xref: /netbsd-src/sys/net/npf/npf_portmap.c (revision 3579f73695076c7aaf27a6751692891020a9e20b)
1 /*-
2  * Copyright (c) 2019 Mindaugas Rasiukevicius <rmind at noxt eu>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * NPF port map mechanism.
29  *
30  *	The port map is a bitmap used to track TCP/UDP ports used for
31  *	translation.  Port maps are per IP addresses, therefore multiple
32  *	NAT policies operating on the same IP address will share the
33  *	same port map.
34  */
35 
36 #ifdef _KERNEL
37 #include <sys/cdefs.h>
38 __KERNEL_RCSID(0, "$NetBSD: npf_portmap.c,v 1.7 2020/08/28 06:35:50 riastradh Exp $");
39 
40 #include <sys/param.h>
41 #include <sys/types.h>
42 
43 #include <sys/atomic.h>
44 #include <sys/bitops.h>
45 #include <sys/kmem.h>
46 #include <sys/mutex.h>
47 #include <sys/cprng.h>
48 #include <sys/thmap.h>
49 #endif
50 
51 #include "npf_impl.h"
52 
53 /*
54  * Port map uses two-level bitmaps with compression to efficiently
55  * represent the maximum of 65536 (2^16) values.
56  *
57  * Level 0: 64 chunks each representing 1048 bits in two modes:
58  *
59  *	a) If PORTMAP_L1_TAG, then up to 5 values are packed in the
60  *	64-bit integer using 12 bits for each value, starting from the
61  *	most significant bits.  The four 4 least significant bits are
62  *	unused or reserved for pointer tagging.
63  *
64  *	b) If there are more than 5 values, then PORTMAP_L1_TAG is set
65  *	and the value serves as a pointer to the second level bitmap.
66  *
67  * Level 1: 16 chunks each representing 64 bits in plain uint64_t.
68  */
69 
70 #define	PORTMAP_MAX_BITS	(65536U)
71 #define	PORTMAP_MASK		(PORTMAP_MAX_BITS - 1)
72 
73 #define	PORTMAP_L0_SHIFT	(10) // or 11
74 #define	PORTMAP_L0_MASK		((1U << PORTMAP_L0_SHIFT) - 1)
75 #define	PORTMAP_L0_WORDS	(PORTMAP_MAX_BITS >> PORTMAP_L0_SHIFT)
76 
77 #define	PORTMAP_L1_SHIFT	(6)
78 #define	PORTMAP_L1_MASK		((1U << PORTMAP_L1_SHIFT) - 1)
79 #define	PORTMAP_L1_WORDS	\
80     ((PORTMAP_MAX_BITS / PORTMAP_L0_WORDS) >> PORTMAP_L1_SHIFT)
81 
82 #define	PORTMAP_L1_TAG		(UINT64_C(1)) // use level 1
83 #define	PORTMAP_L1_GET(p)	((void *)((uintptr_t)(p) & ~(uintptr_t)3))
84 
85 CTASSERT(sizeof(uint64_t) >= sizeof(uintptr_t));
86 
87 typedef struct {
88 	volatile uint64_t	bits1[PORTMAP_L1_WORDS];
89 } bitmap_l1_t;
90 
91 typedef struct bitmap {
92 	npf_addr_t		addr;
93 	volatile uint64_t	bits0[PORTMAP_L0_WORDS];
94 	LIST_ENTRY(bitmap)	entry;
95 	unsigned		addr_len;
96 } bitmap_t;
97 
98 #define	NPF_PORTMAP_MINPORT	1024
99 #define	NPF_PORTMAP_MAXPORT	65535
100 
101 struct npf_portmap {
102 	thmap_t	*		addr_map;
103 	LIST_HEAD(, bitmap)	bitmap_list;
104 	kmutex_t		list_lock;
105 	int			min_port;
106 	int			max_port;
107 };
108 
109 static kmutex_t			portmap_lock;
110 
111 void
npf_portmap_sysinit(void)112 npf_portmap_sysinit(void)
113 {
114 
115 	mutex_init(&portmap_lock, MUTEX_DEFAULT, IPL_SOFTNET);
116 }
117 
118 void
npf_portmap_sysfini(void)119 npf_portmap_sysfini(void)
120 {
121 
122 	mutex_destroy(&portmap_lock);
123 }
124 
125 void
npf_portmap_init(npf_t * npf)126 npf_portmap_init(npf_t *npf)
127 {
