xref: /dpdk/lib/security/rte_security.h (revision 2ede1422fa57225b0864702083a8c7bea2c5117e)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright 2017,2019-2020 NXP
3  * Copyright(c) 2017-2020 Intel Corporation.
4  */
5 
6 #ifndef _RTE_SECURITY_H_
7 #define _RTE_SECURITY_H_
8 
9 /**
10  * @file rte_security.h
11  *
12  * RTE Security Common Definitions
13  */
14 
15 #include <sys/types.h>
16 
17 #include <rte_compat.h>
18 #include <rte_common.h>
19 #include <rte_crypto.h>
20 #include <rte_ip.h>
21 #include <rte_mbuf_dyn.h>
22 
23 #ifdef __cplusplus
24 extern "C" {
25 #endif
26 
27 /** IPSec protocol mode */
28 enum rte_security_ipsec_sa_mode {
29 	RTE_SECURITY_IPSEC_SA_MODE_TRANSPORT = 1,
30 	/**< IPSec Transport mode */
31 	RTE_SECURITY_IPSEC_SA_MODE_TUNNEL,
32 	/**< IPSec Tunnel mode */
33 };
34 
35 /** IPSec Protocol */
36 enum rte_security_ipsec_sa_protocol {
37 	RTE_SECURITY_IPSEC_SA_PROTO_AH = 1,
38 	/**< AH protocol */
39 	RTE_SECURITY_IPSEC_SA_PROTO_ESP,
40 	/**< ESP protocol */
41 };
42 
43 /** IPSEC tunnel type */
44 enum rte_security_ipsec_tunnel_type {
45 	RTE_SECURITY_IPSEC_TUNNEL_IPV4 = 1,
46 	/**< Outer header is IPv4 */
47 	RTE_SECURITY_IPSEC_TUNNEL_IPV6,
48 	/**< Outer header is IPv6 */
49 };
50 
51 /**
52  * IPSEC tunnel header verification mode
53  *
54  * Controls how outer IP header is verified in inbound.
55  */
56 #define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR     0x1
57 #define RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR 0x2
58 
59 #define RTE_SEC_CTX_F_FAST_SET_MDATA 0x00000001
60 /**< Driver uses fast metadata update without using driver specific callback.
61  * For fast mdata, mbuf dynamic field would be registered by driver
62  * via rte_security_dynfield_register().
63  */
64 
65 /**
66  * IPSEC tunnel parameters
67  *
68  * These parameters are used to build outbound tunnel headers.
69  */
70 struct rte_security_ipsec_tunnel_param {
71 	enum rte_security_ipsec_tunnel_type type;
72 	/**< Tunnel type: IPv4 or IPv6 */
73 	union {
74 		struct {
75 			struct in_addr src_ip;
76 			/**< IPv4 source address */
77 			struct in_addr dst_ip;
78 			/**< IPv4 destination address */
79 			uint8_t dscp;
80 			/**< IPv4 Differentiated Services Code Point */
81 			uint8_t df;
82 			/**< IPv4 Don't Fragment bit */
83 			uint8_t ttl;
84 			/**< IPv4 Time To Live */
85 		} ipv4;
86 		/**< IPv4 header parameters */
87 		struct {
88 			struct rte_ipv6_addr src_addr;
89 			/**< IPv6 source address */
90 			struct rte_ipv6_addr dst_addr;
91 			/**< IPv6 destination address */
92 			uint8_t dscp;
93 			/**< IPv6 Differentiated Services Code Point */
94 			uint32_t flabel;
95 			/**< IPv6 flow label */
96 			uint8_t hlimit;
97 			/**< IPv6 hop limit */
98 		} ipv6;
99 		/**< IPv6 header parameters */
100 	};
101 };
102 
103 struct rte_security_ipsec_udp_param {
104 	uint16_t sport;
105 	uint16_t dport;
106 };
107 
108 /**
109  * IPsec Security Association option flags
110  */
111 struct rte_security_ipsec_sa_options {
112 	/** Extended Sequence Numbers (ESN)
113 	 *
114 	 * * 1: Use extended (64 bit) sequence numbers
115 	 * * 0: Use normal sequence numbers
116 	 */
117 	uint32_t esn : 1;
118 
119 	/** UDP encapsulation
120 	 *
121 	 * * 1: Do UDP encapsulation/decapsulation so that IPSEC packets can
122 	 *      traverse through NAT boxes.
123 	 * * 0: No UDP encapsulation
124 	 */
125 	uint32_t udp_encap : 1;
126 
127 	/** Copy DSCP bits
128 	 *
129 	 * * 1: Copy IPv4 or IPv6 DSCP bits from inner IP header to
130 	 *      the outer IP header in encapsulation, and vice versa in
131 	 *      decapsulation.
132 	 * * 0: Do not change DSCP field.
133 	 */
134 	uint32_t copy_dscp : 1;
135 
136 	/** Copy IPv6 Flow Label
137 	 *
138 	 * * 1: Copy IPv6 flow label from inner IPv6 header to the
139 	 *      outer IPv6 header.
140 	 * * 0: Outer header is not modified.
141 	 */
142 	uint32_t copy_flabel : 1;
143 
144 	/** Copy IPv4 Don't Fragment bit
145 	 *
146 	 * * 1: Copy the DF bit from the inner IPv4 header to the outer
147 	 *      IPv4 header.
148 	 * * 0: Outer header is not modified.
149 	 */
150 	uint32_t copy_df : 1;
151 
152 	/** Decrement inner packet Time To Live (TTL) field
153 	 *
154 	 * * 1: In tunnel mode, decrement inner packet IPv4 TTL or
155 	 *      IPv6 Hop Limit after tunnel decapsulation, or before tunnel
156 	 *      encapsulation.
157 	 * * 0: Inner packet is not modified.
158 	 */
159 	uint32_t dec_ttl : 1;
160 
161 	/** Explicit Congestion Notification (ECN)
162 	 *
163 	 * * 1: In tunnel mode, enable outer header ECN Field copied from
164 	 *      inner header in tunnel encapsulation, or inner header ECN
165 	 *      field construction in decapsulation.
166 	 * * 0: Inner/outer header are not modified.
167 	 */
168 	uint32_t ecn : 1;
169 
170 	/** Security statistics
171 	 *
172 	 * * 1: Enable per session security statistics collection for
173 	 *      this SA, if supported by the driver.
174 	 * * 0: Disable per session security statistics collection for this SA.
175 	 */
176 	uint32_t stats : 1;
177 
178 	/** Disable IV generation in PMD
179 	 *
180 	 * * 1: Disable IV generation in PMD. When disabled, IV provided in
181 	 *      rte_crypto_op will be used by the PMD.
182 	 *
183 	 * * 0: Enable IV generation in PMD. When enabled, PMD generated random
184 	 *      value would be used and application is not required to provide
185 	 *      IV.
186 	 *
187 	 * Note: For inline cases, IV generation would always need to be handled
188 	 * by the PMD.
189 	 */
190 	uint32_t iv_gen_disable : 1;
191 
192 	/** Verify tunnel header in inbound
193 	 * * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_DST_ADDR``: Verify destination
194 	 *   IP address.
195 	 *
196 	 * * ``RTE_SECURITY_IPSEC_TUNNEL_VERIFY_SRC_DST_ADDR``: Verify both
197 	 *   source and destination IP addresses.
198 	 */
199 	uint32_t tunnel_hdr_verify : 2;
200 
201 	/** Verify UDP encapsulation ports in inbound
202 	 *
203 	 * * 1: Match UDP source and destination ports
204 	 * * 0: Do not match UDP ports
205 	 */
206 	uint32_t udp_ports_verify : 1;
207 
208 	/** Compute/verify inner packet IPv4 header checksum in tunnel mode
209 	 *
210 	 * * 1: For outbound, compute inner packet IPv4 header checksum
211 	 *      before tunnel encapsulation and for inbound, verify after
212 	 *      tunnel decapsulation.
