xref: /dpdk/lib/mempool/rte_mempool.h (revision 743bd29effd0bd829e68312db9e23f85f8857cd6)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright(c) 2016 6WIND S.A.
4  * Copyright(c) 2022 SmartShare Systems
5  */
6 
7 #ifndef _RTE_MEMPOOL_H_
8 #define _RTE_MEMPOOL_H_
9 
10 /**
11  * @file
12  * RTE Mempool.
13  *
14  * A memory pool is an allocator of fixed-size object. It is
15  * identified by its name, and uses a ring to store free objects. It
16  * provides some other optional services, like a per-core object
17  * cache, and an alignment helper to ensure that objects are padded
18  * to spread them equally on all RAM channels, ranks, and so on.
19  *
20  * Objects owned by a mempool should never be added in another
21  * mempool. When an object is freed using rte_mempool_put() or
22  * equivalent, the object data is not modified; the user can save some
23  * meta-data in the object data and retrieve them when allocating a
24  * new object.
25  *
26  * Note: the mempool implementation is not preemptible. An lcore must not be
27  * interrupted by another task that uses the same mempool (because it uses a
28  * ring which is not preemptible). Also, usual mempool functions like
29  * rte_mempool_get() or rte_mempool_put() are designed to be called from an EAL
30  * thread due to the internal per-lcore cache. Due to the lack of caching,
31  * rte_mempool_get() or rte_mempool_put() performance will suffer when called
32  * by unregistered non-EAL threads. Instead, unregistered non-EAL threads
33  * should call rte_mempool_generic_get() or rte_mempool_generic_put() with a
34  * user cache created with rte_mempool_cache_create().
35  */
36 
37 #include <stdalign.h>
38 #include <stdio.h>
39 #include <stdint.h>
40 #include <inttypes.h>
41 
42 #include <rte_compat.h>
43 #include <rte_config.h>
44 #include <rte_spinlock.h>
45 #include <rte_debug.h>
46 #include <rte_lcore.h>
47 #include <rte_log.h>
48 #include <rte_branch_prediction.h>
49 #include <rte_ring.h>
50 #include <rte_memcpy.h>
51 #include <rte_common.h>
52 
53 #include "rte_mempool_trace_fp.h"
54 
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
58 
59 #define RTE_MEMPOOL_HEADER_COOKIE1  0xbadbadbadadd2e55ULL /**< Header cookie. */
60 #define RTE_MEMPOOL_HEADER_COOKIE2  0xf2eef2eedadd2e55ULL /**< Header cookie. */
61 #define RTE_MEMPOOL_TRAILER_COOKIE  0xadd2e55badbadbadULL /**< Trailer cookie.*/
62 
63 #ifdef RTE_LIBRTE_MEMPOOL_STATS
64 /**
65  * A structure that stores the mempool statistics (per-lcore).
66  * Note: Cache stats (put_cache_bulk/objs, get_cache_bulk/objs) are not
67  * captured since they can be calculated from other stats.
68  * For example: put_cache_objs = put_objs - put_common_pool_objs.
69  */
70 struct __rte_cache_aligned rte_mempool_debug_stats {
71 	uint64_t put_bulk;             /**< Number of puts. */
72 	uint64_t put_objs;             /**< Number of objects successfully put. */
73 	uint64_t put_common_pool_bulk; /**< Number of bulks enqueued in common pool. */
74 	uint64_t put_common_pool_objs; /**< Number of objects enqueued in common pool. */
75 	uint64_t get_common_pool_bulk; /**< Number of bulks dequeued from common pool. */
76 	uint64_t get_common_pool_objs; /**< Number of objects dequeued from common pool. */
77 	uint64_t get_success_bulk;     /**< Successful allocation number. */
78 	uint64_t get_success_objs;     /**< Objects successfully allocated. */
79 	uint64_t get_fail_bulk;        /**< Failed allocation number. */
80 	uint64_t get_fail_objs;        /**< Objects that failed to be allocated. */
81 	uint64_t get_success_blks;     /**< Successful allocation number of contiguous blocks. */
82 	uint64_t get_fail_blks;        /**< Failed allocation number of contiguous blocks. */
83 	RTE_CACHE_GUARD;
84 };
85 #endif
86 
87 /**
88  * A structure that stores a per-core object cache.
89  */
90 struct __rte_cache_aligned rte_mempool_cache {
91 	uint32_t size;	      /**< Size of the cache */
92 	uint32_t flushthresh; /**< Threshold before we flush excess elements */
93 	uint32_t len;	      /**< Current cache count */
94 #ifdef RTE_LIBRTE_MEMPOOL_STATS
95 	uint32_t unused;
96 	/*
97 	 * Alternative location for the most frequently updated mempool statistics (per-lcore),
98 	 * providing faster update access when using a mempool cache.
99 	 */
100 	struct {
101 		uint64_t put_bulk;          /**< Number of puts. */
102 		uint64_t put_objs;          /**< Number of objects successfully put. */
103 		uint64_t get_success_bulk;  /**< Successful allocation number. */
104 		uint64_t get_success_objs;  /**< Objects successfully allocated. */
105 	} stats;                        /**< Statistics */
106 #endif
107 	/**
108 	 * Cache objects
109 	 *
110 	 * Cache is allocated to this size to allow it to overflow in certain
111 	 * cases to avoid needless emptying of cache.
112 	 */
113 	alignas(RTE_CACHE_LINE_SIZE) void *objs[RTE_MEMPOOL_CACHE_MAX_SIZE * 2];
114 };
115 
116 /**
117  * A structure that stores the size of mempool elements.
118  */
119 struct rte_mempool_objsz {
120 	uint32_t elt_size;     /**< Size of an element. */
121 	uint32_t header_size;  /**< Size of header (before elt). */
122 	uint32_t trailer_size; /**< Size of trailer (after elt). */
123 	uint32_t total_size;
124 	/**< Total size of an object (header + elt + trailer). */
125 };
126 
127 /**< Maximum length of a memory pool's name. */
128 #define RTE_MEMPOOL_NAMESIZE (RTE_RING_NAMESIZE - \
129 			      sizeof(RTE_MEMPOOL_MZ_PREFIX) + 1)
130 #define RTE_MEMPOOL_MZ_PREFIX "MP_"
131 
132 /* "MP_<name>" */
133 #define	RTE_MEMPOOL_MZ_FORMAT	RTE_MEMPOOL_MZ_PREFIX "%s"
134 
135 #ifndef RTE_MEMPOOL_ALIGN
136 /**
137  * Alignment of elements inside mempool.
138  */
139 #define RTE_MEMPOOL_ALIGN	RTE_CACHE_LINE_SIZE
140 #endif
141 
142 #define RTE_MEMPOOL_ALIGN_MASK	(RTE_MEMPOOL_ALIGN - 1)
143 
144 /**
145  * Mempool object header structure
146  *
147  * Each object stored in mempools are prefixed by this header structure,
148  * it allows to retrieve the mempool pointer from the object and to
149  * iterate on all objects attached to a mempool. When debug is enabled,
150  * a cookie is also added in this structure preventing corruptions and
151  * double-frees.
152  */
153 struct rte_mempool_objhdr {
154 	RTE_STAILQ_ENTRY(rte_mempool_objhdr) next; /**< Next in list. */
155 	struct rte_mempool *mp;          /**< The mempool owning the object. */
156 	rte_iova_t iova;                 /**< IO address of the object. */
157 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
158 	uint64_t cookie;                 /**< Debug cookie. */
159 #endif
160 };
161 
162 /**
163  * A list of object headers type
164  */
165 RTE_STAILQ_HEAD(rte_mempool_objhdr_list, rte_mempool_objhdr);
166 
167 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
168 
169 /**
170  * Mempool object trailer structure
171  *
172  * In debug mode, each object stored in mempools are suffixed by this
173  * trailer structure containing a cookie preventing memory corruptions.
174  */
175 struct rte_mempool_objtlr {
176 	uint64_t cookie;                 /**< Debug cookie. */
177 };
178 
179 #endif
180 
181 /**
182  * @internal Logtype used for mempool related messages.
183  */
184 extern int rte_mempool_logtype;
185 #define RTE_LOGTYPE_MEMPOOL	rte_mempool_logtype
186 #define RTE_MEMPOOL_LOG(level, ...) \
187 	RTE_LOG_LINE(level, MEMPOOL, "" __VA_ARGS__)
188 
189 /**
190  * A list of memory where objects are stored
191  */
192 RTE_STAILQ_HEAD(rte_mempool_memhdr_list, rte_mempool_memhdr);
193 
194 /**
195  * Callback used to free a memory chunk
196  */
197 typedef void (rte_mempool_memchunk_free_cb_t)(struct rte_mempool_memhdr *memhdr,
198 	void *opaque);
199 
200 /**
201  * Mempool objects memory header structure
202  *
203  * The memory chunks where objects are stored. Each chunk is virtually
204  * and physically contiguous.
205  */
206 struct rte_mempool_memhdr {
207 	RTE_STAILQ_ENTRY(rte_mempool_memhdr) next; /**< Next in list. */
208 	struct rte_mempool *mp;  /**< The mempool owning the chunk */
209 	void *addr;              /**< Virtual address of the chunk */
210 	rte_iova_t iova;         /**< IO address of the chunk */
211 	size_t len;              /**< length of the chunk */
212 	rte_mempool_memchunk_free_cb_t *free_cb; /**< Free callback */
213 	void *opaque;            /**< Argument passed to the free callback */
214 };
215 
216 /**
217  * Additional information about the mempool
218  *
219  * The structure is cache-line aligned to avoid ABI breakages in
220  * a number of cases when something small is added.
221  */
222 struct __rte_cache_aligned rte_mempool_info {
223 	/** Number of objects in the contiguous block */
224 	unsigned int contig_block_size;
225 };
226 
227 /**
228  * The RTE mempool structure.
