xref: /dpdk/lib/mbuf/rte_mbuf.h (revision 6011b12f52b60565d4dfcc3b382551ec1f53b3d4)
1 /* SPDX-License-Identifier: BSD-3-Clause
2  * Copyright(c) 2010-2014 Intel Corporation.
3  * Copyright 2014 6WIND S.A.
4  */
5 
6 #ifndef _RTE_MBUF_H_
7 #define _RTE_MBUF_H_
8 
9 /**
10  * @file
11  * RTE Mbuf
12  *
13  * The mbuf library provides the ability to create and destroy buffers
14  * that may be used by the RTE application to store message
15  * buffers. The message buffers are stored in a mempool, using the
16  * RTE mempool library.
17  *
18  * The preferred way to create a mbuf pool is to use
19  * rte_pktmbuf_pool_create(). However, in some situations, an
20  * application may want to have more control (ex: populate the pool with
21  * specific memory), in this case it is possible to use functions from
22  * rte_mempool. See how rte_pktmbuf_pool_create() is implemented for
23  * details.
24  *
25  * This library provides an API to allocate/free packet mbufs, which are
26  * used to carry network packets.
27  *
28  * To understand the concepts of packet buffers or mbufs, you
29  * should read "TCP/IP Illustrated, Volume 2: The Implementation,
30  * Addison-Wesley, 1995, ISBN 0-201-63354-X from Richard Stevens"
31  * http://www.kohala.com/start/tcpipiv2.html
32  */
33 
34 #include <stdint.h>
35 
36 #include <rte_common.h>
37 #include <rte_config.h>
38 #include <rte_mempool.h>
39 #include <rte_prefetch.h>
40 #include <rte_branch_prediction.h>
41 #include <rte_mbuf_ptype.h>
42 #include <rte_mbuf_core.h>
43 
44 #ifdef __cplusplus
45 extern "C" {
46 #endif
47 
48 /**
49  * Get the name of a RX offload flag
50  *
51  * @param mask
52  *   The mask describing the flag.
53  * @return
54  *   The name of this flag, or NULL if it's not a valid RX flag.
55  */
56 const char *rte_get_rx_ol_flag_name(uint64_t mask);
57 
58 /**
59  * Dump the list of RX offload flags in a buffer
60  *
61  * @param mask
62  *   The mask describing the RX flags.
63  * @param buf
64  *   The output buffer.
65  * @param buflen
66  *   The length of the buffer.
67  * @return
68  *   0 on success, (-1) on error.
69  */
70 int rte_get_rx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
71 
72 /**
73  * Get the name of a TX offload flag
74  *
75  * @param mask
76  *   The mask describing the flag. Usually only one bit must be set.
77  *   Several bits can be given if they belong to the same mask.
78  *   Ex: RTE_MBUF_F_TX_L4_MASK.
79  * @return
80  *   The name of this flag, or NULL if it's not a valid TX flag.
81  */
82 const char *rte_get_tx_ol_flag_name(uint64_t mask);
83 
84 /**
85  * Dump the list of TX offload flags in a buffer
86  *
87  * @param mask
88  *   The mask describing the TX flags.
89  * @param buf
90  *   The output buffer.
91  * @param buflen
92  *   The length of the buffer.
93  * @return
94  *   0 on success, (-1) on error.
95  */
96 int rte_get_tx_ol_flag_list(uint64_t mask, char *buf, size_t buflen);
97 
98 /**
99  * Prefetch the first part of the mbuf
100  *
101  * The first 64 bytes of the mbuf corresponds to fields that are used early
102  * in the receive path. If the cache line of the architecture is higher than
103  * 64B, the second part will also be prefetched.
104  *
105  * @param m
106  *   The pointer to the mbuf.
107  */
108 static inline void
109 rte_mbuf_prefetch_part1(struct rte_mbuf *m)
110 {
111 	rte_prefetch0(m);
112 }
113 
114 /**
115  * Prefetch the second part of the mbuf
116  *
117  * The next 64 bytes of the mbuf corresponds to fields that are used in the
118  * transmit path. If the cache line of the architecture is higher than 64B,
119  * this function does nothing as it is expected that the full mbuf is
120  * already in cache.
121  *
122  * @param m
123  *   The pointer to the mbuf.
124  */
125 static inline void
126 rte_mbuf_prefetch_part2(struct rte_mbuf *m)
127 {
128 #if RTE_CACHE_LINE_SIZE == 64
129 	rte_prefetch0(RTE_PTR_ADD(m, RTE_CACHE_LINE_MIN_SIZE));
130 #else
131 	RTE_SET_USED(m);
132 #endif
133 }
134 
135 
136 static inline uint16_t rte_pktmbuf_priv_size(struct rte_mempool *mp);
137 
138 /**
139  * Get the IOVA address of the mbuf data buffer.
140  *
141  * @param m
142  *   The pointer to the mbuf.
143  * @return
144  *   The IOVA address of the mbuf.
145  */
146 static inline rte_iova_t
147 rte_mbuf_iova_get(const struct rte_mbuf *m)
148 {
149 #if RTE_IOVA_IN_MBUF
150 	return m->buf_iova;
151 #else
152 	return (rte_iova_t)m->buf_addr;
153 #endif
154 }
155 
156 /**
157  * Set the IOVA address of the mbuf data buffer.
158  *
159  * @param m
160  *   The pointer to the mbuf.
161  * @param iova
162  *   Value to set as IOVA address of the mbuf.
163  */
164 static inline void
165 rte_mbuf_iova_set(struct rte_mbuf *m, rte_iova_t iova)
166 {
167 #if RTE_IOVA_IN_MBUF
168 	m->buf_iova = iova;
169 #else
170 	RTE_SET_USED(m);
171 	RTE_SET_USED(iova);
172 #endif
173 }
174 
175 /**
176  * Return the IO address of the beginning of the mbuf data
177  *
178  * @param mb
179  *   The pointer to the mbuf.
180  * @return
181  *   The IO address of the beginning of the mbuf data
182  */
183 static inline rte_iova_t
184 rte_mbuf_data_iova(const struct rte_mbuf *mb)
185 {
186 	return rte_mbuf_iova_get(mb) + mb->data_off;
187 }
188 
189 /**
190  * Return the default IO address of the beginning of the mbuf data
191  *
192  * This function is used by drivers in their receive function, as it
193  * returns the location where data should be written by the NIC, taking
194  * the default headroom in account.
195  *
196  * @param mb
197  *   The pointer to the mbuf.
198  * @return
199  *   The IO address of the beginning of the mbuf data
200  */
201 static inline rte_iova_t
202 rte_mbuf_data_iova_default(const struct rte_mbuf *mb)
203 {
204 	return rte_mbuf_iova_get(mb) + RTE_PKTMBUF_HEADROOM;
205 }
206 
207 /**
208  * Return the mbuf owning the data buffer address of an indirect mbuf.
209  *
210  * @param mi
211  *   The pointer to the indirect mbuf.
212  * @return
213  *   The address of the direct mbuf corresponding to buffer_addr.
214  */
215 static inline struct rte_mbuf *
216 rte_mbuf_from_indirect(struct rte_mbuf *mi)
217 {
218 	return (struct rte_mbuf *)RTE_PTR_SUB(mi->buf_addr, sizeof(*mi) + mi->priv_size);
219 }
220 
221 /**
222  * Return address of buffer embedded in the given mbuf.
223  *
224  * The return value shall be same as mb->buf_addr if the mbuf is already
225  * initialized and direct. However, this API is useful if mempool of the
226  * mbuf is already known because it doesn't need to access mbuf contents in
227  * order to get the mempool pointer.
228  *
229  * @param mb
230  *   The pointer to the mbuf.
231  * @param mp
232  *   The pointer to the mempool of the mbuf.
233  * @return
234  *   The pointer of the mbuf buffer.
235  */
236 static inline char *
237 rte_mbuf_buf_addr(struct rte_mbuf *mb, struct rte_mempool *mp)
238 {
239 	return (char *)mb + sizeof(*mb) + rte_pktmbuf_priv_size(mp);
240 }
241 
242 /**
243  * Return the default address of the beginning of the mbuf data.
244  *
245  * @param mb
246  *   The pointer to the mbuf.
247  * @return
248  *   The pointer of the beginning of the mbuf data.
249  */
250 static inline char *
251 rte_mbuf_data_addr_default(struct rte_mbuf *mb)
252 {
253 	return rte_mbuf_buf_addr(mb, mb->pool) + RTE_PKTMBUF_HEADROOM;
254 }
255 
256 /**
257  * Return address of buffer embedded in the given mbuf.
258  *
259  * @note: Accessing mempool pointer of a mbuf is expensive because the
260  * pointer is stored in the 2nd cache line of mbuf. If mempool is known, it
261  * is better not to reference the mempool pointer in mbuf but calling
262  * rte_mbuf_buf_addr() would be more efficient.
263  *
264  * @param md
265  *   The pointer to the mbuf.
266  * @return
267  *   The address of the data buffer owned by the mbuf.
268  */
269 static inline char *
270 rte_mbuf_to_baddr(struct rte_mbuf *md)
271 {
272 	return rte_mbuf_buf_addr(md, md->pool);
273 }
274 
275 /**
276  * Return the starting address of the private data area embedded in
277  * the given mbuf.
278  *
279  * Note that no check is made to ensure that a private data area
280  * actually exists in the supplied mbuf.
281  *
282  * @param m
283  *   The pointer to the mbuf.
284  * @return
285  *   The starting address of the private data area of the given mbuf.