213 	 * * 0: Inner packet IP header checksum is not computed/verified.
214 	 *
215 	 * The checksum verification status would be set in mbuf using
216 	 * RTE_MBUF_F_RX_IP_CKSUM_xxx flags.
217 	 *
218 	 * Inner IP checksum computation can also be enabled(per operation)
219 	 * by setting the flag RTE_MBUF_F_TX_IP_CKSUM in mbuf.
220 	 */
221 	uint32_t ip_csum_enable : 1;
222 
223 	/** Compute/verify inner packet L4 checksum in tunnel mode
224 	 *
225 	 * * 1: For outbound, compute inner packet L4 checksum before
226 	 *      tunnel encapsulation and for inbound, verify after
227 	 *      tunnel decapsulation.
228 	 * * 0: Inner packet L4 checksum is not computed/verified.
229 	 *
230 	 * The checksum verification status would be set in mbuf using
231 	 * RTE_MBUF_F_RX_L4_CKSUM_xxx flags.
232 	 *
233 	 * Inner L4 checksum computation can also be enabled(per operation)
234 	 * by setting the flags RTE_MBUF_F_TX_TCP_CKSUM or RTE_MBUF_F_TX_SCTP_CKSUM or
235 	 * RTE_MBUF_F_TX_UDP_CKSUM or RTE_MBUF_F_TX_L4_MASK in mbuf.
236 	 */
237 	uint32_t l4_csum_enable : 1;
238 
239 	/** Enable IP reassembly on inline inbound packets.
240 	 *
241 	 * * 1: Enable driver to try reassembly of encrypted IP packets for
242 	 *      this SA, if supported by the driver. This feature will work
243 	 *      only if user has successfully set IP reassembly config params
244 	 *      using rte_eth_ip_reassembly_conf_set() for the inline Ethernet
245 	 *      device. PMD need to register mbuf dynamic fields using
246 	 *      rte_eth_ip_reassembly_dynfield_register() and security session
247 	 *      creation would fail if dynfield is not registered successfully.
248 	 * * 0: Disable IP reassembly of packets (default).
249 	 */
250 	uint32_t ip_reassembly_en : 1;
251 
252 	/** Enable out of place processing on inline inbound packets.
253 	 *
254 	 * * 1: Enable driver to perform Out-of-place(OOP) processing for this inline
255 	 *      inbound SA if supported by driver. PMD need to register mbuf
256 	 *      dynamic field using rte_security_oop_dynfield_register()
257 	 *      and security session creation would fail if dynfield is not
258 	 *      registered successfully.
259 	 * * 0: Disable OOP processing for this session (default).
260 	 */
261 	uint32_t ingress_oop : 1;
262 };
263 
264 /** IPSec security association direction */
265 enum rte_security_ipsec_sa_direction {
266 	RTE_SECURITY_IPSEC_SA_DIR_EGRESS,
267 	/**< Encrypt and generate digest */
268 	RTE_SECURITY_IPSEC_SA_DIR_INGRESS,
269 	/**< Verify digest and decrypt */
270 };
271 
272 /**
273  * Configure soft and hard lifetime of an IPsec SA
274  *
275  * Lifetime of an IPsec SA would specify the maximum number of packets or bytes
276  * that can be processed. IPsec operations would start failing once any hard
277  * limit is reached.
278  *
279  * Soft limits can be specified to generate notification when the SA is
280  * approaching hard limits for lifetime. For inline operations, reaching soft
281  * expiry limit would result in raising an eth event for the same. For lookaside
282  * operations, this would result in a warning returned in
283  * ``rte_crypto_op.aux_flags``.
284  */
285 struct rte_security_ipsec_lifetime {
286 	uint64_t packets_soft_limit;
287 	/**< Soft expiry limit in number of packets */
288 	uint64_t bytes_soft_limit;
289 	/**< Soft expiry limit in bytes */
290 	uint64_t packets_hard_limit;
291 	/**< Hard expiry limit in number of packets */
292 	uint64_t bytes_hard_limit;
293 	/**< Hard expiry limit in bytes */
294 };
295 
296 /**
297  * IPsec security association configuration data.
298  *
299  * This structure contains data required to create an IPsec SA security session.
300  */
301 struct rte_security_ipsec_xform {
302 	uint32_t spi;
303 	/**< SA security parameter index */
304 	uint32_t salt;
305 	/**< SA salt */
306 	struct rte_security_ipsec_sa_options options;
307 	/**< various SA options */
308 	enum rte_security_ipsec_sa_direction direction;
309 	/**< IPSec SA Direction - Egress/Ingress */
310 	enum rte_security_ipsec_sa_protocol proto;
311 	/**< IPsec SA Protocol - AH/ESP */
312 	enum rte_security_ipsec_sa_mode mode;
313 	/**< IPsec SA Mode - transport/tunnel */
314 	struct rte_security_ipsec_tunnel_param tunnel;
315 	/**< Tunnel parameters, NULL for transport mode */
316 	struct rte_security_ipsec_lifetime life;
317 	/**< IPsec SA lifetime */
318 	uint32_t replay_win_sz;
319 	/**< Anti replay window size to enable sequence replay attack handling.
320 	 * replay checking is disabled if the window size is 0.
321 	 */
322 	union {
323 		uint64_t value;
324 		struct {
325 			uint32_t low;
326 			uint32_t hi;
327 		};
328 	} esn;
329 	/**< Extended Sequence Number */
330 	struct rte_security_ipsec_udp_param udp;
331 	/**< UDP parameters, ignored when udp_encap option not specified */
332 };
333 
334 /**
335  * MACSec packet flow direction
336  */
337 enum rte_security_macsec_direction {
338 	/** Generate SecTag and encrypt/authenticate */
339 	RTE_SECURITY_MACSEC_DIR_TX,
340 	/** Remove SecTag and decrypt/verify */
341 	RTE_SECURITY_MACSEC_DIR_RX,
342 };
343 
344 /** Maximum number of association numbers for a secure channel. */
345 #define RTE_SECURITY_MACSEC_NUM_AN	4
346 /** Salt length for MACsec SA. */
347 #define RTE_SECURITY_MACSEC_SALT_LEN	12
348 
349 /**
350  * MACsec secure association (SA) configuration structure.
351  */
352 struct rte_security_macsec_sa {
353 	/** Direction of SA */
354 	enum rte_security_macsec_direction dir;
355 	/** MACsec SA key for AES-GCM 128/256 */
356 	struct {
357 		const uint8_t *data;	/**< pointer to key data */
358 		uint16_t length;	/**< key length in bytes */
359 	} key;
360 	/** 96-bit value distributed by key agreement protocol */
361 	uint8_t salt[RTE_SECURITY_MACSEC_SALT_LEN];
362 	/** Association number to be used */
363 	uint8_t an : 2;
364 	/** Short Secure Channel Identifier, to be used for XPN cases */
365 	uint32_t ssci;
366 	/** Extended packet number */
367 	uint32_t xpn;
368 	/** Packet number expected/ to be used for next packet of this SA */
369 	uint32_t next_pn;
370 };
371 
372 /**
373  * MACsec Secure Channel configuration parameters.
