compiler->imm);
293 }
294 if (flags & ALT_FORM2) {
295 SLJIT_ASSERT(src2 == TMP_REG2);
296 return push_inst(compiler, ANDIS | S(src1) | A(dst) | compiler->imm);
297 }
298 return push_inst(compiler, AND | RC(flags) | S(src1) | A(dst) | B(src2));
299
300 case SLJIT_OR:
301 if (flags & ALT_FORM1) {
302 SLJIT_ASSERT(src2 == TMP_REG2);
303 return push_inst(compiler, ORI | S(src1) | A(dst) | compiler->imm);
304 }
305 if (flags & ALT_FORM2) {
306 SLJIT_ASSERT(src2 == TMP_REG2);
307 return push_inst(compiler, ORIS | S(src1) | A(dst) | compiler->imm);
308 }
309 if (flags & ALT_FORM3) {
310 SLJIT_ASSERT(src2 == TMP_REG2);
311 FAIL_IF(push_inst(compiler, ORI | S(src1) | A(dst) | IMM(compiler->imm)));
312 return push_inst(compiler, ORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
313 }
314 return push_inst(compiler, OR | RC(flags) | S(src1) | A(dst) | B(src2));
315
316 case SLJIT_XOR:
317 if (flags & ALT_FORM1) {
318 SLJIT_ASSERT(src2 == TMP_REG2);
319 return push_inst(compiler, XORI | S(src1) | A(dst) | compiler->imm);
320 }
321 if (flags & ALT_FORM2) {
322 SLJIT_ASSERT(src2 == TMP_REG2);
323 return push_inst(compiler, XORIS | S(src1) | A(dst) | compiler->imm);
324 }
325 if (flags & ALT_FORM3) {
326 SLJIT_ASSERT(src2 == TMP_REG2);
327 FAIL_IF(push_inst(compiler, XORI | S(src1) | A(dst) | IMM(compiler->imm)));
328 return push_inst(compiler, XORIS | S(dst) | A(dst) | IMM(compiler->imm >> 16));
329 }
330 return push_inst(compiler, XOR | RC(flags) | S(src1) | A(dst) | B(src2));
331
332 case SLJIT_SHL:
333 if (flags & ALT_FORM1) {
334 SLJIT_ASSERT(src2 == TMP_REG2);
335 if (flags & ALT_FORM2) {
336 compiler->imm &= 0x1f;
337 return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11) | ((31 - compiler->imm) << 1));
338 }
339 compiler->imm &= 0x3f;
340 return push_inst(compiler, RLDI(dst, src1, compiler->imm, 63 - compiler->imm, 1) | RC(flags));
341 }
342 return push_inst(compiler, ((flags & ALT_FORM2) ? SLW : SLD) | RC(flags) | S(src1) | A(dst) | B(src2));
343
344 case SLJIT_LSHR:
345 if (flags & ALT_FORM1) {
346 SLJIT_ASSERT(src2 == TMP_REG2);
347 if (flags & ALT_FORM2) {
348 compiler->imm &= 0x1f;
349 return push_inst(compiler, RLWINM | RC(flags) | S(src1) | A(dst) | (((32 - compiler->imm) & 0x1f) << 11) | (compiler->imm << 6) | (31 << 1));
350 }
351 compiler->imm &= 0x3f;
352 return push_inst(compiler, RLDI(dst, src1, 64 - compiler->imm, compiler->imm, 0) | RC(flags));
353 }
354 return push_inst(compiler, ((flags & ALT_FORM2) ? SRW : SRD) | RC(flags) | S(src1) | A(dst) | B(src2));
355
356 case SLJIT_ASHR:
357 if (flags & ALT_FORM1) {
358 SLJIT_ASSERT(src2 == TMP_REG2);
359 if (flags & ALT_FORM2) {
360 compiler->imm &= 0x1f;
361 return push_inst(compiler, SRAWI | RC(flags) | S(src1) | A(dst) | (compiler->imm << 11));
362 }
363 compiler->imm &= 0x3f;
364 return push_inst(compiler, SRADI | RC(flags) | S(src1) | A(dst) | ((compiler->imm & 0x1f) << 11) | ((compiler->imm & 0x20) >> 4));
365 }
366 return push_inst(compiler, ((flags & ALT_FORM2) ? SRAW : SRAD) | RC(flags) | S(src1) | A(dst) | B(src2));
367 }
368
369 SLJIT_UNREACHABLE();
370 return SLJIT_SUCCESS;
371 }
372
emit_const(struct sljit_compiler * compiler,sljit_s32 reg,sljit_sw init_value)373 static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw init_value)
374 {
375 FAIL_IF(push_inst(compiler, ADDIS | D(reg) | A(0) | IMM(init_value >> 48)));
376 FAIL_IF(push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value >> 32)));
377 FAIL_IF(PUSH_RLDICR(reg, 31));
378 FAIL_IF(push_inst(compiler, ORIS | S(reg) | A(reg) | IMM(init_value >> 16)));
379 return push_inst(compiler, ORI | S(reg) | A(reg) | IMM(init_value));
380 }
381
sljit_set_jump_addr(sljit_uw addr,sljit_uw new_target,sljit_sw executable_offset)382 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
383 {
384 sljit_ins *inst = (sljit_ins*)addr;
385
386 inst[0] = (inst[0] & 0xffff0000) | ((new_target >> 48) & 0xffff);
387 inst[1] = (inst[1] & 0xffff0000) | ((new_target >> 32) & 0xffff);
388 inst[3] = (inst[3] & 0xffff0000) | ((new_target >> 16) & 0xffff);
389 inst[4] = (inst[4] & 0xffff0000) | (new_target & 0xffff);
390 inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
391 SLJIT_CACHE_FLUSH(inst, inst + 5);
392 }
393
sljit_set_const(sljit_uw addr,sljit_sw new_constant,sljit_sw executable_offset)394 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
395 {
396 sljit_ins *inst = (sljit_ins*)addr;
397
398 inst[0] = (inst[0] & 0xffff0000) | ((new_constant >> 48) & 0xffff);
399 inst[1] = (inst[1] & 0xffff0000) | ((new_constant >> 32) & 0xffff);
400 inst[3] = (inst[3] & 0xffff0000) | ((new_constant >> 16) & 0xffff);
401 inst[4] = (inst[4] & 0xffff0000) | (new_constant & 0xffff);
402 inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
403 SLJIT_CACHE_FLUSH(inst, inst + 5);
404 }
405