229  */
230 struct __rte_cache_aligned rte_mempool {
231 	char name[RTE_MEMPOOL_NAMESIZE]; /**< Name of mempool. */
232 	union {
233 		void *pool_data;         /**< Ring or pool to store objects. */
234 		uint64_t pool_id;        /**< External mempool identifier. */
235 	};
236 	void *pool_config;               /**< optional args for ops alloc. */
237 	const struct rte_memzone *mz;    /**< Memzone where pool is alloc'd. */
238 	unsigned int flags;              /**< Flags of the mempool. */
239 	int socket_id;                   /**< Socket id passed at create. */
240 	uint32_t size;                   /**< Max size of the mempool. */
241 	uint32_t cache_size;
242 	/**< Size of per-lcore default local cache. */
243 
244 	uint32_t elt_size;               /**< Size of an element. */
245 	uint32_t header_size;            /**< Size of header (before elt). */
246 	uint32_t trailer_size;           /**< Size of trailer (after elt). */
247 
248 	unsigned private_data_size;      /**< Size of private data. */
249 	/**
250 	 * Index into rte_mempool_ops_table array of mempool ops
251 	 * structs, which contain callback function pointers.
252 	 * We're using an index here rather than pointers to the callbacks
253 	 * to facilitate any secondary processes that may want to use
254 	 * this mempool.
255 	 */
256 	int32_t ops_index;
257 
258 	struct rte_mempool_cache *local_cache; /**< Per-lcore local cache */
259 
260 	uint32_t populated_size;         /**< Number of populated objects. */
261 	struct rte_mempool_objhdr_list elt_list; /**< List of objects in pool */
262 	uint32_t nb_mem_chunks;          /**< Number of memory chunks */
263 	struct rte_mempool_memhdr_list mem_list; /**< List of memory chunks */
264 
265 #ifdef RTE_LIBRTE_MEMPOOL_STATS
266 	/** Per-lcore statistics.
267 	 *
268 	 * Plus one, for unregistered non-EAL threads.
269 	 */
270 	struct rte_mempool_debug_stats stats[RTE_MAX_LCORE + 1];
271 #endif
272 };
273 
274 /** Spreading among memory channels not required. */
275 #define RTE_MEMPOOL_F_NO_SPREAD		0x0001
276 /**
277  * Backward compatibility synonym for RTE_MEMPOOL_F_NO_SPREAD.
278  * To be deprecated.
279  */
280 #define MEMPOOL_F_NO_SPREAD		RTE_MEMPOOL_F_NO_SPREAD
281 /** Do not align objects on cache lines. */
282 #define RTE_MEMPOOL_F_NO_CACHE_ALIGN	0x0002
283 /**
284  * Backward compatibility synonym for RTE_MEMPOOL_F_NO_CACHE_ALIGN.
285  * To be deprecated.
286  */
287 #define MEMPOOL_F_NO_CACHE_ALIGN	RTE_MEMPOOL_F_NO_CACHE_ALIGN
288 /** Default put is "single-producer". */
289 #define RTE_MEMPOOL_F_SP_PUT		0x0004
290 /**
291  * Backward compatibility synonym for RTE_MEMPOOL_F_SP_PUT.
292  * To be deprecated.
293  */
294 #define MEMPOOL_F_SP_PUT		RTE_MEMPOOL_F_SP_PUT
295 /** Default get is "single-consumer". */
296 #define RTE_MEMPOOL_F_SC_GET		0x0008
297 /**
298  * Backward compatibility synonym for RTE_MEMPOOL_F_SC_GET.
299  * To be deprecated.
300  */
301 #define MEMPOOL_F_SC_GET		RTE_MEMPOOL_F_SC_GET
302 /** Internal: pool is created. */
303 #define RTE_MEMPOOL_F_POOL_CREATED	0x0010
304 /** Don't need IOVA contiguous objects. */
305 #define RTE_MEMPOOL_F_NO_IOVA_CONTIG	0x0020
306 /**
307  * Backward compatibility synonym for RTE_MEMPOOL_F_NO_IOVA_CONTIG.
308  * To be deprecated.
309  */
310 #define MEMPOOL_F_NO_IOVA_CONTIG	RTE_MEMPOOL_F_NO_IOVA_CONTIG
311 /** Internal: no object from the pool can be used for device IO (DMA). */
312 #define RTE_MEMPOOL_F_NON_IO		0x0040
313 
314 /**
315  * This macro lists all the mempool flags an application may request.
316  */
317 #define RTE_MEMPOOL_VALID_USER_FLAGS (RTE_MEMPOOL_F_NO_SPREAD \
318 	| RTE_MEMPOOL_F_NO_CACHE_ALIGN \
319 	| RTE_MEMPOOL_F_SP_PUT \
320 	| RTE_MEMPOOL_F_SC_GET \
321 	| RTE_MEMPOOL_F_NO_IOVA_CONTIG \
322 	)
323 
324 /**
325  * @internal When stats is enabled, store some statistics.
326  *
327  * @param mp
328  *   Pointer to the memory pool.
329  * @param name
330  *   Name of the statistics field to increment in the memory pool.
331  * @param n
332  *   Number to add to the statistics.
333  */
334 #ifdef RTE_LIBRTE_MEMPOOL_STATS
335 #define RTE_MEMPOOL_STAT_ADD(mp, name, n) do {                                  \
336 		unsigned int __lcore_id = rte_lcore_id();                       \
337 		if (likely(__lcore_id < RTE_MAX_LCORE))                         \
338 			(mp)->stats[__lcore_id].name += (n);                    \
339 		else                                                            \
340 			rte_atomic_fetch_add_explicit(&((mp)->stats[RTE_MAX_LCORE].name),  \
341 					   (n), rte_memory_order_relaxed);              \
342 	} while (0)
343 #else
344 #define RTE_MEMPOOL_STAT_ADD(mp, name, n) do {} while (0)
345 #endif
346 
347 /**
348  * @internal When stats is enabled, store some statistics.
349  *
350  * @param cache
351  *   Pointer to the memory pool cache.
352  * @param name
353  *   Name of the statistics field to increment in the memory pool cache.
354  * @param n
355  *   Number to add to the statistics.
356  */
357 #ifdef RTE_LIBRTE_MEMPOOL_STATS
358 #define RTE_MEMPOOL_CACHE_STAT_ADD(cache, name, n) ((cache)->stats.name += (n))
359 #else
360 #define RTE_MEMPOOL_CACHE_STAT_ADD(cache, name, n) do {} while (0)
361 #endif
362 
363 /**
364  * @internal Calculate the size of the mempool header.
365  *
366  * @param mp
367  *   Pointer to the memory pool.
368  * @param cs
369  *   Size of the per-lcore cache.
370  */
371 #define RTE_MEMPOOL_HEADER_SIZE(mp, cs) \
372 	(sizeof(*(mp)) + (((cs) == 0) ? 0 : \
373 	(sizeof(struct rte_mempool_cache) * RTE_MAX_LCORE)))
374 
375 /* return the header of a mempool object (internal) */
376 static inline struct rte_mempool_objhdr *
rte_mempool_get_header(void * obj)377 rte_mempool_get_header(void *obj)
378 {
379 	return (struct rte_mempool_objhdr *)RTE_PTR_SUB(obj,
380 		sizeof(struct rte_mempool_objhdr));
381 }
382 
383 /**
384  * Return a pointer to the mempool owning this object.
385  *
386  * @param obj
387  *   An object that is owned by a pool. If this is not the case,
388  *   the behavior is undefined.
389  * @return
390  *   A pointer to the mempool structure.
391  */
rte_mempool_from_obj(void * obj)392 static inline struct rte_mempool *rte_mempool_from_obj(void *obj)
393 {
394 	struct rte_mempool_objhdr *hdr = rte_mempool_get_header(obj);
395 	return hdr->mp;
396 }
397 
398 /* return the trailer of a mempool object (internal) */
rte_mempool_get_trailer(void * obj)399 static inline struct rte_mempool_objtlr *rte_mempool_get_trailer(void *obj)
400 {
401 	struct rte_mempool *mp = rte_mempool_from_obj(obj);
402 	return (struct rte_mempool_objtlr *)RTE_PTR_ADD(obj, mp->elt_size);
403 }
404 
405 /**
406  * @internal Check and update cookies or panic.
407  *
408  * @param mp
409  *   Pointer to the memory pool.
410  * @param obj_table_const
411  *   Pointer to a table of void * pointers (objects).
412  * @param n
413  *   Index of object in object table.
414  * @param free
415  *   - 0: object is supposed to be allocated, mark it as free
416  *   - 1: object is supposed to be free, mark it as allocated
417  *   - 2: just check that cookie is valid (free or allocated)
418  */
419 void rte_mempool_check_cookies(const struct rte_mempool *mp,
420 	void * const *obj_table_const, unsigned n, int free);
421 
422 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
423 #define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) \
424 	rte_mempool_check_cookies(mp, obj_table_const, n, free)
425 #else
426 #define RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table_const, n, free) do {} while (0)
427 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
428 
429 /**
430  * @internal Check contiguous object blocks and update cookies or panic.
431  *
432  * @param mp
433  *   Pointer to the memory pool.
434  * @param first_obj_table_const
435  *   Pointer to a table of void * pointers (first object of the contiguous
436  *   object blocks).
437  * @param n
438  *   Number of contiguous object blocks.
439  * @param free
440  *   - 0: object is supposed to be allocated, mark it as free
441  *   - 1: object is supposed to be free, mark it as allocated
442  *   - 2: just check that cookie is valid (free or allocated)
443  */
444 void rte_mempool_contig_blocks_check_cookies(const struct rte_mempool *mp,
445 	void * const *first_obj_table_const, unsigned int n, int free);
446 
447 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
448 #define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
449 						free) \
450 	rte_mempool_contig_blocks_check_cookies(mp, first_obj_table_const, n, \
451 						free)
452 #else
453 #define RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table_const, n, \
454 						free) \
455 	do {} while (0)
456 #endif /* RTE_LIBRTE_MEMPOOL_DEBUG */
457 
458 #define RTE_MEMPOOL_OPS_NAMESIZE 32 /**< Max length of ops struct name. */
459 
460 /**
461  * Prototype for implementation specific data provisioning function.
462  *
463  * The function should provide the implementation specific memory for
464  * use by the other mempool ops functions in a given mempool ops struct.
465  * E.g. the default ops provides an instance of the rte_ring for this purpose.
466  * it will most likely point to a different type of data structure, and
467  * will be transparent to the application programmer.
468  * This function should set mp->pool_data.
469  */
470 typedef int (*rte_mempool_alloc_t)(struct rte_mempool *mp);
471 
472 /**
473  * Free the opaque private data pointed to by mp->pool_data pointer.
