1 /* $NetBSD: nvmm_x86_svm.c,v 1.85 2023/02/23 02:54:02 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 2018-2020 Maxime Villard, m00nbsd.net
5 * All rights reserved.
6 *
7 * This code is part of the NVMM hypervisor.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 #include <sys/cdefs.h>
32 __KERNEL_RCSID(0, "$NetBSD: nvmm_x86_svm.c,v 1.85 2023/02/23 02:54:02 riastradh Exp $");
33
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/kmem.h>
38 #include <sys/cpu.h>
39 #include <sys/xcall.h>
40 #include <sys/mman.h>
41
42 #include <uvm/uvm_extern.h>
43 #include <uvm/uvm_page.h>
44
45 #include <x86/cputypes.h>
46 #include <x86/specialreg.h>
47 #include <x86/dbregs.h>
48 #include <x86/cpu_counter.h>
49
50 #include <machine/cpuvar.h>
51 #include <machine/pmap_private.h>
52
53 #include <dev/nvmm/nvmm.h>
54 #include <dev/nvmm/nvmm_internal.h>
55 #include <dev/nvmm/x86/nvmm_x86.h>
56
57 int svm_vmrun(paddr_t, uint64_t *);
58
59 static inline void
svm_clgi(void)60 svm_clgi(void)
61 {
62 asm volatile ("clgi" ::: "memory");
63 }
64
65 static inline void
svm_stgi(void)66 svm_stgi(void)
67 {
68 asm volatile ("stgi" ::: "memory");
69 }
70
71 #define MSR_VM_HSAVE_PA 0xC0010117
72
73 /* -------------------------------------------------------------------------- */
74
75 #define VMCB_EXITCODE_CR0_READ 0x0000
76 #define VMCB_EXITCODE_CR1_READ 0x0001
77 #define VMCB_EXITCODE_CR2_READ 0x0002
78 #define VMCB_EXITCODE_CR3_READ 0x0003
79 #define VMCB_EXITCODE_CR4_READ 0x0004
80 #define VMCB_EXITCODE_CR5_READ 0x0005
81 #define VMCB_EXITCODE_CR6_READ 0x0006
82 #define VMCB_EXITCODE_CR7_READ 0x0007
83 #define VMCB_EXITCODE_CR8_READ 0x0008
84 #define VMCB_EXITCODE_CR9_READ 0x0009
85 #define VMCB_EXITCODE_CR10_READ 0x000A
86 #define VMCB_EXITCODE_CR11_READ 0x000B
87 #define VMCB_EXITCODE_CR12_READ 0x000C
88 #define VMCB_EXITCODE_CR13_READ 0x000D
89 #define VMCB_EXITCODE_CR14_READ 0x000E
90 #define VMCB_EXITCODE_CR15_READ 0x000F
91 #define VMCB_EXITCODE_CR0_WRITE 0x0010
92 #define VMCB_EXITCODE_CR1_WRITE 0x0011
93 #define VMCB_EXITCODE_CR2_WRITE 0x0012
94 #define VMCB_EXITCODE_CR3_WRITE 0x0013
95 #define VMCB_EXITCODE_CR4_WRITE 0x0014
96 #define VMCB_EXITCODE_CR5_WRITE 0x0015
97 #define VMCB_EXITCODE_CR6_WRITE 0x0016
98 #define VMCB_EXITCODE_CR7_WRITE 0x0017
99 #define VMCB_EXITCODE_CR8_WRITE 0x0018
100 #define VMCB_EXITCODE_CR9_WRITE 0x0019
101 #define VMCB_EXITCODE_CR10_WRITE 0x001A
102 #define VMCB_EXITCODE_CR11_WRITE 0x001B
103 #define VMCB_EXITCODE_CR12_WRITE 0x001C
104 #define VMCB_EXITCODE_CR13_WRITE 0x001D
105 #define VMCB_EXITCODE_CR14_WRITE 0x001E
106 #define VMCB_EXITCODE_CR15_WRITE 0x001F
107 #define VMCB_EXITCODE_DR0_READ 0x0020
108 #define VMCB_EXITCODE_DR1_READ 0x0021
109 #define VMCB_EXITCODE_DR2_READ 0x0022
110 #define VMCB_EXITCODE_DR3_READ 0x0023
111 #define VMCB_EXITCODE_DR4_READ 0x0024
112 #define VMCB_EXITCODE_DR5_READ 0x0025
113 #define VMCB_EXITCODE_DR6_READ 0x0026
114 #define VMCB_EXITCODE_DR7_READ 0x0027
115 #define VMCB_EXITCODE_DR8_READ 0x0028
116 #define VMCB_EXITCODE_DR9_READ 0x0029
117 #define VMCB_EXITCODE_DR10_READ 0x002A
118 #define VMCB_EXITCODE_DR11_READ 0x002B
119 #define VMCB_EXITCODE_DR12_READ 0x002C
120 #define VMCB_EXITCODE_DR13_READ 0x002D
121 #define VMCB_EXITCODE_DR14_READ 0x002E
122 #define VMCB_EXITCODE_DR15_READ 0x002F
123 #define VMCB_EXITCODE_DR0_WRITE 0x0030
124 #define VMCB_EXITCODE_DR1_WRITE 0x0031
125 #define VMCB_EXITCODE_DR2_WRITE 0x0032
126 #define VMCB_EXITCODE_DR3_WRITE 0x0033
127 #define VMCB_EXITCODE_DR4_WRITE 0x0034
128 #define VMCB_EXITCODE_DR5_WRITE 0x0035
129 #define VMCB_EXITCODE_DR6_WRITE 0x0036
130 #define VMCB_EXITCODE_DR7_WRITE 0x0037
131 #define VMCB_EXITCODE_DR8_WRITE 0x0038
132 #define VMCB_EXITCODE_DR9_WRITE 0x0039
133 #define VMCB_EXITCODE_DR10_WRITE 0x003A
134 #define VMCB_EXITCODE_DR11_WRITE 0x003B
135 #define VMCB_EXITCODE_DR12_WRITE 0x003C
136 #define VMCB_EXITCODE_DR13_WRITE 0x003D
137 #define VMCB_EXITCODE_DR14_WRITE 0x003E
138 #define VMCB_EXITCODE_DR15_WRITE 0x003F
139 #define VMCB_EXITCODE_EXCP0 0x0040
140 #define VMCB_EXITCODE_EXCP1 0x0041
141 #define VMCB_EXITCODE_EXCP2 0x0042
142 #define VMCB_EXITCODE_EXCP3 0x0043
143 #define VMCB_EXITCODE_EXCP4 0x0044
144 #define VMCB_EXITCODE_EXCP5 0x0045
145 #define VMCB_EXITCODE_EXCP6 0x0046
146 #define VMCB_EXITCODE_EXCP7 0x0047
147 #define VMCB_EXITCODE_EXCP8 0x0048
148 #define VMCB_EXITCODE_EXCP9 0x0049
149 #define VMCB_EXITCODE_EXCP10 0x004A
150 #define VMCB_EXITCODE_EXCP11 0x004B
151 #define VMCB_EXITCODE_EXCP12 0x004C
152 #define VMCB_EXITCODE_EXCP13 0x004D
153 #define VMCB_EXITCODE_EXCP14 0x004E
154 #define VMCB_EXITCODE_EXCP15 0x004F
155 #define VMCB_EXITCODE_EXCP16 0x0050
156 #define VMCB_EXITCODE_EXCP17 0x0051
157 #define VMCB_EXITCODE_EXCP18 0x0052
158 #define VMCB_EXITCODE_EXCP19 0x0053
159 #define VMCB_EXITCODE_EXCP20 0x0054
160 #define VMCB_EXITCODE_EXCP21 0x0055
161 #define VMCB_EXITCODE_EXCP22 0x0056
162 #define VMCB_EXITCODE_EXCP23 0x0057
163 #define VMCB_EXITCODE_EXCP24 0x0058
164 #define VMCB_EXITCODE_EXCP25 0x0059
165 #define VMCB_EXITCODE_EXCP26 0x005A
166 #define VMCB_EXITCODE_EXCP27 0x005B
167 #define VMCB_EXITCODE_EXCP28 0x005C
168 #define VMCB_EXITCODE_EXCP29 0x005D
169 #define VMCB_EXITCODE_EXCP30 0x005E
170 #define VMCB_EXITCODE_EXCP31 0x005F
171 #define VMCB_EXITCODE_INTR 0x0060
172 #define VMCB_EXITCODE_NMI 0x0061
173 #define VMCB_EXITCODE_SMI 0x0062
174 #define VMCB_EXITCODE_INIT 0x0063
175 #define VMCB_EXITCODE_VINTR 0x0064
176 #define VMCB_EXITCODE_CR0_SEL_WRITE 0x0065
177 #define VMCB_EXITCODE_IDTR_READ 0x0066
178 #define VMCB_EXITCODE_GDTR_READ 0x0067
179 #define VMCB_EXITCODE_LDTR_READ 0x0068
180 #define VMCB_EXITCODE_TR_READ 0x0069
181 #define VMCB_EXITCODE_IDTR_WRITE 0x006A
182 #define VMCB_EXITCODE_GDTR_WRITE 0x006B
183 #define VMCB_EXITCODE_LDTR_WRITE 0x006C
184 #define VMCB_EXITCODE_TR_WRITE 0x006D
185 #define VMCB_EXITCODE_RDTSC 0x006E
186 #define VMCB_EXITCODE_RDPMC 0x006F
187 #define VMCB_EXITCODE_PUSHF 0x0070
188 #define VMCB_EXITCODE_POPF 0x0071
189 #define VMCB_EXITCODE_CPUID 0x0072
190 #define VMCB_EXITCODE_RSM 0x0073
191 #define VMCB_EXITCODE_IRET 0x0074
192 #define VMCB_EXITCODE_SWINT 0x0075
193 #define VMCB_EXITCODE_INVD 0x0076
194 #define VMCB_EXITCODE_PAUSE 0x0077
195 #define VMCB_EXITCODE_HLT 0x0078
196 #define VMCB_EXITCODE_INVLPG 0x0079
197 #define VMCB_EXITCODE_INVLPGA 0x007A
198 #define VMCB_EXITCODE_IOIO 0x007B
199 #define VMCB_EXITCODE_MSR 0x007C
200 #define VMCB_EXITCODE_TASK_SWITCH 0x007D
201 #define VMCB_EXITCODE_FERR_FREEZE 0x007E
202 #define VMCB_EXITCODE_SHUTDOWN 0x007F
203 #define VMCB_EXITCODE_VMRUN 0x0080
204 #define VMCB_EXITCODE_VMMCALL 0x0081
205 #define VMCB_EXITCODE_VMLOAD 0x0082
206 #define VMCB_EXITCODE_VMSAVE 0x0083
207 #define VMCB_EXITCODE_STGI 0x0084
208 #define VMCB_EXITCODE_CLGI 0x0085
209 #define VMCB_EXITCODE_SKINIT 0x0086
210 #define VMCB_EXITCODE_RDTSCP 0x0087
211 #define VMCB_EXITCODE_ICEBP 0x0088
212 #define VMCB_EXITCODE_WBINVD 0x0089
213 #define VMCB_EXITCODE_MONITOR 0x008A
214 #define VMCB_EXITCODE_MWAIT 0x008B
215 #define VMCB_EXITCODE_MWAIT_CONDITIONAL 0x008C
216 #define VMCB_EXITCODE_XSETBV 0x008D
217 #define VMCB_EXITCODE_RDPRU 0x008E
218 #define VMCB_EXITCODE_EFER_WRITE_TRAP 0x008F
219 #define VMCB_EXITCODE_CR0_WRITE_TRAP 0x0090
220 #define VMCB_EXITCODE_CR1_WRITE_TRAP 0x0091
221 #define VMCB_EXITCODE_CR2_WRITE_TRAP 0x0092
222 #define VMCB_EXITCODE_CR3_WRITE_TRAP 0x0093
223 #define VMCB_EXITCODE_CR4_WRITE_TRAP 0x0094
224 #define VMCB_EXITCODE_CR5_WRITE_TRAP 0x0095
225 #define VMCB_EXITCODE_CR6_WRITE_TRAP 0x0096
226 #define VMCB_EXITCODE_CR7_WRITE_TRAP 0x0097
227 #define VMCB_EXITCODE_CR8_WRITE_TRAP 0x0098
228 #define VMCB_EXITCODE_CR9_WRITE_TRAP 0x0099
229 #define VMCB_EXITCODE_CR10_WRITE_TRAP 0x009A
230 #define VMCB_EXITCODE_CR11_WRITE_TRAP 0x009B
231 #define VMCB_EXITCODE_CR12_WRITE_TRAP 0x009C
232 #define VMCB_EXITCODE_CR13_WRITE_TRAP 0x009D
233 #define VMCB_EXITCODE_CR14_WRITE_TRAP 0x009E
234 #define VMCB_EXITCODE_CR15_WRITE_TRAP 0x009F
235 #define VMCB_EXITCODE_INVLPGB 0x00A0
236 #define VMCB_EXITCODE_INVLPGB_ILLEGAL 0x00A1
237 #define VMCB_EXITCODE_INVPCID 0x00A2
238 #define VMCB_EXITCODE_MCOMMIT 0x00A3
239 #define VMCB_EXITCODE_TLBSYNC 0x00A4
240 #define VMCB_EXITCODE_NPF 0x0400
241 #define VMCB_EXITCODE_AVIC_INCOMP_IPI 0x0401
242 #define VMCB_EXITCODE_AVIC_NOACCEL 0x0402
243 #define VMCB_EXITCODE_VMGEXIT 0x0403
244 #define VMCB_EXITCODE_BUSY -2ULL
245 #define VMCB_EXITCODE_INVALID -1ULL
246
247 /* -------------------------------------------------------------------------- */
248
249 struct vmcb_ctrl {
250 uint32_t intercept_cr;
251 #define VMCB_CTRL_INTERCEPT_RCR(x) __BIT( 0 + x)
252 #define VMCB_CTRL_INTERCEPT_WCR(x) __BIT(16 + x)
253
254 uint32_t intercept_dr;
255 #define VMCB_CTRL_INTERCEPT_RDR(x) __BIT( 0 + x)
256 #define VMCB_CTRL_INTERCEPT_WDR(x) __BIT(16 + x)
257
258 uint32_t intercept_vec;
259 #define VMCB_CTRL_INTERCEPT_VEC(x) __BIT(x)
260
261 uint32_t intercept_misc1;
262 #define VMCB_CTRL_INTERCEPT_INTR __BIT(0)
263 #define VMCB_CTRL_INTERCEPT_NMI __BIT(1)
264 #define VMCB_CTRL_INTERCEPT_SMI __BIT(2)
265 #define VMCB_CTRL_INTERCEPT_INIT __BIT(3)
266 #define VMCB_CTRL_INTERCEPT_VINTR __BIT(4)
267 #define VMCB_CTRL_INTERCEPT_CR0_SPEC __BIT(5)
268 #define VMCB_CTRL_INTERCEPT_RIDTR __BIT(6)
269 #define VMCB_CTRL_INTERCEPT_RGDTR __BIT(7)
270 #define VMCB_CTRL_INTERCEPT_RLDTR __BIT(8)
271 #define VMCB_CTRL_INTERCEPT_RTR __BIT(9)
272 #define VMCB_CTRL_INTERCEPT_WIDTR __BIT(10)
273 #define VMCB_CTRL_INTERCEPT_WGDTR __BIT(11)
274 #define VMCB_CTRL_INTERCEPT_WLDTR __BIT(12)
275 #define VMCB_CTRL_INTERCEPT_WTR __BIT(13)
276 #define VMCB_CTRL_INTERCEPT_RDTSC __BIT(14)
277 #define VMCB_CTRL_INTERCEPT_RDPMC __BIT(15)
278 #define VMCB_CTRL_INTERCEPT_PUSHF __BIT(16)
279 #define VMCB_CTRL_INTERCEPT_POPF __BIT(17)
280 #define VMCB_CTRL_INTERCEPT_CPUID __BIT(18)
281 #define VMCB_CTRL_INTERCEPT_RSM __BIT(19)
282 #define VMCB_CTRL_INTERCEPT_IRET __BIT(20)
283 #define VMCB_CTRL_INTERCEPT_INTN __BIT(21)
284 #define VMCB_CTRL_INTERCEPT_INVD __BIT(22)
285 #define VMCB_CTRL_INTERCEPT_PAUSE __BIT(23)
286 #define VMCB_CTRL_INTERCEPT_HLT __BIT(24)
287 #define VMCB_CTRL_INTERCEPT_INVLPG __BIT(25)
288 #define VMCB_CTRL_INTERCEPT_INVLPGA __BIT(26)
289 #define VMCB_CTRL_INTERCEPT_IOIO_PROT __BIT(27)