286  */
287 static inline void *
288 rte_mbuf_to_priv(struct rte_mbuf *m)
289 {
290 	return RTE_PTR_ADD(m, sizeof(struct rte_mbuf));
291 }
292 
293 /**
294  * Private data in case of pktmbuf pool.
295  *
296  * A structure that contains some pktmbuf_pool-specific data that are
297  * appended after the mempool structure (in private data).
298  */
299 struct rte_pktmbuf_pool_private {
300 	uint16_t mbuf_data_room_size; /**< Size of data space in each mbuf. */
301 	uint16_t mbuf_priv_size;      /**< Size of private area in each mbuf. */
302 	uint32_t flags; /**< reserved for future use. */
303 };
304 
305 /**
306  * Return the flags from private data in an mempool structure.
307  *
308  * @param mp
309  *   A pointer to the mempool structure.
310  * @return
311  *   The flags from the private data structure.
312  */
313 static inline uint32_t
314 rte_pktmbuf_priv_flags(struct rte_mempool *mp)
315 {
316 	struct rte_pktmbuf_pool_private *mbp_priv;
317 
318 	mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
319 	return mbp_priv->flags;
320 }
321 
322 /**
323  * When set, pktmbuf mempool will hold only mbufs with pinned external
324  * buffer. The external buffer will be attached to the mbuf at the
325  * memory pool creation and will never be detached by the mbuf free calls.
326  * mbuf should not contain any room for data after the mbuf structure.
327  */
328 #define RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF (1 << 0)
329 
330 /**
331  * Returns non zero if given mbuf has a pinned external buffer, or zero
332  * otherwise. The pinned external buffer is allocated at pool creation
333  * time and should not be freed on mbuf freeing.
334  *
335  * External buffer is a user-provided anonymous buffer.
336  */
337 #define RTE_MBUF_HAS_PINNED_EXTBUF(mb) \
338 	(rte_pktmbuf_priv_flags(mb->pool) & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF)
339 
340 #ifdef RTE_LIBRTE_MBUF_DEBUG
341 
342 /**  check mbuf type in debug mode */
343 #define __rte_mbuf_sanity_check(m, is_h) rte_mbuf_sanity_check(m, is_h)
344 
345 #else /*  RTE_LIBRTE_MBUF_DEBUG */
346 
347 /**  check mbuf type in debug mode */
348 #define __rte_mbuf_sanity_check(m, is_h) do { } while (0)
349 
350 #endif /*  RTE_LIBRTE_MBUF_DEBUG */
351 
352 #ifdef RTE_MBUF_REFCNT_ATOMIC
353 
354 /**
355  * Reads the value of an mbuf's refcnt.
356  * @param m
357  *   Mbuf to read
358  * @return
359  *   Reference count number.
360  */
361 static inline uint16_t
362 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
363 {
364 	return rte_atomic_load_explicit(&m->refcnt, rte_memory_order_relaxed);
365 }
366 
367 /**
368  * Sets an mbuf's refcnt to a defined value.
369  * @param m
370  *   Mbuf to update
371  * @param new_value
372  *   Value set
373  */
374 static inline void
375 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
376 {
377 	rte_atomic_store_explicit(&m->refcnt, new_value, rte_memory_order_relaxed);
378 }
379 
380 /* internal */
381 static inline uint16_t
382 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
383 {
384 	return rte_atomic_fetch_add_explicit(&m->refcnt, value,
385 				 rte_memory_order_acq_rel) + value;
386 }
387 
388 /**
389  * Adds given value to an mbuf's refcnt and returns its new value.
390  * @param m
391  *   Mbuf to update
392  * @param value
393  *   Value to add/subtract
394  * @return
395  *   Updated value
396  */
397 static inline uint16_t
398 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
399 {
400 	/*
401 	 * The atomic_add is an expensive operation, so we don't want to
402 	 * call it in the case where we know we are the unique holder of
403 	 * this mbuf (i.e. ref_cnt == 1). Otherwise, an atomic
404 	 * operation has to be used because concurrent accesses on the
405 	 * reference counter can occur.
406 	 */
407 	if (likely(rte_mbuf_refcnt_read(m) == 1)) {
408 		++value;
409 		rte_mbuf_refcnt_set(m, (uint16_t)value);
410 		return (uint16_t)value;
411 	}
412 
413 	return __rte_mbuf_refcnt_update(m, value);
414 }
415 
416 #else /* ! RTE_MBUF_REFCNT_ATOMIC */
417 
418 /* internal */
419 static inline uint16_t
420 __rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
421 {
422 	m->refcnt = (uint16_t)(m->refcnt + value);
423 	return m->refcnt;
424 }
425 
426 /**
427  * Adds given value to an mbuf's refcnt and returns its new value.
428  */
429 static inline uint16_t
430 rte_mbuf_refcnt_update(struct rte_mbuf *m, int16_t value)
431 {
432 	return __rte_mbuf_refcnt_update(m, value);
433 }
434 
435 /**
436  * Reads the value of an mbuf's refcnt.
437  */
438 static inline uint16_t
439 rte_mbuf_refcnt_read(const struct rte_mbuf *m)
440 {
441 	return m->refcnt;
442 }
443 
444 /**
445  * Sets an mbuf's refcnt to the defined value.
446  */
447 static inline void
448 rte_mbuf_refcnt_set(struct rte_mbuf *m, uint16_t new_value)
449 {
450 	m->refcnt = new_value;
451 }
452 
453 #endif /* RTE_MBUF_REFCNT_ATOMIC */
454 
455 /**
456  * Reads the refcnt of an external buffer.
457  *
458  * @param shinfo
459  *   Shared data of the external buffer.
460  * @return
461  *   Reference count number.
462  */
463 static inline uint16_t
464 rte_mbuf_ext_refcnt_read(const struct rte_mbuf_ext_shared_info *shinfo)
465 {
466 	return rte_atomic_load_explicit(&shinfo->refcnt, rte_memory_order_relaxed);
467 }
468 
469 /**
470  * Set refcnt of an external buffer.
471  *
472  * @param shinfo
473  *   Shared data of the external buffer.
474  * @param new_value
475  *   Value set
476  */
477 static inline void
478 rte_mbuf_ext_refcnt_set(struct rte_mbuf_ext_shared_info *shinfo,
479 	uint16_t new_value)
480 {
481 	rte_atomic_store_explicit(&shinfo->refcnt, new_value, rte_memory_order_relaxed);
482 }
483 
484 /**
485  * Add given value to refcnt of an external buffer and return its new
486  * value.
487  *
488  * @param shinfo
489  *   Shared data of the external buffer.
490  * @param value
491  *   Value to add/subtract
492  * @return
493  *   Updated value
494  */
495 static inline uint16_t
496 rte_mbuf_ext_refcnt_update(struct rte_mbuf_ext_shared_info *shinfo,
497 	int16_t value)
498 {
499 	if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1)) {
500 		++value;
501 		rte_mbuf_ext_refcnt_set(shinfo, (uint16_t)value);
502 		return (uint16_t)value;
503 	}
504 
505 	return rte_atomic_fetch_add_explicit(&shinfo->refcnt, value,
506 				 rte_memory_order_acq_rel) + value;
507 }
508 
509 /** Mbuf prefetch */
510 #define RTE_MBUF_PREFETCH_TO_FREE(m) do {       \
511 	if ((m) != NULL)                        \
512 		rte_prefetch0(m);               \
513 } while (0)
514 
515 
516 /**
517  * Sanity checks on an mbuf.
518  *
519  * Check the consistency of the given mbuf. The function will cause a
520  * panic if corruption is detected.
521  *
522  * @param m
523  *   The mbuf to be checked.
524  * @param is_header
525  *   True if the mbuf is a packet header, false if it is a sub-segment
526  *   of a packet (in this case, some fields like nb_segs are not checked)
527  */
528 void
529 rte_mbuf_sanity_check(const struct rte_mbuf *m, int is_header);
530 
531 /**
532  * Sanity checks on a mbuf.
533  *
534  * Almost like rte_mbuf_sanity_check(), but this function gives the reason
535  * if corruption is detected rather than panic.
536  *
537  * @param m
538  *   The mbuf to be checked.
539  * @param is_header
540  *   True if the mbuf is a packet header, false if it is a sub-segment
541  *   of a packet (in this case, some fields like nb_segs are not checked)
542  * @param reason
543  *   A reference to a string pointer where to store the reason why a mbuf is
544  *   considered invalid.
545  * @return
546  *   - 0 if no issue has been found, reason is left untouched.
547  *   - -1 if a problem is detected, reason then points to a string describing
548  *     the reason why the mbuf is deemed invalid.
549  */
550 int rte_mbuf_check(const struct rte_mbuf *m, int is_header,
551 		   const char **reason);
552 
553 /**
554  * Sanity checks on a reinitialized mbuf in debug mode.
555  *
556  * Check the consistency of the given reinitialized mbuf.
557  * The function will cause a panic if corruption is detected.
558  *
559  * Check that the mbuf is properly reinitialized (refcnt=1, next=NULL,
560  * nb_segs=1), as done by rte_pktmbuf_prefree_seg().
561  *
562  * @param m
563  *   The mbuf to be checked.
564  */
565 static __rte_always_inline void
566 __rte_mbuf_raw_sanity_check(__rte_unused const struct rte_mbuf *m)
567 {
568 	RTE_ASSERT(rte_mbuf_refcnt_read(m) == 1);
569 	RTE_ASSERT(m->next == NULL);
570 	RTE_ASSERT(m->nb_segs == 1);
571 	__rte_mbuf_sanity_check(m, 0);
572 }
573 
574 /** For backwards compatibility. */
575 #define MBUF_RAW_ALLOC_CHECK(m) __rte_mbuf_raw_sanity_check(m)
576 
577 /**
578  * Allocate an uninitialized mbuf from mempool *mp*.