474  */
475 typedef void (*rte_mempool_free_t)(struct rte_mempool *mp);
476 
477 /**
478  * Enqueue 'n' objects into the external pool.
479  * @return
480  *   - 0: Success
481  *   - <0: Error
482  */
483 typedef int (*rte_mempool_enqueue_t)(struct rte_mempool *mp,
484 		void * const *obj_table, unsigned int n);
485 
486 /**
487  * Dequeue 'n' objects from the external pool.
488  * @return
489  *   - 0: Success
490  *   - <0: Error
491  */
492 typedef int (*rte_mempool_dequeue_t)(struct rte_mempool *mp,
493 		void **obj_table, unsigned int n);
494 
495 /**
496  * Dequeue a number of contiguous object blocks from the external pool.
497  */
498 typedef int (*rte_mempool_dequeue_contig_blocks_t)(struct rte_mempool *mp,
499 		 void **first_obj_table, unsigned int n);
500 
501 /**
502  * Return the number of available objects in the external pool.
503  */
504 typedef unsigned (*rte_mempool_get_count)(const struct rte_mempool *mp);
505 
506 /**
507  * Calculate memory size required to store given number of objects.
508  *
509  * If mempool objects are not required to be IOVA-contiguous
510  * (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is set), min_chunk_size defines
511  * virtually contiguous chunk size. Otherwise, if mempool objects must
512  * be IOVA-contiguous (the flag RTE_MEMPOOL_F_NO_IOVA_CONTIG is clear),
513  * min_chunk_size defines IOVA-contiguous chunk size.
514  *
515  * @param[in] mp
516  *   Pointer to the memory pool.
517  * @param[in] obj_num
518  *   Number of objects.
519  * @param[in] pg_shift
520  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
521  * @param[out] min_chunk_size
522  *   Location for minimum size of the memory chunk which may be used to
523  *   store memory pool objects.
524  * @param[out] align
525  *   Location for required memory chunk alignment.
526  * @return
527  *   Required memory size.
528  */
529 typedef ssize_t (*rte_mempool_calc_mem_size_t)(const struct rte_mempool *mp,
530 		uint32_t obj_num,  uint32_t pg_shift,
531 		size_t *min_chunk_size, size_t *align);
532 
533 /**
534  * @internal Helper to calculate memory size required to store given
535  * number of objects.
536  *
537  * This function is internal to mempool library and mempool drivers.
538  *
539  * If page boundaries may be ignored, it is just a product of total
540  * object size including header and trailer and number of objects.
541  * Otherwise, it is a number of pages required to store given number of
542  * objects without crossing page boundary.
543  *
544  * Note that if object size is bigger than page size, then it assumes
545  * that pages are grouped in subsets of physically continuous pages big
546  * enough to store at least one object.
547  *
548  * Minimum size of memory chunk is the total element size.
549  * Required memory chunk alignment is the cache line size.
550  *
551  * @param[in] mp
552  *   A pointer to the mempool structure.
553  * @param[in] obj_num
554  *   Number of objects to be added in mempool.
555  * @param[in] pg_shift
556  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
557  * @param[in] chunk_reserve
558  *   Amount of memory that must be reserved at the beginning of each page,
559  *   or at the beginning of the memory area if pg_shift is 0.
560  * @param[out] min_chunk_size
561  *   Location for minimum size of the memory chunk which may be used to
562  *   store memory pool objects.
563  * @param[out] align
564  *   Location for required memory chunk alignment.
565  * @return
566  *   Required memory size.
567  */
568 ssize_t rte_mempool_op_calc_mem_size_helper(const struct rte_mempool *mp,
569 		uint32_t obj_num, uint32_t pg_shift, size_t chunk_reserve,
570 		size_t *min_chunk_size, size_t *align);
571 
572 /**
573  * Default way to calculate memory size required to store given number of
574  * objects.
575  *
576  * Equivalent to rte_mempool_op_calc_mem_size_helper(mp, obj_num, pg_shift,
577  * 0, min_chunk_size, align).
578  */
579 ssize_t rte_mempool_op_calc_mem_size_default(const struct rte_mempool *mp,
580 		uint32_t obj_num, uint32_t pg_shift,
581 		size_t *min_chunk_size, size_t *align);
582 
583 /**
584  * Function to be called for each populated object.
585  *
586  * @param[in] mp
587  *   A pointer to the mempool structure.
588  * @param[in] opaque
589  *   An opaque pointer passed to iterator.
590  * @param[in] vaddr
591  *   Object virtual address.
592  * @param[in] iova
593  *   Input/output virtual address of the object or RTE_BAD_IOVA.
594  */
595 typedef void (rte_mempool_populate_obj_cb_t)(struct rte_mempool *mp,
596 		void *opaque, void *vaddr, rte_iova_t iova);
597 
598 /**
599  * Populate memory pool objects using provided memory chunk.
600  *
601  * Populated objects should be enqueued to the pool, e.g. using
602  * rte_mempool_ops_enqueue_bulk().
603  *
604  * If the given IO address is unknown (iova = RTE_BAD_IOVA),
605  * the chunk doesn't need to be physically contiguous (only virtually),
606  * and allocated objects may span two pages.
607  *
608  * @param[in] mp
609  *   A pointer to the mempool structure.
610  * @param[in] max_objs
611  *   Maximum number of objects to be populated.
612  * @param[in] vaddr
613  *   The virtual address of memory that should be used to store objects.
614  * @param[in] iova
615  *   The IO address
616  * @param[in] len
617  *   The length of memory in bytes.
618  * @param[in] obj_cb
619  *   Callback function to be executed for each populated object.
620  * @param[in] obj_cb_arg
621  *   An opaque pointer passed to the callback function.
622  * @return
623  *   The number of objects added on success.
624  *   On error, no objects are populated and a negative errno is returned.
625  */
626 typedef int (*rte_mempool_populate_t)(struct rte_mempool *mp,
627 		unsigned int max_objs,
628 		void *vaddr, rte_iova_t iova, size_t len,
629 		rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
630 
631 /**
632  * Align objects on addresses multiple of total_elt_sz.
633  */
634 #define RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ 0x0001
635 
636 /**
637  * @internal Helper to populate memory pool object using provided memory
638  * chunk: just slice objects one by one, taking care of not
639  * crossing page boundaries.
640  *
641  * If RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ is set in flags, the addresses
642  * of object headers will be aligned on a multiple of total_elt_sz.
643  * This feature is used by octeontx hardware.
644  *
645  * This function is internal to mempool library and mempool drivers.
646  *
647  * @param[in] mp
648  *   A pointer to the mempool structure.
649  * @param[in] flags
650  *   Logical OR of following flags:
651  *   - RTE_MEMPOOL_POPULATE_F_ALIGN_OBJ: align objects on addresses
652  *     multiple of total_elt_sz.
653  * @param[in] max_objs
654  *   Maximum number of objects to be added in mempool.
655  * @param[in] vaddr
656  *   The virtual address of memory that should be used to store objects.
657  * @param[in] iova
658  *   The IO address corresponding to vaddr, or RTE_BAD_IOVA.
659  * @param[in] len
660  *   The length of memory in bytes.
661  * @param[in] obj_cb
662  *   Callback function to be executed for each populated object.
663  * @param[in] obj_cb_arg
664  *   An opaque pointer passed to the callback function.
665  * @return
666  *   The number of objects added in mempool.
667  */
668 int rte_mempool_op_populate_helper(struct rte_mempool *mp,
669 		unsigned int flags, unsigned int max_objs,
670 		void *vaddr, rte_iova_t iova, size_t len,
671 		rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
672 
673 /**
674  * Default way to populate memory pool object using provided memory chunk.
675  *
676  * Equivalent to rte_mempool_op_populate_helper(mp, 0, max_objs, vaddr, iova,
677  * len, obj_cb, obj_cb_arg).
678  */
679 int rte_mempool_op_populate_default(struct rte_mempool *mp,
680 		unsigned int max_objs,
681 		void *vaddr, rte_iova_t iova, size_t len,
682 		rte_mempool_populate_obj_cb_t *obj_cb, void *obj_cb_arg);
683 
684 /**
685  * Get some additional information about a mempool.
686  */
687 typedef int (*rte_mempool_get_info_t)(const struct rte_mempool *mp,
688 		struct rte_mempool_info *info);
689 
690 
691 /** Structure defining mempool operations structure */
692 struct __rte_cache_aligned rte_mempool_ops {
693 	char name[RTE_MEMPOOL_OPS_NAMESIZE]; /**< Name of mempool ops struct. */
694 	rte_mempool_alloc_t alloc;       /**< Allocate private data. */
695 	rte_mempool_free_t free;         /**< Free the external pool. */
696 	rte_mempool_enqueue_t enqueue;   /**< Enqueue an object. */
697 	rte_mempool_dequeue_t dequeue;   /**< Dequeue an object. */
698 	rte_mempool_get_count get_count; /**< Get qty of available objs. */
699 	/**
700 	 * Optional callback to calculate memory size required to
701 	 * store specified number of objects.
702 	 */
703 	rte_mempool_calc_mem_size_t calc_mem_size;
704 	/**
705 	 * Optional callback to populate mempool objects using
706 	 * provided memory chunk.
707 	 */
708 	rte_mempool_populate_t populate;
709 	/**
710 	 * Get mempool info
711 	 */
712 	rte_mempool_get_info_t get_info;
713 	/**
714 	 * Dequeue a number of contiguous object blocks.
715 	 */
716 	rte_mempool_dequeue_contig_blocks_t dequeue_contig_blocks;
717 };
718 
719 #define RTE_MEMPOOL_MAX_OPS_IDX 16  /**< Max registered ops structs */
720 
721 /**
722  * Structure storing the table of registered ops structs, each of which contain
723  * the function pointers for the mempool ops functions.
724  * Each process has its own storage for this ops struct array so that
725  * the mempools can be shared across primary and secondary processes.
726  * The indices used to access the array are valid across processes, whereas
727  * any function pointers stored directly in the mempool struct would not be.
728  * This results in us simply having "ops_index" in the mempool struct.
729  */
730 struct __rte_cache_aligned rte_mempool_ops_table {
731 	rte_spinlock_t sl;     /**< Spinlock for add/delete. */
732 	uint32_t num_ops;      /**< Number of used ops structs in the table. */
733 	/**
734 	 * Storage for all possible ops structs.
