xref: /netbsd-src/sys/net/npf/npf_nat.c (revision 5e72ca9101a1d443e82b0dc40ff8d3b4367868e9)
1 /*-
2  * Copyright (c) 2014-2020 Mindaugas Rasiukevicius <rmind at noxt eu>
3  * Copyright (c) 2010-2013 The NetBSD Foundation, Inc.
4  * All rights reserved.
5  *
6  * This material is based upon work partially supported by The
7  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 /*
32  * NPF network address port translation (NAPT) and other forms of NAT.
33  * Described in RFC 2663, RFC 3022, etc.
34  *
35  * Overview
36  *
37  *	There are a few mechanisms: NAT policy, port map and translation.
38  *	The NAT module has a separate ruleset where rules always have an
39  *	associated NAT policy.
40  *
41  * Translation types
42  *
43  *	There are two types of translation: outbound (NPF_NATOUT) and
44  *	inbound (NPF_NATIN).  It should not be confused with connection
45  *	direction.  See npf_nat_which() for the description of how the
46  *	addresses are rewritten.  The bi-directional NAT is a combined
47  *	outbound and inbound translation, therefore is constructed as
48  *	two policies.
49  *
50  * NAT policies and port maps
51  *
52  *	The NAT (translation) policy is applied when packet matches the
53  *	rule.  Apart from the filter criteria, the NAT policy always has
54  *	a translation IP address or a table.  If port translation is set,
55  *	then NAT mechanism relies on port map mechanism.
56  *
57  * Connections, translation entries and their life-cycle
58  *
59  *	NAT relies on the connection tracking module.  Each translated
60  *	connection has an associated translation entry (npf_nat_t) which
61  *	contains information used for backwards stream translation, i.e.
62  *	the original IP address with port and translation port, allocated
63  *	from the port map.  Each NAT entry is associated with the policy,
64  *	which contains translation IP address.  Allocated port is returned
65  *	to the port map and NAT entry is destroyed when connection expires.
66  */
67 
68 #ifdef _KERNEL
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: npf_nat.c,v 1.53 2023/02/24 11:03:01 riastradh Exp $");
71 
72 #include <sys/param.h>
73 #include <sys/types.h>
74 
75 #include <sys/atomic.h>
76 #include <sys/condvar.h>
77 #include <sys/kmem.h>
78 #include <sys/mutex.h>
79 #include <sys/pool.h>
80 #include <sys/proc.h>
81 #endif
82 
83 #include "npf_impl.h"
84 #include "npf_conn.h"
85 
86 /*
87  * NAT policy structure.
88  */
89 struct npf_natpolicy {
90 	npf_t *			n_npfctx;
91 	kmutex_t		n_lock;
92 	LIST_HEAD(, npf_nat)	n_nat_list;
93 	unsigned		n_refcnt;
94 	uint64_t		n_id;
95 
96 	/*
97 	 * Translation type, flags, address or table and the port.
98 	 * Additionally, there may be translation algorithm and any
99 	 * auxiliary data, e.g. NPTv6 adjustment value.
100 	 *
101 	 * NPF_NP_CMP_START mark starts here.
102 	 */
103 	unsigned		n_type;
104 	unsigned		n_flags;
105 	unsigned		n_alen;
106 
107 	npf_addr_t		n_taddr;
108 	npf_netmask_t		n_tmask;
109 	in_port_t		n_tport;
110 	unsigned		n_tid;
111 
112 	unsigned		n_algo;
113 	union {
114 		unsigned	n_rr_idx;
115 		uint16_t	n_npt66_adj;
116 	};
117 };
118 
119 /*
120  * Private flags - must be in the NPF_NAT_PRIVMASK range.
121  */
122 #define	NPF_NAT_USETABLE	(0x01000000 & NPF_NAT_PRIVMASK)
123 
124 #define	NPF_NP_CMP_START	offsetof(npf_natpolicy_t, n_type)
125 #define	NPF_NP_CMP_SIZE		(sizeof(npf_natpolicy_t) - NPF_NP_CMP_START)
126 
127 /*
128  * NAT entry for a connection.
129  */
130 struct npf_nat {
131 	/* Associated NAT policy. */
132 	npf_natpolicy_t *	nt_natpolicy;
133 
134 	uint16_t		nt_ifid;
135 	uint16_t		nt_alen;
136 
137 	/*
138 	 * Translation address as well as the original address which is
139 	 * used for backwards translation.  The same for ports.
140 	 */
141 	npf_addr_t		nt_taddr;
142 	npf_addr_t		nt_oaddr;
143 
144 	in_port_t		nt_oport;
145 	in_port_t		nt_tport;
146 
147 	/* ALG (if any) associated with this NAT entry. */
148 	npf_alg_t *		nt_alg;
149 	uintptr_t		nt_alg_arg;
150 
151 	LIST_ENTRY(npf_nat)	nt_entry;
152 	npf_conn_t *		nt_conn;
153 };
154 
155 static pool_cache_t		nat_cache	__read_mostly;
156 
157 /*
158  * npf_nat_sys{init,fini}: initialize/destroy NAT subsystem structures.