290 #define VMCB_CTRL_INTERCEPT_MSR_PROT __BIT(28)
291 #define VMCB_CTRL_INTERCEPT_TASKSW __BIT(29)
292 #define VMCB_CTRL_INTERCEPT_FERR_FREEZE __BIT(30)
293 #define VMCB_CTRL_INTERCEPT_SHUTDOWN __BIT(31)
294
295 uint32_t intercept_misc2;
296 #define VMCB_CTRL_INTERCEPT_VMRUN __BIT(0)
297 #define VMCB_CTRL_INTERCEPT_VMMCALL __BIT(1)
298 #define VMCB_CTRL_INTERCEPT_VMLOAD __BIT(2)
299 #define VMCB_CTRL_INTERCEPT_VMSAVE __BIT(3)
300 #define VMCB_CTRL_INTERCEPT_STGI __BIT(4)
301 #define VMCB_CTRL_INTERCEPT_CLGI __BIT(5)
302 #define VMCB_CTRL_INTERCEPT_SKINIT __BIT(6)
303 #define VMCB_CTRL_INTERCEPT_RDTSCP __BIT(7)
304 #define VMCB_CTRL_INTERCEPT_ICEBP __BIT(8)
305 #define VMCB_CTRL_INTERCEPT_WBINVD __BIT(9)
306 #define VMCB_CTRL_INTERCEPT_MONITOR __BIT(10)
307 #define VMCB_CTRL_INTERCEPT_MWAIT __BIT(11)
308 #define VMCB_CTRL_INTERCEPT_MWAIT_ARMED __BIT(12)
309 #define VMCB_CTRL_INTERCEPT_XSETBV __BIT(13)
310 #define VMCB_CTRL_INTERCEPT_RDPRU __BIT(14)
311 #define VMCB_CTRL_INTERCEPT_EFER_SPEC __BIT(15)
312 #define VMCB_CTRL_INTERCEPT_WCR_SPEC(x) __BIT(16 + x)
313
314 uint32_t intercept_misc3;
315 #define VMCB_CTRL_INTERCEPT_INVLPGB_ALL __BIT(0)
316 #define VMCB_CTRL_INTERCEPT_INVLPGB_ILL __BIT(1)
317 #define VMCB_CTRL_INTERCEPT_PCID __BIT(2)
318 #define VMCB_CTRL_INTERCEPT_MCOMMIT __BIT(3)
319 #define VMCB_CTRL_INTERCEPT_TLBSYNC __BIT(4)
320
321 uint8_t rsvd1[36];
322 uint16_t pause_filt_thresh;
323 uint16_t pause_filt_cnt;
324 uint64_t iopm_base_pa;
325 uint64_t msrpm_base_pa;
326 uint64_t tsc_offset;
327 uint32_t guest_asid;
328
329 uint32_t tlb_ctrl;
330 #define VMCB_CTRL_TLB_CTRL_FLUSH_ALL 0x01
331 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST 0x03
332 #define VMCB_CTRL_TLB_CTRL_FLUSH_GUEST_NONGLOBAL 0x07
333
334 uint64_t v;
335 #define VMCB_CTRL_V_TPR __BITS(3,0)
336 #define VMCB_CTRL_V_IRQ __BIT(8)
337 #define VMCB_CTRL_V_VGIF __BIT(9)
338 #define VMCB_CTRL_V_INTR_PRIO __BITS(19,16)
339 #define VMCB_CTRL_V_IGN_TPR __BIT(20)
340 #define VMCB_CTRL_V_INTR_MASKING __BIT(24)
341 #define VMCB_CTRL_V_GUEST_VGIF __BIT(25)
342 #define VMCB_CTRL_V_AVIC_EN __BIT(31)
343 #define VMCB_CTRL_V_INTR_VECTOR __BITS(39,32)
344
345 uint64_t intr;
346 #define VMCB_CTRL_INTR_SHADOW __BIT(0)
347 #define VMCB_CTRL_INTR_MASK __BIT(1)
348
349 uint64_t exitcode;
350 uint64_t exitinfo1;
351 uint64_t exitinfo2;
352
353 uint64_t exitintinfo;
354 #define VMCB_CTRL_EXITINTINFO_VECTOR __BITS(7,0)
355 #define VMCB_CTRL_EXITINTINFO_TYPE __BITS(10,8)
356 #define VMCB_CTRL_EXITINTINFO_EV __BIT(11)
357 #define VMCB_CTRL_EXITINTINFO_V __BIT(31)
358 #define VMCB_CTRL_EXITINTINFO_ERRORCODE __BITS(63,32)
359
360 uint64_t enable1;
361 #define VMCB_CTRL_ENABLE_NP __BIT(0)
362 #define VMCB_CTRL_ENABLE_SEV __BIT(1)
363 #define VMCB_CTRL_ENABLE_ES_SEV __BIT(2)
364 #define VMCB_CTRL_ENABLE_GMET __BIT(3)
365 #define VMCB_CTRL_ENABLE_VTE __BIT(5)
366
367 uint64_t avic;
368 #define VMCB_CTRL_AVIC_APIC_BAR __BITS(51,0)
369
370 uint64_t ghcb;
371
372 uint64_t eventinj;
373 #define VMCB_CTRL_EVENTINJ_VECTOR __BITS(7,0)
374 #define VMCB_CTRL_EVENTINJ_TYPE __BITS(10,8)
375 #define VMCB_CTRL_EVENTINJ_EV __BIT(11)
376 #define VMCB_CTRL_EVENTINJ_V __BIT(31)
377 #define VMCB_CTRL_EVENTINJ_ERRORCODE __BITS(63,32)
378
379 uint64_t n_cr3;
380
381 uint64_t enable2;
382 #define VMCB_CTRL_ENABLE_LBR __BIT(0)
383 #define VMCB_CTRL_ENABLE_VVMSAVE __BIT(1)
384
385 uint32_t vmcb_clean;
386 #define VMCB_CTRL_VMCB_CLEAN_I __BIT(0)
387 #define VMCB_CTRL_VMCB_CLEAN_IOPM __BIT(1)
388 #define VMCB_CTRL_VMCB_CLEAN_ASID __BIT(2)
389 #define VMCB_CTRL_VMCB_CLEAN_TPR __BIT(3)
390 #define VMCB_CTRL_VMCB_CLEAN_NP __BIT(4)
391 #define VMCB_CTRL_VMCB_CLEAN_CR __BIT(5)
392 #define VMCB_CTRL_VMCB_CLEAN_DR __BIT(6)
393 #define VMCB_CTRL_VMCB_CLEAN_DT __BIT(7)
394 #define VMCB_CTRL_VMCB_CLEAN_SEG __BIT(8)
395 #define VMCB_CTRL_VMCB_CLEAN_CR2 __BIT(9)
396 #define VMCB_CTRL_VMCB_CLEAN_LBR __BIT(10)
397 #define VMCB_CTRL_VMCB_CLEAN_AVIC __BIT(11)
398
399 uint32_t rsvd2;
400 uint64_t nrip;
401 uint8_t inst_len;
402 uint8_t inst_bytes[15];
403 uint64_t avic_abpp;
404 uint64_t rsvd3;
405 uint64_t avic_ltp;
406
407 uint64_t avic_phys;
408 #define VMCB_CTRL_AVIC_PHYS_TABLE_PTR __BITS(51,12)
409 #define VMCB_CTRL_AVIC_PHYS_MAX_INDEX __BITS(7,0)
410
411 uint64_t rsvd4;
412 uint64_t vmsa_ptr;
413
414 uint8_t pad[752];
415 } __packed;
416
417 CTASSERT(sizeof(struct vmcb_ctrl) == 1024);
418
419 struct vmcb_segment {
420 uint16_t selector;
421 uint16_t attrib; /* hidden */
422 uint32_t limit; /* hidden */
423 uint64_t base; /* hidden */
424 } __packed;
425
426 CTASSERT(sizeof(struct vmcb_segment) == 16);
427
428 struct vmcb_state {
429 struct vmcb_segment es;
430 struct vmcb_segment cs;
431 struct vmcb_segment ss;
432 struct vmcb_segment ds;
433 struct vmcb_segment fs;
434 struct vmcb_segment gs;
435 struct vmcb_segment gdt;
436 struct vmcb_segment ldt;
437 struct vmcb_segment idt;
438 struct vmcb_segment tr;
439 uint8_t rsvd1[43];
440 uint8_t cpl;
441 uint8_t rsvd2[4];
442 uint64_t efer;
443 uint8_t rsvd3[112];
444 uint64_t cr4;
445 uint64_t cr3;
446 uint64_t cr0;
447 uint64_t dr7;
448 uint64_t dr6;
449 uint64_t rflags;
450 uint64_t rip;
451 uint8_t rsvd4[88];
452 uint64_t rsp;
453 uint8_t rsvd5[24];
454 uint64_t rax;
455 uint64_t star;
456 uint64_t lstar;
457 uint64_t cstar;
458 uint64_t sfmask;
459 uint64_t kernelgsbase;
460 uint64_t sysenter_cs;
461 uint64_t sysenter_esp;
462 uint64_t sysenter_eip;
463 uint64_t cr2;
464 uint8_t rsvd6[32];
465 uint64_t g_pat;
466 uint64_t dbgctl;
467 uint64_t br_from;
468 uint64_t br_to;
469 uint64_t int_from;
470 uint64_t int_to;
471 uint8_t pad[2408];
472 } __packed;
473
474 CTASSERT(sizeof(struct vmcb_state) == 0xC00);
475
476 struct vmcb {
477 struct vmcb_ctrl ctrl;
478 struct vmcb_state state;
479 } __packed;
480
481 CTASSERT(sizeof(struct vmcb) == PAGE_SIZE);
482 CTASSERT(offsetof(struct vmcb, state) == 0x400);
483
484 /* -------------------------------------------------------------------------- */
485
486 static void svm_vcpu_state_provide(struct nvmm_cpu *, uint64_t);
487 static void svm_vcpu_state_commit(struct nvmm_cpu *);
488
489 struct svm_hsave {
490 paddr_t pa;
491 };
492
493 static struct svm_hsave hsave[MAXCPUS];
494
495 static uint8_t *svm_asidmap __read_mostly;
496 static uint32_t svm_maxasid __read_mostly;
497 static kmutex_t svm_asidlock __cacheline_aligned;
498
499 static bool svm_decode_assist __read_mostly;
500 static uint32_t svm_ctrl_tlb_flush __read_mostly;
501
502 #define SVM_XCR0_MASK_DEFAULT (XCR0_X87|XCR0_SSE)
503 static uint64_t svm_xcr0_mask __read_mostly;
504
505 #define SVM_NCPUIDS 32
506
507 #define VMCB_NPAGES 1
508
509 #define MSRBM_NPAGES 2
510 #define MSRBM_SIZE (MSRBM_NPAGES * PAGE_SIZE)
511
512 #define IOBM_NPAGES 3
513 #define IOBM_SIZE (IOBM_NPAGES * PAGE_SIZE)
514
515 /* Does not include EFER_LMSLE. */
516 #define EFER_VALID \
517 (EFER_SCE|EFER_LME|EFER_LMA|EFER_NXE|EFER_SVME|EFER_FFXSR|EFER_TCE)
518
519 #define EFER_TLB_FLUSH \
520 (EFER_NXE|EFER_LMA|EFER_LME)
521 #define CR0_TLB_FLUSH \
522 (CR0_PG|CR0_WP|CR0_CD|CR0_NW)
523 #define CR4_TLB_FLUSH \
524 (CR4_PSE|CR4_PAE|CR4_PGE|CR4_PCIDE|CR4_SMEP)
525
526 #define CR4_VALID \
527 (CR4_VME | \
528 CR4_PVI | \
529 CR4_TSD | \
530 CR4_DE | \
531 CR4_PSE | \
532 CR4_PAE | \
533 CR4_MCE | \
534 CR4_PGE | \
535 CR4_PCE | \
536 CR4_OSFXSR | \
537 CR4_OSXMMEXCPT | \
538 CR4_UMIP | \
539 /* CR4_LA57 excluded */ \
540 /* bit 13 reserved on AMD */ \
541 /* bit 14 reserved on AMD */ \
542 /* bit 15 reserved on AMD */ \
543 CR4_FSGSBASE | \
544 CR4_PCIDE | \
545 CR4_OSXSAVE | \
546 /* bit 19 reserved on AMD */ \
547 CR4_SMEP | \
548 CR4_SMAP \
549 /* CR4_PKE excluded */ \
550 /* CR4_CET excluded */ \
551 /* bits 24:63 reserved on AMD */)
552
553 /* -------------------------------------------------------------------------- */
554
555 struct svm_machdata {
556 volatile uint64_t mach_htlb_gen;
557 };
558
559 static const size_t svm_vcpu_conf_sizes[NVMM_X86_VCPU_NCONF] = {
560 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID)] =
561 sizeof(struct nvmm_vcpu_conf_cpuid),
562 [NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_TPR)] =
563 sizeof(struct nvmm_vcpu_conf_tpr)
564 };
565
566 struct svm_cpudata {
567 /* General */
568 bool shared_asid;
569 bool gtlb_want_flush;
570 bool gtsc_want_update;
571 uint64_t vcpu_htlb_gen;
572
573 /* VMCB */
574 struct vmcb *vmcb;
575 paddr_t vmcb_pa;
576
577 /* I/O bitmap */
578 uint8_t *iobm;
579 paddr_t iobm_pa;
580
581 /* MSR bitmap */
582 uint8_t *msrbm;
583 paddr_t msrbm_pa;
584
585 /* Host state */
586 uint64_t hxcr0;
587 uint64_t star;
588 uint64_t lstar;
589 uint64_t cstar;
590 uint64_t sfmask;
591 uint64_t fsbase;
592 uint64_t kernelgsbase;
593
594 /* Intr state */
595 bool int_window_exit;
596 bool nmi_window_exit;
597 bool evt_pending;
598
599 /* Guest state */
600 uint64_t gxcr0;
601 uint64_t gprs[NVMM_X64_NGPR];
602 uint64_t drs[NVMM_X64_NDR];
603 uint64_t gtsc;
604 struct xsave_header gfpu __aligned(64);
605
606 /* VCPU configuration. */
607 bool cpuidpresent[SVM_NCPUIDS];
608 struct nvmm_vcpu_conf_cpuid cpuid[SVM_NCPUIDS];
609 };
610
611 static void
svm_vmcb_cache_default(struct vmcb * vmcb)612 svm_vmcb_cache_default(struct vmcb *vmcb)
613 {
614 vmcb->ctrl.vmcb_clean =
615 VMCB_CTRL_VMCB_CLEAN_I |
616 VMCB_CTRL_VMCB_CLEAN_IOPM |
617 VMCB_CTRL_VMCB_CLEAN_ASID |
618 VMCB_CTRL_VMCB_CLEAN_TPR |
619 VMCB_CTRL_VMCB_CLEAN_NP |
620 VMCB_CTRL_VMCB_CLEAN_CR |
621 VMCB_CTRL_VMCB_CLEAN_DR |
622 VMCB_CTRL_VMCB_CLEAN_DT |
623 VMCB_CTRL_VMCB_CLEAN_SEG |
624 VMCB_CTRL_VMCB_CLEAN_CR2 |
625 VMCB_CTRL_VMCB_CLEAN_LBR |
626 VMCB_CTRL_VMCB_CLEAN_AVIC;
627 }
628
629 static void
svm_vmcb_cache_update(struct vmcb * vmcb,uint64_t flags)630 svm_vmcb_cache_update(struct vmcb *vmcb, uint64_t flags)
631 {
632 if (flags & NVMM_X64_STATE_SEGS) {
633 vmcb->ctrl.vmcb_clean &=
634 ~(VMCB_CTRL_VMCB_CLEAN_SEG | VMCB_CTRL_VMCB_CLEAN_DT);
635 }
636 if (flags & NVMM_X64_STATE_CRS) {
637 vmcb->ctrl.vmcb_clean &=
638 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_CR2 |
639 VMCB_CTRL_VMCB_CLEAN_TPR);
640 }
641 if (flags & NVMM_X64_STATE_DRS) {
642 vmcb->ctrl.vmcb_clean &= ~VMCB_CTRL_VMCB_CLEAN_DR;
643 }
644 if (flags & NVMM_X64_STATE_MSRS) {
645 /* CR for EFER, NP for PAT. */
646 vmcb->ctrl.vmcb_clean &=