735 	 */
736 	struct rte_mempool_ops ops[RTE_MEMPOOL_MAX_OPS_IDX];
737 };
738 
739 /** Array of registered ops structs. */
740 extern struct rte_mempool_ops_table rte_mempool_ops_table;
741 
742 /**
743  * @internal Get the mempool ops struct from its index.
744  *
745  * @param ops_index
746  *   The index of the ops struct in the ops struct table. It must be a valid
747  *   index: (0 <= idx < num_ops).
748  * @return
749  *   The pointer to the ops struct in the table.
750  */
751 static inline struct rte_mempool_ops *
rte_mempool_get_ops(int ops_index)752 rte_mempool_get_ops(int ops_index)
753 {
754 	RTE_VERIFY((ops_index >= 0) && (ops_index < RTE_MEMPOOL_MAX_OPS_IDX));
755 
756 	return &rte_mempool_ops_table.ops[ops_index];
757 }
758 
759 /**
760  * @internal Wrapper for mempool_ops alloc callback.
761  *
762  * @param mp
763  *   Pointer to the memory pool.
764  * @return
765  *   - 0: Success; successfully allocated mempool pool_data.
766  *   - <0: Error; code of alloc function.
767  */
768 int
769 rte_mempool_ops_alloc(struct rte_mempool *mp);
770 
771 /**
772  * @internal Wrapper for mempool_ops dequeue callback.
773  *
774  * @param mp
775  *   Pointer to the memory pool.
776  * @param obj_table
777  *   Pointer to a table of void * pointers (objects).
778  * @param n
779  *   Number of objects to get.
780  * @return
781  *   - 0: Success; got n objects.
782  *   - <0: Error; code of dequeue function.
783  */
784 static inline int
rte_mempool_ops_dequeue_bulk(struct rte_mempool * mp,void ** obj_table,unsigned n)785 rte_mempool_ops_dequeue_bulk(struct rte_mempool *mp,
786 		void **obj_table, unsigned n)
787 {
788 	struct rte_mempool_ops *ops;
789 	int ret;
790 
791 	rte_mempool_trace_ops_dequeue_bulk(mp, obj_table, n);
792 	ops = rte_mempool_get_ops(mp->ops_index);
793 	ret = ops->dequeue(mp, obj_table, n);
794 	if (ret == 0) {
795 		RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_bulk, 1);
796 		RTE_MEMPOOL_STAT_ADD(mp, get_common_pool_objs, n);
797 	}
798 	return ret;
799 }
800 
801 /**
802  * @internal Wrapper for mempool_ops dequeue_contig_blocks callback.
803  *
804  * @param[in] mp
805  *   Pointer to the memory pool.
806  * @param[out] first_obj_table
807  *   Pointer to a table of void * pointers (first objects).
808  * @param[in] n
809  *   Number of blocks to get.
810  * @return
811  *   - 0: Success; got n objects.
812  *   - <0: Error; code of dequeue function.
813  */
814 static inline int
rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)815 rte_mempool_ops_dequeue_contig_blocks(struct rte_mempool *mp,
816 		void **first_obj_table, unsigned int n)
817 {
818 	struct rte_mempool_ops *ops;
819 
820 	ops = rte_mempool_get_ops(mp->ops_index);
821 	RTE_ASSERT(ops->dequeue_contig_blocks != NULL);
822 	rte_mempool_trace_ops_dequeue_contig_blocks(mp, first_obj_table, n);
823 	return ops->dequeue_contig_blocks(mp, first_obj_table, n);
824 }
825 
826 /**
827  * @internal wrapper for mempool_ops enqueue callback.
828  *
829  * @param mp
830  *   Pointer to the memory pool.
831  * @param obj_table
832  *   Pointer to a table of void * pointers (objects).
833  * @param n
834  *   Number of objects to put.
835  * @return
836  *   - 0: Success; n objects supplied.
837  *   - <0: Error; code of enqueue function.
838  */
839 static inline int
rte_mempool_ops_enqueue_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned n)840 rte_mempool_ops_enqueue_bulk(struct rte_mempool *mp, void * const *obj_table,
841 		unsigned n)
842 {
843 	struct rte_mempool_ops *ops;
844 	int ret;
845 
846 	RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_bulk, 1);
847 	RTE_MEMPOOL_STAT_ADD(mp, put_common_pool_objs, n);
848 	rte_mempool_trace_ops_enqueue_bulk(mp, obj_table, n);
849 	ops = rte_mempool_get_ops(mp->ops_index);
850 	ret = ops->enqueue(mp, obj_table, n);
851 #ifdef RTE_LIBRTE_MEMPOOL_DEBUG
852 	if (unlikely(ret < 0))
853 		RTE_MEMPOOL_LOG(CRIT, "cannot enqueue %u objects to mempool %s",
854 			n, mp->name);
855 #endif
856 	return ret;
857 }
858 
859 /**
860  * @internal wrapper for mempool_ops get_count callback.
861  *
862  * @param mp
863  *   Pointer to the memory pool.
864  * @return
865  *   The number of available objects in the external pool.
866  */
867 unsigned
868 rte_mempool_ops_get_count(const struct rte_mempool *mp);
869 
870 /**
871  * @internal wrapper for mempool_ops calc_mem_size callback.
872  * API to calculate size of memory required to store specified number of
873  * object.
874  *
875  * @param[in] mp
876  *   Pointer to the memory pool.
877  * @param[in] obj_num
878  *   Number of objects.
879  * @param[in] pg_shift
880  *   LOG2 of the physical pages size. If set to 0, ignore page boundaries.
881  * @param[out] min_chunk_size
882  *   Location for minimum size of the memory chunk which may be used to
883  *   store memory pool objects.
884  * @param[out] align
885  *   Location for required memory chunk alignment.
886  * @return
887  *   Required memory size aligned at page boundary.
888  */
889 ssize_t rte_mempool_ops_calc_mem_size(const struct rte_mempool *mp,
890 				      uint32_t obj_num, uint32_t pg_shift,
891 				      size_t *min_chunk_size, size_t *align);
892 
893 /**
894  * @internal wrapper for mempool_ops populate callback.
895  *
896  * Populate memory pool objects using provided memory chunk.
897  *
898  * @param[in] mp
899  *   A pointer to the mempool structure.
900  * @param[in] max_objs
901  *   Maximum number of objects to be populated.
902  * @param[in] vaddr
903  *   The virtual address of memory that should be used to store objects.
904  * @param[in] iova
905  *   The IO address
906  * @param[in] len
907  *   The length of memory in bytes.
908  * @param[in] obj_cb
909  *   Callback function to be executed for each populated object.
910  * @param[in] obj_cb_arg
911  *   An opaque pointer passed to the callback function.
912  * @return
913  *   The number of objects added on success.
914  *   On error, no objects are populated and a negative errno is returned.
915  */
916 int rte_mempool_ops_populate(struct rte_mempool *mp, unsigned int max_objs,
917 			     void *vaddr, rte_iova_t iova, size_t len,
918 			     rte_mempool_populate_obj_cb_t *obj_cb,
919 			     void *obj_cb_arg);
920 
921 /**
922  * Wrapper for mempool_ops get_info callback.
923  *
924  * @param[in] mp
925  *   Pointer to the memory pool.
926  * @param[out] info
927  *   Pointer to the rte_mempool_info structure
928  * @return
929  *   - 0: Success; The mempool driver supports retrieving supplementary
930  *        mempool information
931  *   - -ENOTSUP - doesn't support get_info ops (valid case).
932  */
933 int rte_mempool_ops_get_info(const struct rte_mempool *mp,
934 			 struct rte_mempool_info *info);
935 
936 /**
937  * @internal wrapper for mempool_ops free callback.
938  *
939  * @param mp
940  *   Pointer to the memory pool.
941  */
942 void
943 rte_mempool_ops_free(struct rte_mempool *mp);
944 
945 /**
946  * Set the ops of a mempool.
947  *
948  * This can only be done on a mempool that is not populated, i.e. just after
949  * a call to rte_mempool_create_empty().
950  *
951  * @param mp
952  *   Pointer to the memory pool.
953  * @param name
954  *   Name of the ops structure to use for this mempool.
955  * @param pool_config
956  *   Opaque data that can be passed by the application to the ops functions.
957  * @return
958  *   - 0: Success; the mempool is now using the requested ops functions.
959  *   - -EINVAL - Invalid ops struct name provided.
960  *   - -EEXIST - mempool already has an ops struct assigned.
961  */
962 int
963 rte_mempool_set_ops_byname(struct rte_mempool *mp, const char *name,
964 		void *pool_config);
965 
966 /**
967  * Register mempool operations.
968  *
969  * @param ops
970  *   Pointer to an ops structure to register.
971  * @return
972  *   - >=0: Success; return the index of the ops struct in the table.
973  *   - -EINVAL - some missing callbacks while registering ops struct.
974  *   - -ENOSPC - the maximum number of ops structs has been reached.
975  */
976 int rte_mempool_register_ops(const struct rte_mempool_ops *ops);
977 
978 /**
979  * Macro to statically register the ops of a mempool handler.
980  * Note that the rte_mempool_register_ops fails silently here when
981  * more than RTE_MEMPOOL_MAX_OPS_IDX is registered.
982  */
983 #define RTE_MEMPOOL_REGISTER_OPS(ops)				\
984 	RTE_INIT(mp_hdlr_init_##ops)				\
985 	{							\
986 		rte_mempool_register_ops(&ops);			\
987 	}
988 
989 /**
990  * An object callback function for mempool.
991  *
992  * Used by rte_mempool_create() and rte_mempool_obj_iter().
993  */
994 typedef void (rte_mempool_obj_cb_t)(struct rte_mempool *mp,
995 		void *opaque, void *obj, unsigned obj_idx);
996 typedef rte_mempool_obj_cb_t rte_mempool_obj_ctor_t; /* compat */
997 
998 /**
999  * A memory callback function for mempool.
1000  *
1001  * Used by rte_mempool_mem_iter().
1002  */
1003 typedef void (rte_mempool_mem_cb_t)(struct rte_mempool *mp,
1004 		void *opaque, struct rte_mempool_memhdr *memhdr,
1005 		unsigned mem_idx);
1006 
1007 /**
1008  * A mempool constructor callback function.