374  */
375 struct rte_security_macsec_sc {
376 	/** Direction of SC */
377 	enum rte_security_macsec_direction dir;
378 	/** Packet number threshold */
379 	uint64_t pn_threshold;
380 	union {
381 		struct {
382 			/** SAs for each association number */
383 			uint16_t sa_id[RTE_SECURITY_MACSEC_NUM_AN];
384 			/** flag to denote which all SAs are in use for each association number */
385 			uint8_t sa_in_use[RTE_SECURITY_MACSEC_NUM_AN];
386 			/** Channel is active */
387 			uint8_t active : 1;
388 			/** Extended packet number is enabled for SAs */
389 			uint8_t is_xpn : 1;
390 			/** Reserved bitfields for future */
391 			uint8_t reserved : 6;
392 		} sc_rx;
393 		struct {
394 			uint16_t sa_id; /**< SA ID to be used for encryption */
395 			uint16_t sa_id_rekey; /**< Rekeying SA ID to be used for encryption */
396 			uint64_t sci; /**< SCI value to be used if send_sci is set */
397 			uint8_t active : 1; /**< Channel is active */
398 			uint8_t re_key_en : 1; /**< Enable Rekeying */
399 			/** Extended packet number is enabled for SAs */
400 			uint8_t is_xpn : 1;
401 			/** Reserved bitfields for future */
402 			uint8_t reserved : 5;
403 		} sc_tx;
404 	};
405 };
406 
407 /**
408  * MACsec Supported Algorithm list as per IEEE Std 802.1AE.
409  */
410 enum rte_security_macsec_alg {
411 	RTE_SECURITY_MACSEC_ALG_GCM_128, /**< AES-GCM 128 bit block cipher */
412 	RTE_SECURITY_MACSEC_ALG_GCM_256, /**< AES-GCM 256 bit block cipher */
413 	RTE_SECURITY_MACSEC_ALG_GCM_XPN_128, /**< AES-GCM 128 bit block cipher with unique SSCI */
414 	RTE_SECURITY_MACSEC_ALG_GCM_XPN_256, /**< AES-GCM 256 bit block cipher with unique SSCI */
415 };
416 
417 /** Disable Validation of MACsec frame. */
418 #define RTE_SECURITY_MACSEC_VALIDATE_DISABLE	0
419 /** Validate MACsec frame but do not discard invalid frame. */
420 #define RTE_SECURITY_MACSEC_VALIDATE_NO_DISCARD	1
421 /** Validate MACsec frame and discart invalid frame. */
422 #define RTE_SECURITY_MACSEC_VALIDATE_STRICT	2
423 /** Do not perform any MACsec operation. */
424 #define RTE_SECURITY_MACSEC_VALIDATE_NO_OP	3
425 
426 /**
427  * MACsec security session configuration
428  */
429 struct rte_security_macsec_xform {
430 	/** Direction of flow/secure channel */
431 	enum rte_security_macsec_direction dir;
432 	/** MACsec algorithm to be used */
433 	enum rte_security_macsec_alg alg;
434 	/** Cipher offset from start of Ethernet header */
435 	uint8_t cipher_off;
436 	/**
437 	 * SCI to be used for RX flow identification or
438 	 * to set SCI in packet for TX when send_sci is set
439 	 */
440 	uint64_t sci;
441 	/** Receive/transmit secure channel ID created by *rte_security_macsec_sc_create* */
442 	uint16_t sc_id;
443 	union {
444 		struct {
445 			/** MTU for transmit frame (valid for inline processing) */
446 			uint16_t mtu;
447 			/**
448 			 * Offset to insert sectag from start of ethernet header or
449 			 * from a matching VLAN tag
450 			 */
451 			uint8_t sectag_off;
452 			/** Enable MACsec protection of frames */
453 			uint16_t protect_frames : 1;
454 			/**
455 			 * Sectag insertion mode
456 			 * If 1, Sectag is inserted at fixed sectag_off set above.
457 			 * If 0, Sectag is inserted at relative sectag_off from a matching
458 			 * VLAN tag set.
459 			 */
460 			uint16_t sectag_insert_mode : 1;
461 			/** ICV includes source and destination MAC addresses */
462 			uint16_t icv_include_da_sa : 1;
463 			/** Control port is enabled */
464 			uint16_t ctrl_port_enable : 1;
465 			/** Version of MACsec header. Should be 0 */
466 			uint16_t sectag_version : 1;
467 			/** Enable end station. SCI is not valid */
468 			uint16_t end_station : 1;
469 			/** Send SCI along with sectag */
470 			uint16_t send_sci : 1;
471 			/** enable secure channel support EPON - single copy broadcast */
472 			uint16_t scb : 1;
473 			/**
474 			 * Enable packet encryption and set RTE_MACSEC_TCI_C and
475 			 * RTE_MACSEC_TCI_E in sectag
476 			 */
477 			uint16_t encrypt : 1;
478 			/** Reserved bitfields for future */
479 			uint16_t reserved : 7;
480 		} tx_secy;
481 		struct {
482 			/** Replay Window size to be supported */
483 			uint32_t replay_win_sz;
484 			/** Set bits as per RTE_SECURITY_MACSEC_VALIDATE_* */
485 			uint16_t validate_frames : 2;
486 			/** ICV includes source and destination MAC addresses */
487 			uint16_t icv_include_da_sa : 1;
488 			/** Control port is enabled */
489 			uint16_t ctrl_port_enable : 1;
490 			/** Do not strip SecTAG after processing */
491 			uint16_t preserve_sectag : 1;
492 			/** Do not strip ICV from the packet after processing */
493 			uint16_t preserve_icv : 1;
494 			/** Enable anti-replay protection */
495 			uint16_t replay_protect : 1;
496 			/** Reserved bitfields for future */
497 			uint16_t reserved : 9;
498 		} rx_secy;
499 	};
500 };
501 
502 /**
503  * PDCP Mode of session
504  */
505 enum rte_security_pdcp_domain {
506 	RTE_SECURITY_PDCP_MODE_CONTROL,	/**< PDCP control plane */
507 	RTE_SECURITY_PDCP_MODE_DATA,	/**< PDCP data plane */
508 	RTE_SECURITY_PDCP_MODE_SHORT_MAC,	/**< PDCP short mac */
509 };
510 
511 /** PDCP Frame direction */
512 enum rte_security_pdcp_direction {
513 	RTE_SECURITY_PDCP_UPLINK,	/**< Uplink */
514 	RTE_SECURITY_PDCP_DOWNLINK,	/**< Downlink */
515 };
516 
517 /** PDCP Sequence Number Size selectors */
518 enum rte_security_pdcp_sn_size {
519 	/** PDCP_SN_SIZE_5: 5bit sequence number */
520 	RTE_SECURITY_PDCP_SN_SIZE_5 = 5,
521 	/** PDCP_SN_SIZE_7: 7bit sequence number */
522 	RTE_SECURITY_PDCP_SN_SIZE_7 = 7,
523 	/** PDCP_SN_SIZE_12: 12bit sequence number */
524 	RTE_SECURITY_PDCP_SN_SIZE_12 = 12,
525 	/** PDCP_SN_SIZE_15: 15bit sequence number */
526 	RTE_SECURITY_PDCP_SN_SIZE_15 = 15,
527 	/** PDCP_SN_SIZE_18: 18bit sequence number */
528 	RTE_SECURITY_PDCP_SN_SIZE_18 = 18
529 };
530 
531 /**
532  * PDCP security association configuration data.
533  *
534  * This structure contains data required to create a PDCP security session.
535  */
536 struct rte_security_pdcp_xform {
537 	int8_t bearer;	/**< PDCP bearer ID */
538 	/** Enable in order delivery, this field shall be set only if
539 	 * driver/HW is capable. See RTE_SECURITY_PDCP_ORDERING_CAP.
540 	 */
541 	uint8_t en_ordering;
542 	/** Notify driver/HW to detect and remove duplicate packets.
543 	 * This field should be set only when driver/hw is capable.
544 	 * See RTE_SECURITY_PDCP_DUP_DETECT_CAP.