579  *
580  * This function can be used by PMDs (especially in RX functions) to
581  * allocate an uninitialized mbuf. The driver is responsible of
582  * initializing all the required fields. See rte_pktmbuf_reset().
583  * For standard needs, prefer rte_pktmbuf_alloc().
584  *
585  * The caller can expect that the following fields of the mbuf structure
586  * are initialized: buf_addr, buf_iova, buf_len, refcnt=1, nb_segs=1,
587  * next=NULL, pool, priv_size. The other fields must be initialized
588  * by the caller.
589  *
590  * @param mp
591  *   The mempool from which mbuf is allocated.
592  * @return
593  *   - The pointer to the new mbuf on success.
594  *   - NULL if allocation failed.
595  */
596 static inline struct rte_mbuf *rte_mbuf_raw_alloc(struct rte_mempool *mp)
597 {
598 	union {
599 		void *ptr;
600 		struct rte_mbuf *m;
601 	} ret;
602 
603 	if (rte_mempool_get(mp, &ret.ptr) < 0)
604 		return NULL;
605 	__rte_mbuf_raw_sanity_check(ret.m);
606 	return ret.m;
607 }
608 
609 /**
610  * Put mbuf back into its original mempool.
611  *
612  * The caller must ensure that the mbuf is direct and properly
613  * reinitialized (refcnt=1, next=NULL, nb_segs=1), as done by
614  * rte_pktmbuf_prefree_seg().
615  *
616  * This function should be used with care, when optimization is
617  * required. For standard needs, prefer rte_pktmbuf_free() or
618  * rte_pktmbuf_free_seg().
619  *
620  * @param m
621  *   The mbuf to be freed.
622  */
623 static __rte_always_inline void
624 rte_mbuf_raw_free(struct rte_mbuf *m)
625 {
626 	RTE_ASSERT(!RTE_MBUF_CLONED(m) &&
627 		  (!RTE_MBUF_HAS_EXTBUF(m) || RTE_MBUF_HAS_PINNED_EXTBUF(m)));
628 	__rte_mbuf_raw_sanity_check(m);
629 	rte_mempool_put(m->pool, m);
630 }
631 
632 /**
633  * The packet mbuf constructor.
634  *
635  * This function initializes some fields in the mbuf structure that are
636  * not modified by the user once created (origin pool, buffer start
637  * address, and so on). This function is given as a callback function to
638  * rte_mempool_obj_iter() or rte_mempool_create() at pool creation time.
639  *
640  * This function expects that the mempool private area was previously
641  * initialized with rte_pktmbuf_pool_init().
642  *
643  * @param mp
644  *   The mempool from which mbufs originate.
645  * @param opaque_arg
646  *   A pointer that can be used by the user to retrieve useful information
647  *   for mbuf initialization. This pointer is the opaque argument passed to
648  *   rte_mempool_obj_iter() or rte_mempool_create().
649  * @param m
650  *   The mbuf to initialize.
651  * @param i
652  *   The index of the mbuf in the pool table.
653  */
654 void rte_pktmbuf_init(struct rte_mempool *mp, void *opaque_arg,
655 		      void *m, unsigned i);
656 
657 /**
658  * A packet mbuf pool constructor.
659  *
660  * This function initializes the mempool private data in the case of a
661  * pktmbuf pool. This private data is needed by the driver. The
662  * function must be called on the mempool before it is used, or it
663  * can be given as a callback function to rte_mempool_create() at
664  * pool creation. It can be extended by the user, for example, to
665  * provide another packet size.
666  *
667  * The mempool private area size must be at least equal to
668  * sizeof(struct rte_pktmbuf_pool_private).
669  *
670  * @param mp
671  *   The mempool from which mbufs originate.
672  * @param opaque_arg
673  *   A pointer that can be used by the user to retrieve useful information
674  *   for mbuf initialization. This pointer is the opaque argument passed to
675  *   rte_mempool_create().
676  */
677 void rte_pktmbuf_pool_init(struct rte_mempool *mp, void *opaque_arg);
678 
679 /**
680  * Create a mbuf pool.
681  *
682  * This function creates and initializes a packet mbuf pool. It is
683  * a wrapper to rte_mempool functions.
684  *
685  * @param name
686  *   The name of the mbuf pool.
687  * @param n
688  *   The number of elements in the mbuf pool. The optimum size (in terms
689  *   of memory usage) for a mempool is when n is a power of two minus one:
690  *   n = (2^q - 1).
691  * @param cache_size
692  *   Size of the per-core object cache. See rte_mempool_create() for
693  *   details.
694  * @param priv_size
695  *   Size of application private are between the rte_mbuf structure
696  *   and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
697  * @param data_room_size
698  *   Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
699  * @param socket_id
700  *   The socket identifier where the memory should be allocated. The
701  *   value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
702  *   reserved zone.
703  * @return
704  *   The pointer to the new allocated mempool, on success. NULL on error
705  *   with rte_errno set appropriately. Possible rte_errno values include:
706  *    - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
707  *    - EINVAL - cache size provided is too large, or priv_size is not aligned.
708  *    - ENOSPC - the maximum number of memzones has already been allocated
709  *    - EEXIST - a memzone with the same name already exists
710  *    - ENOMEM - no appropriate memory area found in which to create memzone
711  */
712 struct rte_mempool *
713 rte_pktmbuf_pool_create(const char *name, unsigned n,
714 	unsigned cache_size, uint16_t priv_size, uint16_t data_room_size,
715 	int socket_id);
716 
717 /**
718  * Create a mbuf pool with a given mempool ops name
719  *
720  * This function creates and initializes a packet mbuf pool. It is
721  * a wrapper to rte_mempool functions.
722  *
723  * @param name
724  *   The name of the mbuf pool.
725  * @param n
726  *   The number of elements in the mbuf pool. The optimum size (in terms
727  *   of memory usage) for a mempool is when n is a power of two minus one:
728  *   n = (2^q - 1).
729  * @param cache_size
730  *   Size of the per-core object cache. See rte_mempool_create() for
731  *   details.
732  * @param priv_size
733  *   Size of application private are between the rte_mbuf structure
734  *   and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
735  * @param data_room_size
736  *   Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
737  * @param socket_id
738  *   The socket identifier where the memory should be allocated. The
739  *   value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
740  *   reserved zone.
741  * @param ops_name
742  *   The mempool ops name to be used for this mempool instead of
743  *   default mempool. The value can be *NULL* to use default mempool.
744  * @return
745  *   The pointer to the new allocated mempool, on success. NULL on error
746  *   with rte_errno set appropriately. Possible rte_errno values include:
747  *    - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
748  *    - EINVAL - cache size provided is too large, or priv_size is not aligned.
749  *    - ENOSPC - the maximum number of memzones has already been allocated
750  *    - EEXIST - a memzone with the same name already exists
751  *    - ENOMEM - no appropriate memory area found in which to create memzone
752  */
753 struct rte_mempool *
754 rte_pktmbuf_pool_create_by_ops(const char *name, unsigned int n,
755 	unsigned int cache_size, uint16_t priv_size, uint16_t data_room_size,
756 	int socket_id, const char *ops_name);
757 
758 /** A structure that describes the pinned external buffer segment. */
759 struct rte_pktmbuf_extmem {
760 	void *buf_ptr;		/**< The virtual address of data buffer. */
761 	rte_iova_t buf_iova;	/**< The IO address of the data buffer. */
762 	size_t buf_len;		/**< External buffer length in bytes. */
763 	uint16_t elt_size;	/**< mbuf element size in bytes. */
764 };
765 
766 /**
767  * Create a mbuf pool with external pinned data buffers.
768  *
769  * This function creates and initializes a packet mbuf pool that contains
770  * only mbufs with external buffer. It is a wrapper to rte_mempool functions.
771  *
772  * @param name
773  *   The name of the mbuf pool.
774  * @param n
775  *   The number of elements in the mbuf pool. The optimum size (in terms
776  *   of memory usage) for a mempool is when n is a power of two minus one:
777  *   n = (2^q - 1).
778  * @param cache_size
779  *   Size of the per-core object cache. See rte_mempool_create() for
780  *   details.
781  * @param priv_size
782  *   Size of application private are between the rte_mbuf structure
783  *   and the data buffer. This value must be aligned to RTE_MBUF_PRIV_ALIGN.
784  * @param data_room_size
785  *   Size of data buffer in each mbuf, including RTE_PKTMBUF_HEADROOM.
786  * @param socket_id
787  *   The socket identifier where the memory should be allocated. The
788  *   value can be *SOCKET_ID_ANY* if there is no NUMA constraint for the
789  *   reserved zone.
790  * @param ext_mem
791  *   Pointer to the array of structures describing the external memory
792  *   for data buffers. It is caller responsibility to register this memory
793  *   with rte_extmem_register() (if needed), map this memory to appropriate
794  *   physical device, etc.
795  * @param ext_num
796  *   Number of elements in the ext_mem array.
797  * @return
798  *   The pointer to the new allocated mempool, on success. NULL on error
799  *   with rte_errno set appropriately. Possible rte_errno values include:
800  *    - E_RTE_NO_CONFIG - function could not get pointer to rte_config structure
801  *    - EINVAL - cache size provided is too large, or priv_size is not aligned.