647 ~(VMCB_CTRL_VMCB_CLEAN_CR | VMCB_CTRL_VMCB_CLEAN_NP);
648 }
649 }
650
651 static inline void
svm_vmcb_cache_flush(struct vmcb * vmcb,uint64_t flags)652 svm_vmcb_cache_flush(struct vmcb *vmcb, uint64_t flags)
653 {
654 vmcb->ctrl.vmcb_clean &= ~flags;
655 }
656
657 static inline void
svm_vmcb_cache_flush_all(struct vmcb * vmcb)658 svm_vmcb_cache_flush_all(struct vmcb *vmcb)
659 {
660 vmcb->ctrl.vmcb_clean = 0;
661 }
662
663 #define SVM_EVENT_TYPE_HW_INT 0
664 #define SVM_EVENT_TYPE_NMI 2
665 #define SVM_EVENT_TYPE_EXC 3
666 #define SVM_EVENT_TYPE_SW_INT 4
667
668 static void
svm_event_waitexit_enable(struct nvmm_cpu * vcpu,bool nmi)669 svm_event_waitexit_enable(struct nvmm_cpu *vcpu, bool nmi)
670 {
671 struct svm_cpudata *cpudata = vcpu->cpudata;
672 struct vmcb *vmcb = cpudata->vmcb;
673
674 if (nmi) {
675 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_IRET;
676 cpudata->nmi_window_exit = true;
677 } else {
678 vmcb->ctrl.intercept_misc1 |= VMCB_CTRL_INTERCEPT_VINTR;
679 vmcb->ctrl.v |= (VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
680 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
681 cpudata->int_window_exit = true;
682 }
683
684 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
685 }
686
687 static void
svm_event_waitexit_disable(struct nvmm_cpu * vcpu,bool nmi)688 svm_event_waitexit_disable(struct nvmm_cpu *vcpu, bool nmi)
689 {
690 struct svm_cpudata *cpudata = vcpu->cpudata;
691 struct vmcb *vmcb = cpudata->vmcb;
692
693 if (nmi) {
694 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_IRET;
695 cpudata->nmi_window_exit = false;
696 } else {
697 vmcb->ctrl.intercept_misc1 &= ~VMCB_CTRL_INTERCEPT_VINTR;
698 vmcb->ctrl.v &= ~(VMCB_CTRL_V_IRQ | VMCB_CTRL_V_IGN_TPR);
699 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_TPR);
700 cpudata->int_window_exit = false;
701 }
702
703 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
704 }
705
706 static inline bool
svm_excp_has_rf(uint8_t vector)707 svm_excp_has_rf(uint8_t vector)
708 {
709 switch (vector) {
710 case 1: /* #DB */
711 case 4: /* #OF */
712 case 8: /* #DF */
713 case 18: /* #MC */
714 return false;
715 default:
716 return true;
717 }
718 }
719
720 static inline int
svm_excp_has_error(uint8_t vector)721 svm_excp_has_error(uint8_t vector)
722 {
723 switch (vector) {
724 case 8: /* #DF */
725 case 10: /* #TS */
726 case 11: /* #NP */
727 case 12: /* #SS */
728 case 13: /* #GP */
729 case 14: /* #PF */
730 case 17: /* #AC */
731 case 30: /* #SX */
732 return 1;
733 default:
734 return 0;
735 }
736 }
737
738 static int
svm_vcpu_inject(struct nvmm_cpu * vcpu)739 svm_vcpu_inject(struct nvmm_cpu *vcpu)
740 {
741 struct nvmm_comm_page *comm = vcpu->comm;
742 struct svm_cpudata *cpudata = vcpu->cpudata;
743 struct vmcb *vmcb = cpudata->vmcb;
744 u_int evtype;
745 uint8_t vector;
746 uint64_t error;
747 int type = 0, err = 0;
748
749 evtype = comm->event.type;
750 vector = comm->event.vector;
751 error = comm->event.u.excp.error;
752 __insn_barrier();
753
754 switch (evtype) {
755 case NVMM_VCPU_EVENT_EXCP:
756 type = SVM_EVENT_TYPE_EXC;
757 if (vector == 2 || vector >= 32)
758 return EINVAL;
759 if (vector == 3 || vector == 0)
760 return EINVAL;
761 if (svm_excp_has_rf(vector)) {
762 vmcb->state.rflags |= PSL_RF;
763 }
764 err = svm_excp_has_error(vector);
765 break;
766 case NVMM_VCPU_EVENT_INTR:
767 type = SVM_EVENT_TYPE_HW_INT;
768 if (vector == 2) {
769 type = SVM_EVENT_TYPE_NMI;
770 svm_event_waitexit_enable(vcpu, true);
771 }
772 err = 0;
773 break;
774 default:
775 return EINVAL;
776 }
777
778 vmcb->ctrl.eventinj =
779 __SHIFTIN((uint64_t)vector, VMCB_CTRL_EVENTINJ_VECTOR) |
780 __SHIFTIN((uint64_t)type, VMCB_CTRL_EVENTINJ_TYPE) |
781 __SHIFTIN((uint64_t)err, VMCB_CTRL_EVENTINJ_EV) |
782 __SHIFTIN((uint64_t)1, VMCB_CTRL_EVENTINJ_V) |
783 __SHIFTIN((uint64_t)error, VMCB_CTRL_EVENTINJ_ERRORCODE);
784
785 cpudata->evt_pending = true;
786
787 return 0;
788 }
789
790 static void
svm_inject_ud(struct nvmm_cpu * vcpu)791 svm_inject_ud(struct nvmm_cpu *vcpu)
792 {
793 struct nvmm_comm_page *comm = vcpu->comm;
794 int ret __diagused;
795
796 comm->event.type = NVMM_VCPU_EVENT_EXCP;
797 comm->event.vector = 6;
798 comm->event.u.excp.error = 0;
799
800 ret = svm_vcpu_inject(vcpu);
801 KASSERT(ret == 0);
802 }
803
804 static void
svm_inject_gp(struct nvmm_cpu * vcpu)805 svm_inject_gp(struct nvmm_cpu *vcpu)
806 {
807 struct nvmm_comm_page *comm = vcpu->comm;
808 int ret __diagused;
809
810 comm->event.type = NVMM_VCPU_EVENT_EXCP;
811 comm->event.vector = 13;
812 comm->event.u.excp.error = 0;
813
814 ret = svm_vcpu_inject(vcpu);
815 KASSERT(ret == 0);
816 }
817
818 static inline int
svm_vcpu_event_commit(struct nvmm_cpu * vcpu)819 svm_vcpu_event_commit(struct nvmm_cpu *vcpu)
820 {
821 if (__predict_true(!vcpu->comm->event_commit)) {
822 return 0;
823 }
824 vcpu->comm->event_commit = false;
825 return svm_vcpu_inject(vcpu);
826 }
827
828 static inline void
svm_inkernel_advance(struct vmcb * vmcb)829 svm_inkernel_advance(struct vmcb *vmcb)
830 {
831 /*
832 * Maybe we should also apply single-stepping and debug exceptions.
833 * Matters for guest-ring3, because it can execute 'cpuid' under a
834 * debugger.
835 */
836 vmcb->state.rip = vmcb->ctrl.nrip;
837 vmcb->state.rflags &= ~PSL_RF;
838 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
839 }
840
841 #define SVM_CPUID_MAX_BASIC 0xD
842 #define SVM_CPUID_MAX_HYPERVISOR 0x40000000
843 #define SVM_CPUID_MAX_EXTENDED 0x8000001F
844 static uint32_t svm_cpuid_max_basic __read_mostly;
845 static uint32_t svm_cpuid_max_extended __read_mostly;
846
847 static void
svm_inkernel_exec_cpuid(struct svm_cpudata * cpudata,uint64_t eax,uint64_t ecx)848 svm_inkernel_exec_cpuid(struct svm_cpudata *cpudata, uint64_t eax, uint64_t ecx)
849 {
850 u_int descs[4];
851
852 x86_cpuid2(eax, ecx, descs);
853 cpudata->vmcb->state.rax = descs[0];
854 cpudata->gprs[NVMM_X64_GPR_RBX] = descs[1];
855 cpudata->gprs[NVMM_X64_GPR_RCX] = descs[2];
856 cpudata->gprs[NVMM_X64_GPR_RDX] = descs[3];
857 }
858
859 static void
svm_inkernel_handle_cpuid(struct nvmm_cpu * vcpu,uint64_t eax,uint64_t ecx)860 svm_inkernel_handle_cpuid(struct nvmm_cpu *vcpu, uint64_t eax, uint64_t ecx)
861 {
862 struct svm_cpudata *cpudata = vcpu->cpudata;
863 uint64_t cr4;
864
865 if (eax < 0x40000000) {
866 if (__predict_false(eax > svm_cpuid_max_basic)) {
867 eax = svm_cpuid_max_basic;
868 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
869 }
870 } else if (eax < 0x80000000) {
871 if (__predict_false(eax > SVM_CPUID_MAX_HYPERVISOR)) {
872 eax = svm_cpuid_max_basic;
873 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
874 }
875 } else {
876 if (__predict_false(eax > svm_cpuid_max_extended)) {
877 eax = svm_cpuid_max_basic;
878 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
879 }
880 }
881
882 switch (eax) {
883 case 0x00000000:
884 cpudata->vmcb->state.rax = svm_cpuid_max_basic;
885 break;
886 case 0x00000001:
887 cpudata->vmcb->state.rax &= nvmm_cpuid_00000001.eax;
888
889 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~CPUID_LOCAL_APIC_ID;
890 cpudata->gprs[NVMM_X64_GPR_RBX] |= __SHIFTIN(vcpu->cpuid,
891 CPUID_LOCAL_APIC_ID);
892
893 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000001.ecx;
894 cpudata->gprs[NVMM_X64_GPR_RCX] |= CPUID2_RAZ;
895
896 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000001.edx;
897
898 /* CPUID2_OSXSAVE depends on CR4. */
899 cr4 = cpudata->vmcb->state.cr4;
900 if (!(cr4 & CR4_OSXSAVE)) {
901 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~CPUID2_OSXSAVE;
902 }
903 break;
904 case 0x00000002: /* Empty */
905 case 0x00000003: /* Empty */
906 case 0x00000004: /* Empty */
907 case 0x00000005: /* Monitor/MWait */
908 case 0x00000006: /* Power Management Related Features */
909 cpudata->vmcb->state.rax = 0;
910 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
911 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
912 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
913 break;
914 case 0x00000007: /* Structured Extended Features */
915 switch (ecx) {
916 case 0:
917 cpudata->vmcb->state.rax = 0;
918 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_00000007.ebx;
919 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_00000007.ecx;
920 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_00000007.edx;
921 break;
922 default:
923 cpudata->vmcb->state.rax = 0;
924 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
925 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
926 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
927 break;
928 }
929 break;
930 case 0x00000008: /* Empty */
931 case 0x00000009: /* Empty */
932 case 0x0000000A: /* Empty */
933 case 0x0000000B: /* Empty */
934 case 0x0000000C: /* Empty */
935 cpudata->vmcb->state.rax = 0;
936 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
937 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
938 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
939 break;
940 case 0x0000000D: /* Processor Extended State Enumeration */
941 if (svm_xcr0_mask == 0) {
942 break;
943 }
944 switch (ecx) {
945 case 0:
946 cpudata->vmcb->state.rax = svm_xcr0_mask & 0xFFFFFFFF;
947 if (cpudata->gxcr0 & XCR0_SSE) {
948 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct fxsave);
949 } else {
950 cpudata->gprs[NVMM_X64_GPR_RBX] = sizeof(struct save87);
951 }
952 cpudata->gprs[NVMM_X64_GPR_RBX] += 64; /* XSAVE header */
953 cpudata->gprs[NVMM_X64_GPR_RCX] = sizeof(struct fxsave) + 64;
954 cpudata->gprs[NVMM_X64_GPR_RDX] = svm_xcr0_mask >> 32;
955 break;
956 case 1:
957 cpudata->vmcb->state.rax &=
958 (CPUID_PES1_XSAVEOPT | CPUID_PES1_XSAVEC |
959 CPUID_PES1_XGETBV);
960 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
961 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
962 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
963 break;
964 default:
965 cpudata->vmcb->state.rax = 0;
966 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
967 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
968 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
969 break;
970 }
971 break;
972
973 case 0x40000000: /* Hypervisor Information */
974 cpudata->vmcb->state.rax = SVM_CPUID_MAX_HYPERVISOR;
975 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
976 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
