xref: /netbsd-src/sys/dev/raidframe/rf_dagffrd.c (revision 2cf3739a9f3a821fe3c5b66ce46809392a3766a9)
1 /*	$NetBSD: rf_dagffrd.c,v 1.22 2021/07/23 00:54:45 oster Exp $	*/
2 /*
3  * Copyright (c) 1995 Carnegie-Mellon University.
4  * All rights reserved.
5  *
6  * Author: Mark Holland, Daniel Stodolsky, William V. Courtright II
7  *
8  * Permission to use, copy, modify and distribute this software and
9  * its documentation is hereby granted, provided that both the copyright
10  * notice and this permission notice appear in all copies of the
11  * software, derivative works or modified versions, and any portions
12  * thereof, and that both notices appear in supporting documentation.
13  *
14  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
15  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
16  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
17  *
18  * Carnegie Mellon requests users of this software to return to
19  *
20  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
21  *  School of Computer Science
22  *  Carnegie Mellon University
23  *  Pittsburgh PA 15213-3890
24  *
25  * any improvements or extensions that they make and grant Carnegie the
26  * rights to redistribute these changes.
27  */
28 
29 /*
30  * rf_dagffrd.c
31  *
32  * code for creating fault-free read DAGs
33  *
34  */
35 
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: rf_dagffrd.c,v 1.22 2021/07/23 00:54:45 oster Exp $");
38 
39 #include <dev/raidframe/raidframevar.h>
40 
41 #include "rf_raid.h"
42 #include "rf_dag.h"
43 #include "rf_dagutils.h"
44 #include "rf_dagfuncs.h"
45 #include "rf_debugMem.h"
46 #include "rf_general.h"
47 #include "rf_dagffrd.h"
48 
49 /******************************************************************************
50  *
51  * General comments on DAG creation:
52  *
53  * All DAGs in this file use roll-away error recovery.  Each DAG has a single
54  * commit node, usually called "Cmt."  If an error occurs before the Cmt node
55  * is reached, the execution engine will halt forward execution and work
56  * backward through the graph, executing the undo functions.  Assuming that
57  * each node in the graph prior to the Cmt node are undoable and atomic - or -
58  * does not make changes to permanent state, the graph will fail atomically.
59  * If an error occurs after the Cmt node executes, the engine will roll-forward
60  * through the graph, blindly executing nodes until it reaches the end.
61  * If a graph reaches the end, it is assumed to have completed successfully.
62  *
63  * A graph has only 1 Cmt node.
64  *
65  */
66 
67 
68 /******************************************************************************
69  *
70  * The following wrappers map the standard DAG creation interface to the
71  * DAG creation routines.  Additionally, these wrappers enable experimentation
72  * with new DAG structures by providing an extra level of indirection, allowing
73  * the DAG creation routines to be replaced at this single point.
74  */
75 
76 void
rf_CreateFaultFreeReadDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList)77 rf_CreateFaultFreeReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
78 			  RF_DagHeader_t *dag_h, void *bp,
79 			  RF_RaidAccessFlags_t flags,
80 			  RF_AllocListElem_t *allocList)
81 {
82 	rf_CreateNonredundantDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
83 	    RF_IO_TYPE_READ);
84 }
85 
86 
87 /******************************************************************************
88  *
89  * DAG creation code begins here
90  */
91 
92 /******************************************************************************
93  *
94  * creates a DAG to perform a nonredundant read or write of data within one
95  * stripe.
96  * For reads, this DAG is as follows:
97  *
98  *                   /---- read ----\
99  *    Header -- Block ---- read ---- Commit -- Terminate
100  *                   \---- read ----/
101  *
102  * For writes, this DAG is as follows:
103  *
104  *                    /---- write ----\
105  *    Header -- Commit ---- write ---- Block -- Terminate
106  *                    \---- write ----/
107  *
108  * There is one disk node per stripe unit accessed, and all disk nodes are in
109  * parallel.