128 	npf_portmap_t *pm = npf_portmap_create(
129 	    NPF_PORTMAP_MINPORT, NPF_PORTMAP_MAXPORT);
130 	npf_param_t param_map[] = {
131 		{
132 			"portmap.min_port",
133 			&pm->min_port,
134 			.default_val = NPF_PORTMAP_MINPORT,
135 			.min = 1024, .max = 65535
136 		},
137 		{
138 			"portmap.max_port",
139 			&pm->max_port,
140 			.default_val = 49151, // RFC 6335
141 			.min = 1024, .max = 65535
142 		}
143 	};
144 
145 	npf_param_register(npf, param_map, __arraycount(param_map));
146 	npf->portmap = pm;
147 }
148 
149 void
npf_portmap_fini(npf_t * npf)150 npf_portmap_fini(npf_t *npf)
151 {
152 
153 	npf_portmap_destroy(npf->portmap);
154 	npf->portmap = NULL; // diagnostic
155 }
156 
157 npf_portmap_t *
npf_portmap_create(int min_port,int max_port)158 npf_portmap_create(int min_port, int max_port)
159 {
160 	npf_portmap_t *pm;
161 
162 	pm = kmem_zalloc(sizeof(npf_portmap_t), KM_SLEEP);
163 	mutex_init(&pm->list_lock, MUTEX_DEFAULT, IPL_SOFTNET);
164 	pm->addr_map = thmap_create(0, NULL, THMAP_NOCOPY);
165 	pm->min_port = min_port;
166 	pm->max_port = max_port;
167 	return pm;
168 }
169 
170 void
npf_portmap_destroy(npf_portmap_t * pm)171 npf_portmap_destroy(npf_portmap_t *pm)
172 {
173 	npf_portmap_flush(pm);
174 	KASSERT(LIST_EMPTY(&pm->bitmap_list));
175 
176 	thmap_destroy(pm->addr_map);
177 	mutex_destroy(&pm->list_lock);
178 	kmem_free(pm, sizeof(npf_portmap_t));
179 }
180 
181 /////////////////////////////////////////////////////////////////////////
182 
183 #if defined(_LP64)
184 #define	__npf_atomic_cas_64	atomic_cas_64
185 #else
186 static uint64_t
__npf_atomic_cas_64(volatile uint64_t * ptr,uint64_t old,uint64_t new)187 __npf_atomic_cas_64(volatile uint64_t *ptr, uint64_t old, uint64_t new)
188 {
189 	uint64_t prev;
190 
191 	mutex_enter(&portmap_lock);
192 	prev = *ptr;
193 	if (prev == old) {
194 		*ptr = new;
195 	}
196 	mutex_exit(&portmap_lock);
197 
198 	return prev;
199 }
200 #endif
201 
202 /*
203  * bitmap_word_isset: test whether the bit value is in the packed array.
204  *
205  * => Return true if any value equals the bit number value.
206  *
207  * Packed array: 60 MSB bits, 5 values, 12 bits each.
208  *
209  * Reference: "Bit Twiddling Hacks" by S.E. Anderson, Stanford.
210  * Based on the hasvalue() and haszero() ideas.  Since values are
211  * represented by upper 60 bits, we shift right by 4.
212  */
213 static bool
bitmap_word_isset(uint64_t x,unsigned bit)214 bitmap_word_isset(uint64_t x, unsigned bit)
215 {
216 	uint64_t m, r;
217 
218 	bit++;
219 	KASSERT((x & PORTMAP_L1_TAG) == 0);
220 	KASSERT(bit <= (PORTMAP_L0_MASK + 1));
221 
222 	m = (x >> 4) ^ (UINT64_C(0x1001001001001) * bit);
223 	r = (m - UINT64_C(0x1001001001001)) & (~m & UINT64_C(0x800800800800800));
224 	return r != 0;
225 }
226 
227 /*
228  * bitmap_word_cax: compare-and-xor on packed array elements.
229  */
230 static uint64_t
bitmap_word_cax(uint64_t x,int exp,int bit)231 bitmap_word_cax(uint64_t x, int exp, int bit)
232 {
233 	unsigned e = exp + 1;
234 
235 	/*
236 	 * We need to distinguish "no value" from zero.  Just add one,
237 	 * since we use 12 bits to represent 11 bit values.