977 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
978 memcpy(&cpudata->gprs[NVMM_X64_GPR_RBX], "___ ", 4);
979 memcpy(&cpudata->gprs[NVMM_X64_GPR_RCX], "NVMM", 4);
980 memcpy(&cpudata->gprs[NVMM_X64_GPR_RDX], " ___", 4);
981 break;
982
983 case 0x80000000:
984 cpudata->vmcb->state.rax = svm_cpuid_max_extended;
985 break;
986 case 0x80000001:
987 cpudata->vmcb->state.rax &= nvmm_cpuid_80000001.eax;
988 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000001.ebx;
989 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000001.ecx;
990 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000001.edx;
991 break;
992 case 0x80000002: /* Extended Processor Name String */
993 case 0x80000003: /* Extended Processor Name String */
994 case 0x80000004: /* Extended Processor Name String */
995 case 0x80000005: /* L1 Cache and TLB Information */
996 case 0x80000006: /* L2 Cache and TLB and L3 Cache Information */
997 break;
998 case 0x80000007: /* Processor Power Management and RAS Capabilities */
999 cpudata->vmcb->state.rax &= nvmm_cpuid_80000007.eax;
1000 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000007.ebx;
1001 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000007.ecx;
1002 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000007.edx;
1003 break;
1004 case 0x80000008: /* Processor Capacity Parameters and Ext Feat Ident */
1005 cpudata->vmcb->state.rax &= nvmm_cpuid_80000008.eax;
1006 cpudata->gprs[NVMM_X64_GPR_RBX] &= nvmm_cpuid_80000008.ebx;
1007 cpudata->gprs[NVMM_X64_GPR_RCX] &= nvmm_cpuid_80000008.ecx;
1008 cpudata->gprs[NVMM_X64_GPR_RDX] &= nvmm_cpuid_80000008.edx;
1009 break;
1010 case 0x80000009: /* Empty */
1011 case 0x8000000A: /* SVM Features */
1012 case 0x8000000B: /* Empty */
1013 case 0x8000000C: /* Empty */
1014 case 0x8000000D: /* Empty */
1015 case 0x8000000E: /* Empty */
1016 case 0x8000000F: /* Empty */
1017 case 0x80000010: /* Empty */
1018 case 0x80000011: /* Empty */
1019 case 0x80000012: /* Empty */
1020 case 0x80000013: /* Empty */
1021 case 0x80000014: /* Empty */
1022 case 0x80000015: /* Empty */
1023 case 0x80000016: /* Empty */
1024 case 0x80000017: /* Empty */
1025 case 0x80000018: /* Empty */
1026 cpudata->vmcb->state.rax = 0;
1027 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1028 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1029 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1030 break;
1031 case 0x80000019: /* TLB Characteristics for 1GB pages */
1032 case 0x8000001A: /* Instruction Optimizations */
1033 break;
1034 case 0x8000001B: /* Instruction-Based Sampling Capabilities */
1035 case 0x8000001C: /* Lightweight Profiling Capabilities */
1036 cpudata->vmcb->state.rax = 0;
1037 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1038 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1039 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1040 break;
1041 case 0x8000001D: /* Cache Topology Information */
1042 case 0x8000001E: /* Processor Topology Information */
1043 break; /* TODO? */
1044 case 0x8000001F: /* Encrypted Memory Capabilities */
1045 cpudata->vmcb->state.rax = 0;
1046 cpudata->gprs[NVMM_X64_GPR_RBX] = 0;
1047 cpudata->gprs[NVMM_X64_GPR_RCX] = 0;
1048 cpudata->gprs[NVMM_X64_GPR_RDX] = 0;
1049 break;
1050
1051 default:
1052 break;
1053 }
1054 }
1055
1056 static void
svm_exit_insn(struct vmcb * vmcb,struct nvmm_vcpu_exit * exit,uint64_t reason)1057 svm_exit_insn(struct vmcb *vmcb, struct nvmm_vcpu_exit *exit, uint64_t reason)
1058 {
1059 exit->u.insn.npc = vmcb->ctrl.nrip;
1060 exit->reason = reason;
1061 }
1062
1063 static void
svm_exit_cpuid(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1064 svm_exit_cpuid(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1065 struct nvmm_vcpu_exit *exit)
1066 {
1067 struct svm_cpudata *cpudata = vcpu->cpudata;
1068 struct nvmm_vcpu_conf_cpuid *cpuid;
1069 uint64_t eax, ecx;
1070 size_t i;
1071
1072 eax = cpudata->vmcb->state.rax;
1073 ecx = cpudata->gprs[NVMM_X64_GPR_RCX];
1074 svm_inkernel_exec_cpuid(cpudata, eax, ecx);
1075 svm_inkernel_handle_cpuid(vcpu, eax, ecx);
1076
1077 for (i = 0; i < SVM_NCPUIDS; i++) {
1078 if (!cpudata->cpuidpresent[i]) {
1079 continue;
1080 }
1081 cpuid = &cpudata->cpuid[i];
1082 if (cpuid->leaf != eax) {
1083 continue;
1084 }
1085
1086 if (cpuid->exit) {
1087 svm_exit_insn(cpudata->vmcb, exit, NVMM_VCPU_EXIT_CPUID);
1088 return;
1089 }
1090 KASSERT(cpuid->mask);
1091
1092 /* del */
1093 cpudata->vmcb->state.rax &= ~cpuid->u.mask.del.eax;
1094 cpudata->gprs[NVMM_X64_GPR_RBX] &= ~cpuid->u.mask.del.ebx;
1095 cpudata->gprs[NVMM_X64_GPR_RCX] &= ~cpuid->u.mask.del.ecx;
1096 cpudata->gprs[NVMM_X64_GPR_RDX] &= ~cpuid->u.mask.del.edx;
1097
1098 /* set */
1099 cpudata->vmcb->state.rax |= cpuid->u.mask.set.eax;
1100 cpudata->gprs[NVMM_X64_GPR_RBX] |= cpuid->u.mask.set.ebx;
1101 cpudata->gprs[NVMM_X64_GPR_RCX] |= cpuid->u.mask.set.ecx;
1102 cpudata->gprs[NVMM_X64_GPR_RDX] |= cpuid->u.mask.set.edx;
1103
1104 break;
1105 }
1106
1107 svm_inkernel_advance(cpudata->vmcb);
1108 exit->reason = NVMM_VCPU_EXIT_NONE;
1109 }
1110
1111 static void
svm_exit_hlt(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1112 svm_exit_hlt(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1113 struct nvmm_vcpu_exit *exit)
1114 {
1115 struct svm_cpudata *cpudata = vcpu->cpudata;
1116 struct vmcb *vmcb = cpudata->vmcb;
1117
1118 if (cpudata->int_window_exit && (vmcb->state.rflags & PSL_I)) {
1119 svm_event_waitexit_disable(vcpu, false);
1120 }
1121
1122 svm_inkernel_advance(cpudata->vmcb);
1123 exit->reason = NVMM_VCPU_EXIT_HALTED;
1124 }
1125
1126 #define SVM_EXIT_IO_PORT __BITS(31,16)
1127 #define SVM_EXIT_IO_SEG __BITS(12,10)
1128 #define SVM_EXIT_IO_A64 __BIT(9)
1129 #define SVM_EXIT_IO_A32 __BIT(8)
1130 #define SVM_EXIT_IO_A16 __BIT(7)
1131 #define SVM_EXIT_IO_SZ32 __BIT(6)
1132 #define SVM_EXIT_IO_SZ16 __BIT(5)
1133 #define SVM_EXIT_IO_SZ8 __BIT(4)
1134 #define SVM_EXIT_IO_REP __BIT(3)
1135 #define SVM_EXIT_IO_STR __BIT(2)
1136 #define SVM_EXIT_IO_IN __BIT(0)
1137
1138 static void
svm_exit_io(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1139 svm_exit_io(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1140 struct nvmm_vcpu_exit *exit)
1141 {
1142 struct svm_cpudata *cpudata = vcpu->cpudata;
1143 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1144 uint64_t nextpc = cpudata->vmcb->ctrl.exitinfo2;
1145
1146 exit->reason = NVMM_VCPU_EXIT_IO;
1147
1148 exit->u.io.in = (info & SVM_EXIT_IO_IN) != 0;
1149 exit->u.io.port = __SHIFTOUT(info, SVM_EXIT_IO_PORT);
1150
1151 if (svm_decode_assist) {
1152 KASSERT(__SHIFTOUT(info, SVM_EXIT_IO_SEG) < 6);
1153 exit->u.io.seg = __SHIFTOUT(info, SVM_EXIT_IO_SEG);
1154 } else {
1155 exit->u.io.seg = -1;
1156 }
1157
1158 if (info & SVM_EXIT_IO_A64) {
1159 exit->u.io.address_size = 8;
1160 } else if (info & SVM_EXIT_IO_A32) {
1161 exit->u.io.address_size = 4;
1162 } else if (info & SVM_EXIT_IO_A16) {
1163 exit->u.io.address_size = 2;
1164 }
1165
1166 if (info & SVM_EXIT_IO_SZ32) {
1167 exit->u.io.operand_size = 4;
1168 } else if (info & SVM_EXIT_IO_SZ16) {
1169 exit->u.io.operand_size = 2;
1170 } else if (info & SVM_EXIT_IO_SZ8) {
1171 exit->u.io.operand_size = 1;
1172 }
1173
1174 exit->u.io.rep = (info & SVM_EXIT_IO_REP) != 0;
1175 exit->u.io.str = (info & SVM_EXIT_IO_STR) != 0;
1176 exit->u.io.npc = nextpc;
1177
1178 svm_vcpu_state_provide(vcpu,
1179 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1180 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1181 }
1182
1183 static const uint64_t msr_ignore_list[] = {
1184 0xc0010055, /* MSR_CMPHALT */
1185 MSR_DE_CFG,
1186 MSR_IC_CFG,
1187 MSR_UCODE_AMD_PATCHLEVEL
1188 };
1189
1190 static bool
svm_inkernel_handle_msr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1191 svm_inkernel_handle_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1192 struct nvmm_vcpu_exit *exit)
1193 {
1194 struct svm_cpudata *cpudata = vcpu->cpudata;
1195 struct vmcb *vmcb = cpudata->vmcb;
1196 uint64_t val;
1197 size_t i;
1198
1199 if (exit->reason == NVMM_VCPU_EXIT_RDMSR) {
1200 if (exit->u.rdmsr.msr == MSR_EFER) {
1201 val = vmcb->state.efer & ~EFER_SVME;
1202 vmcb->state.rax = (val & 0xFFFFFFFF);
1203 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1204 goto handled;
1205 }
1206 if (exit->u.rdmsr.msr == MSR_NB_CFG) {
1207 val = NB_CFG_INITAPICCPUIDLO;
1208 vmcb->state.rax = (val & 0xFFFFFFFF);
1209 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1210 goto handled;
1211 }
1212 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1213 if (msr_ignore_list[i] != exit->u.rdmsr.msr)
1214 continue;
1215 val = 0;
1216 vmcb->state.rax = (val & 0xFFFFFFFF);
1217 cpudata->gprs[NVMM_X64_GPR_RDX] = (val >> 32);
1218 goto handled;
1219 }
1220 } else {
1221 if (exit->u.wrmsr.msr == MSR_EFER) {
1222 if (__predict_false(exit->u.wrmsr.val & ~EFER_VALID)) {
1223 goto error;
1224 }
1225 if ((vmcb->state.efer ^ exit->u.wrmsr.val) &
1226 EFER_TLB_FLUSH) {
1227 cpudata->gtlb_want_flush = true;
1228 }
1229 vmcb->state.efer = exit->u.wrmsr.val | EFER_SVME;
1230 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_CR);
1231 goto handled;
1232 }
1233 if (exit->u.wrmsr.msr == MSR_TSC) {
1234 cpudata->gtsc = exit->u.wrmsr.val;
1235 cpudata->gtsc_want_update = true;
1236 goto handled;
1237 }
1238 for (i = 0; i < __arraycount(msr_ignore_list); i++) {
1239 if (msr_ignore_list[i] != exit->u.wrmsr.msr)
1240 continue;
1241 goto handled;
1242 }
1243 }
1244
1245 return false;
1246
1247 handled:
1248 svm_inkernel_advance(cpudata->vmcb);
1249 return true;
1250
1251 error:
1252 svm_inject_gp(vcpu);
1253 return true;
1254 }
1255
1256 static inline void
svm_exit_rdmsr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1257 svm_exit_rdmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1258 struct nvmm_vcpu_exit *exit)
1259 {
1260 struct svm_cpudata *cpudata = vcpu->cpudata;
1261
1262 exit->reason = NVMM_VCPU_EXIT_RDMSR;
1263 exit->u.rdmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1264 exit->u.rdmsr.npc = cpudata->vmcb->ctrl.nrip;
1265
1266 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1267 exit->reason = NVMM_VCPU_EXIT_NONE;
1268 return;
1269 }
1270
1271 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1272 }
1273
1274 static inline void