802  *    - ENOSPC - the maximum number of memzones has already been allocated
803  *    - EEXIST - a memzone with the same name already exists
804  *    - ENOMEM - no appropriate memory area found in which to create memzone
805  */
806 struct rte_mempool *
807 rte_pktmbuf_pool_create_extbuf(const char *name, unsigned int n,
808 	unsigned int cache_size, uint16_t priv_size,
809 	uint16_t data_room_size, int socket_id,
810 	const struct rte_pktmbuf_extmem *ext_mem,
811 	unsigned int ext_num);
812 
813 /**
814  * Get the data room size of mbufs stored in a pktmbuf_pool
815  *
816  * The data room size is the amount of data that can be stored in a
817  * mbuf including the headroom (RTE_PKTMBUF_HEADROOM).
818  *
819  * @param mp
820  *   The packet mbuf pool.
821  * @return
822  *   The data room size of mbufs stored in this mempool.
823  */
824 static inline uint16_t
825 rte_pktmbuf_data_room_size(struct rte_mempool *mp)
826 {
827 	struct rte_pktmbuf_pool_private *mbp_priv;
828 
829 	mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
830 	return mbp_priv->mbuf_data_room_size;
831 }
832 
833 /**
834  * Get the application private size of mbufs stored in a pktmbuf_pool
835  *
836  * The private size of mbuf is a zone located between the rte_mbuf
837  * structure and the data buffer where an application can store data
838  * associated to a packet.
839  *
840  * @param mp
841  *   The packet mbuf pool.
842  * @return
843  *   The private size of mbufs stored in this mempool.
844  */
845 static inline uint16_t
846 rte_pktmbuf_priv_size(struct rte_mempool *mp)
847 {
848 	struct rte_pktmbuf_pool_private *mbp_priv;
849 
850 	mbp_priv = (struct rte_pktmbuf_pool_private *)rte_mempool_get_priv(mp);
851 	return mbp_priv->mbuf_priv_size;
852 }
853 
854 /**
855  * Reset the data_off field of a packet mbuf to its default value.
856  *
857  * The given mbuf must have only one segment, which should be empty.
858  *
859  * @param m
860  *   The packet mbuf's data_off field has to be reset.
861  */
862 static inline void rte_pktmbuf_reset_headroom(struct rte_mbuf *m)
863 {
864 	m->data_off = (uint16_t)RTE_MIN((uint16_t)RTE_PKTMBUF_HEADROOM,
865 					(uint16_t)m->buf_len);
866 }
867 
868 /**
869  * Reset the fields of a packet mbuf to their default values.
870  *
871  * The given mbuf must have only one segment.
872  *
873  * @param m
874  *   The packet mbuf to be reset.
875  */
876 static inline void rte_pktmbuf_reset(struct rte_mbuf *m)
877 {
878 	m->next = NULL;
879 	m->pkt_len = 0;
880 	m->tx_offload = 0;
881 	m->vlan_tci = 0;
882 	m->vlan_tci_outer = 0;
883 	m->nb_segs = 1;
884 	m->port = RTE_MBUF_PORT_INVALID;
885 
886 	m->ol_flags &= RTE_MBUF_F_EXTERNAL;
887 	m->packet_type = 0;
888 	rte_pktmbuf_reset_headroom(m);
889 
890 	m->data_len = 0;
891 	__rte_mbuf_sanity_check(m, 1);
892 }
893 
894 /**
895  * Allocate a new mbuf from a mempool.
896  *
897  * This new mbuf contains one segment, which has a length of 0. The pointer
898  * to data is initialized to have some bytes of headroom in the buffer
899  * (if buffer size allows).
900  *
901  * @param mp
902  *   The mempool from which the mbuf is allocated.
903  * @return
904  *   - The pointer to the new mbuf on success.
905  *   - NULL if allocation failed.
906  */
907 static inline struct rte_mbuf *rte_pktmbuf_alloc(struct rte_mempool *mp)
908 {
909 	struct rte_mbuf *m;
910 	if ((m = rte_mbuf_raw_alloc(mp)) != NULL)
911 		rte_pktmbuf_reset(m);
912 	return m;
913 }
914 
915 /**
916  * Allocate a bulk of mbufs, initialize refcnt and reset the fields to default
917  * values.
918  *
919  *  @param pool
920  *    The mempool from which mbufs are allocated.
921  *  @param mbufs
922  *    Array of pointers to mbufs
923  *  @param count
924  *    Array size
925  *  @return
926  *   - 0: Success
927  *   - -ENOENT: Not enough entries in the mempool; no mbufs are retrieved.
928  */
929 static inline int rte_pktmbuf_alloc_bulk(struct rte_mempool *pool,
930 	 struct rte_mbuf **mbufs, unsigned count)
931 {
932 	unsigned idx = 0;
933 	int rc;
934 
935 	rc = rte_mempool_get_bulk(pool, (void **)mbufs, count);
936 	if (unlikely(rc))
937 		return rc;
938 
939 	/* To understand duff's device on loop unwinding optimization, see
940 	 * https://en.wikipedia.org/wiki/Duff's_device.
941 	 * Here while() loop is used rather than do() while{} to avoid extra
942 	 * check if count is zero.
943 	 */
944 	switch (count % 4) {
945 	case 0:
946 		while (idx != count) {
947 			__rte_mbuf_raw_sanity_check(mbufs[idx]);
948 			rte_pktmbuf_reset(mbufs[idx]);
949 			idx++;
950 			/* fall-through */
951 	case 3:
952 			__rte_mbuf_raw_sanity_check(mbufs[idx]);
953 			rte_pktmbuf_reset(mbufs[idx]);
954 			idx++;
955 			/* fall-through */
956 	case 2:
957 			__rte_mbuf_raw_sanity_check(mbufs[idx]);
958 			rte_pktmbuf_reset(mbufs[idx]);
959 			idx++;
960 			/* fall-through */
961 	case 1:
962 			__rte_mbuf_raw_sanity_check(mbufs[idx]);
963 			rte_pktmbuf_reset(mbufs[idx]);
964 			idx++;
965 			/* fall-through */
966 		}
967 	}
968 	return 0;
969 }
970 
971 /**
972  * Initialize shared data at the end of an external buffer before attaching
973  * to a mbuf by ``rte_pktmbuf_attach_extbuf()``. This is not a mandatory
974  * initialization but a helper function to simply spare a few bytes at the
975  * end of the buffer for shared data. If shared data is allocated
976  * separately, this should not be called but application has to properly
977  * initialize the shared data according to its need.
978  *
979  * Free callback and its argument is saved and the refcnt is set to 1.
980  *
981  * @warning
982  * The value of buf_len will be reduced to RTE_PTR_DIFF(shinfo, buf_addr)
983  * after this initialization. This shall be used for
984  * ``rte_pktmbuf_attach_extbuf()``
985  *
986  * @param buf_addr
987  *   The pointer to the external buffer.
988  * @param [in,out] buf_len
989  *   The pointer to length of the external buffer. Input value must be
990  *   larger than the size of ``struct rte_mbuf_ext_shared_info`` and
991  *   padding for alignment. If not enough, this function will return NULL.
992  *   Adjusted buffer length will be returned through this pointer.
993  * @param free_cb
994  *   Free callback function to call when the external buffer needs to be
995  *   freed.
996  * @param fcb_opaque
997  *   Argument for the free callback function.
998  *
999  * @return
1000  *   A pointer to the initialized shared data on success, return NULL
1001  *   otherwise.
1002  */
1003 static inline struct rte_mbuf_ext_shared_info *
1004 rte_pktmbuf_ext_shinfo_init_helper(void *buf_addr, uint16_t *buf_len,
1005 	rte_mbuf_extbuf_free_callback_t free_cb, void *fcb_opaque)
1006 {
1007 	struct rte_mbuf_ext_shared_info *shinfo;
1008 	void *buf_end = RTE_PTR_ADD(buf_addr, *buf_len);
1009 	void *addr;
1010 
1011 	addr = RTE_PTR_ALIGN_FLOOR(RTE_PTR_SUB(buf_end, sizeof(*shinfo)),
1012 				   sizeof(uintptr_t));
1013 	if (addr <= buf_addr)
1014 		return NULL;
1015 
1016 	shinfo = (struct rte_mbuf_ext_shared_info *)addr;
1017 	shinfo->free_cb = free_cb;
1018 	shinfo->fcb_opaque = fcb_opaque;
1019 	rte_mbuf_ext_refcnt_set(shinfo, 1);
1020 
1021 	*buf_len = (uint16_t)RTE_PTR_DIFF(shinfo, buf_addr);
1022 	return shinfo;
1023 }
1024 
1025 /**
1026  * Attach an external buffer to a mbuf.
1027  *
1028  * User-managed anonymous buffer can be attached to an mbuf. When attaching
1029  * it, corresponding free callback function and its argument should be
1030  * provided via shinfo. This callback function will be called once all the
1031  * mbufs are detached from the buffer (refcnt becomes zero).
1032  *
1033  * The headroom length of the attaching mbuf will be set to zero and this
1034  * can be properly adjusted after attachment. For example, ``rte_pktmbuf_adj()``
1035  * or ``rte_pktmbuf_reset_headroom()`` might be used.
1036  *
1037  * Similarly, the packet length is initialized to 0. If the buffer contains
1038  * data, the user has to adjust ``data_len`` and the ``pkt_len`` field of
1039  * the mbuf accordingly.
1040  *
1041  * More mbufs can be attached to the same external buffer by
1042  * ``rte_pktmbuf_attach()`` once the external buffer has been attached by
1043  * this API.