238 	 */
239 	bit++;
240 	KASSERT((unsigned)bit <= (PORTMAP_L0_MASK + 1));
241 	KASSERT((x & PORTMAP_L1_TAG) == 0);
242 
243 	if (((x >> 52) & 0xfff) == e)
244 		return x ^ ((uint64_t)bit << 52);
245 	if (((x >> 40) & 0xfff) == e)
246 		return x ^ ((uint64_t)bit << 40);
247 	if (((x >> 28) & 0xfff) == e)
248 		return x ^ ((uint64_t)bit << 28);
249 	if (((x >> 16) & 0xfff) == e)
250 		return x ^ ((uint64_t)bit << 16);
251 	if (((x >>  4) & 0xfff) == e)
252 		return x ^ ((uint64_t)bit << 4);
253 	return 0;
254 }
255 
256 static unsigned
bitmap_word_unpack(uint64_t x,unsigned bitvals[static5])257 bitmap_word_unpack(uint64_t x, unsigned bitvals[static 5])
258 {
259 	unsigned n = 0;
260 	uint64_t v;
261 
262 	KASSERT((x & PORTMAP_L1_TAG) == 0);
263 
264 	if ((v = ((x >> 52)) & 0xfff) != 0)
265 		bitvals[n++] = v - 1;
266 	if ((v = ((x >> 40)) & 0xfff) != 0)
267 		bitvals[n++] = v - 1;
268 	if ((v = ((x >> 28)) & 0xfff) != 0)
269 		bitvals[n++] = v - 1;
270 	if ((v = ((x >> 16)) & 0xfff) != 0)
271 		bitvals[n++] = v - 1;
272 	if ((v = ((x >>  4)) & 0xfff) != 0)
273 		bitvals[n++] = v - 1;
274 	return n;
275 }
276 
277 #if 0
278 static bool
279 bitmap_isset(const bitmap_t *bm, unsigned bit)
280 {
281 	unsigned i, chunk_bit;
282 	uint64_t bval, b;
283 	bitmap_l1_t *bm1;
284 
285 	KASSERT(bit < PORTMAP_MAX_BITS);
286 	i = bit >> PORTMAP_L0_SHIFT;
287 	bval = atomic_load_relaxed(&bm->bits0[i]);
288 
289 	/*
290 	 * Empty check.  Note: we can test the whole word against zero,
291 	 * since zero bit values in the packed array result in bits set.
292 	 */
293 	if (bval == 0)
294 		return false;
295 
296 	/* Level 0 check. */
297 	chunk_bit = bit & PORTMAP_L0_MASK;
298 	if ((bval & PORTMAP_L1_TAG) == 0)
299 		return bitmap_word_isset(bval, chunk_bit);
300 
301 	/* Level 1 check. */
302 	bm1 = PORTMAP_L1_GET(bval);
303 	KASSERT(bm1 != NULL);
304 	i = chunk_bit >> PORTMAP_L1_SHIFT;
305 	b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
306 	return (bm1->bits1[i] & b) != 0;
307 }
308 #endif
309 
310 static bool
bitmap_set(bitmap_t * bm,unsigned bit)311 bitmap_set(bitmap_t *bm, unsigned bit)
312 {
313 	unsigned i, chunk_bit;
314 	uint64_t bval, b, oval, nval;
315 	bitmap_l1_t *bm1;
316 again:
317 	KASSERT(bit < PORTMAP_MAX_BITS);
318 	i = bit >> PORTMAP_L0_SHIFT;
319 	chunk_bit = bit & PORTMAP_L0_MASK;
320 	bval = bm->bits0[i];
321 
322 	if ((bval & PORTMAP_L1_TAG) == 0) {
323 		unsigned n = 0, bitvals[5];
324 		uint64_t bm1p;
325 
326 		if (bitmap_word_isset(bval, chunk_bit)) {
327 			return false;
328 		}
329 
330 		/*
331 		 * Look for a zero-slot and put a value there.
332 		 */
333 		if ((nval = bitmap_word_cax(bval, -1, chunk_bit)) != 0) {
334 			KASSERT((nval & PORTMAP_L1_TAG) == 0);
335 			if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
336 				goto again;
337 			}
338 			return true;
339 		}
340 
341 		/*
342 		 * Full: allocate L1 block and copy over the current
343 		 * values into the level.