159  */
160 
161 void
npf_nat_sysinit(void)162 npf_nat_sysinit(void)
163 {
164 	nat_cache = pool_cache_init(sizeof(npf_nat_t), 0,
165 	    0, 0, "npfnatpl", NULL, IPL_NET, NULL, NULL, NULL);
166 	KASSERT(nat_cache != NULL);
167 }
168 
169 void
npf_nat_sysfini(void)170 npf_nat_sysfini(void)
171 {
172 	/* All NAT policies should already be destroyed. */
173 	pool_cache_destroy(nat_cache);
174 }
175 
176 /*
177  * npf_natpolicy_create: create a new NAT policy.
178  */
179 npf_natpolicy_t *
npf_natpolicy_create(npf_t * npf,const nvlist_t * nat,npf_ruleset_t * rset)180 npf_natpolicy_create(npf_t *npf, const nvlist_t *nat, npf_ruleset_t *rset)
181 {
182 	npf_natpolicy_t *np;
183 	const void *addr;
184 	size_t len;
185 
186 	np = kmem_zalloc(sizeof(npf_natpolicy_t), KM_SLEEP);
187 	atomic_store_relaxed(&np->n_refcnt, 1);
188 	np->n_npfctx = npf;
189 
190 	/* The translation type, flags and policy ID. */
191 	np->n_type = dnvlist_get_number(nat, "type", 0);
192 	np->n_flags = dnvlist_get_number(nat, "flags", 0) & ~NPF_NAT_PRIVMASK;
193 	np->n_id = dnvlist_get_number(nat, "nat-policy", 0);
194 
195 	/* Should be exclusively either inbound or outbound NAT. */
196 	if (((np->n_type == NPF_NATIN) ^ (np->n_type == NPF_NATOUT)) == 0) {
197 		goto err;
198 	}
199 	mutex_init(&np->n_lock, MUTEX_DEFAULT, IPL_SOFTNET);
200 	LIST_INIT(&np->n_nat_list);
201 
202 	/*
203 	 * Translation IP, mask and port (if applicable).  If using the
204 	 * the table, specified by the ID, then the nat-addr/nat-mask will
205 	 * be used as a filter for the addresses selected from table.
206 	 */
207 	if (nvlist_exists_number(nat, "nat-table-id")) {
208 		if (np->n_flags & NPF_NAT_STATIC) {
209 			goto err;
210 		}
211 		np->n_tid = nvlist_get_number(nat, "nat-table-id");
212 		np->n_tmask = NPF_NO_NETMASK;
213 		np->n_flags |= NPF_NAT_USETABLE;
214 	} else {
215 		addr = dnvlist_get_binary(nat, "nat-addr", &len, NULL, 0);
216 		if (!addr || len == 0 || len > sizeof(npf_addr_t)) {
217 			goto err;
218 		}
219 		memcpy(&np->n_taddr, addr, len);
220 		np->n_alen = len;
221 		np->n_tmask = dnvlist_get_number(nat, "nat-mask", NPF_NO_NETMASK);
222 		if (npf_netmask_check(np->n_alen, np->n_tmask)) {
223 			goto err;
224 		}
225 	}
226 	np->n_tport = dnvlist_get_number(nat, "nat-port", 0);
227 
228 	/*
229 	 * NAT algorithm.