545 	 */
546 	uint8_t remove_duplicates;
547 	/** PDCP mode of operation: Control or data */
548 	enum rte_security_pdcp_domain domain;
549 	/** PDCP Frame Direction 0:UL 1:DL */
550 	enum rte_security_pdcp_direction pkt_dir;
551 	/** Sequence number size, 5/7/12/15/18 */
552 	enum rte_security_pdcp_sn_size sn_size;
553 	/** Starting Hyper Frame Number to be used together with the SN
554 	 * from the PDCP frames
555 	 */
556 	uint32_t hfn;
557 	/** HFN Threshold for key renegotiation */
558 	uint32_t hfn_threshold;
559 	/** HFN can be given as a per packet value also.
560 	 * As we do not have IV in case of PDCP, and HFN is
561 	 * used to generate IV. IV field can be used to get the
562 	 * per packet HFN while enq/deq.
563 	 * If hfn_ovrd field is set, user is expected to set the
564 	 * per packet HFN in place of IV. PMDs will extract the HFN
565 	 * and perform operations accordingly.
566 	 */
567 	uint8_t hfn_ovrd;
568 	/** In case of 5G NR, a new protocol (SDAP) header may be set
569 	 * inside PDCP payload which should be authenticated but not
570 	 * encrypted. Hence, driver should be notified if SDAP is
571 	 * enabled or not, so that SDAP header is not encrypted.
572 	 */
573 	uint8_t sdap_enabled;
574 	/** Reserved for future */
575 	uint16_t reserved;
576 };
577 
578 /** DOCSIS direction */
579 enum rte_security_docsis_direction {
580 	RTE_SECURITY_DOCSIS_UPLINK,
581 	/**< Uplink
582 	 * - Decryption, followed by CRC Verification
583 	 */
584 	RTE_SECURITY_DOCSIS_DOWNLINK,
585 	/**< Downlink
586 	 * - CRC Generation, followed by Encryption
587 	 */
588 };
589 
590 /**
591  * DOCSIS security session configuration.
592  *
593  * This structure contains data required to create a DOCSIS security session.
594  */
595 struct rte_security_docsis_xform {
596 	enum rte_security_docsis_direction direction;
597 	/**< DOCSIS direction */
598 };
599 
600 /** Implicit nonce length to be used with AEAD algos in TLS 1.2 */
601 #define RTE_SECURITY_TLS_1_2_IMP_NONCE_LEN 4
602 /** Implicit nonce length to be used with AEAD algos in TLS 1.3 */
603 #define RTE_SECURITY_TLS_1_3_IMP_NONCE_LEN 12
604 /** Implicit nonce length to be used with AEAD algos in DTLS 1.2 */
605 #define RTE_SECURITY_DTLS_1_2_IMP_NONCE_LEN 4
606 
607 /** TLS version */
608 enum rte_security_tls_version {
609 	RTE_SECURITY_VERSION_TLS_1_2,	/**< TLS 1.2 */
610 	RTE_SECURITY_VERSION_TLS_1_3,	/**< TLS 1.3 */
611 	RTE_SECURITY_VERSION_DTLS_1_2,	/**< DTLS 1.2 */
612 };
613 
614 /** TLS session type */
615 enum rte_security_tls_sess_type {
616 	/** Record read session
617 	 * - Decrypt & digest verification.
618 	 */
619 	RTE_SECURITY_TLS_SESS_TYPE_READ,
620 	/** Record write session
621 	 * - Encrypt & digest generation.
622 	 */
623 	RTE_SECURITY_TLS_SESS_TYPE_WRITE,
624 };
625 
626 /**
627  * TLS record session options
628  */
629 struct rte_security_tls_record_sess_options {
630 	/** Disable IV generation in PMD.
631 	 *
632 	 * * 1: Disable IV generation in PMD. When disabled, IV provided in rte_crypto_op will be
633 	 *      used by the PMD.
634 	 *
635 	 * * 0: Enable IV generation in PMD. When enabled, PMD generated random value would be used
636 	 *      and application is not required to provide IV.
637 	 */
638 	uint32_t iv_gen_disable : 1;
639 	/** Enable extra padding
640 	 *
641 	 *  TLS allows user to pad the plain text to hide the actual size of the record.
642 	 *  This is required to achieve traffic flow confidentiality in case of TLS/DTLS flows.
643 	 *  This padding is in addition to the default padding performed by PMD
644 	 *  (which ensures ciphertext is aligned to block size).
645 	 *
646 	 *  On supported devices, application may pass the required additional padding via
647 	 *  ``rte_crypto_op.aux_flags`` field.
648 	 *
649 	 * 1 : Enable extra padding of the plain text provided. The extra padding value would be
650 	 *     read from ``rte_crypto_op.aux_flags``.
651 	 *
652 	 * 0 : Disable extra padding
653 	 */
654 	uint32_t extra_padding_enable : 1;
655 };
656 
657 /**
658  * Configure soft and hard lifetime of a TLS record session.
659  *
660  * Lifetime of a TLS record session would specify the maximum number of packets that can be
661  * processed. TLS record processing operations would start failing once hard limit is reached.
662  *
663  * Soft limits can be specified to generate notification when the TLS record session is approaching
664  * hard limits for lifetime. This would result in a warning returned in ``rte_crypto_op.aux_flags``.
665  */
666 struct rte_security_tls_record_lifetime {
667 	/** Soft expiry limit in number of packets */
668 	uint64_t packets_soft_limit;
669 	/** Hard expiry limit in number of packets */
670 	uint64_t packets_hard_limit;
671 };
672 
673 /**
674  * TLS record protocol session configuration.
675  *
676  * This structure contains data required to create a TLS record security session.
677  */
678 struct rte_security_tls_record_xform {
679 	/** TLS record version. */
680 	enum rte_security_tls_version ver;
681 	/** TLS record session type. */
682 	enum rte_security_tls_sess_type type;
683 	/** TLS record session options. */
684 	struct rte_security_tls_record_sess_options options;
685 	/** TLS record session lifetime. */
686 	struct rte_security_tls_record_lifetime life;
687 	union {
688 		/** TLS 1.2 parameters. */
689 		struct {
690 			/** Starting sequence number. */
691 			uint64_t seq_no;
692 			/** Implicit nonce to be used for AEAD algos. */
693 			uint8_t imp_nonce[RTE_SECURITY_TLS_1_2_IMP_NONCE_LEN];
694 		} tls_1_2;
695 
696 		/** TLS 1.3 parameters. */
697 		struct {
698 			/** Starting sequence number. */
699 			uint64_t seq_no;
700 			/** Implicit nonce to be used for AEAD algos. */
701 			uint8_t imp_nonce[RTE_SECURITY_TLS_1_3_IMP_NONCE_LEN];
702 			/**
703 			 * Minimum payload length (in case of write sessions).
704 			 * For shorter inputs, the payload would be padded appropriately
705 			 * before performing crypto transformations.
706 			 */
707 			uint32_t min_payload_len;
708 		} tls_1_3;
709 
710 		/** DTLS 1.2 parameters */
711 		struct {
712 			/** Epoch value to be used. */
713 			uint16_t epoch;
714 			/** 6B starting sequence number to be used. */
715 			uint64_t seq_no;
716 			/** Implicit nonce to be used for AEAD algos. */
717 			uint8_t imp_nonce[RTE_SECURITY_DTLS_1_2_IMP_NONCE_LEN];
718 			/**
719 			 * Anti replay window size to enable sequence replay attack handling.
720 			 * Anti replay check is disabled if the window size is 0.
721 			 */
722 			uint32_t ar_win_sz;
723 		} dtls_1_2;
724 	};
725 };
726 
727 /**
728  * Security session action type.