svm_exit_wrmsr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1275 svm_exit_wrmsr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1276 struct nvmm_vcpu_exit *exit)
1277 {
1278 struct svm_cpudata *cpudata = vcpu->cpudata;
1279 uint64_t rdx, rax;
1280
1281 rdx = cpudata->gprs[NVMM_X64_GPR_RDX];
1282 rax = cpudata->vmcb->state.rax;
1283
1284 exit->reason = NVMM_VCPU_EXIT_WRMSR;
1285 exit->u.wrmsr.msr = (cpudata->gprs[NVMM_X64_GPR_RCX] & 0xFFFFFFFF);
1286 exit->u.wrmsr.val = (rdx << 32) | (rax & 0xFFFFFFFF);
1287 exit->u.wrmsr.npc = cpudata->vmcb->ctrl.nrip;
1288
1289 if (svm_inkernel_handle_msr(mach, vcpu, exit)) {
1290 exit->reason = NVMM_VCPU_EXIT_NONE;
1291 return;
1292 }
1293
1294 svm_vcpu_state_provide(vcpu, NVMM_X64_STATE_GPRS);
1295 }
1296
1297 static void
svm_exit_msr(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1298 svm_exit_msr(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1299 struct nvmm_vcpu_exit *exit)
1300 {
1301 struct svm_cpudata *cpudata = vcpu->cpudata;
1302 uint64_t info = cpudata->vmcb->ctrl.exitinfo1;
1303
1304 if (info == 0) {
1305 svm_exit_rdmsr(mach, vcpu, exit);
1306 } else {
1307 svm_exit_wrmsr(mach, vcpu, exit);
1308 }
1309 }
1310
1311 static void
svm_exit_npf(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1312 svm_exit_npf(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1313 struct nvmm_vcpu_exit *exit)
1314 {
1315 struct svm_cpudata *cpudata = vcpu->cpudata;
1316 gpaddr_t gpa = cpudata->vmcb->ctrl.exitinfo2;
1317
1318 exit->reason = NVMM_VCPU_EXIT_MEMORY;
1319 if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_W)
1320 exit->u.mem.prot = PROT_WRITE;
1321 else if (cpudata->vmcb->ctrl.exitinfo1 & PGEX_I)
1322 exit->u.mem.prot = PROT_EXEC;
1323 else
1324 exit->u.mem.prot = PROT_READ;
1325 exit->u.mem.gpa = gpa;
1326 exit->u.mem.inst_len = cpudata->vmcb->ctrl.inst_len;
1327 memcpy(exit->u.mem.inst_bytes, cpudata->vmcb->ctrl.inst_bytes,
1328 sizeof(exit->u.mem.inst_bytes));
1329
1330 svm_vcpu_state_provide(vcpu,
1331 NVMM_X64_STATE_GPRS | NVMM_X64_STATE_SEGS |
1332 NVMM_X64_STATE_CRS | NVMM_X64_STATE_MSRS);
1333 }
1334
1335 static void
svm_exit_xsetbv(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1336 svm_exit_xsetbv(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1337 struct nvmm_vcpu_exit *exit)
1338 {
1339 struct svm_cpudata *cpudata = vcpu->cpudata;
1340 struct vmcb *vmcb = cpudata->vmcb;
1341 uint64_t val;
1342
1343 exit->reason = NVMM_VCPU_EXIT_NONE;
1344
1345 val = (cpudata->gprs[NVMM_X64_GPR_RDX] << 32) |
1346 (vmcb->state.rax & 0xFFFFFFFF);
1347
1348 if (__predict_false(cpudata->gprs[NVMM_X64_GPR_RCX] != 0)) {
1349 goto error;
1350 } else if (__predict_false(vmcb->state.cpl != 0)) {
1351 goto error;
1352 } else if (__predict_false((val & ~svm_xcr0_mask) != 0)) {
1353 goto error;
1354 } else if (__predict_false((val & XCR0_X87) == 0)) {
1355 goto error;
1356 }
1357
1358 cpudata->gxcr0 = val;
1359
1360 svm_inkernel_advance(cpudata->vmcb);
1361 return;
1362
1363 error:
1364 svm_inject_gp(vcpu);
1365 }
1366
1367 static void
svm_exit_invalid(struct nvmm_vcpu_exit * exit,uint64_t code)1368 svm_exit_invalid(struct nvmm_vcpu_exit *exit, uint64_t code)
1369 {
1370 exit->u.inv.hwcode = code;
1371 exit->reason = NVMM_VCPU_EXIT_INVALID;
1372 }
1373
1374 /* -------------------------------------------------------------------------- */
1375
1376 static void
svm_vcpu_guest_fpu_enter(struct nvmm_cpu * vcpu)1377 svm_vcpu_guest_fpu_enter(struct nvmm_cpu *vcpu)
1378 {
1379 struct svm_cpudata *cpudata = vcpu->cpudata;
1380
1381 fpu_kern_enter();
1382 /* TODO: should we use *XSAVE64 here? */
1383 fpu_area_restore(&cpudata->gfpu, svm_xcr0_mask, false);
1384
1385 if (svm_xcr0_mask != 0) {
1386 cpudata->hxcr0 = rdxcr(0);
1387 wrxcr(0, cpudata->gxcr0);
1388 }
1389 }
1390
1391 static void
svm_vcpu_guest_fpu_leave(struct nvmm_cpu * vcpu)1392 svm_vcpu_guest_fpu_leave(struct nvmm_cpu *vcpu)
1393 {
1394 struct svm_cpudata *cpudata = vcpu->cpudata;
1395
1396 if (svm_xcr0_mask != 0) {
1397 cpudata->gxcr0 = rdxcr(0);
1398 wrxcr(0, cpudata->hxcr0);
1399 }
1400
1401 /* TODO: should we use *XSAVE64 here? */
1402 fpu_area_save(&cpudata->gfpu, svm_xcr0_mask, false);
1403 fpu_kern_leave();
1404 }
1405
1406 static void
svm_vcpu_guest_dbregs_enter(struct nvmm_cpu * vcpu)1407 svm_vcpu_guest_dbregs_enter(struct nvmm_cpu *vcpu)
1408 {
1409 struct svm_cpudata *cpudata = vcpu->cpudata;
1410
1411 x86_dbregs_save(curlwp);
1412
1413 ldr7(0);
1414
1415 ldr0(cpudata->drs[NVMM_X64_DR_DR0]);
1416 ldr1(cpudata->drs[NVMM_X64_DR_DR1]);
1417 ldr2(cpudata->drs[NVMM_X64_DR_DR2]);
1418 ldr3(cpudata->drs[NVMM_X64_DR_DR3]);
1419 }
1420
1421 static void
svm_vcpu_guest_dbregs_leave(struct nvmm_cpu * vcpu)1422 svm_vcpu_guest_dbregs_leave(struct nvmm_cpu *vcpu)
1423 {
1424 struct svm_cpudata *cpudata = vcpu->cpudata;
1425
1426 cpudata->drs[NVMM_X64_DR_DR0] = rdr0();
1427 cpudata->drs[NVMM_X64_DR_DR1] = rdr1();
1428 cpudata->drs[NVMM_X64_DR_DR2] = rdr2();
1429 cpudata->drs[NVMM_X64_DR_DR3] = rdr3();
1430
1431 x86_dbregs_restore(curlwp);
1432 }
1433
1434 static void
svm_vcpu_guest_misc_enter(struct nvmm_cpu * vcpu)1435 svm_vcpu_guest_misc_enter(struct nvmm_cpu *vcpu)
1436 {
1437 struct svm_cpudata *cpudata = vcpu->cpudata;
1438
1439 cpudata->fsbase = rdmsr(MSR_FSBASE);
1440 cpudata->kernelgsbase = rdmsr(MSR_KERNELGSBASE);
1441 }
1442
1443 static void
svm_vcpu_guest_misc_leave(struct nvmm_cpu * vcpu)1444 svm_vcpu_guest_misc_leave(struct nvmm_cpu *vcpu)
1445 {
1446 struct svm_cpudata *cpudata = vcpu->cpudata;
1447
1448 wrmsr(MSR_STAR, cpudata->star);
1449 wrmsr(MSR_LSTAR, cpudata->lstar);
1450 wrmsr(MSR_CSTAR, cpudata->cstar);
1451 wrmsr(MSR_SFMASK, cpudata->sfmask);
1452 wrmsr(MSR_FSBASE, cpudata->fsbase);
1453 wrmsr(MSR_KERNELGSBASE, cpudata->kernelgsbase);
1454 }
1455
1456 /* -------------------------------------------------------------------------- */
1457
1458 static inline void
svm_gtlb_catchup(struct nvmm_cpu * vcpu,int hcpu)1459 svm_gtlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1460 {
1461 struct svm_cpudata *cpudata = vcpu->cpudata;
1462
1463 if (vcpu->hcpu_last != hcpu || cpudata->shared_asid) {
1464 cpudata->gtlb_want_flush = true;
1465 }
1466 }
1467
1468 static inline void
svm_htlb_catchup(struct nvmm_cpu * vcpu,int hcpu)1469 svm_htlb_catchup(struct nvmm_cpu *vcpu, int hcpu)
1470 {
1471 /*
1472 * Nothing to do. If an hTLB flush was needed, either the VCPU was
1473 * executing on this hCPU and the hTLB already got flushed, or it
1474 * was executing on another hCPU in which case the catchup is done
1475 * in svm_gtlb_catchup().
1476 */
1477 }
1478
1479 static inline uint64_t
svm_htlb_flush(struct svm_machdata * machdata,struct svm_cpudata * cpudata)1480 svm_htlb_flush(struct svm_machdata *machdata, struct svm_cpudata *cpudata)
1481 {
1482 struct vmcb *vmcb = cpudata->vmcb;
1483 uint64_t machgen;
1484
1485 machgen = machdata->mach_htlb_gen;
1486 if (__predict_true(machgen == cpudata->vcpu_htlb_gen)) {
1487 return machgen;
1488 }
1489
1490 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1491 return machgen;
1492 }
1493
1494 static inline void
svm_htlb_flush_ack(struct svm_cpudata * cpudata,uint64_t machgen)1495 svm_htlb_flush_ack(struct svm_cpudata *cpudata, uint64_t machgen)
1496 {
1497 struct vmcb *vmcb = cpudata->vmcb;
1498
1499 if (__predict_true(vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID)) {
1500 cpudata->vcpu_htlb_gen = machgen;
1501 }
1502 }
1503
1504 static inline void
svm_exit_evt(struct svm_cpudata * cpudata,struct vmcb * vmcb)1505 svm_exit_evt(struct svm_cpudata *cpudata, struct vmcb *vmcb)
1506 {
1507 cpudata->evt_pending = false;
1508
1509 if (__predict_false(vmcb->ctrl.exitintinfo & VMCB_CTRL_EXITINTINFO_V)) {
1510 vmcb->ctrl.eventinj = vmcb->ctrl.exitintinfo;
1511 cpudata->evt_pending = true;
1512 }
1513 }
1514
1515 static int
svm_vcpu_run(struct nvmm_machine * mach,struct nvmm_cpu * vcpu,struct nvmm_vcpu_exit * exit)1516 svm_vcpu_run(struct nvmm_machine *mach, struct nvmm_cpu *vcpu,
1517 struct nvmm_vcpu_exit *exit)
1518 {
1519 struct nvmm_comm_page *comm = vcpu->comm;
1520 struct svm_machdata *machdata = mach->machdata;
1521 struct svm_cpudata *cpudata = vcpu->cpudata;
1522 struct vmcb *vmcb = cpudata->vmcb;
1523 uint64_t machgen;
1524 int hcpu;
1525
1526 svm_vcpu_state_commit(vcpu);
1527 comm->state_cached = 0;
1528
1529 if (__predict_false(svm_vcpu_event_commit(vcpu) != 0)) {
1530 return EINVAL;
1531 }
1532
1533 kpreempt_disable();
1534 hcpu = cpu_number();
1535
1536 svm_gtlb_catchup(vcpu, hcpu);
1537 svm_htlb_catchup(vcpu, hcpu);
1538
1539 if (vcpu->hcpu_last != hcpu) {
1540 svm_vmcb_cache_flush_all(vmcb);
1541 cpudata->gtsc_want_update = true;
1542 }
1543
1544 svm_vcpu_guest_dbregs_enter(vcpu);
1545 svm_vcpu_guest_misc_enter(vcpu);
1546
1547 while (1) {
1548 if (cpudata->gtlb_want_flush) {
1549 vmcb->ctrl.tlb_ctrl = svm_ctrl_tlb_flush;
1550 } else {
1551 vmcb->ctrl.tlb_ctrl = 0;
1552 }
1553
1554 if (__predict_false(cpudata->gtsc_want_update)) {
1555 vmcb->ctrl.tsc_offset = cpudata->gtsc - rdtsc();
1556 svm_vmcb_cache_flush(vmcb, VMCB_CTRL_VMCB_CLEAN_I);
1557 }
1558
1559 svm_vcpu_guest_fpu_enter(vcpu);
1560 svm_clgi();
1561 machgen = svm_htlb_flush(machdata, cpudata);
1562 svm_vmrun(cpudata->vmcb_pa, cpudata->gprs);
1563 svm_htlb_flush_ack(cpudata, machgen);
1564 svm_stgi();
1565 svm_vcpu_guest_fpu_leave(vcpu);
1566
1567 svm_vmcb_cache_default(vmcb);
1568
1569 if (vmcb->ctrl.exitcode != VMCB_EXITCODE_INVALID) {
1570 cpudata->gtlb_want_flush = false;
1571 cpudata->gtsc_want_update = false;
1572 vcpu->hcpu_last = hcpu;
1573 }
1574 svm_exit_evt(cpudata, vmcb);
1575
1576 switch (vmcb->ctrl.exitcode) {
1577 case VMCB_EXITCODE_INTR:
1578 case VMCB_EXITCODE_NMI:
1579 exit->reason = NVMM_VCPU_EXIT_NONE;
1580 break;
1581 case VMCB_EXITCODE_VINTR:
1582 svm_event_waitexit_disable(vcpu, false);
1583 exit->reason = NVMM_VCPU_EXIT_INT_READY;
1584 break;
1585 case VMCB_EXITCODE_IRET:
1586 svm_event_waitexit_disable(vcpu, true);
1587 exit->reason = NVMM_VCPU_EXIT_NMI_READY;
1588 break;
1589 case VMCB_EXITCODE_CPUID:
1590 svm_exit_cpuid(mach, vcpu, exit);
1591 break;
1592 case VMCB_EXITCODE_HLT:
1593 svm_exit_hlt(mach, vcpu, exit);
1594 break;
1595 case VMCB_EXITCODE_IOIO:
1596 svm_exit_io(mach, vcpu, exit);
1597 break;
1598 case VMCB_EXITCODE_MSR:
1599 svm_exit_msr(mach, vcpu, exit);
1600 break;
1601 case VMCB_EXITCODE_SHUTDOWN:
1602 exit->reason = NVMM_VCPU_EXIT_SHUTDOWN;
1603 break;
1604 case VMCB_EXITCODE_RDPMC:
1605 case VMCB_EXITCODE_RSM:
1606 case VMCB_EXITCODE_INVLPGA:
1607 case VMCB_EXITCODE_VMRUN:
1608 case VMCB_EXITCODE_VMMCALL:
1609 case VMCB_EXITCODE_VMLOAD:
1610 case VMCB_EXITCODE_VMSAVE:
1611 case VMCB_EXITCODE_STGI:
1612 case VMCB_EXITCODE_CLGI:
1613 case VMCB_EXITCODE_SKINIT:
1614 case VMCB_EXITCODE_RDTSCP:
1615 case VMCB_EXITCODE_RDPRU:
1616 case VMCB_EXITCODE_INVLPGB:
1617 case VMCB_EXITCODE_INVPCID:
1618 case VMCB_EXITCODE_MCOMMIT:
1619 case VMCB_EXITCODE_TLBSYNC:
1620 svm_inject_ud(vcpu);
1621 exit->reason = NVMM_VCPU_EXIT_NONE;
1622 break;
1623 case VMCB_EXITCODE_MONITOR:
1624 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MONITOR);
1625 break;
1626 case VMCB_EXITCODE_MWAIT:
1627 case VMCB_EXITCODE_MWAIT_CONDITIONAL:
1628 svm_exit_insn(vmcb, exit, NVMM_VCPU_EXIT_MWAIT);
1629 break;
1630 case VMCB_EXITCODE_XSETBV:
1631 svm_exit_xsetbv(mach, vcpu, exit);
1632 break;
1633 case VMCB_EXITCODE_NPF:
1634 svm_exit_npf(mach, vcpu, exit);
1635 break;
1636 case VMCB_EXITCODE_FERR_FREEZE: /* ? */
1637 default:
1638 svm_exit_invalid(exit, vmcb->ctrl.exitcode);
1639 break;
1640 }
1641
1642 /* If no reason to return to userland, keep rolling. */
1643 if (nvmm_return_needed(vcpu, exit)) {
1644 break;
1645 }
1646 if (exit->reason != NVMM_VCPU_EXIT_NONE) {
1647 break;
1648 }
1649 }
1650
1651 cpudata->gtsc = rdtsc() + vmcb->ctrl.tsc_offset;
1652
1653 svm_vcpu_guest_misc_leave(vcpu);
1654 svm_vcpu_guest_dbregs_leave(vcpu);
1655
1656 kpreempt_enable();
1657
1658 exit->exitstate.rflags = vmcb->state.rflags;
1659 exit->exitstate.cr8 = __SHIFTOUT(vmcb->ctrl.v, VMCB_CTRL_V_TPR);
1660 exit->exitstate.int_shadow =
1661 ((vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0);
1662 exit->exitstate.int_window_exiting = cpudata->int_window_exit;
1663 exit->exitstate.nmi_window_exiting = cpudata->nmi_window_exit;
1664 exit->exitstate.evt_pending = cpudata->evt_pending;
1665
1666 return 0;
1667 }
1668
1669 /* -------------------------------------------------------------------------- */
1670
1671 static int
svm_memalloc(paddr_t * pa,vaddr_t * va,size_t npages)1672 svm_memalloc(paddr_t *pa, vaddr_t *va, size_t npages)
1673 {
1674 struct pglist pglist;
1675 paddr_t _pa;
1676 vaddr_t _va;
1677 size_t i;
1678 int ret;
1679
1680 ret = uvm_pglistalloc(npages * PAGE_SIZE, 0, ~0UL, PAGE_SIZE, 0,
1681 &pglist, 1, 0);
1682 if (ret != 0)
1683 return ENOMEM;
1684 _pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
1685 _va = uvm_km_alloc(kernel_map, npages * PAGE_SIZE, 0,
1686 UVM_KMF_VAONLY | UVM_KMF_NOWAIT);
1687 if (_va == 0)
1688 goto error;
1689
1690 for (i = 0; i < npages; i++) {
1691 pmap_kenter_pa(_va + i * PAGE_SIZE, _pa + i * PAGE_SIZE,
1692 VM_PROT_READ | VM_PROT_WRITE, PMAP_WRITE_BACK);
1693 }
1694 pmap_update(pmap_kernel());
1695
1696 memset((void *)_va, 0, npages * PAGE_SIZE);
1697
1698 *pa = _pa;
1699 *va = _va;
1700 return 0;
1701
1702 error:
1703 for (i = 0; i < npages; i++) {
1704 uvm_pagefree(PHYS_TO_VM_PAGE(_pa + i * PAGE_SIZE));
1705 }
1706 return ENOMEM;
1707 }
1708
1709 static void
svm_memfree(paddr_t pa,vaddr_t va,size_t npages)1710 svm_memfree(paddr_t pa, vaddr_t va, size_t npages)
1711 {
1712 size_t i;
1713
1714 pmap_kremove(va, npages * PAGE_SIZE);
1715 pmap_update(pmap_kernel());
1716 uvm_km_free(kernel_map, va, npages * PAGE_SIZE, UVM_KMF_VAONLY);
1717 for (i = 0; i < npages; i++) {
1718 uvm_pagefree(PHYS_TO_VM_PAGE(pa + i * PAGE_SIZE));
1719 }
1720 }
1721
1722 /* -------------------------------------------------------------------------- */
1723
1724 #define SVM_MSRBM_READ __BIT(0)
1725 #define SVM_MSRBM_WRITE __BIT(1)
1726
1727 static void
svm_vcpu_msr_allow(uint8_t * bitmap,uint64_t msr,bool read,bool write)1728 svm_vcpu_msr_allow(uint8_t *bitmap, uint64_t msr, bool read, bool write)
1729 {
1730 uint64_t byte;
1731 uint8_t bitoff;
1732
1733 if (msr < 0x00002000) {
1734 /* Range 1 */
1735 byte = ((msr - 0x00000000) >> 2UL) + 0x0000;
1736 } else if (msr >= 0xC0000000 && msr < 0xC0002000) {
1737 /* Range 2 */
1738 byte = ((msr - 0xC0000000) >> 2UL) + 0x0800;
1739 } else if (msr >= 0xC0010000 && msr < 0xC0012000) {
1740 /* Range 3 */
1741 byte = ((msr - 0xC0010000) >> 2UL) + 0x1000;
1742 } else {
1743 panic("%s: wrong range", __func__);
1744 }
1745
1746 bitoff = (msr & 0x3) << 1;
1747
1748 if (read) {
1749 bitmap[byte] &= ~(SVM_MSRBM_READ << bitoff);
1750 }
1751 if (write) {
1752 bitmap[byte] &= ~(SVM_MSRBM_WRITE << bitoff);
1753 }
1754 }
1755
1756 #define SVM_SEG_ATTRIB_TYPE __BITS(3,0)
1757 #define SVM_SEG_ATTRIB_S __BIT(4)
1758 #define SVM_SEG_ATTRIB_DPL __BITS(6,5)
1759 #define SVM_SEG_ATTRIB_P __BIT(7)
1760 #define SVM_SEG_ATTRIB_AVL __BIT(8)
1761 #define SVM_SEG_ATTRIB_L __BIT(9)
1762 #define SVM_SEG_ATTRIB_DEF __BIT(10)
1763 #define SVM_SEG_ATTRIB_G __BIT(11)
1764
1765 static void
svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg * seg,struct vmcb_segment * vseg)1766 svm_vcpu_setstate_seg(const struct nvmm_x64_state_seg *seg,
1767 struct vmcb_segment *vseg)
1768 {
1769 vseg->selector = seg->selector;
1770 vseg->attrib =
1771 __SHIFTIN(seg->attrib.type, SVM_SEG_ATTRIB_TYPE) |
1772 __SHIFTIN(seg->attrib.s, SVM_SEG_ATTRIB_S) |
1773 __SHIFTIN(seg->attrib.dpl, SVM_SEG_ATTRIB_DPL) |
1774 __SHIFTIN(seg->attrib.p, SVM_SEG_ATTRIB_P) |
1775 __SHIFTIN(seg->attrib.avl, SVM_SEG_ATTRIB_AVL) |
1776 __SHIFTIN(seg->attrib.l, SVM_SEG_ATTRIB_L) |
1777 __SHIFTIN(seg->attrib.def, SVM_SEG_ATTRIB_DEF) |
1778 __SHIFTIN(seg->attrib.g, SVM_SEG_ATTRIB_G);
1779 vseg->limit = seg->limit;
1780 vseg->base = seg->base;
1781 }
1782
1783 static void
svm_vcpu_getstate_seg(struct nvmm_x64_state_seg * seg,struct vmcb_segment * vseg)1784 svm_vcpu_getstate_seg(struct nvmm_x64_state_seg *seg, struct vmcb_segment *vseg)
1785 {
1786 seg->selector = vseg->selector;
1787 seg->attrib.type = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_TYPE);
1788 seg->attrib.s = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_S);
1789 seg->attrib.dpl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DPL);
1790 seg->attrib.p = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_P);
1791 seg->attrib.avl = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_AVL);
1792 seg->attrib.l = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_L);
1793 seg->attrib.def = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_DEF);
1794 seg->attrib.g = __SHIFTOUT(vseg->attrib, SVM_SEG_ATTRIB_G);
1795 seg->limit = vseg->limit;
1796 seg->base = vseg->base;
1797 }
1798
1799 static inline bool
svm_state_tlb_flush(const struct vmcb * vmcb,const struct nvmm_x64_state * state,uint64_t flags)1800 svm_state_tlb_flush(const struct vmcb *vmcb, const struct nvmm_x64_state *state,
1801 uint64_t flags)
1802 {
1803 if (flags & NVMM_X64_STATE_CRS) {
1804 if ((vmcb->state.cr0 ^
1805 state->crs[NVMM_X64_CR_CR0]) & CR0_TLB_FLUSH) {
1806 return true;
1807 }
1808 if (vmcb->state.cr3 != state->crs[NVMM_X64_CR_CR3]) {
1809 return true;
1810 }
1811 if ((vmcb->state.cr4 ^
1812 state->crs[NVMM_X64_CR_CR4]) & CR4_TLB_FLUSH) {
1813 return true;
1814 }
1815 }
1816
1817 if (flags & NVMM_X64_STATE_MSRS) {
1818 if ((vmcb->state.efer ^
1819 state->msrs[NVMM_X64_MSR_EFER]) & EFER_TLB_FLUSH) {
1820 return true;
1821 }
1822 }
1823
1824 return false;
1825 }
1826
1827 static void
svm_vcpu_setstate(struct nvmm_cpu * vcpu)1828 svm_vcpu_setstate(struct nvmm_cpu *vcpu)
1829 {
1830 struct nvmm_comm_page *comm = vcpu->comm;
1831 const struct nvmm_x64_state *state = &comm->state;
1832 struct svm_cpudata *cpudata = vcpu->cpudata;
1833 struct vmcb *vmcb = cpudata->vmcb;
1834 struct fxsave *fpustate;
1835 uint64_t flags;
1836
1837 flags = comm->state_wanted;
1838
1839 if (svm_state_tlb_flush(vmcb, state, flags)) {
1840 cpudata->gtlb_want_flush = true;
1841 }
1842
1843 if (flags & NVMM_X64_STATE_SEGS) {
1844 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_CS],
1845 &vmcb->state.cs);
1846 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_DS],
1847 &vmcb->state.ds);
1848 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_ES],
1849 &vmcb->state.es);
1850 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_FS],
1851 &vmcb->state.fs);
1852 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GS],
1853 &vmcb->state.gs);
1854 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_SS],
1855 &vmcb->state.ss);
1856 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1857 &vmcb->state.gdt);
1858 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1859 &vmcb->state.idt);
1860 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1861 &vmcb->state.ldt);
1862 svm_vcpu_setstate_seg(&state->segs[NVMM_X64_SEG_TR],
1863 &vmcb->state.tr);
1864
1865 vmcb->state.cpl = state->segs[NVMM_X64_SEG_SS].attrib.dpl;
1866 }
1867
1868 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
1869 if (flags & NVMM_X64_STATE_GPRS) {
1870 memcpy(cpudata->gprs, state->gprs, sizeof(state->gprs));
1871
1872 vmcb->state.rip = state->gprs[NVMM_X64_GPR_RIP];
1873 vmcb->state.rsp = state->gprs[NVMM_X64_GPR_RSP];
1874 vmcb->state.rax = state->gprs[NVMM_X64_GPR_RAX];
1875 vmcb->state.rflags = state->gprs[NVMM_X64_GPR_RFLAGS];
1876 }
1877
1878 if (flags & NVMM_X64_STATE_CRS) {
1879 vmcb->state.cr0 = state->crs[NVMM_X64_CR_CR0];
1880 vmcb->state.cr2 = state->crs[NVMM_X64_CR_CR2];
1881 vmcb->state.cr3 = state->crs[NVMM_X64_CR_CR3];
1882 vmcb->state.cr4 = state->crs[NVMM_X64_CR_CR4];
1883 vmcb->state.cr4 &= CR4_VALID;
1884
1885 vmcb->ctrl.v &= ~VMCB_CTRL_V_TPR;
1886 vmcb->ctrl.v |= __SHIFTIN(state->crs[NVMM_X64_CR_CR8],
1887 VMCB_CTRL_V_TPR);
1888
1889 if (svm_xcr0_mask != 0) {
1890 /* Clear illegal XCR0 bits, set mandatory X87 bit. */
1891 cpudata->gxcr0 = state->crs[NVMM_X64_CR_XCR0];
1892 cpudata->gxcr0 &= svm_xcr0_mask;
1893 cpudata->gxcr0 |= XCR0_X87;
1894 }
1895 }
1896
1897 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
1898 if (flags & NVMM_X64_STATE_DRS) {
1899 memcpy(cpudata->drs, state->drs, sizeof(state->drs));
1900
1901 vmcb->state.dr6 = state->drs[NVMM_X64_DR_DR6];
1902 vmcb->state.dr7 = state->drs[NVMM_X64_DR_DR7];
1903 }
1904
1905 if (flags & NVMM_X64_STATE_MSRS) {
1906 /*
1907 * EFER_SVME is mandatory.