1044  *
1045  * Detachment can be done by either ``rte_pktmbuf_detach_extbuf()`` or
1046  * ``rte_pktmbuf_detach()``.
1047  *
1048  * Memory for shared data must be provided and user must initialize all of
1049  * the content properly, especially free callback and refcnt. The pointer
1050  * of shared data will be stored in m->shinfo.
1051  * ``rte_pktmbuf_ext_shinfo_init_helper`` can help to simply spare a few
1052  * bytes at the end of buffer for the shared data, store free callback and
1053  * its argument and set the refcnt to 1. The following is an example:
1054  *
1055  *   struct rte_mbuf_ext_shared_info *shinfo =
1056  *          rte_pktmbuf_ext_shinfo_init_helper(buf_addr, &buf_len,
1057  *                                             free_cb, fcb_arg);
1058  *   rte_pktmbuf_attach_extbuf(m, buf_addr, buf_iova, buf_len, shinfo);
1059  *   rte_pktmbuf_reset_headroom(m);
1060  *   rte_pktmbuf_adj(m, data_len);
1061  *
1062  * Attaching an external buffer is quite similar to mbuf indirection in
1063  * replacing buffer addresses and length of a mbuf, but a few differences:
1064  * - When an indirect mbuf is attached, refcnt of the direct mbuf would be
1065  *   2 as long as the direct mbuf itself isn't freed after the attachment.
1066  *   In such cases, the buffer area of a direct mbuf must be read-only. But
1067  *   external buffer has its own refcnt and it starts from 1. Unless
1068  *   multiple mbufs are attached to a mbuf having an external buffer, the
1069  *   external buffer is writable.
1070  * - There's no need to allocate buffer from a mempool. Any buffer can be
1071  *   attached with appropriate free callback and its IO address.
1072  * - Smaller metadata is required to maintain shared data such as refcnt.
1073  *
1074  * @param m
1075  *   The pointer to the mbuf.
1076  * @param buf_addr
1077  *   The pointer to the external buffer.
1078  * @param buf_iova
1079  *   IO address of the external buffer.
1080  * @param buf_len
1081  *   The size of the external buffer.
1082  * @param shinfo
1083  *   User-provided memory for shared data of the external buffer.
1084  */
1085 static inline void
1086 rte_pktmbuf_attach_extbuf(struct rte_mbuf *m, void *buf_addr,
1087 	rte_iova_t buf_iova, uint16_t buf_len,
1088 	struct rte_mbuf_ext_shared_info *shinfo)
1089 {
1090 	/* mbuf should not be read-only */
1091 	RTE_ASSERT(RTE_MBUF_DIRECT(m) && rte_mbuf_refcnt_read(m) == 1);
1092 	RTE_ASSERT(shinfo->free_cb != NULL);
1093 
1094 	m->buf_addr = buf_addr;
1095 	rte_mbuf_iova_set(m, buf_iova);
1096 	m->buf_len = buf_len;
1097 
1098 	m->data_len = 0;
1099 	m->data_off = 0;
1100 
1101 	m->ol_flags |= RTE_MBUF_F_EXTERNAL;
1102 	m->shinfo = shinfo;
1103 }
1104 
1105 /**
1106  * Detach the external buffer attached to a mbuf, same as
1107  * ``rte_pktmbuf_detach()``
1108  *
1109  * @param m
1110  *   The mbuf having external buffer.
1111  */
1112 #define rte_pktmbuf_detach_extbuf(m) rte_pktmbuf_detach(m)
1113 
1114 /**
1115  * Copy dynamic fields from msrc to mdst.
1116  *
1117  * @param mdst
1118  *   The destination mbuf.
1119  * @param msrc
1120  *   The source mbuf.
1121  */
1122 static inline void
1123 rte_mbuf_dynfield_copy(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1124 {
1125 #if !RTE_IOVA_IN_MBUF
1126 	mdst->dynfield2 = msrc->dynfield2;
1127 #endif
1128 	memcpy(&mdst->dynfield1, msrc->dynfield1, sizeof(mdst->dynfield1));
1129 }
1130 
1131 /* internal */
1132 static inline void
1133 __rte_pktmbuf_copy_hdr(struct rte_mbuf *mdst, const struct rte_mbuf *msrc)
1134 {
1135 	mdst->port = msrc->port;
1136 	mdst->vlan_tci = msrc->vlan_tci;
1137 	mdst->vlan_tci_outer = msrc->vlan_tci_outer;
1138 	mdst->tx_offload = msrc->tx_offload;
1139 	mdst->hash = msrc->hash;
1140 	mdst->packet_type = msrc->packet_type;
1141 	rte_mbuf_dynfield_copy(mdst, msrc);
1142 }
1143 
1144 /**
1145  * Attach packet mbuf to another packet mbuf.
1146  *
1147  * If the mbuf we are attaching to isn't a direct buffer and is attached to
1148  * an external buffer, the mbuf being attached will be attached to the
1149  * external buffer instead of mbuf indirection.
1150  *
1151  * Otherwise, the mbuf will be indirectly attached. After attachment we
1152  * refer the mbuf we attached as 'indirect', while mbuf we attached to as
1153  * 'direct'.  The direct mbuf's reference counter is incremented.
1154  *
1155  * Right now, not supported:
1156  *  - attachment for already indirect mbuf (e.g. - mi has to be direct).
1157  *  - mbuf we trying to attach (mi) is used by someone else
1158  *    e.g. it's reference counter is greater then 1.
1159  *
1160  * @param mi
1161  *   The indirect packet mbuf.
1162  * @param m
1163  *   The packet mbuf we're attaching to.
1164  */
1165 static inline void rte_pktmbuf_attach(struct rte_mbuf *mi, struct rte_mbuf *m)
1166 {
1167 	RTE_ASSERT(RTE_MBUF_DIRECT(mi) &&
1168 	    rte_mbuf_refcnt_read(mi) == 1);
1169 
1170 	if (RTE_MBUF_HAS_EXTBUF(m)) {
1171 		rte_mbuf_ext_refcnt_update(m->shinfo, 1);
1172 		mi->ol_flags = m->ol_flags;
1173 		mi->shinfo = m->shinfo;
1174 	} else {
1175 		/* if m is not direct, get the mbuf that embeds the data */
1176 		rte_mbuf_refcnt_update(rte_mbuf_from_indirect(m), 1);
1177 		mi->priv_size = m->priv_size;
1178 		mi->ol_flags = m->ol_flags | RTE_MBUF_F_INDIRECT;
1179 	}
1180 
1181 	__rte_pktmbuf_copy_hdr(mi, m);
1182 
1183 	mi->data_off = m->data_off;
1184 	mi->data_len = m->data_len;
1185 	rte_mbuf_iova_set(mi, rte_mbuf_iova_get(m));
1186 	mi->buf_addr = m->buf_addr;
1187 	mi->buf_len = m->buf_len;
1188 
1189 	mi->next = NULL;
1190 	mi->pkt_len = mi->data_len;
1191 	mi->nb_segs = 1;
1192 
1193 	__rte_mbuf_sanity_check(mi, 1);
1194 	__rte_mbuf_sanity_check(m, 0);
1195 }
1196 
1197 /**
1198  * @internal used by rte_pktmbuf_detach().
1199  *
1200  * Decrement the reference counter of the external buffer. When the
1201  * reference counter becomes 0, the buffer is freed by pre-registered
1202  * callback.
1203  */
1204 static inline void
1205 __rte_pktmbuf_free_extbuf(struct rte_mbuf *m)
1206 {
1207 	RTE_ASSERT(RTE_MBUF_HAS_EXTBUF(m));
1208 	RTE_ASSERT(m->shinfo != NULL);
1209 
1210 	if (rte_mbuf_ext_refcnt_update(m->shinfo, -1) == 0)
1211 		m->shinfo->free_cb(m->buf_addr, m->shinfo->fcb_opaque);
1212 }
1213 
1214 /**
1215  * @internal used by rte_pktmbuf_detach().
1216  *
1217  * Decrement the direct mbuf's reference counter. When the reference
1218  * counter becomes 0, the direct mbuf is freed.
1219  */
1220 static inline void
1221 __rte_pktmbuf_free_direct(struct rte_mbuf *m)
1222 {
1223 	struct rte_mbuf *md;
1224 
1225 	RTE_ASSERT(RTE_MBUF_CLONED(m));
1226 
1227 	md = rte_mbuf_from_indirect(m);
1228 
1229 	if (rte_mbuf_refcnt_update(md, -1) == 0) {
1230 		md->next = NULL;
1231 		md->nb_segs = 1;
1232 		rte_mbuf_refcnt_set(md, 1);
1233 		rte_mbuf_raw_free(md);
1234 	}
1235 }
1236 
1237 /**
1238  * Detach a packet mbuf from external buffer or direct buffer.
1239  *
1240  *  - decrement refcnt and free the external/direct buffer if refcnt
1241  *    becomes zero.
1242  *  - restore original mbuf address and length values.
1243  *  - reset pktmbuf data and data_len to their default values.
1244  *
1245  * All other fields of the given packet mbuf will be left intact.
1246  *
1247  * If the packet mbuf was allocated from the pool with pinned
1248  * external buffers the rte_pktmbuf_detach does nothing with the
1249  * mbuf of this kind, because the pinned buffers are not supposed
1250  * to be detached.
1251  *
1252  * @param m
1253  *   The indirect attached packet mbuf.