729  */
730 /* Enumeration of rte_security_session_action_type 8<*/
731 enum rte_security_session_action_type {
732 	RTE_SECURITY_ACTION_TYPE_NONE,
733 	/**< No security actions */
734 	RTE_SECURITY_ACTION_TYPE_INLINE_CRYPTO,
735 	/**< Crypto processing for security protocol is processed inline
736 	 * during transmission
737 	 */
738 	RTE_SECURITY_ACTION_TYPE_INLINE_PROTOCOL,
739 	/**< All security protocol processing is performed inline during
740 	 * transmission
741 	 */
742 	RTE_SECURITY_ACTION_TYPE_LOOKASIDE_PROTOCOL,
743 	/**< All security protocol processing including crypto is performed
744 	 * on a lookaside accelerator
745 	 */
746 	RTE_SECURITY_ACTION_TYPE_CPU_CRYPTO
747 	/**< Similar to ACTION_TYPE_NONE but crypto processing for security
748 	 * protocol is processed synchronously by a CPU.
749 	 */
750 };
751 /* >8 End enumeration of rte_security_session_action_type. */
752 
753 /** Security session protocol definition */
754 /* Enumeration of rte_security_session_protocol 8<*/
755 enum rte_security_session_protocol {
756 	RTE_SECURITY_PROTOCOL_IPSEC = 1,
757 	/**< IPsec Protocol */
758 	RTE_SECURITY_PROTOCOL_MACSEC,
759 	/**< MACSec Protocol */
760 	RTE_SECURITY_PROTOCOL_PDCP,
761 	/**< PDCP Protocol */
762 	RTE_SECURITY_PROTOCOL_DOCSIS,
763 	/**< DOCSIS Protocol */
764 	RTE_SECURITY_PROTOCOL_TLS_RECORD,
765 	/**< TLS Record Protocol */
766 };
767 /* >8 End enumeration of rte_security_session_protocol. */
768 
769 /**
770  * Security session configuration
771  */
772 /* Structure rte_security_session_conf 8< */
773 struct rte_security_session_conf {
774 	enum rte_security_session_action_type action_type;
775 	/**< Type of action to be performed on the session */
776 	enum rte_security_session_protocol protocol;
777 	/**< Security protocol to be configured */
778 	union {
779 		struct rte_security_ipsec_xform ipsec;
780 		struct rte_security_macsec_xform macsec;
781 		struct rte_security_pdcp_xform pdcp;
782 		struct rte_security_docsis_xform docsis;
783 		struct rte_security_tls_record_xform tls_record;
784 	};
785 	/**< Configuration parameters for security session */
786 	struct rte_crypto_sym_xform *crypto_xform;
787 	/**< Security Session Crypto Transformations. NULL in case of MACsec. */
788 	void *userdata;
789 	/**< Application specific userdata to be saved with session */
790 };
791 /* >8 End of structure rte_security_session_conf. */
792 
793 /**
794  * Create security session as specified by the session configuration
795  *
796  * @param   instance	security instance
797  * @param   conf	session configuration parameters
798  * @param   mp		mempool to allocate session objects from
799  * @return
800  *  - On success, pointer to session
801  *  - On failure, NULL
802  */
803 void *
804 rte_security_session_create(void *instance,
805 			    struct rte_security_session_conf *conf,
806 			    struct rte_mempool *mp);
807 
808 /**
809  * Update security session as specified by the session configuration
810  *
811  * @param   instance	security instance
812  * @param   sess	session to update parameters
813  * @param   conf	update configuration parameters
814  * @return
815  *  - On success returns 0
816  *  - On failure returns a negative errno value.
817  */
818 int
819 rte_security_session_update(void *instance,
820 			    void *sess,
821 			    struct rte_security_session_conf *conf);
822 
823 /**
824  * Get the size of the security session data for a device.
825  *
826  * @param   instance	security instance.
827  *
828  * @return
829  *   - Size of the private data, if successful
830  *   - 0 if device is invalid or does not support the operation.
831  */
832 unsigned int
833 rte_security_session_get_size(void *instance);
834 
835 /**
836  * Free security session header and the session private data and
837  * return it to its original mempool.
838  *
839  * @param   instance	security instance
840  * @param   sess	security session to be freed
841  *
842  * @return
843  *  - 0 if successful.
844  *  - -EINVAL if session or context instance is NULL.
845  *  - -EBUSY if not all device private data has been freed.
846  *  - -ENOTSUP if destroying private data is not supported.
847  *  - other negative values in case of freeing private data errors.
848  */
849 int
850 rte_security_session_destroy(void *instance, void *sess);
851 
852 /**
853  * Create MACsec security channel (SC).
854  *
855  * @param   instance	security instance
856  * @param   conf	MACsec SC configuration params
857  * @return
858  *  - secure channel ID if successful.
859  *  - -EINVAL if configuration params are invalid of instance is NULL.
860  *  - -ENOTSUP if device does not support MACsec.
861  *  - -ENOMEM if PMD is not capable to create more SC.
862  *  - other negative value for other errors.
863  */
864 int
865 rte_security_macsec_sc_create(void *instance,
866 			      struct rte_security_macsec_sc *conf);
867 
868 /**
869  * Destroy MACsec security channel (SC).
870  *
871  * @param   instance	security instance
872  * @param   sc_id	SC ID to be destroyed
873  * @param   dir		direction of the SC
874  * @return
875  *  - 0 if successful.
876  *  - -EINVAL if sc_id is invalid or instance is NULL.
877  *  - -EBUSY if sc is being used by some session.
878  */
879 int
880 rte_security_macsec_sc_destroy(void *instance, uint16_t sc_id,
881 			       enum rte_security_macsec_direction dir);
882 
883 /**
884  * Create MACsec security association (SA).
885  *
886  * @param   instance	security instance
887  * @param   conf	MACsec SA configuration params
888  * @return
889  *  - positive SA ID if successful.
890  *  - -EINVAL if configuration params are invalid of instance is NULL.
891  *  - -ENOTSUP if device does not support MACsec.
892  *  - -ENOMEM if PMD is not capable to create more SAs.
893  *  - other negative value for other errors.
894  */
895 int
896 rte_security_macsec_sa_create(void *instance,
897 			      struct rte_security_macsec_sa *conf);
898 
899 /**
900  * Destroy MACsec security association (SA).
901  *
902  * @param   instance	security instance
903  * @param   sa_id	SA ID to be destroyed
904  * @param   dir		direction of the SA
905  * @return
906  *  - 0 if successful.
907  *  - -EINVAL if sa_id is invalid or instance is NULL.
908  *  - -EBUSY if sa is being used by some session.
909  */
910 int
911 rte_security_macsec_sa_destroy(void *instance, uint16_t sa_id,
912 			       enum rte_security_macsec_direction dir);
913 
914 /** Device-specific metadata field type */
915 typedef uint64_t rte_security_dynfield_t;
916 /** Dynamic mbuf field for device-specific metadata */
917 extern int rte_security_dynfield_offset;
918 
919 /** Out-of-Place(OOP) processing field type */
920 typedef struct rte_mbuf *rte_security_oop_dynfield_t;
921 /** Dynamic mbuf field for pointer to original mbuf for
922  * OOP processing session.
923  */
924 extern int rte_security_oop_dynfield_offset;
925 
926 /**
927  * Get pointer to mbuf field for device-specific metadata.
928  *
929  * For performance reason, no check is done,
930  * the dynamic field may not be registered.
931  * @see rte_security_dynfield_is_registered
932  *
933  * @param	mbuf	packet to access
934  * @return pointer to mbuf field
935  */
936 static inline rte_security_dynfield_t *
937 rte_security_dynfield(struct rte_mbuf *mbuf)
938 {
939 	return RTE_MBUF_DYNFIELD(mbuf,
940 		rte_security_dynfield_offset,
941 		rte_security_dynfield_t *);
942 }
943 
944 /**
945  * @warning
946  * @b EXPERIMENTAL: this API may change without prior notice
947  *
948  * Get pointer to mbuf field for original mbuf pointer when
949  * Out-Of-Place(OOP) processing is enabled in security session.