1908 */
1909 vmcb->state.efer = state->msrs[NVMM_X64_MSR_EFER] | EFER_SVME;
1910 vmcb->state.star = state->msrs[NVMM_X64_MSR_STAR];
1911 vmcb->state.lstar = state->msrs[NVMM_X64_MSR_LSTAR];
1912 vmcb->state.cstar = state->msrs[NVMM_X64_MSR_CSTAR];
1913 vmcb->state.sfmask = state->msrs[NVMM_X64_MSR_SFMASK];
1914 vmcb->state.kernelgsbase =
1915 state->msrs[NVMM_X64_MSR_KERNELGSBASE];
1916 vmcb->state.sysenter_cs =
1917 state->msrs[NVMM_X64_MSR_SYSENTER_CS];
1918 vmcb->state.sysenter_esp =
1919 state->msrs[NVMM_X64_MSR_SYSENTER_ESP];
1920 vmcb->state.sysenter_eip =
1921 state->msrs[NVMM_X64_MSR_SYSENTER_EIP];
1922 vmcb->state.g_pat = state->msrs[NVMM_X64_MSR_PAT];
1923
1924 cpudata->gtsc = state->msrs[NVMM_X64_MSR_TSC];
1925 cpudata->gtsc_want_update = true;
1926 }
1927
1928 if (flags & NVMM_X64_STATE_INTR) {
1929 if (state->intr.int_shadow) {
1930 vmcb->ctrl.intr |= VMCB_CTRL_INTR_SHADOW;
1931 } else {
1932 vmcb->ctrl.intr &= ~VMCB_CTRL_INTR_SHADOW;
1933 }
1934
1935 if (state->intr.int_window_exiting) {
1936 svm_event_waitexit_enable(vcpu, false);
1937 } else {
1938 svm_event_waitexit_disable(vcpu, false);
1939 }
1940
1941 if (state->intr.nmi_window_exiting) {
1942 svm_event_waitexit_enable(vcpu, true);
1943 } else {
1944 svm_event_waitexit_disable(vcpu, true);
1945 }
1946 }
1947
1948 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
1949 if (flags & NVMM_X64_STATE_FPU) {
1950 memcpy(cpudata->gfpu.xsh_fxsave, &state->fpu,
1951 sizeof(state->fpu));
1952
1953 fpustate = (struct fxsave *)cpudata->gfpu.xsh_fxsave;
1954 fpustate->fx_mxcsr_mask &= x86_fpu_mxcsr_mask;
1955 fpustate->fx_mxcsr &= fpustate->fx_mxcsr_mask;
1956
1957 if (svm_xcr0_mask != 0) {
1958 /* Reset XSTATE_BV, to force a reload. */
1959 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
1960 }
1961 }
1962
1963 svm_vmcb_cache_update(vmcb, flags);
1964
1965 comm->state_wanted = 0;
1966 comm->state_cached |= flags;
1967 }
1968
1969 static void
svm_vcpu_getstate(struct nvmm_cpu * vcpu)1970 svm_vcpu_getstate(struct nvmm_cpu *vcpu)
1971 {
1972 struct nvmm_comm_page *comm = vcpu->comm;
1973 struct nvmm_x64_state *state = &comm->state;
1974 struct svm_cpudata *cpudata = vcpu->cpudata;
1975 struct vmcb *vmcb = cpudata->vmcb;
1976 uint64_t flags;
1977
1978 flags = comm->state_wanted;
1979
1980 if (flags & NVMM_X64_STATE_SEGS) {
1981 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_CS],
1982 &vmcb->state.cs);
1983 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_DS],
1984 &vmcb->state.ds);
1985 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_ES],
1986 &vmcb->state.es);
1987 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_FS],
1988 &vmcb->state.fs);
1989 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GS],
1990 &vmcb->state.gs);
1991 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_SS],
1992 &vmcb->state.ss);
1993 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_GDT],
1994 &vmcb->state.gdt);
1995 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_IDT],
1996 &vmcb->state.idt);
1997 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_LDT],
1998 &vmcb->state.ldt);
1999 svm_vcpu_getstate_seg(&state->segs[NVMM_X64_SEG_TR],
2000 &vmcb->state.tr);
2001
2002 state->segs[NVMM_X64_SEG_SS].attrib.dpl = vmcb->state.cpl;
2003 }
2004
2005 CTASSERT(sizeof(cpudata->gprs) == sizeof(state->gprs));
2006 if (flags & NVMM_X64_STATE_GPRS) {
2007 memcpy(state->gprs, cpudata->gprs, sizeof(state->gprs));
2008
2009 state->gprs[NVMM_X64_GPR_RIP] = vmcb->state.rip;
2010 state->gprs[NVMM_X64_GPR_RSP] = vmcb->state.rsp;
2011 state->gprs[NVMM_X64_GPR_RAX] = vmcb->state.rax;
2012 state->gprs[NVMM_X64_GPR_RFLAGS] = vmcb->state.rflags;
2013 }
2014
2015 if (flags & NVMM_X64_STATE_CRS) {
2016 state->crs[NVMM_X64_CR_CR0] = vmcb->state.cr0;
2017 state->crs[NVMM_X64_CR_CR2] = vmcb->state.cr2;
2018 state->crs[NVMM_X64_CR_CR3] = vmcb->state.cr3;
2019 state->crs[NVMM_X64_CR_CR4] = vmcb->state.cr4;
2020 state->crs[NVMM_X64_CR_CR8] = __SHIFTOUT(vmcb->ctrl.v,
2021 VMCB_CTRL_V_TPR);
2022 state->crs[NVMM_X64_CR_XCR0] = cpudata->gxcr0;
2023 }
2024
2025 CTASSERT(sizeof(cpudata->drs) == sizeof(state->drs));
2026 if (flags & NVMM_X64_STATE_DRS) {
2027 memcpy(state->drs, cpudata->drs, sizeof(state->drs));
2028
2029 state->drs[NVMM_X64_DR_DR6] = vmcb->state.dr6;
2030 state->drs[NVMM_X64_DR_DR7] = vmcb->state.dr7;
2031 }
2032
2033 if (flags & NVMM_X64_STATE_MSRS) {
2034 state->msrs[NVMM_X64_MSR_EFER] = vmcb->state.efer;
2035 state->msrs[NVMM_X64_MSR_STAR] = vmcb->state.star;
2036 state->msrs[NVMM_X64_MSR_LSTAR] = vmcb->state.lstar;
2037 state->msrs[NVMM_X64_MSR_CSTAR] = vmcb->state.cstar;
2038 state->msrs[NVMM_X64_MSR_SFMASK] = vmcb->state.sfmask;
2039 state->msrs[NVMM_X64_MSR_KERNELGSBASE] =
2040 vmcb->state.kernelgsbase;
2041 state->msrs[NVMM_X64_MSR_SYSENTER_CS] =
2042 vmcb->state.sysenter_cs;
2043 state->msrs[NVMM_X64_MSR_SYSENTER_ESP] =
2044 vmcb->state.sysenter_esp;
2045 state->msrs[NVMM_X64_MSR_SYSENTER_EIP] =
2046 vmcb->state.sysenter_eip;
2047 state->msrs[NVMM_X64_MSR_PAT] = vmcb->state.g_pat;
2048 state->msrs[NVMM_X64_MSR_TSC] = cpudata->gtsc;
2049
2050 /* Hide SVME. */
2051 state->msrs[NVMM_X64_MSR_EFER] &= ~EFER_SVME;
2052 }
2053
2054 if (flags & NVMM_X64_STATE_INTR) {
2055 state->intr.int_shadow =
2056 (vmcb->ctrl.intr & VMCB_CTRL_INTR_SHADOW) != 0;
2057 state->intr.int_window_exiting = cpudata->int_window_exit;
2058 state->intr.nmi_window_exiting = cpudata->nmi_window_exit;
2059 state->intr.evt_pending = cpudata->evt_pending;
2060 }
2061
2062 CTASSERT(sizeof(cpudata->gfpu.xsh_fxsave) == sizeof(state->fpu));
2063 if (flags & NVMM_X64_STATE_FPU) {
2064 memcpy(&state->fpu, cpudata->gfpu.xsh_fxsave,
2065 sizeof(state->fpu));
2066 }
2067
2068 comm->state_wanted = 0;
2069 comm->state_cached |= flags;
2070 }
2071
2072 static void
svm_vcpu_state_provide(struct nvmm_cpu * vcpu,uint64_t flags)2073 svm_vcpu_state_provide(struct nvmm_cpu *vcpu, uint64_t flags)
2074 {
2075 vcpu->comm->state_wanted = flags;
2076 svm_vcpu_getstate(vcpu);
2077 }
2078
2079 static void
svm_vcpu_state_commit(struct nvmm_cpu * vcpu)2080 svm_vcpu_state_commit(struct nvmm_cpu *vcpu)
2081 {
2082 vcpu->comm->state_wanted = vcpu->comm->state_commit;
2083 vcpu->comm->state_commit = 0;
2084 svm_vcpu_setstate(vcpu);
2085 }
2086
2087 /* -------------------------------------------------------------------------- */
2088
2089 static void
svm_asid_alloc(struct nvmm_cpu * vcpu)2090 svm_asid_alloc(struct nvmm_cpu *vcpu)
2091 {
2092 struct svm_cpudata *cpudata = vcpu->cpudata;
2093 struct vmcb *vmcb = cpudata->vmcb;
2094 size_t i, oct, bit;
2095
2096 mutex_enter(&svm_asidlock);
2097
2098 for (i = 0; i < svm_maxasid; i++) {
2099 oct = i / 8;
2100 bit = i % 8;
2101
2102 if (svm_asidmap[oct] & __BIT(bit)) {
2103 continue;
2104 }
2105
2106 svm_asidmap[oct] |= __BIT(bit);
2107 vmcb->ctrl.guest_asid = i;
2108 mutex_exit(&svm_asidlock);
2109 return;
2110 }
2111
2112 /*
2113 * No free ASID. Use the last one, which is shared and requires
2114 * special TLB handling.
2115 */
2116 cpudata->shared_asid = true;
2117 vmcb->ctrl.guest_asid = svm_maxasid - 1;
2118 mutex_exit(&svm_asidlock);
2119 }
2120
2121 static void
svm_asid_free(struct nvmm_cpu * vcpu)2122 svm_asid_free(struct nvmm_cpu *vcpu)
2123 {
2124 struct svm_cpudata *cpudata = vcpu->cpudata;
2125 struct vmcb *vmcb = cpudata->vmcb;
2126 size_t oct, bit;
2127
2128 if (cpudata->shared_asid) {
2129 return;
2130 }
2131
2132 oct = vmcb->ctrl.guest_asid / 8;
2133 bit = vmcb->ctrl.guest_asid % 8;
2134
2135 mutex_enter(&svm_asidlock);
2136 svm_asidmap[oct] &= ~__BIT(bit);
2137 mutex_exit(&svm_asidlock);
2138 }
2139
2140 static void
svm_vcpu_init(struct nvmm_machine * mach,struct nvmm_cpu * vcpu)2141 svm_vcpu_init(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2142 {
2143 struct svm_cpudata *cpudata = vcpu->cpudata;
2144 struct vmcb *vmcb = cpudata->vmcb;
2145
2146 /* Allow reads/writes of Control Registers. */
2147 vmcb->ctrl.intercept_cr = 0;
2148
2149 /* Allow reads/writes of Debug Registers. */
2150 vmcb->ctrl.intercept_dr = 0;
2151
2152 /* Allow exceptions 0 to 31. */
2153 vmcb->ctrl.intercept_vec = 0;
2154
2155 /*
2156 * Allow:
2157 * - SMI [smm interrupts]
2158 * - VINTR [virtual interrupts]
2159 * - CR0_SPEC [CR0 writes changing other fields than CR0.TS or CR0.MP]
2160 * - RIDTR [reads of IDTR]
2161 * - RGDTR [reads of GDTR]
2162 * - RLDTR [reads of LDTR]
2163 * - RTR [reads of TR]
2164 * - WIDTR [writes of IDTR]
2165 * - WGDTR [writes of GDTR]
2166 * - WLDTR [writes of LDTR]
2167 * - WTR [writes of TR]
2168 * - RDTSC [rdtsc instruction]
2169 * - PUSHF [pushf instruction]
2170 * - POPF [popf instruction]
2171 * - IRET [iret instruction]
2172 * - INTN [int $n instructions]
2173 * - PAUSE [pause instruction]
2174 * - INVLPG [invplg instruction]
2175 * - TASKSW [task switches]
2176 *
2177 * Intercept the rest below.
2178 */
2179 vmcb->ctrl.intercept_misc1 =
2180 VMCB_CTRL_INTERCEPT_INTR |
2181 VMCB_CTRL_INTERCEPT_NMI |
2182 VMCB_CTRL_INTERCEPT_INIT |
2183 VMCB_CTRL_INTERCEPT_RDPMC |
2184 VMCB_CTRL_INTERCEPT_CPUID |
2185 VMCB_CTRL_INTERCEPT_RSM |
2186 VMCB_CTRL_INTERCEPT_INVD |
2187 VMCB_CTRL_INTERCEPT_HLT |
2188 VMCB_CTRL_INTERCEPT_INVLPGA |
2189 VMCB_CTRL_INTERCEPT_IOIO_PROT |
2190 VMCB_CTRL_INTERCEPT_MSR_PROT |
2191 VMCB_CTRL_INTERCEPT_FERR_FREEZE |
2192 VMCB_CTRL_INTERCEPT_SHUTDOWN;
2193
2194 /*
2195 * Allow:
2196 * - ICEBP [icebp instruction]
2197 * - WBINVD [wbinvd instruction]
2198 * - WCR_SPEC(0..15) [writes of CR0-15, received after instruction]
2199 *
2200 * Intercept the rest below.
2201 */
2202 vmcb->ctrl.intercept_misc2 =
2203 VMCB_CTRL_INTERCEPT_VMRUN |
2204 VMCB_CTRL_INTERCEPT_VMMCALL |
2205 VMCB_CTRL_INTERCEPT_VMLOAD |
2206 VMCB_CTRL_INTERCEPT_VMSAVE |
2207 VMCB_CTRL_INTERCEPT_STGI |
2208 VMCB_CTRL_INTERCEPT_CLGI |
2209 VMCB_CTRL_INTERCEPT_SKINIT |
2210 VMCB_CTRL_INTERCEPT_RDTSCP |
2211 VMCB_CTRL_INTERCEPT_MONITOR |
2212 VMCB_CTRL_INTERCEPT_MWAIT |
2213 VMCB_CTRL_INTERCEPT_XSETBV |
2214 VMCB_CTRL_INTERCEPT_RDPRU;
2215
2216 /*
2217 * Intercept everything.