1009  *
1010  * Arguments are the mempool and the opaque pointer given by the user in
1011  * rte_mempool_create().
1012  */
1013 typedef void (rte_mempool_ctor_t)(struct rte_mempool *, void *);
1014 
1015 /**
1016  * Create a new mempool named *name* in memory.
1017  *
1018  * This function uses ``rte_memzone_reserve()`` to allocate memory. The
1019  * pool contains n elements of elt_size. Its size is set to n.
1020  *
1021  * @param name
1022  *   The name of the mempool.
1023  * @param n
1024  *   The number of elements in the mempool. The optimum size (in terms of
1025  *   memory usage) for a mempool is when n is a power of two minus one:
1026  *   n = (2^q - 1).
1027  * @param elt_size
1028  *   The size of each element.
1029  * @param cache_size
1030  *   If cache_size is non-zero, the rte_mempool library will try to
1031  *   limit the accesses to the common lockless pool, by maintaining a
1032  *   per-lcore object cache. This argument must be lower or equal to
1033  *   RTE_MEMPOOL_CACHE_MAX_SIZE and n / 1.5. It is advised to choose
1034  *   cache_size to have "n modulo cache_size == 0": if this is
1035  *   not the case, some elements will always stay in the pool and will
1036  *   never be used. The access to the per-lcore table is of course
1037  *   faster than the multi-producer/consumer pool. The cache can be
1038  *   disabled if the cache_size argument is set to 0; it can be useful to
1039  *   avoid losing objects in cache.
1040  * @param private_data_size
1041  *   The size of the private data appended after the mempool
1042  *   structure. This is useful for storing some private data after the
1043  *   mempool structure, as is done for rte_mbuf_pool for example.
1044  * @param mp_init
1045  *   A function pointer that is called for initialization of the pool,
1046  *   before object initialization. The user can initialize the private
1047  *   data in this function if needed. This parameter can be NULL if
1048  *   not needed.
1049  * @param mp_init_arg
1050  *   An opaque pointer to data that can be used in the mempool
1051  *   constructor function.
1052  * @param obj_init
1053  *   A function pointer that is called for each object at
1054  *   initialization of the pool. The user can set some meta data in
1055  *   objects if needed. This parameter can be NULL if not needed.
1056  *   The obj_init() function takes the mempool pointer, the init_arg,
1057  *   the object pointer and the object number as parameters.
1058  * @param obj_init_arg
1059  *   An opaque pointer to data that can be used as an argument for
1060  *   each call to the object constructor function.
1061  * @param socket_id
1062  *   The *socket_id* argument is the socket identifier in the case of
1063  *   NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1064  *   constraint for the reserved zone.
1065  * @param flags
1066  *   The *flags* arguments is an OR of following flags:
1067  *   - RTE_MEMPOOL_F_NO_SPREAD: By default, objects addresses are spread
1068  *     between channels in RAM: the pool allocator will add padding
1069  *     between objects depending on the hardware configuration. See
1070  *     Memory alignment constraints for details. If this flag is set,
1071  *     the allocator will just align them to a cache line.
1072  *   - RTE_MEMPOOL_F_NO_CACHE_ALIGN: By default, the returned objects are
1073  *     cache-aligned. This flag removes this constraint, and no
1074  *     padding will be present between objects. This flag implies
1075  *     RTE_MEMPOOL_F_NO_SPREAD.
1076  *   - RTE_MEMPOOL_F_SP_PUT: If this flag is set, the default behavior
1077  *     when using rte_mempool_put() or rte_mempool_put_bulk() is
1078  *     "single-producer". Otherwise, it is "multi-producers".
1079  *   - RTE_MEMPOOL_F_SC_GET: If this flag is set, the default behavior
1080  *     when using rte_mempool_get() or rte_mempool_get_bulk() is
1081  *     "single-consumer". Otherwise, it is "multi-consumers".
1082  *   - RTE_MEMPOOL_F_NO_IOVA_CONTIG: If set, allocated objects won't
1083  *     necessarily be contiguous in IO memory.
1084  * @return
1085  *   The pointer to the new allocated mempool, on success. NULL on error
1086  *   with rte_errno set appropriately. Possible rte_errno values include:
1087  *    - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
1088  *    - EINVAL - cache size provided is too large or an unknown flag was passed
1089  *    - ENOSPC - the maximum number of memzones has already been allocated
1090  *    - EEXIST - a memzone with the same name already exists
1091  *    - ENOMEM - no appropriate memory area found in which to create memzone
1092  */
1093 struct rte_mempool *
1094 rte_mempool_create(const char *name, unsigned n, unsigned elt_size,
1095 		   unsigned cache_size, unsigned private_data_size,
1096 		   rte_mempool_ctor_t *mp_init, void *mp_init_arg,
1097 		   rte_mempool_obj_cb_t *obj_init, void *obj_init_arg,
1098 		   int socket_id, unsigned flags);
1099 
1100 /**
1101  * Create an empty mempool
1102  *
1103  * The mempool is allocated and initialized, but it is not populated: no
1104  * memory is allocated for the mempool elements. The user has to call
1105  * rte_mempool_populate_*() to add memory chunks to the pool. Once
1106  * populated, the user may also want to initialize each object with
1107  * rte_mempool_obj_iter().
1108  *
1109  * @param name
1110  *   The name of the mempool.
1111  * @param n
1112  *   The maximum number of elements that can be added in the mempool.
1113  *   The optimum size (in terms of memory usage) for a mempool is when n
1114  *   is a power of two minus one: n = (2^q - 1).
1115  * @param elt_size
1116  *   The size of each element.
1117  * @param cache_size
1118  *   Size of the cache. See rte_mempool_create() for details.
1119  * @param private_data_size
1120  *   The size of the private data appended after the mempool
1121  *   structure. This is useful for storing some private data after the
1122  *   mempool structure, as is done for rte_mbuf_pool for example.
1123  * @param socket_id
1124  *   The *socket_id* argument is the socket identifier in the case of
1125  *   NUMA. The value can be *SOCKET_ID_ANY* if there is no NUMA
1126  *   constraint for the reserved zone.
1127  * @param flags
1128  *   Flags controlling the behavior of the mempool. See
1129  *   rte_mempool_create() for details.
1130  * @return
1131  *   The pointer to the new allocated mempool, on success. NULL on error
1132  *   with rte_errno set appropriately. See rte_mempool_create() for details.
1133  */
1134 struct rte_mempool *
1135 rte_mempool_create_empty(const char *name, unsigned n, unsigned elt_size,
1136 	unsigned cache_size, unsigned private_data_size,
1137 	int socket_id, unsigned flags);
1138 /**
1139  * Free a mempool
1140  *
1141  * Unlink the mempool from global list, free the memory chunks, and all
1142  * memory referenced by the mempool. The objects must not be used by
1143  * other cores as they will be freed.
1144  *
1145  * @param mp
1146  *   A pointer to the mempool structure.
1147  *   If NULL then, the function does nothing.
1148  */
1149 void
1150 rte_mempool_free(struct rte_mempool *mp);
1151 
1152 /**
1153  * Add physically contiguous memory for objects in the pool at init
1154  *
1155  * Add a virtually and physically contiguous memory chunk in the pool
1156  * where objects can be instantiated.
1157  *
1158  * If the given IO address is unknown (iova = RTE_BAD_IOVA),
1159  * the chunk doesn't need to be physically contiguous (only virtually),
1160  * and allocated objects may span two pages.
1161  *
1162  * @param mp
1163  *   A pointer to the mempool structure.
1164  * @param vaddr
1165  *   The virtual address of memory that should be used to store objects.
1166  * @param iova
1167  *   The IO address
1168  * @param len
1169  *   The length of memory in bytes.
1170  * @param free_cb
1171  *   The callback used to free this chunk when destroying the mempool.
1172  * @param opaque
1173  *   An opaque argument passed to free_cb.
1174  * @return
1175  *   The number of objects added on success (strictly positive).
1176  *   On error, the chunk is not added in the memory list of the
1177  *   mempool the following code is returned:
1178  *     (0): not enough room in chunk for one object.
1179  *     (-ENOSPC): mempool is already populated.
1180  *     (-ENOMEM): allocation failure.
1181  */
1182 int rte_mempool_populate_iova(struct rte_mempool *mp, char *vaddr,
1183 	rte_iova_t iova, size_t len, rte_mempool_memchunk_free_cb_t *free_cb,
1184 	void *opaque);
1185 
1186 /**
1187  * Add virtually contiguous memory for objects in the pool at init
1188  *
1189  * Add a virtually contiguous memory chunk in the pool where objects can
1190  * be instantiated.
1191  *
1192  * @param mp
1193  *   A pointer to the mempool structure.
1194  * @param addr
1195  *   The virtual address of memory that should be used to store objects.
1196  * @param len
1197  *   The length of memory in bytes.
1198  * @param pg_sz
1199  *   The size of memory pages in this virtual area.
1200  * @param free_cb
1201  *   The callback used to free this chunk when destroying the mempool.
1202  * @param opaque
1203  *   An opaque argument passed to free_cb.
1204  * @return
1205  *   The number of objects added on success (strictly positive).
1206  *   On error, the chunk is not added in the memory list of the
1207  *   mempool the following code is returned:
1208  *     (0): not enough room in chunk for one object.
1209  *     (-ENOSPC): mempool is already populated.
1210  *     (-ENOMEM): allocation failure.
1211  */
1212 int
1213 rte_mempool_populate_virt(struct rte_mempool *mp, char *addr,
1214 	size_t len, size_t pg_sz, rte_mempool_memchunk_free_cb_t *free_cb,
1215 	void *opaque);
1216 
1217 /**
1218  * Add memory for objects in the pool at init
1219  *
1220  * This is the default function used by rte_mempool_create() to populate
1221  * the mempool. It adds memory allocated using rte_memzone_reserve().
1222  *
1223  * @param mp
1224  *   A pointer to the mempool structure.
1225  * @return
1226  *   The number of objects added on success.
1227  *   On error, the chunk is not added in the memory list of the
1228  *   mempool and a negative errno is returned.