110  *
111  * Tricky point here:  The first disk node (read or write) is created
112  * normally.  Subsequent disk nodes are created by copying the first one,
113  * and modifying a few params.  The "succedents" and "antecedents" fields are
114  * _not_ re-created in each node, but rather left pointing to the same array
115  * that was malloc'd when the first node was created.  Thus, it's essential
116  * that when this DAG is freed, the succedents and antecedents fields be freed
117  * in ONLY ONE of the read nodes.  This does not apply to the "params" field
118  * because it is recreated for each READ node.
119  *
120  * Note that normal-priority accesses do not need to be tagged with their
121  * parity stripe ID, because they will never be promoted.  Hence, I've
122  * commented-out the code to do this, and marked it with UNNEEDED.
123  *
124  *****************************************************************************/
125 
126 void
rf_CreateNonredundantDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,RF_IoType_t type)127 rf_CreateNonredundantDAG(RF_Raid_t *raidPtr,
128     RF_AccessStripeMap_t *asmap, RF_DagHeader_t *dag_h, void *bp,
129     RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
130     RF_IoType_t type)
131 {
132 	RF_DagNode_t *diskNodes, *blockNode, *commitNode, *termNode;
133 	RF_DagNode_t *tmpNode, *tmpdiskNode;
134 	RF_PhysDiskAddr_t *pda = asmap->physInfo;
135 	void     (*doFunc) (RF_DagNode_t *), (*undoFunc) (RF_DagNode_t *);
136 	int     i, n;
137 	const char   *name;
138 
139 	n = asmap->numStripeUnitsAccessed;
140 	dag_h->creator = "NonredundantDAG";
141 
142 	doFunc = rf_NullNodeFunc;
143 	undoFunc = rf_NullNodeUndoFunc;
144 	name = NULL;
145 
146 	RF_ASSERT(RF_IO_IS_R_OR_W(type));
147 	switch (type) {
148 	case RF_IO_TYPE_READ:
149 		doFunc = rf_DiskReadFunc;
150 		undoFunc = rf_DiskReadUndoFunc;
151 		name = "R  ";
152 #if RF_DEBUG_DAG
153 		if (rf_dagDebug)
154 			printf("[Creating non-redundant read DAG]\n");
155 #endif
156 		break;
157 	case RF_IO_TYPE_WRITE:
158 		doFunc = rf_DiskWriteFunc;
159 		undoFunc = rf_DiskWriteUndoFunc;
160 		name = "W  ";
161 #if RF_DEBUG_DAG
162 		if (rf_dagDebug)
163 			printf("[Creating non-redundant write DAG]\n");
164 #endif
165 		break;
166 	default:
167 		RF_PANIC();
168 	}
169 
170 	/*
171          * For reads, the dag can not commit until the block node is reached.
172          * for writes, the dag commits immediately.
173          */
174 	dag_h->numCommitNodes = 1;
175 	dag_h->numCommits = 0;
176 	dag_h->numSuccedents = 1;
177 
178 	/*
179          * Node count:
180          * 1 block node
181          * n data reads (or writes)
182          * 1 commit node
183          * 1 terminator node
184          */
185 	RF_ASSERT(n > 0);
186 
187 	for (i = 0; i < n; i++) {
188 		tmpNode = rf_AllocDAGNode(raidPtr);
189 		tmpNode->list_next = dag_h->nodes;
190 		dag_h->nodes = tmpNode;
191 	}
192 	diskNodes = dag_h->nodes;
193 
194 	blockNode = rf_AllocDAGNode(raidPtr);
195 	blockNode->list_next = dag_h->nodes;
196 	dag_h->nodes = blockNode;
197 
198 	commitNode = rf_AllocDAGNode(raidPtr);
199 	commitNode->list_next = dag_h->nodes;
200 	dag_h->nodes = commitNode;
201 
202 	termNode = rf_AllocDAGNode(raidPtr);
203 	termNode->list_next = dag_h->nodes;
204 	dag_h->nodes = termNode;
205 
206 	/* initialize nodes */
207 	switch (type) {
208 	case RF_IO_TYPE_READ:
209 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
210 		    NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
211 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
212 		    NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
213 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
214 		    NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
215 		break;
216 	case RF_IO_TYPE_WRITE:
217 		rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