2218 */
2219 vmcb->ctrl.intercept_misc3 =
2220 VMCB_CTRL_INTERCEPT_INVLPGB_ALL |
2221 VMCB_CTRL_INTERCEPT_PCID |
2222 VMCB_CTRL_INTERCEPT_MCOMMIT |
2223 VMCB_CTRL_INTERCEPT_TLBSYNC;
2224
2225 /* Intercept all I/O accesses. */
2226 memset(cpudata->iobm, 0xFF, IOBM_SIZE);
2227 vmcb->ctrl.iopm_base_pa = cpudata->iobm_pa;
2228
2229 /* Allow direct access to certain MSRs. */
2230 memset(cpudata->msrbm, 0xFF, MSRBM_SIZE);
2231 svm_vcpu_msr_allow(cpudata->msrbm, MSR_STAR, true, true);
2232 svm_vcpu_msr_allow(cpudata->msrbm, MSR_LSTAR, true, true);
2233 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CSTAR, true, true);
2234 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SFMASK, true, true);
2235 svm_vcpu_msr_allow(cpudata->msrbm, MSR_KERNELGSBASE, true, true);
2236 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_CS, true, true);
2237 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_ESP, true, true);
2238 svm_vcpu_msr_allow(cpudata->msrbm, MSR_SYSENTER_EIP, true, true);
2239 svm_vcpu_msr_allow(cpudata->msrbm, MSR_FSBASE, true, true);
2240 svm_vcpu_msr_allow(cpudata->msrbm, MSR_GSBASE, true, true);
2241 svm_vcpu_msr_allow(cpudata->msrbm, MSR_CR_PAT, true, true);
2242 svm_vcpu_msr_allow(cpudata->msrbm, MSR_TSC, true, false);
2243 vmcb->ctrl.msrpm_base_pa = cpudata->msrbm_pa;
2244
2245 /* Generate ASID. */
2246 svm_asid_alloc(vcpu);
2247
2248 /* Virtual TPR. */
2249 vmcb->ctrl.v = VMCB_CTRL_V_INTR_MASKING;
2250
2251 /* Enable Nested Paging. */
2252 vmcb->ctrl.enable1 = VMCB_CTRL_ENABLE_NP;
2253 vmcb->ctrl.n_cr3 = mach->vm->vm_map.pmap->pm_pdirpa[0];
2254
2255 /* Init XSAVE header. */
2256 cpudata->gfpu.xsh_xstate_bv = svm_xcr0_mask;
2257 cpudata->gfpu.xsh_xcomp_bv = 0;
2258
2259 /* These MSRs are static. */
2260 cpudata->star = rdmsr(MSR_STAR);
2261 cpudata->lstar = rdmsr(MSR_LSTAR);
2262 cpudata->cstar = rdmsr(MSR_CSTAR);
2263 cpudata->sfmask = rdmsr(MSR_SFMASK);
2264
2265 /* Install the RESET state. */
2266 memcpy(&vcpu->comm->state, &nvmm_x86_reset_state,
2267 sizeof(nvmm_x86_reset_state));
2268 vcpu->comm->state_wanted = NVMM_X64_STATE_ALL;
2269 vcpu->comm->state_cached = 0;
2270 svm_vcpu_setstate(vcpu);
2271 }
2272
2273 static int
svm_vcpu_create(struct nvmm_machine * mach,struct nvmm_cpu * vcpu)2274 svm_vcpu_create(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2275 {
2276 struct svm_cpudata *cpudata;
2277 int error;
2278
2279 /* Allocate the SVM cpudata. */
2280 cpudata = (struct svm_cpudata *)uvm_km_alloc(kernel_map,
2281 roundup(sizeof(*cpudata), PAGE_SIZE), 0,
2282 UVM_KMF_WIRED|UVM_KMF_ZERO);
2283 vcpu->cpudata = cpudata;
2284
2285 /* VMCB */
2286 error = svm_memalloc(&cpudata->vmcb_pa, (vaddr_t *)&cpudata->vmcb,
2287 VMCB_NPAGES);
2288 if (error)
2289 goto error;
2290
2291 /* I/O Bitmap */
2292 error = svm_memalloc(&cpudata->iobm_pa, (vaddr_t *)&cpudata->iobm,
2293 IOBM_NPAGES);
2294 if (error)
2295 goto error;
2296
2297 /* MSR Bitmap */
2298 error = svm_memalloc(&cpudata->msrbm_pa, (vaddr_t *)&cpudata->msrbm,
2299 MSRBM_NPAGES);
2300 if (error)
2301 goto error;
2302
2303 /* Init the VCPU info. */
2304 svm_vcpu_init(mach, vcpu);
2305
2306 return 0;
2307
2308 error:
2309 if (cpudata->vmcb_pa) {
2310 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb,
2311 VMCB_NPAGES);
2312 }
2313 if (cpudata->iobm_pa) {
2314 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm,
2315 IOBM_NPAGES);
2316 }
2317 if (cpudata->msrbm_pa) {
2318 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm,
2319 MSRBM_NPAGES);
2320 }
2321 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2322 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2323 return error;
2324 }
2325
2326 static void
svm_vcpu_destroy(struct nvmm_machine * mach,struct nvmm_cpu * vcpu)2327 svm_vcpu_destroy(struct nvmm_machine *mach, struct nvmm_cpu *vcpu)
2328 {
2329 struct svm_cpudata *cpudata = vcpu->cpudata;
2330
2331 svm_asid_free(vcpu);
2332
2333 svm_memfree(cpudata->vmcb_pa, (vaddr_t)cpudata->vmcb, VMCB_NPAGES);
2334 svm_memfree(cpudata->iobm_pa, (vaddr_t)cpudata->iobm, IOBM_NPAGES);
2335 svm_memfree(cpudata->msrbm_pa, (vaddr_t)cpudata->msrbm, MSRBM_NPAGES);
2336
2337 uvm_km_free(kernel_map, (vaddr_t)cpudata,
2338 roundup(sizeof(*cpudata), PAGE_SIZE), UVM_KMF_WIRED);
2339 }
2340
2341 /* -------------------------------------------------------------------------- */
2342
2343 static int
svm_vcpu_configure_cpuid(struct svm_cpudata * cpudata,void * data)2344 svm_vcpu_configure_cpuid(struct svm_cpudata *cpudata, void *data)
2345 {
2346 struct nvmm_vcpu_conf_cpuid *cpuid = data;
2347 size_t i;
2348
2349 if (__predict_false(cpuid->mask && cpuid->exit)) {
2350 return EINVAL;
2351 }
2352 if (__predict_false(cpuid->mask &&
2353 ((cpuid->u.mask.set.eax & cpuid->u.mask.del.eax) ||
2354 (cpuid->u.mask.set.ebx & cpuid->u.mask.del.ebx) ||
2355 (cpuid->u.mask.set.ecx & cpuid->u.mask.del.ecx) ||
2356 (cpuid->u.mask.set.edx & cpuid->u.mask.del.edx)))) {
2357 return EINVAL;
2358 }
2359
2360 /* If unset, delete, to restore the default behavior. */
2361 if (!cpuid->mask && !cpuid->exit) {
2362 for (i = 0; i < SVM_NCPUIDS; i++) {
2363 if (!cpudata->cpuidpresent[i]) {
2364 continue;
2365 }
2366 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2367 cpudata->cpuidpresent[i] = false;
2368 }
2369 }
2370 return 0;
2371 }
2372
2373 /* If already here, replace. */
2374 for (i = 0; i < SVM_NCPUIDS; i++) {
2375 if (!cpudata->cpuidpresent[i]) {
2376 continue;
2377 }
2378 if (cpudata->cpuid[i].leaf == cpuid->leaf) {
2379 memcpy(&cpudata->cpuid[i], cpuid,
2380 sizeof(struct nvmm_vcpu_conf_cpuid));
2381 return 0;
2382 }
2383 }
2384
2385 /* Not here, insert. */
2386 for (i = 0; i < SVM_NCPUIDS; i++) {
2387 if (!cpudata->cpuidpresent[i]) {
2388 cpudata->cpuidpresent[i] = true;
2389 memcpy(&cpudata->cpuid[i], cpuid,
2390 sizeof(struct nvmm_vcpu_conf_cpuid));
2391 return 0;
2392 }
2393 }
2394
2395 return ENOBUFS;
2396 }
2397
2398 static int
svm_vcpu_configure(struct nvmm_cpu * vcpu,uint64_t op,void * data)2399 svm_vcpu_configure(struct nvmm_cpu *vcpu, uint64_t op, void *data)
2400 {
2401 struct svm_cpudata *cpudata = vcpu->cpudata;
2402
2403 switch (op) {
2404 case NVMM_VCPU_CONF_MD(NVMM_VCPU_CONF_CPUID):
2405 return svm_vcpu_configure_cpuid(cpudata, data);
2406 default:
2407 return EINVAL;
2408 }
2409 }
2410
2411 /* -------------------------------------------------------------------------- */
2412
2413 static void
svm_tlb_flush(struct pmap * pm)2414 svm_tlb_flush(struct pmap *pm)
2415 {
2416 struct nvmm_machine *mach = pm->pm_data;
2417 struct svm_machdata *machdata = mach->machdata;
2418
2419 atomic_inc_64(&machdata->mach_htlb_gen);
2420
2421 /* Generates IPIs, which cause #VMEXITs. */
2422 pmap_tlb_shootdown(pmap_kernel(), -1, PTE_G, TLBSHOOT_NVMM);
2423 }
2424
2425 static void
svm_machine_create(struct nvmm_machine * mach)2426 svm_machine_create(struct nvmm_machine *mach)
2427 {
2428 struct svm_machdata *machdata;
2429
2430 /* Fill in pmap info. */
2431 mach->vm->vm_map.pmap->pm_data = (void *)mach;
2432 mach->vm->vm_map.pmap->pm_tlb_flush = svm_tlb_flush;
2433
2434 machdata = kmem_zalloc(sizeof(struct svm_machdata), KM_SLEEP);
2435 mach->machdata = machdata;
2436
2437 /* Start with an hTLB flush everywhere. */
2438 machdata->mach_htlb_gen = 1;
2439 }
2440
2441 static void
svm_machine_destroy(struct nvmm_machine * mach)2442 svm_machine_destroy(struct nvmm_machine *mach)
2443 {
2444 kmem_free(mach->machdata, sizeof(struct svm_machdata));
2445 }
2446
2447 static int
svm_machine_configure(struct nvmm_machine * mach,uint64_t op,void * data)2448 svm_machine_configure(struct nvmm_machine *mach, uint64_t op, void *data)
2449 {
2450 panic("%s: impossible", __func__);
2451 }
2452
2453 /* -------------------------------------------------------------------------- */
2454
2455 static bool
svm_ident(void)2456 svm_ident(void)
2457 {
2458 u_int descs[4];
2459 uint64_t msr;
2460
2461 if (cpu_vendor != CPUVENDOR_AMD) {
2462 return false;
2463 }
2464 if (!(cpu_feature[3] & CPUID_SVM)) {
2465 printf("NVMM: SVM not supported\n");
2466 return false;
2467 }
2468
2469 if (curcpu()->ci_max_ext_cpuid < 0x8000000a) {
2470 printf("NVMM: CPUID leaf not available\n");
2471 return false;
2472 }
2473 x86_cpuid(0x8000000a, descs);
2474
2475 /* Expect revision 1. */
2476 if (__SHIFTOUT(descs[0], CPUID_AMD_SVM_REV) != 1) {
2477 printf("NVMM: SVM revision not supported\n");
2478 return false;
2479 }
2480
2481 /* Want Nested Paging. */
2482 if (!(descs[3] & CPUID_AMD_SVM_NP)) {
2483 printf("NVMM: SVM-NP not supported\n");
2484 return false;
2485 }
2486
2487 /* Want nRIP. */
2488 if (!(descs[3] & CPUID_AMD_SVM_NRIPS)) {
2489 printf("NVMM: SVM-NRIPS not supported\n");
2490 return false;
2491 }
2492
2493 svm_decode_assist = (descs[3] & CPUID_AMD_SVM_DecodeAssist) != 0;
2494
2495 msr = rdmsr(MSR_VMCR);
2496 if ((msr & VMCR_SVMED) && (msr & VMCR_LOCK)) {
2497 printf("NVMM: SVM disabled in BIOS\n");
2498 return false;
2499 }
2500
2501 return true;
2502 }
2503
2504 static void
svm_init_asid(uint32_t maxasid)2505 svm_init_asid(uint32_t maxasid)
2506 {
2507 size_t i, j, allocsz;
2508
2509 mutex_init(&svm_asidlock, MUTEX_DEFAULT, IPL_NONE);
2510
2511 /* Arbitrarily limit. */
2512 maxasid = uimin(maxasid, 8192);
2513
2514 svm_maxasid = maxasid;
2515 allocsz = roundup(maxasid, 8) / 8;
2516 svm_asidmap = kmem_zalloc(allocsz, KM_SLEEP);
2517
2518 /* ASID 0 is reserved for the host. */
2519 svm_asidmap[0] |= __BIT(0);
2520
2521 /* ASID n-1 is special, we share it. */
2522 i = (maxasid - 1) / 8;
2523 j = (maxasid - 1) % 8;
2524 svm_asidmap[i] |= __BIT(j);
2525 }
2526
2527 static void
svm_change_cpu(void * arg1,void * arg2)2528 svm_change_cpu(void *arg1, void *arg2)
2529 {
2530 bool enable = arg1 != NULL;
2531 uint64_t msr;
2532
2533 msr = rdmsr(MSR_VMCR);
2534 if (msr & VMCR_SVMED) {
2535 wrmsr(MSR_VMCR, msr & ~VMCR_SVMED);
2536 }
2537
2538 if (!enable) {
2539 wrmsr(MSR_VM_HSAVE_PA, 0);
2540 }
2541
2542 msr = rdmsr(MSR_EFER);
2543 if (enable) {
2544 msr |= EFER_SVME;
2545 } else {
2546 msr &= ~EFER_SVME;
2547 }
2548 wrmsr(MSR_EFER, msr);
2549
2550 if (enable) {
2551 wrmsr(MSR_VM_HSAVE_PA, hsave[cpu_index(curcpu())].pa);
2552 }
2553 }
2554
2555 static void
svm_init(void)2556 svm_init(void)
2557 {
2558 CPU_INFO_ITERATOR cii;
2559 struct cpu_info *ci;
2560 struct vm_page *pg;
2561 u_int descs[4];
2562 uint64_t xc;
2563
2564 x86_cpuid(0x8000000a, descs);
2565
2566 /* The guest TLB flush command. */
2567 if (descs[3] & CPUID_AMD_SVM_FlushByASID) {
2568 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_GUEST;
2569 } else {
2570 svm_ctrl_tlb_flush = VMCB_CTRL_TLB_CTRL_FLUSH_ALL;
2571 }
2572
2573 /* Init the ASID. */
2574 svm_init_asid(descs[1]);
2575
2576 /* Init the XCR0 mask. */
2577 svm_xcr0_mask = SVM_XCR0_MASK_DEFAULT & x86_xsave_features;
2578
2579 /* Init the max basic CPUID leaf. */
2580 svm_cpuid_max_basic = uimin(cpuid_level, SVM_CPUID_MAX_BASIC);
2581
2582 /* Init the max extended CPUID leaf. */
2583 x86_cpuid(0x80000000, descs);
2584 svm_cpuid_max_extended = uimin(descs[0], SVM_CPUID_MAX_EXTENDED);
2585
2586 memset(hsave, 0, sizeof(hsave));
2587 for (CPU_INFO_FOREACH(cii, ci)) {
2588 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
2589 hsave[cpu_index(ci)].pa = VM_PAGE_TO_PHYS(pg);
2590 }
2591
2592 xc = xc_broadcast(0, svm_change_cpu, (void *)true, NULL);
2593 xc_wait(xc);
2594 }
2595
2596 static void
svm_fini_asid(void)2597 svm_fini_asid(void)
2598 {
2599 size_t allocsz;
2600
2601 allocsz = roundup(svm_maxasid, 8) / 8;
2602 kmem_free(svm_asidmap, allocsz);
2603
2604 mutex_destroy(&svm_asidlock);
2605 }
2606
2607 static void
svm_fini(void)2608 svm_fini(void)
2609 {
2610 uint64_t xc;
2611 size_t i;
2612
2613 xc = xc_broadcast(0, svm_change_cpu, (void *)false, NULL);
2614 xc_wait(xc);
2615
2616 for (i = 0; i < MAXCPUS; i++) {
2617 if (hsave[i].pa != 0)
2618 uvm_pagefree(PHYS_TO_VM_PAGE(hsave[i].pa));
2619 }
2620
2621 svm_fini_asid();
2622 }
2623
2624 static void
svm_capability(struct nvmm_capability * cap)2625 svm_capability(struct nvmm_capability *cap)
2626 {
2627 cap->arch.mach_conf_support = 0;
2628 cap->arch.vcpu_conf_support =
2629 NVMM_CAP_ARCH_VCPU_CONF_CPUID;
2630 cap->arch.xcr0_mask = svm_xcr0_mask;
2631 cap->arch.mxcsr_mask = x86_fpu_mxcsr_mask;
2632 cap->arch.conf_cpuid_maxops = SVM_NCPUIDS;
2633 }
2634
2635 const struct nvmm_impl nvmm_x86_svm = {
2636 .name = "x86-svm",
2637 .ident = svm_ident,
2638 .init = svm_init,
2639 .fini = svm_fini,
2640 .capability = svm_capability,
2641 .mach_conf_max = NVMM_X86_MACH_NCONF,
2642 .mach_conf_sizes = NULL,
2643 .vcpu_conf_max = NVMM_X86_VCPU_NCONF,
2644 .vcpu_conf_sizes = svm_vcpu_conf_sizes,
2645 .state_size = sizeof(struct nvmm_x64_state),
2646 .machine_create = svm_machine_create,
2647 .machine_destroy = svm_machine_destroy,
2648 .machine_configure = svm_machine_configure,
2649 .vcpu_create = svm_vcpu_create,
2650 .vcpu_destroy = svm_vcpu_destroy,
2651 .vcpu_configure = svm_vcpu_configure,
2652 .vcpu_setstate = svm_vcpu_setstate,
2653 .vcpu_getstate = svm_vcpu_getstate,
2654 .vcpu_inject = svm_vcpu_inject,
2655 .vcpu_run = svm_vcpu_run
2656 };
2657