1229  */
1230 int rte_mempool_populate_default(struct rte_mempool *mp);
1231 
1232 /**
1233  * Add memory from anonymous mapping for objects in the pool at init
1234  *
1235  * This function mmap an anonymous memory zone that is locked in
1236  * memory to store the objects of the mempool.
1237  *
1238  * @param mp
1239  *   A pointer to the mempool structure.
1240  * @return
1241  *   The number of objects added on success.
1242  *   On error, 0 is returned, rte_errno is set, and the chunk is not added in
1243  *   the memory list of the mempool.
1244  */
1245 int rte_mempool_populate_anon(struct rte_mempool *mp);
1246 
1247 /**
1248  * Call a function for each mempool element
1249  *
1250  * Iterate across all objects attached to a rte_mempool and call the
1251  * callback function on it.
1252  *
1253  * @param mp
1254  *   A pointer to an initialized mempool.
1255  * @param obj_cb
1256  *   A function pointer that is called for each object.
1257  * @param obj_cb_arg
1258  *   An opaque pointer passed to the callback function.
1259  * @return
1260  *   Number of objects iterated.
1261  */
1262 uint32_t rte_mempool_obj_iter(struct rte_mempool *mp,
1263 	rte_mempool_obj_cb_t *obj_cb, void *obj_cb_arg);
1264 
1265 /**
1266  * Call a function for each mempool memory chunk
1267  *
1268  * Iterate across all memory chunks attached to a rte_mempool and call
1269  * the callback function on it.
1270  *
1271  * @param mp
1272  *   A pointer to an initialized mempool.
1273  * @param mem_cb
1274  *   A function pointer that is called for each memory chunk.
1275  * @param mem_cb_arg
1276  *   An opaque pointer passed to the callback function.
1277  * @return
1278  *   Number of memory chunks iterated.
1279  */
1280 uint32_t rte_mempool_mem_iter(struct rte_mempool *mp,
1281 	rte_mempool_mem_cb_t *mem_cb, void *mem_cb_arg);
1282 
1283 /**
1284  * Dump the status of the mempool to a file.
1285  *
1286  * @param f
1287  *   A pointer to a file for output
1288  * @param mp
1289  *   A pointer to the mempool structure.
1290  */
1291 void rte_mempool_dump(FILE *f, struct rte_mempool *mp);
1292 
1293 /**
1294  * Create a user-owned mempool cache.
1295  *
1296  * This can be used by unregistered non-EAL threads to enable caching when they
1297  * interact with a mempool.
1298  *
1299  * @param size
1300  *   The size of the mempool cache. See rte_mempool_create()'s cache_size
1301  *   parameter description for more information. The same limits and
1302  *   considerations apply here too.
1303  * @param socket_id
1304  *   The socket identifier in the case of NUMA. The value can be
1305  *   SOCKET_ID_ANY if there is no NUMA constraint for the reserved zone.
1306  */
1307 struct rte_mempool_cache *
1308 rte_mempool_cache_create(uint32_t size, int socket_id);
1309 
1310 /**
1311  * Free a user-owned mempool cache.
1312  *
1313  * @param cache
1314  *   A pointer to the mempool cache.
1315  */
1316 void
1317 rte_mempool_cache_free(struct rte_mempool_cache *cache);
1318 
1319 /**
1320  * Get a pointer to the per-lcore default mempool cache.
1321  *
1322  * @param mp
1323  *   A pointer to the mempool structure.
1324  * @param lcore_id
1325  *   The logical core id.
1326  * @return
1327  *   A pointer to the mempool cache or NULL if disabled or unregistered non-EAL
1328  *   thread.
1329  */
1330 static __rte_always_inline struct rte_mempool_cache *
rte_mempool_default_cache(struct rte_mempool * mp,unsigned lcore_id)1331 rte_mempool_default_cache(struct rte_mempool *mp, unsigned lcore_id)
1332 {
1333 	if (mp->cache_size == 0)
1334 		return NULL;
1335 
1336 	if (lcore_id >= RTE_MAX_LCORE)
1337 		return NULL;
1338 
1339 	rte_mempool_trace_default_cache(mp, lcore_id,
1340 		&mp->local_cache[lcore_id]);
1341 	return &mp->local_cache[lcore_id];
1342 }
1343 
1344 /**
1345  * Flush a user-owned mempool cache to the specified mempool.
1346  *
1347  * @param cache
1348  *   A pointer to the mempool cache.
1349  * @param mp
1350  *   A pointer to the mempool.
1351  */
1352 static __rte_always_inline void
rte_mempool_cache_flush(struct rte_mempool_cache * cache,struct rte_mempool * mp)1353 rte_mempool_cache_flush(struct rte_mempool_cache *cache,
1354 			struct rte_mempool *mp)
1355 {
1356 	if (cache == NULL)
1357 		cache = rte_mempool_default_cache(mp, rte_lcore_id());
1358 	if (cache == NULL || cache->len == 0)
1359 		return;
1360 	rte_mempool_trace_cache_flush(cache, mp);
1361 	rte_mempool_ops_enqueue_bulk(mp, cache->objs, cache->len);
1362 	cache->len = 0;
1363 }
1364 
1365 /**
1366  * @internal Put several objects back in the mempool; used internally.
1367  * @param mp
1368  *   A pointer to the mempool structure.
1369  * @param obj_table
1370  *   A pointer to a table of void * pointers (objects).
1371  * @param n
1372  *   The number of objects to store back in the mempool, must be strictly
1373  *   positive.
1374  * @param cache
1375  *   A pointer to a mempool cache structure. May be NULL if not needed.
1376  */
1377 static __rte_always_inline void
rte_mempool_do_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1378 rte_mempool_do_generic_put(struct rte_mempool *mp, void * const *obj_table,
1379 			   unsigned int n, struct rte_mempool_cache *cache)
1380 {
1381 	void **cache_objs;
1382 
1383 	/* No cache provided */
1384 	if (unlikely(cache == NULL))
1385 		goto driver_enqueue;
1386 
1387 	/* increment stat now, adding in mempool always success */
1388 	RTE_MEMPOOL_CACHE_STAT_ADD(cache, put_bulk, 1);
1389 	RTE_MEMPOOL_CACHE_STAT_ADD(cache, put_objs, n);
1390 
1391 	/* The request itself is too big for the cache */
1392 	if (unlikely(n > cache->flushthresh))
1393 		goto driver_enqueue_stats_incremented;
1394 
1395 	/*
1396 	 * The cache follows the following algorithm:
1397 	 *   1. If the objects cannot be added to the cache without crossing
1398 	 *      the flush threshold, flush the cache to the backend.
1399 	 *   2. Add the objects to the cache.
1400 	 */
1401 
1402 	if (cache->len + n <= cache->flushthresh) {
1403 		cache_objs = &cache->objs[cache->len];
1404 		cache->len += n;
1405 	} else {
1406 		cache_objs = &cache->objs[0];
1407 		rte_mempool_ops_enqueue_bulk(mp, cache_objs, cache->len);
1408 		cache->len = n;
1409 	}
1410 
1411 	/* Add the objects to the cache. */
1412 	rte_memcpy(cache_objs, obj_table, sizeof(void *) * n);
1413 
1414 	return;
1415 
1416 driver_enqueue:
1417 
1418 	/* increment stat now, adding in mempool always success */
1419 	RTE_MEMPOOL_STAT_ADD(mp, put_bulk, 1);
1420 	RTE_MEMPOOL_STAT_ADD(mp, put_objs, n);
1421 
1422 driver_enqueue_stats_incremented:
1423 
1424 	/* push objects to the backend */
1425 	rte_mempool_ops_enqueue_bulk(mp, obj_table, n);
1426 }
1427 
1428 
1429 /**
1430  * Put several objects back in the mempool.
1431  *
1432  * @param mp
1433  *   A pointer to the mempool structure.
1434  * @param obj_table
1435  *   A pointer to a table of void * pointers (objects).
1436  * @param n
1437  *   The number of objects to add in the mempool from the obj_table.
1438  * @param cache
1439  *   A pointer to a mempool cache structure. May be NULL if not needed.
1440  */
1441 static __rte_always_inline void
rte_mempool_generic_put(struct rte_mempool * mp,void * const * obj_table,unsigned int n,struct rte_mempool_cache * cache)1442 rte_mempool_generic_put(struct rte_mempool *mp, void * const *obj_table,
1443 			unsigned int n, struct rte_mempool_cache *cache)
1444 {
1445 	rte_mempool_trace_generic_put(mp, obj_table, n, cache);
1446 	RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 0);
1447 	rte_mempool_do_generic_put(mp, obj_table, n, cache);
1448 }
1449 
1450 /**
1451  * Put several objects back in the mempool.
1452  *
1453  * This function calls the multi-producer or the single-producer
1454  * version depending on the default behavior that was specified at
1455  * mempool creation time (see flags).
1456  *
1457  * @param mp
1458  *   A pointer to the mempool structure.
1459  * @param obj_table
1460  *   A pointer to a table of void * pointers (objects).
1461  * @param n
1462  *   The number of objects to add in the mempool from obj_table.
1463  */
1464 static __rte_always_inline void
rte_mempool_put_bulk(struct rte_mempool * mp,void * const * obj_table,unsigned int n)1465 rte_mempool_put_bulk(struct rte_mempool *mp, void * const *obj_table,
1466 		     unsigned int n)
1467 {
1468 	struct rte_mempool_cache *cache;
1469 	cache = rte_mempool_default_cache(mp, rte_lcore_id());
1470 	rte_mempool_trace_put_bulk(mp, obj_table, n, cache);
1471 	rte_mempool_generic_put(mp, obj_table, n, cache);
1472 }
1473 
1474 /**
1475  * Put one object back in the mempool.
1476  *
1477  * This function calls the multi-producer or the single-producer
1478  * version depending on the default behavior that was specified at
1479  * mempool creation time (see flags).
1480  *
1481  * @param mp
1482  *   A pointer to the mempool structure.
1483  * @param obj
1484  *   A pointer to the object to be added.
1485  */
1486 static __rte_always_inline void
rte_mempool_put(struct rte_mempool * mp,void * obj)1487 rte_mempool_put(struct rte_mempool *mp, void *obj)
1488 {
1489 	rte_mempool_put_bulk(mp, &obj, 1);
1490 }
1491 
1492 /**
1493  * @internal Get several objects from the mempool; used internally.