218 		    NULL, 1, 0, 0, 0, dag_h, "Nil", allocList);
219 		rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc, rf_NullNodeUndoFunc,
220 		    NULL, n, 1, 0, 0, dag_h, "Cmt", allocList);
221 		rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc, rf_TerminateUndoFunc,
222 		    NULL, 0, n, 0, 0, dag_h, "Trm", allocList);
223 		break;
224 	default:
225 		RF_PANIC();
226 	}
227 
228 	tmpdiskNode = diskNodes;
229 	for (i = 0; i < n; i++) {
230 		RF_ASSERT(pda != NULL);
231 		rf_InitNode(tmpdiskNode, rf_wait, RF_FALSE, doFunc, undoFunc, rf_GenericWakeupFunc,
232 		    1, 1, 4, 0, dag_h, name, allocList);
233 		tmpdiskNode->params[0].p = pda;
234 		tmpdiskNode->params[1].p = pda->bufPtr;
235 		/* parity stripe id is not necessary */
236 		tmpdiskNode->params[2].v = 0;
237 		tmpdiskNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
238 		pda = pda->next;
239 		tmpdiskNode = tmpdiskNode->list_next;
240 	}
241 
242 	/*
243          * Connect nodes.
244          */
245 
246 	/* connect hdr to block node */
247 	RF_ASSERT(blockNode->numAntecedents == 0);
248 	dag_h->succedents[0] = blockNode;
249 
250 	if (type == RF_IO_TYPE_READ) {
251 		/* connecting a nonredundant read DAG */
252 		RF_ASSERT(blockNode->numSuccedents == n);
253 		RF_ASSERT(commitNode->numAntecedents == n);
254 		tmpdiskNode = diskNodes;
255 		for (i = 0; i < n; i++) {
256 			/* connect block node to each read node */
257 			RF_ASSERT(tmpdiskNode->numAntecedents == 1);
258 			blockNode->succedents[i] = tmpdiskNode;
259 			tmpdiskNode->antecedents[0] = blockNode;
260 			tmpdiskNode->antType[0] = rf_control;
261 
262 			/* connect each read node to the commit node */
263 			RF_ASSERT(tmpdiskNode->numSuccedents == 1);
264 			tmpdiskNode->succedents[0] = commitNode;
265 			commitNode->antecedents[i] = tmpdiskNode;
266 			commitNode->antType[i] = rf_control;
267 			tmpdiskNode = tmpdiskNode->list_next;
268 		}
269 		/* connect the commit node to the term node */
270 		RF_ASSERT(commitNode->numSuccedents == 1);
271 		RF_ASSERT(termNode->numAntecedents == 1);
272 		RF_ASSERT(termNode->numSuccedents == 0);
273 		commitNode->succedents[0] = termNode;
274 		termNode->antecedents[0] = commitNode;
275 		termNode->antType[0] = rf_control;
276 	} else {
277 		/* connecting a nonredundant write DAG */
278 		/* connect the block node to the commit node */
279 		RF_ASSERT(blockNode->numSuccedents == 1);
280 		RF_ASSERT(commitNode->numAntecedents == 1);
281 		blockNode->succedents[0] = commitNode;
282 		commitNode->antecedents[0] = blockNode;
283 		commitNode->antType[0] = rf_control;
284 
285 		RF_ASSERT(commitNode->numSuccedents == n);
286 		RF_ASSERT(termNode->numAntecedents == n);
287 		RF_ASSERT(termNode->numSuccedents == 0);
288 		tmpdiskNode = diskNodes;
289 		for (i = 0; i < n; i++) {
290 			/* connect the commit node to each write node */
291 			RF_ASSERT(tmpdiskNode->numAntecedents == 1);
292 			commitNode->succedents[i] = tmpdiskNode;
293 			tmpdiskNode->antecedents[0] = commitNode;
294 			tmpdiskNode->antType[0] = rf_control;
295 
296 			/* connect each write node to the term node */
297 			RF_ASSERT(tmpdiskNode->numSuccedents == 1);
298 			tmpdiskNode->succedents[0] = termNode;
299 			termNode->antecedents[i] = tmpdiskNode;
300 			termNode->antType[i] = rf_control;
301 			tmpdiskNode = tmpdiskNode->list_next;
302 		}
303 	}
304 }
305 /******************************************************************************
306  * Create a fault-free read DAG for RAID level 1
307  *
308  * Hdr -> Nil -> Rmir -> Cmt -> Trm
309  *
310  * The "Rmir" node schedules a read from the disk in the mirror pair with the
311  * shortest disk queue.  the proper queue is selected at Rmir execution.  this
312  * deferred mapping is unlike other archs in RAIDframe which generally fix
313  * mapping at DAG creation time.