950  *
951  * @param       mbuf    packet to access
952  * @return pointer to mbuf field
953  */
954 __rte_experimental
955 static inline rte_security_oop_dynfield_t *
956 rte_security_oop_dynfield(struct rte_mbuf *mbuf)
957 {
958 	return RTE_MBUF_DYNFIELD(mbuf,
959 			rte_security_oop_dynfield_offset,
960 			rte_security_oop_dynfield_t *);
961 }
962 
963 /**
964  * Check whether the dynamic field is registered.
965  *
966  * @return true if rte_security_dynfield_register() has been called.
967  */
968 static inline bool rte_security_dynfield_is_registered(void)
969 {
970 	return rte_security_dynfield_offset >= 0;
971 }
972 
973 #define RTE_SECURITY_CTX_FLAGS_OFF		4
974 /**
975  * Get security flags from security instance.
976  */
977 static inline uint32_t
978 rte_security_ctx_flags_get(void *ctx)
979 {
980 	return *((uint32_t *)ctx + RTE_SECURITY_CTX_FLAGS_OFF);
981 }
982 
983 /**
984  * Set security flags in security instance.
985  */
986 static inline void
987 rte_security_ctx_flags_set(void *ctx, uint32_t flags)
988 {
989 	uint32_t *data;
990 	data = (((uint32_t *)ctx) + RTE_SECURITY_CTX_FLAGS_OFF);
991 	*data = flags;
992 }
993 
994 #define RTE_SECURITY_SESS_OPAQUE_DATA_OFF	0
995 #define RTE_SECURITY_SESS_FAST_MDATA_OFF	1
996 /**
997  * Get opaque data from session handle
998  */
999 static inline uint64_t
1000 rte_security_session_opaque_data_get(void *sess)
1001 {
1002 	return *((uint64_t *)sess + RTE_SECURITY_SESS_OPAQUE_DATA_OFF);
1003 }
1004 
1005 /**
1006  * Set opaque data in session handle
1007  */
1008 static inline void
1009 rte_security_session_opaque_data_set(void *sess, uint64_t opaque)
1010 {
1011 	uint64_t *data;
1012 	data = (((uint64_t *)sess) + RTE_SECURITY_SESS_OPAQUE_DATA_OFF);
1013 	*data = opaque;
1014 }
1015 
1016 /**
1017  * Get fast mdata from session handle
1018  */
1019 static inline uint64_t
1020 rte_security_session_fast_mdata_get(void *sess)
1021 {
1022 	return *((uint64_t *)sess + RTE_SECURITY_SESS_FAST_MDATA_OFF);
1023 }
1024 
1025 /**
1026  * Set fast mdata in session handle
1027  */
1028 static inline void
1029 rte_security_session_fast_mdata_set(void *sess, uint64_t fdata)
1030 {
1031 	uint64_t *data;
1032 	data = (((uint64_t *)sess) + RTE_SECURITY_SESS_FAST_MDATA_OFF);
1033 	*data = fdata;
1034 }
1035 
1036 /** Function to call PMD specific function pointer set_pkt_metadata() */
1037 int __rte_security_set_pkt_metadata(void *instance,
1038 				    void *sess,
1039 				    struct rte_mbuf *m, void *params);
1040 
1041 /**
1042  *  Updates the buffer with device-specific defined metadata
1043  *
1044  * @param	instance	security instance
1045  * @param	sess		security session
1046  * @param	mb		packet mbuf to set metadata on.
1047  * @param	params		device-specific defined parameters
1048  *				required for metadata
1049  *
1050  * @return
1051  *  - On success, zero.
1052  *  - On failure, a negative value.
1053  */
1054 static inline int
1055 rte_security_set_pkt_metadata(void *instance,
1056 			      void *sess,
1057 			      struct rte_mbuf *mb, void *params)
1058 {
1059 	/* Fast Path */
1060 	if (rte_security_ctx_flags_get(instance) & RTE_SEC_CTX_F_FAST_SET_MDATA) {
1061 		*rte_security_dynfield(mb) = (rte_security_dynfield_t)
1062 			rte_security_session_fast_mdata_get(sess);
1063 		return 0;
1064 	}
1065 
1066 	/* Jump to PMD specific function pointer */
1067 	return __rte_security_set_pkt_metadata(instance, sess, mb, params);
1068 }
1069 
1070 /**
1071  * Attach a session to a symmetric crypto operation
1072  *
1073  * @param	sym_op	crypto operation
1074  * @param	sess	security session
1075  */
1076 static inline int
1077 __rte_security_attach_session(struct rte_crypto_sym_op *sym_op, void *sess)
1078 {
1079 	sym_op->session = sess;
1080 
1081 	return 0;
1082 }
1083 
1084 /**
1085  * Attach a session to a crypto operation.
1086  * This API is needed only in case of RTE_SECURITY_SESS_CRYPTO_PROTO_OFFLOAD
1087  * For other rte_security_session_action_type, ol_flags in rte_mbuf may be
1088  * defined to perform security operations.
1089  *
1090  * @param	op	crypto operation
1091  * @param	sess	security session
1092  */
1093 static inline int
1094 rte_security_attach_session(struct rte_crypto_op *op,
1095 			    void *sess)
1096 {
1097 	if (unlikely(op->type != RTE_CRYPTO_OP_TYPE_SYMMETRIC))
1098 		return -EINVAL;
1099 
1100 	op->sess_type =  RTE_CRYPTO_OP_SECURITY_SESSION;
1101 
1102 	return __rte_security_attach_session(op->sym, sess);
1103 }
1104 
1105 struct rte_security_macsec_secy_stats {
1106 	uint64_t ctl_pkt_bcast_cnt;
1107 	uint64_t ctl_pkt_mcast_cnt;
1108 	uint64_t ctl_pkt_ucast_cnt;
1109 	uint64_t ctl_octet_cnt;
1110 	uint64_t unctl_pkt_bcast_cnt;
1111 	uint64_t unctl_pkt_mcast_cnt;
1112 	uint64_t unctl_pkt_ucast_cnt;
1113 	uint64_t unctl_octet_cnt;
1114 	/* Valid only for Rx */
1115 	uint64_t octet_decrypted_cnt;
1116 	uint64_t octet_validated_cnt;
1117 	uint64_t pkt_port_disabled_cnt;
1118 	uint64_t pkt_badtag_cnt;
1119 	uint64_t pkt_nosa_cnt;
1120 	uint64_t pkt_nosaerror_cnt;
1121 	uint64_t pkt_tagged_ctl_cnt;
1122 	uint64_t pkt_untaged_cnt;
1123 	uint64_t pkt_ctl_cnt;
1124 	uint64_t pkt_notag_cnt;
1125 	/* Valid only for Tx */
1126 	uint64_t octet_encrypted_cnt;
1127 	uint64_t octet_protected_cnt;
1128 	uint64_t pkt_noactivesa_cnt;
1129 	uint64_t pkt_toolong_cnt;
1130 	uint64_t pkt_untagged_cnt;
1131 };
1132 
1133 struct rte_security_macsec_sc_stats {
1134 	/* Rx */
1135 	uint64_t hit_cnt;
1136 	uint64_t pkt_invalid_cnt;
1137 	uint64_t pkt_late_cnt;
1138 	uint64_t pkt_notvalid_cnt;
1139 	uint64_t pkt_unchecked_cnt;
1140 	uint64_t pkt_delay_cnt;
1141 	uint64_t pkt_ok_cnt;
1142 	uint64_t octet_decrypt_cnt;
1143 	uint64_t octet_validate_cnt;
1144 	/* Tx */
1145 	uint64_t pkt_encrypt_cnt;
1146 	uint64_t pkt_protected_cnt;
1147 	uint64_t octet_encrypt_cnt;
1148 	uint64_t octet_protected_cnt;
1149 };
1150 
1151 struct rte_security_macsec_sa_stats {
1152 	/* Rx */
1153 	uint64_t pkt_invalid_cnt;
1154 	uint64_t pkt_nosaerror_cnt;
1155 	uint64_t pkt_notvalid_cnt;