1494  * @param mp
1495  *   A pointer to the mempool structure.
1496  * @param obj_table
1497  *   A pointer to a table of void * pointers (objects).
1498  * @param n
1499  *   The number of objects to get, must be strictly positive.
1500  * @param cache
1501  *   A pointer to a mempool cache structure. May be NULL if not needed.
1502  * @return
1503  *   - 0: Success.
1504  *   - <0: Error; code of driver dequeue function.
1505  */
1506 static __rte_always_inline int
rte_mempool_do_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1507 rte_mempool_do_generic_get(struct rte_mempool *mp, void **obj_table,
1508 			   unsigned int n, struct rte_mempool_cache *cache)
1509 {
1510 	int ret;
1511 	unsigned int remaining;
1512 	uint32_t index, len;
1513 	void **cache_objs;
1514 
1515 	/* No cache provided */
1516 	if (unlikely(cache == NULL)) {
1517 		remaining = n;
1518 		goto driver_dequeue;
1519 	}
1520 
1521 	/* The cache is a stack, so copy will be in reverse order. */
1522 	cache_objs = &cache->objs[cache->len];
1523 
1524 	if (__rte_constant(n) && n <= cache->len) {
1525 		/*
1526 		 * The request size is known at build time, and
1527 		 * the entire request can be satisfied from the cache,
1528 		 * so let the compiler unroll the fixed length copy loop.
1529 		 */
1530 		cache->len -= n;
1531 		for (index = 0; index < n; index++)
1532 			*obj_table++ = *--cache_objs;
1533 
1534 		RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
1535 		RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
1536 
1537 		return 0;
1538 	}
1539 
1540 	/*
1541 	 * Use the cache as much as we have to return hot objects first.
1542 	 * If the request size 'n' is known at build time, the above comparison
1543 	 * ensures that n > cache->len here, so omit RTE_MIN().
1544 	 */
1545 	len = __rte_constant(n) ? cache->len : RTE_MIN(n, cache->len);
1546 	cache->len -= len;
1547 	remaining = n - len;
1548 	for (index = 0; index < len; index++)
1549 		*obj_table++ = *--cache_objs;
1550 
1551 	/*
1552 	 * If the request size 'n' is known at build time, the case
1553 	 * where the entire request can be satisfied from the cache
1554 	 * has already been handled above, so omit handling it here.
1555 	 */
1556 	if (!__rte_constant(n) && remaining == 0) {
1557 		/* The entire request is satisfied from the cache. */
1558 
1559 		RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
1560 		RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
1561 
1562 		return 0;
1563 	}
1564 
1565 	/* if dequeue below would overflow mem allocated for cache */
1566 	if (unlikely(remaining > RTE_MEMPOOL_CACHE_MAX_SIZE))
1567 		goto driver_dequeue;
1568 
1569 	/* Fill the cache from the backend; fetch size + remaining objects. */
1570 	ret = rte_mempool_ops_dequeue_bulk(mp, cache->objs,
1571 			cache->size + remaining);
1572 	if (unlikely(ret < 0)) {
1573 		/*
1574 		 * We are buffer constrained, and not able to allocate
1575 		 * cache + remaining.
1576 		 * Do not fill the cache, just satisfy the remaining part of
1577 		 * the request directly from the backend.
1578 		 */
1579 		goto driver_dequeue;
1580 	}
1581 
1582 	/* Satisfy the remaining part of the request from the filled cache. */
1583 	cache_objs = &cache->objs[cache->size + remaining];
1584 	for (index = 0; index < remaining; index++)
1585 		*obj_table++ = *--cache_objs;
1586 
1587 	cache->len = cache->size;
1588 
1589 	RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
1590 	RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
1591 
1592 	return 0;
1593 
1594 driver_dequeue:
1595 
1596 	/* Get remaining objects directly from the backend. */
1597 	ret = rte_mempool_ops_dequeue_bulk(mp, obj_table, remaining);
1598 
1599 	if (ret < 0) {
1600 		if (likely(cache != NULL)) {
1601 			cache->len = n - remaining;
1602 			/*
1603 			 * No further action is required to roll the first part
1604 			 * of the request back into the cache, as objects in
1605 			 * the cache are intact.
1606 			 */
1607 		}
1608 
1609 		RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
1610 		RTE_MEMPOOL_STAT_ADD(mp, get_fail_objs, n);
1611 	} else {
1612 		if (likely(cache != NULL)) {
1613 			RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_bulk, 1);
1614 			RTE_MEMPOOL_CACHE_STAT_ADD(cache, get_success_objs, n);
1615 		} else {
1616 			RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1617 			RTE_MEMPOOL_STAT_ADD(mp, get_success_objs, n);
1618 		}
1619 	}
1620 
1621 	return ret;
1622 }
1623 
1624 /**
1625  * Get several objects from the mempool.
1626  *
1627  * If cache is enabled, objects will be retrieved first from cache,
1628  * subsequently from the common pool. Note that it can return -ENOENT when
1629  * the local cache and common pool are empty, even if cache from other
1630  * lcores are full.
1631  *
1632  * @param mp
1633  *   A pointer to the mempool structure.
1634  * @param obj_table
1635  *   A pointer to a table of void * pointers (objects) that will be filled.
1636  * @param n
1637  *   The number of objects to get from mempool to obj_table.
1638  * @param cache
1639  *   A pointer to a mempool cache structure. May be NULL if not needed.
1640  * @return
1641  *   - 0: Success; objects taken.
1642  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1643  */
1644 static __rte_always_inline int
rte_mempool_generic_get(struct rte_mempool * mp,void ** obj_table,unsigned int n,struct rte_mempool_cache * cache)1645 rte_mempool_generic_get(struct rte_mempool *mp, void **obj_table,
1646 			unsigned int n, struct rte_mempool_cache *cache)
1647 {
1648 	int ret;
1649 	ret = rte_mempool_do_generic_get(mp, obj_table, n, cache);
1650 	if (ret == 0)
1651 		RTE_MEMPOOL_CHECK_COOKIES(mp, obj_table, n, 1);
1652 	rte_mempool_trace_generic_get(mp, obj_table, n, cache);
1653 	return ret;
1654 }
1655 
1656 /**
1657  * Get several objects from the mempool.
1658  *
1659  * This function calls the multi-consumers or the single-consumer
1660  * version, depending on the default behaviour that was specified at
1661  * mempool creation time (see flags).
1662  *
1663  * If cache is enabled, objects will be retrieved first from cache,
1664  * subsequently from the common pool. Note that it can return -ENOENT when
1665  * the local cache and common pool are empty, even if cache from other
1666  * lcores are full.
1667  *
1668  * @param mp
1669  *   A pointer to the mempool structure.
1670  * @param obj_table
1671  *   A pointer to a table of void * pointers (objects) that will be filled.
1672  * @param n
1673  *   The number of objects to get from the mempool to obj_table.
1674  * @return
1675  *   - 0: Success; objects taken
1676  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1677  */
1678 static __rte_always_inline int
rte_mempool_get_bulk(struct rte_mempool * mp,void ** obj_table,unsigned int n)1679 rte_mempool_get_bulk(struct rte_mempool *mp, void **obj_table, unsigned int n)
1680 {
1681 	struct rte_mempool_cache *cache;
1682 	cache = rte_mempool_default_cache(mp, rte_lcore_id());
1683 	rte_mempool_trace_get_bulk(mp, obj_table, n, cache);
1684 	return rte_mempool_generic_get(mp, obj_table, n, cache);
1685 }
1686 
1687 /**
1688  * Get one object from the mempool.
1689  *
1690  * This function calls the multi-consumers or the single-consumer
1691  * version, depending on the default behavior that was specified at
1692  * mempool creation (see flags).
1693  *
1694  * If cache is enabled, objects will be retrieved first from cache,
1695  * subsequently from the common pool. Note that it can return -ENOENT when
1696  * the local cache and common pool are empty, even if cache from other
1697  * lcores are full.
1698  *
1699  * @param mp
1700  *   A pointer to the mempool structure.
1701  * @param obj_p
1702  *   A pointer to a void * pointer (object) that will be filled.
1703  * @return
1704  *   - 0: Success; objects taken.
1705  *   - -ENOENT: Not enough entries in the mempool; no object is retrieved.
1706  */
1707 static __rte_always_inline int
rte_mempool_get(struct rte_mempool * mp,void ** obj_p)1708 rte_mempool_get(struct rte_mempool *mp, void **obj_p)
1709 {
1710 	return rte_mempool_get_bulk(mp, obj_p, 1);
1711 }
1712 
1713 /**
1714  * Get a contiguous blocks of objects from the mempool.
1715  *
1716  * If cache is enabled, consider to flush it first, to reuse objects
1717  * as soon as possible.
1718  *
1719  * The application should check that the driver supports the operation
1720  * by calling rte_mempool_ops_get_info() and checking that `contig_block_size`
1721  * is not zero.
1722  *
1723  * @param mp
1724  *   A pointer to the mempool structure.
1725  * @param first_obj_table
1726  *   A pointer to a pointer to the first object in each block.
1727  * @param n
1728  *   The number of blocks to get from mempool.
1729  * @return
1730  *   - 0: Success; blocks taken.
1731  *   - -ENOBUFS: Not enough entries in the mempool; no object is retrieved.
1732  *   - -EOPNOTSUPP: The mempool driver does not support block dequeue
1733  */
1734 static __rte_always_inline int
rte_mempool_get_contig_blocks(struct rte_mempool * mp,void ** first_obj_table,unsigned int n)1735 rte_mempool_get_contig_blocks(struct rte_mempool *mp,
1736 			      void **first_obj_table, unsigned int n)
1737 {
1738 	int ret;
1739 
1740 	ret = rte_mempool_ops_dequeue_contig_blocks(mp, first_obj_table, n);
1741 	if (ret == 0) {
1742 		RTE_MEMPOOL_STAT_ADD(mp, get_success_bulk, 1);
1743 		RTE_MEMPOOL_STAT_ADD(mp, get_success_blks, n);
1744 		RTE_MEMPOOL_CONTIG_BLOCKS_CHECK_COOKIES(mp, first_obj_table, n,
1745 							1);
1746 	} else {
1747 		RTE_MEMPOOL_STAT_ADD(mp, get_fail_bulk, 1);
1748 		RTE_MEMPOOL_STAT_ADD(mp, get_fail_blks, n);
1749 	}
1750 
1751 	rte_mempool_trace_get_contig_blocks(mp, first_obj_table, n);
1752 	return ret;
1753 }
1754 
1755 /**
1756  * Return the number of entries in the mempool.