1254  */
1255 static inline void rte_pktmbuf_detach(struct rte_mbuf *m)
1256 {
1257 	struct rte_mempool *mp = m->pool;
1258 	uint32_t mbuf_size, buf_len;
1259 	uint16_t priv_size;
1260 
1261 	if (RTE_MBUF_HAS_EXTBUF(m)) {
1262 		/*
1263 		 * The mbuf has the external attached buffer,
1264 		 * we should check the type of the memory pool where
1265 		 * the mbuf was allocated from to detect the pinned
1266 		 * external buffer.
1267 		 */
1268 		uint32_t flags = rte_pktmbuf_priv_flags(mp);
1269 
1270 		if (flags & RTE_PKTMBUF_POOL_F_PINNED_EXT_BUF) {
1271 			/*
1272 			 * The pinned external buffer should not be
1273 			 * detached from its backing mbuf, just exit.
1274 			 */
1275 			return;
1276 		}
1277 		__rte_pktmbuf_free_extbuf(m);
1278 	} else {
1279 		__rte_pktmbuf_free_direct(m);
1280 	}
1281 	priv_size = rte_pktmbuf_priv_size(mp);
1282 	mbuf_size = (uint32_t)(sizeof(struct rte_mbuf) + priv_size);
1283 	buf_len = rte_pktmbuf_data_room_size(mp);
1284 
1285 	m->priv_size = priv_size;
1286 	m->buf_addr = (char *)m + mbuf_size;
1287 	rte_mbuf_iova_set(m, rte_mempool_virt2iova(m) + mbuf_size);
1288 	m->buf_len = (uint16_t)buf_len;
1289 	rte_pktmbuf_reset_headroom(m);
1290 	m->data_len = 0;
1291 	m->ol_flags = 0;
1292 }
1293 
1294 /**
1295  * @internal Handle the packet mbufs with attached pinned external buffer
1296  * on the mbuf freeing:
1297  *
1298  *  - return zero if reference counter in shinfo is one. It means there is
1299  *  no more reference to this pinned buffer and mbuf can be returned to
1300  *  the pool
1301  *
1302  *  - otherwise (if reference counter is not one), decrement reference
1303  *  counter and return non-zero value to prevent freeing the backing mbuf.
1304  *
1305  * Returns non zero if mbuf should not be freed.
1306  */
1307 static inline int __rte_pktmbuf_pinned_extbuf_decref(struct rte_mbuf *m)
1308 {
1309 	struct rte_mbuf_ext_shared_info *shinfo;
1310 
1311 	/* Clear flags, mbuf is being freed. */
1312 	m->ol_flags = RTE_MBUF_F_EXTERNAL;
1313 	shinfo = m->shinfo;
1314 
1315 	/* Optimize for performance - do not dec/reinit */
1316 	if (likely(rte_mbuf_ext_refcnt_read(shinfo) == 1))
1317 		return 0;
1318 
1319 	/*
1320 	 * Direct usage of add primitive to avoid
1321 	 * duplication of comparing with one.
1322 	 */
1323 	if (likely(rte_atomic_fetch_add_explicit(&shinfo->refcnt, -1,
1324 				     rte_memory_order_acq_rel) - 1))
1325 		return 1;
1326 
1327 	/* Reinitialize counter before mbuf freeing. */
1328 	rte_mbuf_ext_refcnt_set(shinfo, 1);
1329 	return 0;
1330 }
1331 
1332 /**
1333  * Decrease reference counter and unlink a mbuf segment
1334  *
1335  * This function does the same than a free, except that it does not
1336  * return the segment to its pool.
1337  * It decreases the reference counter, and if it reaches 0, it is
1338  * detached from its parent for an indirect mbuf.
1339  *
1340  * @param m
1341  *   The mbuf to be unlinked
1342  * @return
1343  *   - (m) if it is the last reference. It can be recycled or freed.
1344  *   - (NULL) if the mbuf still has remaining references on it.
1345  */
1346 static __rte_always_inline struct rte_mbuf *
1347 rte_pktmbuf_prefree_seg(struct rte_mbuf *m)
1348 {
1349 	__rte_mbuf_sanity_check(m, 0);
1350 
1351 	if (likely(rte_mbuf_refcnt_read(m) == 1)) {
1352 
1353 		if (!RTE_MBUF_DIRECT(m)) {
1354 			rte_pktmbuf_detach(m);
1355 			if (RTE_MBUF_HAS_EXTBUF(m) &&
1356 			    RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1357 			    __rte_pktmbuf_pinned_extbuf_decref(m))
1358 				return NULL;
1359 		}
1360 
1361 		if (m->next != NULL)
1362 			m->next = NULL;
1363 		if (m->nb_segs != 1)
1364 			m->nb_segs = 1;
1365 
1366 		return m;
1367 
1368 	} else if (__rte_mbuf_refcnt_update(m, -1) == 0) {
1369 
1370 		if (!RTE_MBUF_DIRECT(m)) {
1371 			rte_pktmbuf_detach(m);
1372 			if (RTE_MBUF_HAS_EXTBUF(m) &&
1373 			    RTE_MBUF_HAS_PINNED_EXTBUF(m) &&
1374 			    __rte_pktmbuf_pinned_extbuf_decref(m))
1375 				return NULL;
1376 		}
1377 
1378 		if (m->next != NULL)
1379 			m->next = NULL;
1380 		if (m->nb_segs != 1)
1381 			m->nb_segs = 1;
1382 		rte_mbuf_refcnt_set(m, 1);
1383 
1384 		return m;
1385 	}
1386 	return NULL;
1387 }
1388 
1389 /**
1390  * Free a segment of a packet mbuf into its original mempool.
1391  *
1392  * Free an mbuf, without parsing other segments in case of chained
1393  * buffers.
1394  *
1395  * @param m
1396  *   The packet mbuf segment to be freed.
1397  */
1398 static __rte_always_inline void
1399 rte_pktmbuf_free_seg(struct rte_mbuf *m)
1400 {
1401 	m = rte_pktmbuf_prefree_seg(m);
1402 	if (likely(m != NULL))
1403 		rte_mbuf_raw_free(m);
1404 }
1405 
1406 /**
1407  * Free a packet mbuf back into its original mempool.
1408  *
1409  * Free an mbuf, and all its segments in case of chained buffers. Each
1410  * segment is added back into its original mempool.
1411  *
1412  * @param m
1413  *   The packet mbuf to be freed. If NULL, the function does nothing.
1414  */
1415 static inline void rte_pktmbuf_free(struct rte_mbuf *m)
1416 {
1417 	struct rte_mbuf *m_next;
1418 
1419 	if (m != NULL)
1420 		__rte_mbuf_sanity_check(m, 1);
1421 
1422 	while (m != NULL) {
1423 		m_next = m->next;
1424 		rte_pktmbuf_free_seg(m);
1425 		m = m_next;
1426 	}
1427 }
1428 
1429 /**
1430  * Free a bulk of packet mbufs back into their original mempools.
1431  *
1432  * Free a bulk of mbufs, and all their segments in case of chained buffers.
1433  * Each segment is added back into its original mempool.
1434  *
1435  *  @param mbufs
1436  *    Array of pointers to packet mbufs.
1437  *    The array may contain NULL pointers.
1438  *  @param count
1439  *    Array size.
1440  */
1441 void rte_pktmbuf_free_bulk(struct rte_mbuf **mbufs, unsigned int count);
1442 
1443 /**
1444  * Create a "clone" of the given packet mbuf.
1445  *
1446  * Walks through all segments of the given packet mbuf, and for each of them:
1447  *  - Creates a new packet mbuf from the given pool.
1448  *  - Attaches newly created mbuf to the segment.
1449  * Then updates pkt_len and nb_segs of the "clone" packet mbuf to match values
1450  * from the original packet mbuf.
1451  *
1452  * @param md
1453  *   The packet mbuf to be cloned.
1454  * @param mp
1455  *   The mempool from which the "clone" mbufs are allocated.
1456  * @return
1457  *   - The pointer to the new "clone" mbuf on success.
1458  *   - NULL if allocation fails.
1459  */
1460 struct rte_mbuf *
1461 rte_pktmbuf_clone(struct rte_mbuf *md, struct rte_mempool *mp);
1462 
1463 /**
1464  * Create a full copy of a given packet mbuf.
1465  *
1466  * Copies all the data from a given packet mbuf to a newly allocated
1467  * set of mbufs. The private data are is not copied.
1468  *
1469  * @param m
1470  *   The packet mbuf to be copied.
1471  * @param mp
1472  *   The mempool from which the "clone" mbufs are allocated.
1473  * @param offset
1474  *   The number of bytes to skip before copying.
1475  *   If the mbuf does not have that many bytes, it is an error
1476  *   and NULL is returned.
1477  * @param length
1478  *   The upper limit on bytes to copy.  Passing UINT32_MAX
1479  *   means all data (after offset).
1480  * @return
1481  *   - The pointer to the new "clone" mbuf on success.
1482  *   - NULL if allocation fails.
1483  */
1484 struct rte_mbuf *
1485 rte_pktmbuf_copy(const struct rte_mbuf *m, struct rte_mempool *mp,
1486 		 uint32_t offset, uint32_t length);
1487 
1488 /**
1489  * Adds given value to the refcnt of all packet mbuf segments.
1490  *
1491  * Walks through all segments of given packet mbuf and for each of them
1492  * invokes rte_mbuf_refcnt_update().
1493  *
1494  * @param m
1495  *   The packet mbuf whose refcnt to be updated.
1496  * @param v
1497  *   The value to add to the mbuf's segments refcnt.