314  *
315  * Parameters:  raidPtr   - description of the physical array
316  *              asmap     - logical & physical addresses for this access
317  *              bp        - buffer ptr (for holding read data)
318  *              flags     - general flags (e.g. disk locking)
319  *              allocList - list of memory allocated in DAG creation
320  *****************************************************************************/
321 
322 static void
CreateMirrorReadDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList,void (* readfunc)(RF_DagNode_t * node))323 CreateMirrorReadDAG(RF_Raid_t *raidPtr, RF_AccessStripeMap_t *asmap,
324     RF_DagHeader_t *dag_h, void *bp,
325     RF_RaidAccessFlags_t flags, RF_AllocListElem_t *allocList,
326     void (*readfunc) (RF_DagNode_t * node))
327 {
328 	RF_DagNode_t *readNodes, *blockNode, *commitNode, *termNode;
329 	RF_DagNode_t *tmpNode, *tmpreadNode;
330 	RF_PhysDiskAddr_t *data_pda = asmap->physInfo;
331 	RF_PhysDiskAddr_t *parity_pda = asmap->parityInfo;
332 	int     i, n;
333 
334 	n = asmap->numStripeUnitsAccessed;
335 	dag_h->creator = "RaidOneReadDAG";
336 #if RF_DEBUG_DAG
337 	if (rf_dagDebug) {
338 		printf("[Creating RAID level 1 read DAG]\n");
339 	}
340 #endif
341 	/*
342          * This dag can not commit until the commit node is reached
343          * errors prior to the commit point imply the dag has failed.
344          */
345 	dag_h->numCommitNodes = 1;
346 	dag_h->numCommits = 0;
347 	dag_h->numSuccedents = 1;
348 
349 	/*
350          * Node count:
351          * n data reads
352          * 1 block node
353          * 1 commit node
354          * 1 terminator node
355          */
356 	RF_ASSERT(n > 0);
357 
358 	for (i = 0; i < n; i++) {
359 		tmpNode = rf_AllocDAGNode(raidPtr);
360 		tmpNode->list_next = dag_h->nodes;
361 		dag_h->nodes = tmpNode;
362 	}
363 	readNodes = dag_h->nodes;
364 
365 	blockNode = rf_AllocDAGNode(raidPtr);
366 	blockNode->list_next = dag_h->nodes;
367 	dag_h->nodes = blockNode;
368 
369 	commitNode = rf_AllocDAGNode(raidPtr);
370 	commitNode->list_next = dag_h->nodes;
371 	dag_h->nodes = commitNode;
372 
373 	termNode = rf_AllocDAGNode(raidPtr);
374 	termNode->list_next = dag_h->nodes;
375 	dag_h->nodes = termNode;
376 
377 	/* initialize nodes */
378 	rf_InitNode(blockNode, rf_wait, RF_FALSE, rf_NullNodeFunc,
379 	    rf_NullNodeUndoFunc, NULL, n, 0, 0, 0, dag_h, "Nil", allocList);
380 	rf_InitNode(commitNode, rf_wait, RF_TRUE, rf_NullNodeFunc,
381 	    rf_NullNodeUndoFunc, NULL, 1, n, 0, 0, dag_h, "Cmt", allocList);
382 	rf_InitNode(termNode, rf_wait, RF_FALSE, rf_TerminateFunc,
383 	    rf_TerminateUndoFunc, NULL, 0, 1, 0, 0, dag_h, "Trm", allocList);
384 
385 	tmpreadNode = readNodes;
386 	for (i = 0; i < n; i++) {
387 		RF_ASSERT(data_pda != NULL);
388 		RF_ASSERT(parity_pda != NULL);
389 		rf_InitNode(tmpreadNode, rf_wait, RF_FALSE, readfunc,