1156 	uint64_t pkt_ok_cnt;
1157 	uint64_t pkt_nosa_cnt;
1158 	/* Tx */
1159 	uint64_t pkt_encrypt_cnt;
1160 	uint64_t pkt_protected_cnt;
1161 };
1162 
1163 struct rte_security_ipsec_stats {
1164 	uint64_t ipackets;  /**< Successfully received IPsec packets. */
1165 	uint64_t opackets;  /**< Successfully transmitted IPsec packets.*/
1166 	uint64_t ibytes;    /**< Successfully received IPsec bytes. */
1167 	uint64_t obytes;    /**< Successfully transmitted IPsec bytes. */
1168 	uint64_t ierrors;   /**< IPsec packets receive/decrypt errors. */
1169 	uint64_t oerrors;   /**< IPsec packets transmit/encrypt errors. */
1170 	uint64_t reserved1; /**< Reserved for future use. */
1171 	uint64_t reserved2; /**< Reserved for future use. */
1172 };
1173 
1174 struct rte_security_pdcp_stats {
1175 	uint64_t reserved;
1176 };
1177 
1178 struct rte_security_docsis_stats {
1179 	uint64_t reserved;
1180 };
1181 
1182 struct rte_security_stats {
1183 	enum rte_security_session_protocol protocol;
1184 	/**< Security protocol to be configured */
1185 
1186 	union {
1187 		struct rte_security_macsec_secy_stats macsec;
1188 		struct rte_security_ipsec_stats ipsec;
1189 		struct rte_security_pdcp_stats pdcp;
1190 		struct rte_security_docsis_stats docsis;
1191 	};
1192 };
1193 
1194 /**
1195  * Get security session statistics
1196  *
1197  * @param	instance	security instance
1198  * @param	sess		security session
1199  * If security session is NULL then global (per security instance) statistics
1200  * will be retrieved, if supported. Global statistics collection is not
1201  * dependent on the per session statistics configuration.
1202  * @param	stats		statistics
1203  * @return
1204  *  - On success, return 0
1205  *  - On failure, a negative value
1206  */
1207 int
1208 rte_security_session_stats_get(void *instance,
1209 			       void *sess,
1210 			       struct rte_security_stats *stats);
1211 
1212 /**
1213  * Get MACsec SA statistics.
1214  *
1215  * @param	instance	security instance
1216  * @param	sa_id		SA ID for which stats are needed
1217  * @param	dir		direction of the SA
1218  * @param	stats		statistics
1219  * @return
1220  *  - On success, return 0.
1221  *  - On failure, a negative value.
1222  */
1223 int
1224 rte_security_macsec_sa_stats_get(void *instance,
1225 				 uint16_t sa_id, enum rte_security_macsec_direction dir,
1226 				 struct rte_security_macsec_sa_stats *stats);
1227 
1228 /**
1229  * Get MACsec SC statistics.
1230  *
1231  * @param	instance	security instance
1232  * @param	sc_id		SC ID for which stats are needed
1233  * @param	dir		direction of the SC
1234  * @param	stats		SC statistics
1235  * @return
1236  *  - On success, return 0.
1237  *  - On failure, a negative value.
1238  */
1239 int
1240 rte_security_macsec_sc_stats_get(void *instance,
1241 				 uint16_t sc_id, enum rte_security_macsec_direction dir,
1242 				 struct rte_security_macsec_sc_stats *stats);
1243 
1244 /**
1245  * Security capability definition
1246  */
1247 struct rte_security_capability {
1248 	enum rte_security_session_action_type action;
1249 	/**< Security action type*/
1250 	enum rte_security_session_protocol protocol;
1251 	/**< Security protocol */
1252 	union {
1253 		struct {
1254 			enum rte_security_ipsec_sa_protocol proto;
1255 			/**< IPsec SA protocol */
1256 			enum rte_security_ipsec_sa_mode mode;
1257 			/**< IPsec SA mode */
1258 			enum rte_security_ipsec_sa_direction direction;
1259 			/**< IPsec SA direction */
1260 			struct rte_security_ipsec_sa_options options;
1261 			/**< IPsec SA supported options */
1262 			uint32_t replay_win_sz_max;
1263 			/**< IPsec Anti Replay Window Size. A '0' value
1264 			 * indicates that Anti Replay is not supported.
1265 			 */
1266 		} ipsec;
1267 		/**< IPsec capability */
1268 		struct {
1269 			/** MTU supported for inline TX */
1270 			uint16_t mtu;
1271 			/** MACsec algorithm to be used */
1272 			enum rte_security_macsec_alg alg;
1273 			/** Maximum number of secure channels supported */
1274 			uint16_t max_nb_sc;
1275 			/** Maximum number of SAs supported */
1276 			uint16_t max_nb_sa;
1277 			/** Maximum number of SAs supported */
1278 			uint16_t max_nb_sess;
1279 			/** MACsec anti replay window size */
1280 			uint32_t replay_win_sz;
1281 			/** Support Sectag insertion at relative offset */
1282 			uint16_t relative_sectag_insert : 1;
1283 			/** Support Sectag insertion at fixed offset */
1284 			uint16_t fixed_sectag_insert : 1;
1285 			/** ICV includes source and destination MAC addresses */
1286 			uint16_t icv_include_da_sa : 1;
1287 			/** Control port traffic is supported */
1288 			uint16_t ctrl_port_enable : 1;
1289 			/** Do not strip SecTAG after processing */
1290 			uint16_t preserve_sectag : 1;
1291 			/** Do not strip ICV from the packet after processing */
1292 			uint16_t preserve_icv : 1;
1293 			/** Support frame validation as per RTE_SECURITY_MACSEC_VALIDATE_* */
1294 			uint16_t validate_frames : 1;
1295 			/** support re-keying on SA expiry */
1296 			uint16_t re_key : 1;
1297 			/** support anti replay */
1298 			uint16_t anti_replay : 1;
1299 			/** Reserved bitfields for future capabilities */
1300 			uint16_t reserved : 7;
1301 		} macsec;
1302 		/**< MACsec capability */
1303 		struct {
1304 			enum rte_security_pdcp_domain domain;
1305 			/**< PDCP mode of operation: Control or data */
1306 			uint32_t capa_flags;
1307 			/**< Capability flags, see RTE_SECURITY_PDCP_* */
1308 		} pdcp;
1309 		/**< PDCP capability */
1310 		struct {
1311 			enum rte_security_docsis_direction direction;
1312 			/**< DOCSIS direction */
1313 		} docsis;
1314 		/**< DOCSIS capability */
1315 		struct {
1316 			enum rte_security_tls_version ver;
1317 			/**< TLS record version. */
1318 			enum rte_security_tls_sess_type type;
1319 			/**< TLS record session type. */
1320 			uint32_t ar_win_size;
1321 			/**< Maximum anti replay window size supported for DTLS 1.2 record read
1322 			 * operation. Value of 0 means anti replay check is not supported.