1498  */
1499 static inline void rte_pktmbuf_refcnt_update(struct rte_mbuf *m, int16_t v)
1500 {
1501 	__rte_mbuf_sanity_check(m, 1);
1502 
1503 	do {
1504 		rte_mbuf_refcnt_update(m, v);
1505 	} while ((m = m->next) != NULL);
1506 }
1507 
1508 /**
1509  * Get the headroom in a packet mbuf.
1510  *
1511  * @param m
1512  *   The packet mbuf.
1513  * @return
1514  *   The length of the headroom.
1515  */
1516 static inline uint16_t rte_pktmbuf_headroom(const struct rte_mbuf *m)
1517 {
1518 	__rte_mbuf_sanity_check(m, 0);
1519 	return m->data_off;
1520 }
1521 
1522 /**
1523  * Get the tailroom of a packet mbuf.
1524  *
1525  * @param m
1526  *   The packet mbuf.
1527  * @return
1528  *   The length of the tailroom.
1529  */
1530 static inline uint16_t rte_pktmbuf_tailroom(const struct rte_mbuf *m)
1531 {
1532 	__rte_mbuf_sanity_check(m, 0);
1533 	return (uint16_t)(m->buf_len - rte_pktmbuf_headroom(m) -
1534 			  m->data_len);
1535 }
1536 
1537 /**
1538  * Get the last segment of the packet.
1539  *
1540  * @param m
1541  *   The packet mbuf.
1542  * @return
1543  *   The last segment of the given mbuf.
1544  */
1545 static inline struct rte_mbuf *rte_pktmbuf_lastseg(struct rte_mbuf *m)
1546 {
1547 	__rte_mbuf_sanity_check(m, 1);
1548 	while (m->next != NULL)
1549 		m = m->next;
1550 	return m;
1551 }
1552 
1553 /**
1554  * A macro that returns the length of the packet.
1555  *
1556  * The value can be read or assigned.
1557  *
1558  * @param m
1559  *   The packet mbuf.
1560  */
1561 #define rte_pktmbuf_pkt_len(m) ((m)->pkt_len)
1562 
1563 /**
1564  * A macro that returns the length of the segment.
1565  *
1566  * The value can be read or assigned.
1567  *
1568  * @param m
1569  *   The packet mbuf.
1570  */
1571 #define rte_pktmbuf_data_len(m) ((m)->data_len)
1572 
1573 /**
1574  * Prepend len bytes to an mbuf data area.
1575  *
1576  * Returns a pointer to the new
1577  * data start address. If there is not enough headroom in the first
1578  * segment, the function will return NULL, without modifying the mbuf.
1579  *
1580  * @param m
1581  *   The pkt mbuf.
1582  * @param len
1583  *   The amount of data to prepend (in bytes).
1584  * @return
1585  *   A pointer to the start of the newly prepended data, or
1586  *   NULL if there is not enough headroom space in the first segment
1587  */
1588 static inline char *rte_pktmbuf_prepend(struct rte_mbuf *m,
1589 					uint16_t len)
1590 {
1591 	__rte_mbuf_sanity_check(m, 1);
1592 
1593 	if (unlikely(len > rte_pktmbuf_headroom(m)))
1594 		return NULL;
1595 
1596 	/* NB: elaborating the subtraction like this instead of using
1597 	 *     -= allows us to ensure the result type is uint16_t
1598 	 *     avoiding compiler warnings on gcc 8.1 at least */
1599 	m->data_off = (uint16_t)(m->data_off - len);
1600 	m->data_len = (uint16_t)(m->data_len + len);
1601 	m->pkt_len  = (m->pkt_len + len);
1602 
1603 	return (char *)m->buf_addr + m->data_off;
1604 }
1605 
1606 /**
1607  * Append len bytes to an mbuf.
1608  *
1609  * Append len bytes to an mbuf and return a pointer to the start address
1610  * of the added data. If there is not enough tailroom in the last
1611  * segment, the function will return NULL, without modifying the mbuf.
1612  *
1613  * @param m
1614  *   The packet mbuf.
1615  * @param len
1616  *   The amount of data to append (in bytes).
1617  * @return
1618  *   A pointer to the start of the newly appended data, or
1619  *   NULL if there is not enough tailroom space in the last segment
1620  */
1621 static inline char *rte_pktmbuf_append(struct rte_mbuf *m, uint16_t len)
1622 {
1623 	void *tail;
1624 	struct rte_mbuf *m_last;
1625 
1626 	__rte_mbuf_sanity_check(m, 1);
1627 
1628 	m_last = rte_pktmbuf_lastseg(m);
1629 	if (unlikely(len > rte_pktmbuf_tailroom(m_last)))
1630 		return NULL;
1631 
1632 	tail = (char *)m_last->buf_addr + m_last->data_off + m_last->data_len;
1633 	m_last->data_len = (uint16_t)(m_last->data_len + len);
1634 	m->pkt_len  = (m->pkt_len + len);
1635 	return (char*) tail;
1636 }
1637 
1638 /**
1639  * Remove len bytes at the beginning of an mbuf.
1640  *
1641  * Returns a pointer to the start address of the new data area. If the
1642  * length is greater than the length of the first segment, then the
1643  * function will fail and return NULL, without modifying the mbuf.
1644  *
1645  * @param m
1646  *   The packet mbuf.
1647  * @param len
1648  *   The amount of data to remove (in bytes).
1649  * @return
1650  *   A pointer to the new start of the data.
1651  */
1652 static inline char *rte_pktmbuf_adj(struct rte_mbuf *m, uint16_t len)
1653 {
1654 	__rte_mbuf_sanity_check(m, 1);
1655 
1656 	if (unlikely(len > m->data_len))
1657 		return NULL;
1658 
1659 	/* NB: elaborating the addition like this instead of using
1660 	 *     += allows us to ensure the result type is uint16_t
1661 	 *     avoiding compiler warnings on gcc 8.1 at least */
1662 	m->data_len = (uint16_t)(m->data_len - len);
1663 	m->data_off = (uint16_t)(m->data_off + len);
1664 	m->pkt_len  = (m->pkt_len - len);
1665 	return (char *)m->buf_addr + m->data_off;
1666 }
1667 
1668 /**
1669  * Remove len bytes of data at the end of the mbuf.
1670  *
1671  * If the length is greater than the length of the last segment, the
1672  * function will fail and return -1 without modifying the mbuf.
1673  *
1674  * @param m
1675  *   The packet mbuf.
1676  * @param len
1677  *   The amount of data to remove (in bytes).
1678  * @return
1679  *   - 0: On success.
1680  *   - -1: On error.
1681  */
1682 static inline int rte_pktmbuf_trim(struct rte_mbuf *m, uint16_t len)
1683 {
1684 	struct rte_mbuf *m_last;
1685 
1686 	__rte_mbuf_sanity_check(m, 1);
1687 
1688 	m_last = rte_pktmbuf_lastseg(m);
1689 	if (unlikely(len > m_last->data_len))
1690 		return -1;
1691 
1692 	m_last->data_len = (uint16_t)(m_last->data_len - len);
1693 	m->pkt_len  = (m->pkt_len - len);
1694 	return 0;
1695 }
1696 
1697 /**
1698  * Test if mbuf data is contiguous.
1699  *
1700  * @param m
1701  *   The packet mbuf.
1702  * @return
1703  *   - 1, if all data is contiguous (one segment).
1704  *   - 0, if there is several segments.
1705  */
1706 static inline int rte_pktmbuf_is_contiguous(const struct rte_mbuf *m)
1707 {
1708 	__rte_mbuf_sanity_check(m, 1);
1709 	return m->nb_segs == 1;
1710 }
1711 
1712 /**
1713  * @internal used by rte_pktmbuf_read().
1714  */
1715 const void *__rte_pktmbuf_read(const struct rte_mbuf *m, uint32_t off,
1716 	uint32_t len, void *buf);
1717 
1718 /**
1719  * Read len data bytes in a mbuf at specified offset.
1720  *
1721  * If the data is contiguous, return the pointer in the mbuf data, else
1722  * copy the data in the buffer provided by the user and return its
1723  * pointer.
1724  *
1725  * @param m
1726  *   The pointer to the mbuf.
1727  * @param off
1728  *   The offset of the data in the mbuf.
1729  * @param len
1730  *   The amount of bytes to read.
1731  * @param buf
1732  *   The buffer where data is copied if it is not contiguous in mbuf
1733  *   data. Its length should be at least equal to the len parameter.
1734  * @return
1735  *   The pointer to the data, either in the mbuf if it is contiguous,
1736  *   or in the user buffer. If mbuf is too small, NULL is returned.
1737  */
1738 static inline const void *rte_pktmbuf_read(const struct rte_mbuf *m,
1739 	uint32_t off, uint32_t len, void *buf)
1740 {
1741 	if (likely(off + len <= rte_pktmbuf_data_len(m)))
1742 		return rte_pktmbuf_mtod_offset(m, char *, off);
1743 	else
1744 		return __rte_pktmbuf_read(m, off, len, buf);
1745 }
1746 
1747 /**
1748  * Chain an mbuf to another, thereby creating a segmented packet.
1749  *
1750  * Note: The implementation will do a linear walk over the segments to find
1751  * the tail entry. For cases when there are many segments, it's better to
1752  * chain the entries manually.
1753  *
1754  * @param head
1755  *   The head of the mbuf chain (the first packet)
1756  * @param tail
1757  *   The mbuf to put last in the chain
1758  *
1759  * @return
1760  *   - 0, on success.