344 		 */
345 		bm1 = kmem_intr_zalloc(sizeof(bitmap_l1_t), KM_NOSLEEP);
346 		if (bm1 == NULL) {
347 			return false; // error
348 		}
349 		n = bitmap_word_unpack(bval, bitvals);
350 		while (n--) {
351 			const unsigned v = bitvals[n];
352 			const unsigned off = v >> PORTMAP_L1_SHIFT;
353 
354 			KASSERT(v <= PORTMAP_L0_MASK);
355 			KASSERT(off < (sizeof(uint64_t) * CHAR_BIT));
356 			bm1->bits1[off] |= UINT64_C(1) << (v & PORTMAP_L1_MASK);
357 		}
358 
359 		/*
360 		 * Attempt to set the L1 structure.  Note: there is no
361 		 * ABA problem since the we compare the actual values.
362 		 * Note: CAS serves as a memory barrier.
363 		 */
364 		bm1p = (uintptr_t)bm1;
365 		KASSERT((bm1p & PORTMAP_L1_TAG) == 0);
366 		bm1p |= PORTMAP_L1_TAG;
367 		if (__npf_atomic_cas_64(&bm->bits0[i], bval, bm1p) != bval) {
368 			kmem_intr_free(bm1, sizeof(bitmap_l1_t));
369 			goto again;
370 		}
371 		bval = bm1p;
372 	}
373 
374 	bm1 = PORTMAP_L1_GET(bval);
375 	KASSERT(bm1 != NULL);
376 	i = chunk_bit >> PORTMAP_L1_SHIFT;
377 	b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
378 
379 	oval = bm1->bits1[i];
380 	if (oval & b) {
381 		return false;
382 	}
383 	nval = oval | b;
384 	if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
385 		goto again;
386 	}
387 	return true;
388 }
389 
390 static bool
bitmap_clr(bitmap_t * bm,unsigned bit)391 bitmap_clr(bitmap_t *bm, unsigned bit)
392 {
393 	unsigned i, chunk_bit;
394 	uint64_t bval, b, oval, nval;
395 	bitmap_l1_t *bm1;
396 again:
397 	KASSERT(bit < PORTMAP_MAX_BITS);
398 	i = bit >> PORTMAP_L0_SHIFT;
399 	chunk_bit = bit & PORTMAP_L0_MASK;
400 	bval = bm->bits0[i];
401 
402 	if ((bval & PORTMAP_L1_TAG) == 0) {
403 		if (!bitmap_word_isset(bval, chunk_bit)) {
404 			return false;
405 		}
406 		nval = bitmap_word_cax(bval, chunk_bit, chunk_bit);
407 		KASSERT((nval & PORTMAP_L1_TAG) == 0);
408 		if (__npf_atomic_cas_64(&bm->bits0[i], bval, nval) != bval) {
409 			goto again;
410 		}
411 		return true;
412 	}
413 
414 	bm1 = PORTMAP_L1_GET(bval);
415 	KASSERT(bm1 != NULL);
416 	i = chunk_bit >> PORTMAP_L1_SHIFT;
417 	b = UINT64_C(1) << (chunk_bit & PORTMAP_L1_MASK);
418 
419 	oval = bm1->bits1[i];
420 	if ((oval & b) == 0) {
421 		return false;
422 	}
423 	nval = oval & ~b;
424 	if (__npf_atomic_cas_64(&bm1->bits1[i], oval, nval) != oval) {
425 		goto again;
426 	}
427 	return true;
428 }
429 
430 /////////////////////////////////////////////////////////////////////////
431 
432 static bitmap_t *
npf_portmap_autoget(npf_portmap_t * pm,unsigned alen,const npf_addr_t * addr)433 npf_portmap_autoget(npf_portmap_t *pm, unsigned alen, const npf_addr_t *addr)
434 {
435 	bitmap_t *bm;
436 
437 	KASSERT(pm && pm->addr_map);
438 	KASSERT(alen && alen <= sizeof(npf_addr_t));
439 
440 	/* Lookup the port map for this address. */
441 	bm = thmap_get(pm->addr_map, addr, alen);
442 	if (bm == NULL) {
443 		void *ret;
444 
445 		/*
446 		 * Allocate a new port map for this address and
447 		 * attempt to insert it.
448 		 */
449 		bm = kmem_intr_zalloc(sizeof(bitmap_t), KM_NOSLEEP);
450 		if (bm == NULL) {
451 			return NULL;
452 		}
453 		memcpy(&bm->addr, addr, alen);
454 		bm->addr_len = alen;
455 
456 		int s = splsoftnet();
457 		ret = thmap_put(pm->addr_map, &bm->addr, alen, bm);
458 		splx(s);
459 
460 		if (ret == bm) {
461 			/* Success: insert the bitmap into the list. */
462 			mutex_enter(&pm->list_lock);
463 			LIST_INSERT_HEAD(&pm->bitmap_list, bm, entry);
464 			mutex_exit(&pm->list_lock);
465 		} else {
466 			/* Race: use an existing bitmap. */
467 			kmem_free(bm, sizeof(bitmap_t));
468 			bm = ret;
469 		}
470 	}
471 	return bm;
472 }
473 
474 /*
475  * npf_portmap_flush: free all bitmaps and remove all addresses.