1323 			 */
1324 		} tls_record;
1325 		/**< TLS record capability */
1326 	};
1327 
1328 	const struct rte_cryptodev_capabilities *crypto_capabilities;
1329 	/**< Corresponding crypto capabilities for security capability  */
1330 
1331 	uint32_t ol_flags;
1332 	/**< Device offload flags */
1333 };
1334 
1335 /** Underlying Hardware/driver which support PDCP may or may not support
1336  * packet ordering. Set RTE_SECURITY_PDCP_ORDERING_CAP if it support.
1337  * If it is not set, driver/HW assumes packets received are in order
1338  * and it will be application's responsibility to maintain ordering.
1339  */
1340 #define RTE_SECURITY_PDCP_ORDERING_CAP		0x00000001
1341 
1342 /** Underlying Hardware/driver which support PDCP may or may not detect
1343  * duplicate packet. Set RTE_SECURITY_PDCP_DUP_DETECT_CAP if it support.
1344  * If it is not set, driver/HW assumes there is no duplicate packet received.
1345  */
1346 #define RTE_SECURITY_PDCP_DUP_DETECT_CAP	0x00000002
1347 
1348 #define RTE_SECURITY_TX_OLOAD_NEED_MDATA	0x00000001
1349 /**< HW needs metadata update, see rte_security_set_pkt_metadata().
1350  */
1351 
1352 #define RTE_SECURITY_TX_HW_TRAILER_OFFLOAD	0x00000002
1353 /**< HW constructs trailer of packets
1354  * Transmitted packets will have the trailer added to them
1355  * by hardware. The next protocol field will be based on
1356  * the mbuf->inner_esp_next_proto field.
1357  */
1358 #define RTE_SECURITY_RX_HW_TRAILER_OFFLOAD	0x00010000
1359 /**< HW removes trailer of packets
1360  * Received packets have no trailer, the next protocol field
1361  * is supplied in the mbuf->inner_esp_next_proto field.
1362  * Inner packet is not modified.
1363  */
1364 
1365 /**
1366  * Security capability index used to query a security instance for a specific
1367  * security capability
1368  */
1369 struct rte_security_capability_idx {
1370 	enum rte_security_session_action_type action;
1371 	enum rte_security_session_protocol protocol;
1372 
1373 	union {
1374 		struct {
1375 			enum rte_security_ipsec_sa_protocol proto;
1376 			enum rte_security_ipsec_sa_mode mode;
1377 			enum rte_security_ipsec_sa_direction direction;
1378 		} ipsec;
1379 		struct {
1380 			enum rte_security_pdcp_domain domain;
1381 			uint32_t capa_flags;
1382 		} pdcp;
1383 		struct {
1384 			enum rte_security_docsis_direction direction;
1385 		} docsis;
1386 		struct {
1387 			enum rte_security_macsec_alg alg;
1388 		} macsec;
1389 		struct {
1390 			enum rte_security_tls_version ver;
1391 			enum rte_security_tls_sess_type type;
1392 		} tls_record;
1393 	};
1394 };
1395 
1396 /**
1397  *  Returns array of security instance capabilities
1398  *
1399  * @param	instance	Security instance.
1400  *
1401  * @return
1402  *   - Returns array of security capabilities.
1403  *   - Return NULL if no capabilities available.
1404  */
1405 const struct rte_security_capability *
1406 rte_security_capabilities_get(void *instance);
1407 
1408 /**
1409  * Query if a specific capability is available on security instance
1410  *
1411  * @param	instance	security instance.
1412  * @param	idx		security capability index to match against
1413  *
1414  * @return
1415  *   - Returns pointer to security capability on match of capability
1416  *     index criteria.
1417  *   - Return NULL if the capability not matched on security instance.
1418  */
1419 const struct rte_security_capability *
1420 rte_security_capability_get(void *instance,
1421 			    struct rte_security_capability_idx *idx);
1422 
1423 /**
1424  * @warning
1425  * @b EXPERIMENTAL: this API may change, or be removed, without prior notice
1426  *
1427  * Configure security device to inject packets to an ethdev port.
1428  *
1429  * This API must be called only when both security device and the ethdev is in
1430  * stopped state. The security device need to be configured before any packets
1431  * are submitted to ``rte_security_inb_pkt_rx_inject`` API.
1432  *
1433  * @param	ctx		Security ctx
1434  * @param	port_id		Port identifier of the ethernet device to which
1435  *				packets need to be injected.
1436  * @param	enable		Flag to enable and disable connection between a
1437  *				security device and an ethdev port.
1438  * @return
1439  *   - 0 if successful.
1440  *   - -EINVAL if context NULL or port_id is invalid.
1441  *   - -EBUSY if devices are not in stopped state.
1442  *   - -ENOTSUP if security device does not support injecting to ethdev port.
1443  *
1444  * @see rte_security_inb_pkt_rx_inject
1445  */
1446 __rte_experimental
1447 int
1448 rte_security_rx_inject_configure(void *ctx, uint16_t port_id, bool enable);
1449 
1450 /**
1451  * @warning
1452  * @b EXPERIMENTAL: this API may change, or be removed, without prior notice
1453  *
1454  * Perform security processing of packets and inject the processed packet to
1455  * ethdev Rx.
1456  *
1457  * Rx inject would behave similarly to ethdev loopback but with the additional
1458  * security processing. In case of ethdev loopback, application would be
1459  * submitting packets to ethdev Tx queues and would be received as is from
1460  * ethdev Rx queues. With Rx inject, packets would be received after security
1461  * processing from ethdev Rx queues.
1462  *
1463  * With inline protocol offload capable ethdevs, Rx injection can be used to
1464  * handle packets which failed the regular security Rx path. This can be due to
1465  * cases such as outer fragmentation, in which case applications can reassemble
1466  * the fragments and then subsequently submit for inbound processing and Rx
1467  * injection, so that packets are received as regular security processed
1468  * packets.
1469  *
1470  * With lookaside protocol offload capable cryptodevs, Rx injection can be used
1471  * to perform packet parsing after security processing. This would allow for
1472  * re-classification after security protocol processing is done (ie, inner
1473  * packet parsing). The ethdev queue on which the packet would be received would
1474  * be based on rte_flow rules matching the packet after security processing.
1475  *
1476  * The security device which is injecting packets to ethdev Rx need to be
1477  * configured using ``rte_security_rx_inject_configure`` with enable flag set
1478  * to `true` before any packets are submitted.
1479  *
1480  * If `hash.fdir.h` field is set in mbuf, it would be treated as the value for
1481  * `MARK` pattern for the subsequent rte_flow parsing. The packet would appear
1482  * as if it is received from `port` field in mbuf.
1483  *
1484  * Since the packet would be received back from ethdev Rx queues,
1485  * it is expected that application retains/adds L2 header with the
1486  * mbuf field 'l2_len' reflecting the size of L2 header in the packet.
1487  *
1488  * @param	ctx		Security ctx
1489  * @param	pkts		The address of an array of *nb_pkts* pointers to
1490  *				*rte_mbuf* structures which contain the packets.
1491  * @param	sess		The address of an array of *nb_pkts* pointers to
1492  *				security sessions corresponding to each packet.
1493  * @param	nb_pkts		The maximum number of packets to process.
1494  *
1495  * @return
1496  *   The number of packets successfully injected to ethdev Rx.
1497  *   The return value can be less than the value of the *nb_pkts* parameter
1498  *   when the PMD internal queues have been filled up.
1499  *
1500  * @see rte_security_rx_inject_configure
1501  */
1502 __rte_experimental
1503 uint16_t
1504 rte_security_inb_pkt_rx_inject(void *ctx, struct rte_mbuf **pkts, void **sess,
1505 			       uint16_t nb_pkts);
1506 
1507 #ifdef __cplusplus
1508 }
1509 #endif
1510 
1511 #endif /* _RTE_SECURITY_H_ */
1512