1761  *   - -EOVERFLOW, if the chain segment limit exceeded
1762  */
1763 static inline int rte_pktmbuf_chain(struct rte_mbuf *head, struct rte_mbuf *tail)
1764 {
1765 	struct rte_mbuf *cur_tail;
1766 
1767 	/* Check for number-of-segments-overflow */
1768 	if (head->nb_segs + tail->nb_segs > RTE_MBUF_MAX_NB_SEGS)
1769 		return -EOVERFLOW;
1770 
1771 	/* Chain 'tail' onto the old tail */
1772 	cur_tail = rte_pktmbuf_lastseg(head);
1773 	cur_tail->next = tail;
1774 
1775 	/* accumulate number of segments and total length.
1776 	 * NB: elaborating the addition like this instead of using
1777 	 *     -= allows us to ensure the result type is uint16_t
1778 	 *     avoiding compiler warnings on gcc 8.1 at least */
1779 	head->nb_segs = (uint16_t)(head->nb_segs + tail->nb_segs);
1780 	head->pkt_len += tail->pkt_len;
1781 
1782 	/* pkt_len is only set in the head */
1783 	tail->pkt_len = tail->data_len;
1784 
1785 	return 0;
1786 }
1787 
1788 /**
1789  * For given input values generate raw tx_offload value.
1790  * Note that it is caller responsibility to make sure that input parameters
1791  * don't exceed maximum bit-field values.
1792  * @param il2
1793  *   l2_len value.
1794  * @param il3
1795  *   l3_len value.
1796  * @param il4
1797  *   l4_len value.
1798  * @param tso
1799  *   tso_segsz value.
1800  * @param ol3
1801  *   outer_l3_len value.
1802  * @param ol2
1803  *   outer_l2_len value.
1804  * @param unused
1805  *   unused value.
1806  * @return
1807  *   raw tx_offload value.
1808  */
1809 static __rte_always_inline uint64_t
1810 rte_mbuf_tx_offload(uint64_t il2, uint64_t il3, uint64_t il4, uint64_t tso,
1811 	uint64_t ol3, uint64_t ol2, uint64_t unused)
1812 {
1813 	return il2 << RTE_MBUF_L2_LEN_OFS |
1814 		il3 << RTE_MBUF_L3_LEN_OFS |
1815 		il4 << RTE_MBUF_L4_LEN_OFS |
1816 		tso << RTE_MBUF_TSO_SEGSZ_OFS |
1817 		ol3 << RTE_MBUF_OUTL3_LEN_OFS |
1818 		ol2 << RTE_MBUF_OUTL2_LEN_OFS |
1819 		unused << RTE_MBUF_TXOFLD_UNUSED_OFS;
1820 }
1821 
1822 /**
1823  * Validate general requirements for Tx offload in mbuf.
1824  *
1825  * This function checks correctness and completeness of Tx offload settings.
1826  *
1827  * @param m
1828  *   The packet mbuf to be validated.
1829  * @return
1830  *   0 if packet is valid
1831  */
1832 static inline int
1833 rte_validate_tx_offload(const struct rte_mbuf *m)
1834 {
1835 	uint64_t ol_flags = m->ol_flags;
1836 
1837 	/* Does packet set any of available offloads? */
1838 	if (!(ol_flags & RTE_MBUF_F_TX_OFFLOAD_MASK))
1839 		return 0;
1840 
1841 	/* IP checksum can be counted only for IPv4 packet */
1842 	if ((ol_flags & RTE_MBUF_F_TX_IP_CKSUM) && (ol_flags & RTE_MBUF_F_TX_IPV6))
1843 		return -EINVAL;
1844 
1845 	/* IP type not set when required */
1846 	if (ol_flags & (RTE_MBUF_F_TX_L4_MASK | RTE_MBUF_F_TX_TCP_SEG))
1847 		if (!(ol_flags & (RTE_MBUF_F_TX_IPV4 | RTE_MBUF_F_TX_IPV6)))
1848 			return -EINVAL;
1849 
1850 	/* Check requirements for TSO packet */
1851 	if (ol_flags & RTE_MBUF_F_TX_TCP_SEG)
1852 		if ((m->tso_segsz == 0) ||
1853 				((ol_flags & RTE_MBUF_F_TX_IPV4) &&
1854 				 !(ol_flags & RTE_MBUF_F_TX_IP_CKSUM)))
1855 			return -EINVAL;
1856 
1857 	/* RTE_MBUF_F_TX_OUTER_IP_CKSUM set for non outer IPv4 packet. */
1858 	if ((ol_flags & RTE_MBUF_F_TX_OUTER_IP_CKSUM) &&
1859 			!(ol_flags & RTE_MBUF_F_TX_OUTER_IPV4))
1860 		return -EINVAL;
1861 
1862 	return 0;
1863 }
1864 
1865 /**
1866  * @internal used by rte_pktmbuf_linearize().
1867  */
1868 int __rte_pktmbuf_linearize(struct rte_mbuf *mbuf);
1869 
1870 /**
1871  * Linearize data in mbuf.
1872  *
1873  * This function moves the mbuf data in the first segment if there is enough
1874  * tailroom. The subsequent segments are unchained and freed.
1875  *
1876  * @param mbuf
1877  *   mbuf to linearize
1878  * @return
1879  *   - 0, on success
1880  *   - -1, on error
1881  */
1882 static inline int
1883 rte_pktmbuf_linearize(struct rte_mbuf *mbuf)
1884 {
1885 	if (rte_pktmbuf_is_contiguous(mbuf))
1886 		return 0;
1887 	return __rte_pktmbuf_linearize(mbuf);
1888 }
1889 
1890 /**
1891  * Dump an mbuf structure to a file.
1892  *
1893  * Dump all fields for the given packet mbuf and all its associated
1894  * segments (in the case of a chained buffer).
1895  *
1896  * @param f
1897  *   A pointer to a file for output
1898  * @param m
1899  *   The packet mbuf.
1900  * @param dump_len
1901  *   If dump_len != 0, also dump the "dump_len" first data bytes of
1902  *   the packet.
1903  */
1904 void rte_pktmbuf_dump(FILE *f, const struct rte_mbuf *m, unsigned dump_len);
1905 
1906 /**
1907  * Get the value of mbuf sched queue_id field.
1908  */
1909 static inline uint32_t
1910 rte_mbuf_sched_queue_get(const struct rte_mbuf *m)
1911 {
1912 	return m->hash.sched.queue_id;
1913 }
1914 
1915 /**
1916  * Get the value of mbuf sched traffic_class field.
1917  */
1918 static inline uint8_t
1919 rte_mbuf_sched_traffic_class_get(const struct rte_mbuf *m)
1920 {
1921 	return m->hash.sched.traffic_class;
1922 }
1923 
1924 /**
1925  * Get the value of mbuf sched color field.
1926  */
1927 static inline uint8_t
1928 rte_mbuf_sched_color_get(const struct rte_mbuf *m)
1929 {
1930 	return m->hash.sched.color;
1931 }
1932 
1933 /**
1934  * Get the values of mbuf sched queue_id, traffic_class and color.
1935  *
1936  * @param m
1937  *   Mbuf to read
1938  * @param queue_id
1939  *  Returns the queue id
1940  * @param traffic_class
1941  *  Returns the traffic class id
1942  * @param color
1943  *  Returns the colour id
1944  */
1945 static inline void
1946 rte_mbuf_sched_get(const struct rte_mbuf *m, uint32_t *queue_id,
1947 			uint8_t *traffic_class,
1948 			uint8_t *color)
1949 {
1950 	struct rte_mbuf_sched sched = m->hash.sched;
1951 
1952 	*queue_id = sched.queue_id;
1953 	*traffic_class = sched.traffic_class;
1954 	*color = sched.color;
1955 }
1956 
1957 /**
1958  * Set the mbuf sched queue_id to the defined value.
1959  */
1960 static inline void
1961 rte_mbuf_sched_queue_set(struct rte_mbuf *m, uint32_t queue_id)
1962 {
1963 	m->hash.sched.queue_id = queue_id;
1964 }
1965 
1966 /**
1967  * Set the mbuf sched traffic_class id to the defined value.
1968  */
1969 static inline void
1970 rte_mbuf_sched_traffic_class_set(struct rte_mbuf *m, uint8_t traffic_class)
1971 {
1972 	m->hash.sched.traffic_class = traffic_class;
1973 }
1974 
1975 /**
1976  * Set the mbuf sched color id to the defined value.
1977  */
1978 static inline void
1979 rte_mbuf_sched_color_set(struct rte_mbuf *m, uint8_t color)
1980 {
1981 	m->hash.sched.color = color;
1982 }
1983 
1984 /**
1985  * Set the mbuf sched queue_id, traffic_class and color.
1986  *
1987  * @param m
1988  *   Mbuf to set
1989  * @param queue_id
1990  *  Queue id value to be set
1991  * @param traffic_class
1992  *  Traffic class id value to be set
1993  * @param color
1994  *  Color id to be set
1995  */
1996 static inline void
1997 rte_mbuf_sched_set(struct rte_mbuf *m, uint32_t queue_id,
1998 			uint8_t traffic_class,
1999 			uint8_t color)
2000 {
2001 	m->hash.sched = (struct rte_mbuf_sched){
2002 				.queue_id = queue_id,
2003 				.traffic_class = traffic_class,
2004 				.color = color,
2005 				.reserved = 0,
2006 			};
2007 }
2008 
2009 #ifdef __cplusplus
2010 }
2011 #endif
2012 
2013 #endif /* _RTE_MBUF_H_ */
2014