1757  *
1758  * When cache is enabled, this function has to browse the length of
1759  * all lcores, so it should not be used in a data path, but only for
1760  * debug purposes. User-owned mempool caches are not accounted for.
1761  *
1762  * @param mp
1763  *   A pointer to the mempool structure.
1764  * @return
1765  *   The number of entries in the mempool.
1766  */
1767 unsigned int rte_mempool_avail_count(const struct rte_mempool *mp);
1768 
1769 /**
1770  * Return the number of elements which have been allocated from the mempool
1771  *
1772  * When cache is enabled, this function has to browse the length of
1773  * all lcores, so it should not be used in a data path, but only for
1774  * debug purposes.
1775  *
1776  * @param mp
1777  *   A pointer to the mempool structure.
1778  * @return
1779  *   The number of free entries in the mempool.
1780  */
1781 unsigned int
1782 rte_mempool_in_use_count(const struct rte_mempool *mp);
1783 
1784 /**
1785  * Test if the mempool is full.
1786  *
1787  * When cache is enabled, this function has to browse the length of all
1788  * lcores, so it should not be used in a data path, but only for debug
1789  * purposes. User-owned mempool caches are not accounted for.
1790  *
1791  * @param mp
1792  *   A pointer to the mempool structure.
1793  * @return
1794  *   - 1: The mempool is full.
1795  *   - 0: The mempool is not full.
1796  */
1797 static inline int
rte_mempool_full(const struct rte_mempool * mp)1798 rte_mempool_full(const struct rte_mempool *mp)
1799 {
1800 	return rte_mempool_avail_count(mp) == mp->size;
1801 }
1802 
1803 /**
1804  * Test if the mempool is empty.
1805  *
1806  * When cache is enabled, this function has to browse the length of all
1807  * lcores, so it should not be used in a data path, but only for debug
1808  * purposes. User-owned mempool caches are not accounted for.
1809  *
1810  * @param mp
1811  *   A pointer to the mempool structure.
1812  * @return
1813  *   - 1: The mempool is empty.
1814  *   - 0: The mempool is not empty.
1815  */
1816 static inline int
rte_mempool_empty(const struct rte_mempool * mp)1817 rte_mempool_empty(const struct rte_mempool *mp)
1818 {
1819 	return rte_mempool_avail_count(mp) == 0;
1820 }
1821 
1822 /**
1823  * Return the IO address of elt, which is an element of the pool mp.
1824  *
1825  * @param elt
1826  *   A pointer (virtual address) to the element of the pool.
1827  * @return
1828  *   The IO address of the elt element.
1829  *   If the mempool was created with RTE_MEMPOOL_F_NO_IOVA_CONTIG, the
1830  *   returned value is RTE_BAD_IOVA.
1831  */
1832 static inline rte_iova_t
rte_mempool_virt2iova(const void * elt)1833 rte_mempool_virt2iova(const void *elt)
1834 {
1835 	const struct rte_mempool_objhdr *hdr;
1836 	hdr = (const struct rte_mempool_objhdr *)RTE_PTR_SUB(elt,
1837 		sizeof(*hdr));
1838 	return hdr->iova;
1839 }
1840 
1841 /**
1842  * Check the consistency of mempool objects.
1843  *
1844  * Verify the coherency of fields in the mempool structure. Also check
1845  * that the cookies of mempool objects (even the ones that are not
1846  * present in pool) have a correct value. If not, a panic will occur.
1847  *
1848  * @param mp
1849  *   A pointer to the mempool structure.
1850  */
1851 void rte_mempool_audit(struct rte_mempool *mp);
1852 
1853 /**
1854  * Return a pointer to the private data in an mempool structure.
1855  *
1856  * @param mp
1857  *   A pointer to the mempool structure.
1858  * @return
1859  *   A pointer to the private data.
1860  */
rte_mempool_get_priv(struct rte_mempool * mp)1861 static inline void *rte_mempool_get_priv(struct rte_mempool *mp)
1862 {
1863 	return (char *)mp +
1864 		RTE_MEMPOOL_HEADER_SIZE(mp, mp->cache_size);
1865 }
1866 
1867 /**
1868  * Dump the status of all mempools on the console
1869  *
1870  * @param f
1871  *   A pointer to a file for output
1872  */
1873 void rte_mempool_list_dump(FILE *f);
1874 
1875 /**
1876  * Search a mempool from its name
1877  *
1878  * @param name
1879  *   The name of the mempool.
1880  * @return
1881  *   The pointer to the mempool matching the name, or NULL if not found.
1882  *   NULL on error
1883  *   with rte_errno set appropriately. Possible rte_errno values include:
1884  *    - ENOENT - required entry not available to return.
1885  */
1886 struct rte_mempool *rte_mempool_lookup(const char *name);
1887 
1888 /**
1889  * Get the header, trailer and total size of a mempool element.
1890  *
1891  * Given a desired size of the mempool element and mempool flags,
1892  * calculates header, trailer, body and total sizes of the mempool object.
1893  *
1894  * @param elt_size
1895  *   The size of each element, without header and trailer.
1896  * @param flags
1897  *   The flags used for the mempool creation.
1898  *   Consult rte_mempool_create() for more information about possible values.
1899  *   The size of each element.
1900  * @param sz
1901  *   The calculated detailed size the mempool object. May be NULL.
1902  * @return
1903  *   Total size of the mempool object.
1904  */
1905 uint32_t rte_mempool_calc_obj_size(uint32_t elt_size, uint32_t flags,
1906 	struct rte_mempool_objsz *sz);
1907 
1908 /**
1909  * Walk list of all memory pools
1910  *
1911  * @param func
1912  *   Iterator function
1913  * @param arg
1914  *   Argument passed to iterator
1915  */
1916 void rte_mempool_walk(void (*func)(struct rte_mempool *, void *arg),
1917 		      void *arg);
1918 
1919 /**
1920  * A structure used to retrieve information about the memory range
1921  * of the mempool.
1922  */
1923 struct rte_mempool_mem_range_info {
1924 	/** Start of the memory range used by mempool objects */
1925 	void *start;
1926 	/** Length of the memory range used by mempool objects */
1927 	size_t length;
1928 	/** Are all memory addresses used by mempool objects contiguous */
1929 	bool is_contiguous;
1930 };
1931 
1932 /**
1933  * @warning
1934  * @b EXPERIMENTAL: this API may change without prior notice.
1935  *
1936  * Get information about the memory range used to store objects in the mempool.
1937  *
1938  * @param[in] mp
1939  *   Pointer to an initialized mempool.
1940  * @param[out] mem_range
1941  *   Pointer to struct which is used to return lowest address,
1942  *   length of the memory range containing all the addresses,
1943  *   and whether these addresses are contiguous.
1944  * @return
1945  *   0 on success, -EINVAL if mempool is not valid or mem_range is NULL.
1946  **/
1947 __rte_experimental
1948 int
1949 rte_mempool_get_mem_range(const struct rte_mempool *mp,
1950 	struct rte_mempool_mem_range_info *mem_range);
1951 
1952 /**
1953  * @warning
1954  * @b EXPERIMENTAL: this API may change without prior notice.
1955  *
1956  * Return alignment of objects stored in the mempool.
1957  *
1958  * @param[in] mp
1959  *   Pointer to a mempool.
1960  * @return
1961  *   Object alignment if mp is valid. 0 if mp is NULL.
1962  *
1963  **/
1964 __rte_experimental
1965 size_t
1966 rte_mempool_get_obj_alignment(const struct rte_mempool *mp);
1967 
1968 /**
1969  * @internal Get page size used for mempool object allocation.
1970  * This function is internal to mempool library and mempool drivers.
1971  */
1972 int
1973 rte_mempool_get_page_size(struct rte_mempool *mp, size_t *pg_sz);
1974 
1975 /**
1976  * Mempool event type.
1977  * @internal
1978  */
1979 enum rte_mempool_event {
1980 	/** Occurs after a mempool is fully populated. */
1981 	RTE_MEMPOOL_EVENT_READY = 0,
1982 	/** Occurs before the destruction of a mempool begins. */
1983 	RTE_MEMPOOL_EVENT_DESTROY = 1,
1984 };
1985 
1986 /**
1987  * @internal
1988  * Mempool event callback.
1989  *
1990  * rte_mempool_event_callback_register() may be called from within the callback,
1991  * but the callbacks registered this way will not be invoked for the same event.
1992  * rte_mempool_event_callback_unregister() may only be safely called
1993  * to remove the running callback.
1994  */
1995 typedef void (rte_mempool_event_callback)(
1996 		enum rte_mempool_event event,
1997 		struct rte_mempool *mp,
1998 		void *user_data);
1999 
2000 /**
2001  * @internal
2002  * Register a callback function invoked on mempool life cycle event.
2003  * The function will be invoked in the process
2004  * that performs an action which triggers the callback.
2005  * Registration is process-private,
2006  * i.e. each process must manage callbacks on its own if needed.
2007  *
2008  * @param func
2009  *   Callback function.
2010  * @param user_data
2011  *   User data.
2012  *
2013  * @return
2014  *   0 on success, negative on failure and rte_errno is set.
2015  */
2016 __rte_internal
2017 int
2018 rte_mempool_event_callback_register(rte_mempool_event_callback *func,
2019 				    void *user_data);
2020 
2021 /**
2022  * @internal
2023  * Unregister a callback added with rte_mempool_event_callback_register().
2024  * @p func and @p user_data must exactly match registration parameters.
2025  *
2026  * @param func
2027  *   Callback function.
2028  * @param user_data
2029  *   User data.
2030  *
2031  * @return
2032  *   0 on success, negative on failure and rte_errno is set.
2033  */
2034 __rte_internal
2035 int
2036 rte_mempool_event_callback_unregister(rte_mempool_event_callback *func,
2037 				      void *user_data);
2038 
2039 #ifdef __cplusplus
2040 }
2041 #endif
2042 
2043 #endif /* _RTE_MEMPOOL_H_ */
2044