476  *
477  * => Concurrent calls to this routine are not allowed; therefore no
478  * need to acquire locks.
479  */
480 void
npf_portmap_flush(npf_portmap_t * pm)481 npf_portmap_flush(npf_portmap_t *pm)
482 {
483 	bitmap_t *bm;
484 
485 	while ((bm = LIST_FIRST(&pm->bitmap_list)) != NULL) {
486 		for (unsigned i = 0; i < PORTMAP_L0_WORDS; i++) {
487 			uintptr_t bm1 = bm->bits0[i];
488 
489 			if (bm1 & PORTMAP_L1_TAG) {
490 				bitmap_l1_t *bm1p = PORTMAP_L1_GET(bm1);
491 				kmem_intr_free(bm1p, sizeof(bitmap_l1_t));
492 			}
493 			bm->bits0[i] = UINT64_C(0);
494 		}
495 		LIST_REMOVE(bm, entry);
496 		thmap_del(pm->addr_map, &bm->addr, bm->addr_len);
497 		kmem_intr_free(bm, sizeof(bitmap_t));
498 	}
499 	/* Note: the caller ensures there are no active references. */
500 	thmap_gc(pm->addr_map, thmap_stage_gc(pm->addr_map));
501 }
502 
503 /*
504  * npf_portmap_get: allocate and return a port from the given portmap.
505  *
506  * => Returns the port value in network byte-order.
507  * => Zero indicates a failure.
508  */
509 in_port_t
npf_portmap_get(npf_portmap_t * pm,int alen,const npf_addr_t * addr)510 npf_portmap_get(npf_portmap_t *pm, int alen, const npf_addr_t *addr)
511 {
512 	const unsigned min_port = atomic_load_relaxed(&pm->min_port);
513 	const unsigned max_port = atomic_load_relaxed(&pm->max_port);
514 	const unsigned port_delta = max_port - min_port + 1;
515 	unsigned bit, target;
516 	bitmap_t *bm;
517 
518 	/* Sanity check: the user might set incorrect parameters. */
519 	if (__predict_false(min_port > max_port)) {
520 		return 0;
521 	}
522 
523 	bm = npf_portmap_autoget(pm, alen, addr);
524 	if (__predict_false(bm == NULL)) {
525 		/* No memory. */
526 		return 0;
527 	}
528 
529 	/* Randomly select a port. */
530 	target = min_port + (cprng_fast32() % port_delta);
531 	bit = target;
532 next:
533 	if (bitmap_set(bm, bit)) {
534 		/* Success. */
535 		return htons(bit);
536 	}
537 	bit = min_port + ((bit + 1) % port_delta);
538 	if (target != bit) {
539 		/* Next.. */
540 		goto next;
541 	}
542 	/* No space. */
543 	return 0;
544 }
545 
546 /*
547  * npf_portmap_take: allocate a specific port in the portmap.
548  */
549 bool
npf_portmap_take(npf_portmap_t * pm,int alen,const npf_addr_t * addr,in_port_t port)550 npf_portmap_take(npf_portmap_t *pm, int alen,
551     const npf_addr_t *addr, in_port_t port)
552 {
553 	bitmap_t *bm = npf_portmap_autoget(pm, alen, addr);
554 
555 	port = ntohs(port);
556 	if (!bm || port < pm->min_port || port > pm->max_port) {
557 		/* Out of memory / invalid port. */
558 		return false;
559 	}
560 	return bitmap_set(bm, port);
561 }
562 
563 /*
564  * npf_portmap_put: release the port, making it available in the portmap.
565  *
566  * => The port value should be in network byte-order.
567  */
568 void
npf_portmap_put(npf_portmap_t * pm,int alen,const npf_addr_t * addr,in_port_t port)569 npf_portmap_put(npf_portmap_t *pm, int alen,
570     const npf_addr_t *addr, in_port_t port)
571 {
572 	bitmap_t *bm;
573 
574 	bm = npf_portmap_autoget(pm, alen, addr);
575 	if (bm) {
576 		port = ntohs(port);
577 		bitmap_clr(bm, port);
578 	}
579 }
580