390 		    rf_DiskReadMirrorUndoFunc, rf_GenericWakeupFunc, 1, 1, 5, 0, dag_h,
391 		    "Rmir", allocList);
392 		tmpreadNode->params[0].p = data_pda;
393 		tmpreadNode->params[1].p = data_pda->bufPtr;
394 		/* parity stripe id is not necessary */
395 		tmpreadNode->params[2].p = 0;
396 		tmpreadNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
397 		tmpreadNode->params[4].p = parity_pda;
398 		data_pda = data_pda->next;
399 		parity_pda = parity_pda->next;
400 		tmpreadNode = tmpreadNode->list_next;
401 	}
402 
403 	/*
404          * Connect nodes
405          */
406 
407 	/* connect hdr to block node */
408 	RF_ASSERT(blockNode->numAntecedents == 0);
409 	dag_h->succedents[0] = blockNode;
410 
411 	/* connect block node to read nodes */
412 	RF_ASSERT(blockNode->numSuccedents == n);
413 	tmpreadNode = readNodes;
414 	for (i = 0; i < n; i++) {
415 		RF_ASSERT(tmpreadNode->numAntecedents == 1);
416 		blockNode->succedents[i] = tmpreadNode;
417 		tmpreadNode->antecedents[0] = blockNode;
418 		tmpreadNode->antType[0] = rf_control;
419 		tmpreadNode = tmpreadNode->list_next;
420 	}
421 
422 	/* connect read nodes to commit node */
423 	RF_ASSERT(commitNode->numAntecedents == n);
424 	tmpreadNode = readNodes;
425 	for (i = 0; i < n; i++) {
426 		RF_ASSERT(tmpreadNode->numSuccedents == 1);
427 		tmpreadNode->succedents[0] = commitNode;
428 		commitNode->antecedents[i] = tmpreadNode;
429 		commitNode->antType[i] = rf_control;
430 		tmpreadNode = tmpreadNode->list_next;
431 	}
432 
433 	/* connect commit node to term node */
434 	RF_ASSERT(commitNode->numSuccedents == 1);
435 	RF_ASSERT(termNode->numAntecedents == 1);
436 	RF_ASSERT(termNode->numSuccedents == 0);
437 	commitNode->succedents[0] = termNode;
438 	termNode->antecedents[0] = commitNode;
439 	termNode->antType[0] = rf_control;
440 }
441 
442 void
rf_CreateMirrorIdleReadDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList)443 rf_CreateMirrorIdleReadDAG(
444     RF_Raid_t * raidPtr,
445     RF_AccessStripeMap_t * asmap,
446     RF_DagHeader_t * dag_h,
447     void *bp,
448     RF_RaidAccessFlags_t flags,
449     RF_AllocListElem_t * allocList)
450 {
451 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
452 	    rf_DiskReadMirrorIdleFunc);
453 }
454 
455 #if (RF_INCLUDE_CHAINDECLUSTER > 0) || (RF_INCLUDE_INTERDECLUSTER > 0)
456 
457 void
rf_CreateMirrorPartitionReadDAG(RF_Raid_t * raidPtr,RF_AccessStripeMap_t * asmap,RF_DagHeader_t * dag_h,void * bp,RF_RaidAccessFlags_t flags,RF_AllocListElem_t * allocList)458 rf_CreateMirrorPartitionReadDAG(RF_Raid_t *raidPtr,
459 				RF_AccessStripeMap_t *asmap,
460 				RF_DagHeader_t *dag_h, void *bp,
461 				RF_RaidAccessFlags_t flags,
462 				RF_AllocListElem_t *allocList)
463 {
464 	CreateMirrorReadDAG(raidPtr, asmap, dag_h, bp, flags, allocList,
465 	    rf_DiskReadMirrorPartitionFunc);
466 }
467 #endif
468