230 	 */
231 	np->n_algo = dnvlist_get_number(nat, "nat-algo", 0);
232 	switch (np->n_algo) {
233 	case NPF_ALGO_NPT66:
234 		np->n_npt66_adj = dnvlist_get_number(nat, "npt66-adj", 0);
235 		break;
236 	case NPF_ALGO_NETMAP:
237 		break;
238 	case NPF_ALGO_IPHASH:
239 	case NPF_ALGO_RR:
240 	default:
241 		if (np->n_tmask != NPF_NO_NETMASK) {
242 			goto err;
243 		}
244 		break;
245 	}
246 	return np;
247 err:
248 	mutex_destroy(&np->n_lock);
249 	kmem_free(np, sizeof(npf_natpolicy_t));
250 	return NULL;
251 }
252 
253 int
npf_natpolicy_export(const npf_natpolicy_t * np,nvlist_t * nat)254 npf_natpolicy_export(const npf_natpolicy_t *np, nvlist_t *nat)
255 {
256 	nvlist_add_number(nat, "nat-policy", np->n_id);
257 	nvlist_add_number(nat, "type", np->n_type);
258 	nvlist_add_number(nat, "flags", np->n_flags);
259 
260 	if (np->n_flags & NPF_NAT_USETABLE) {
261 		nvlist_add_number(nat, "nat-table-id", np->n_tid);
262 	} else {
263 		nvlist_add_binary(nat, "nat-addr", &np->n_taddr, np->n_alen);
264 		nvlist_add_number(nat, "nat-mask", np->n_tmask);
265 	}
266 	nvlist_add_number(nat, "nat-port", np->n_tport);
267 	nvlist_add_number(nat, "nat-algo", np->n_algo);
268 
269 	switch (np->n_algo) {
270 	case NPF_ALGO_NPT66:
271 		nvlist_add_number(nat, "npt66-adj", np->n_npt66_adj);
272 		break;
273 	}
274 	return 0;
275 }
276 
277 static void
npf_natpolicy_release(npf_natpolicy_t * np)278 npf_natpolicy_release(npf_natpolicy_t *np)
279 {
280 	KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);
281 
282 	membar_release();
283 	if (atomic_dec_uint_nv(&np->n_refcnt) != 0) {
284 		return;
285 	}
286 	membar_acquire();
287 	KASSERT(LIST_EMPTY(&np->n_nat_list));
288 	mutex_destroy(&np->n_lock);
289 	kmem_free(np, sizeof(npf_natpolicy_t));
290 }
291 
292 /*
293  * npf_natpolicy_destroy: free the NAT policy.
294  *
295  * => Called from npf_rule_free() during the reload via npf_ruleset_destroy().
296  * => At this point, NAT policy cannot acquire new references.
297  */
298 void
npf_natpolicy_destroy(npf_natpolicy_t * np)299 npf_natpolicy_destroy(npf_natpolicy_t *np)
300 {
301 	/*
302 	 * Drain the references.  If there are active NAT connections,
303 	 * then expire them and kick the worker.
304 	 */
305 	if (atomic_load_relaxed(&np->n_refcnt) > 1) {
306 		npf_nat_t *nt;
307 
308 		mutex_enter(&np->n_lock);
309 		LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
310 			npf_conn_t *con = nt->nt_conn;
311 			KASSERT(con != NULL);
312 			npf_conn_expire(con);
313 		}
314 		mutex_exit(&np->n_lock);
315 		npf_worker_signal(np->n_npfctx);
316 	}
317 	KASSERT(atomic_load_relaxed(&np->n_refcnt) >= 1);
318 
319 	/*
320 	 * Drop the initial reference, but it might not be the last one.
321 	 * If so, the last reference will be triggered via:
322 	 *
323 	 * npf_conn_destroy() -> npf_nat_destroy() -> npf_natpolicy_release()
324 	 */
325 	npf_natpolicy_release(np);
326 }
327 
328 void
npf_nat_freealg(npf_natpolicy_t * np,npf_alg_t * alg)329 npf_nat_freealg(npf_natpolicy_t *np, npf_alg_t *alg)
330 {
331 	npf_nat_t *nt;
332 
333 	mutex_enter(&np->n_lock);
334 	LIST_FOREACH(nt, &np->n_nat_list, nt_entry) {
335 		if (nt->nt_alg == alg) {
336 			npf_alg_destroy(np->n_npfctx, alg, nt, nt->nt_conn);
337 			nt->nt_alg = NULL;
338 		}
339 	}
340 	mutex_exit(&np->n_lock);
341 }
342 
343 /*
344  * npf_natpolicy_cmp: compare two NAT policies.
345  *
346  * => Return 0 on match, and non-zero otherwise.
347  */
348 bool
npf_natpolicy_cmp(npf_natpolicy_t * np,npf_natpolicy_t * mnp)349 npf_natpolicy_cmp(npf_natpolicy_t *np, npf_natpolicy_t *mnp)
350 {
351 	const void *np_raw, *mnp_raw;
352 
353 	/*
354 	 * Compare the relevant NAT policy information (in its raw form)
355 	 * that is enough as a matching criteria.
356 	 */
357 	KASSERT(np && mnp && np != mnp);
358 	np_raw = (const uint8_t *)np + NPF_NP_CMP_START;
359 	mnp_raw = (const uint8_t *)mnp + NPF_NP_CMP_START;
360 	return memcmp(np_raw, mnp_raw, NPF_NP_CMP_SIZE) == 0;
361 }
362 
363 void
npf_nat_setid(npf_natpolicy_t * np,uint64_t id)364 npf_nat_setid(npf_natpolicy_t *np, uint64_t id)
365 {
366 	np->n_id = id;
367 }
368 
369 uint64_t
npf_nat_getid(const npf_natpolicy_t * np)370 npf_nat_getid(const npf_natpolicy_t *np)
371 {
372 	return np->n_id;
373 }
374 
375 /*
376  * npf_nat_which: tell which address (source or destination) should be
377  * rewritten given the combination of the NAT type and flow direction.
378  *
379  * => Returns NPF_SRC or NPF_DST constant.
380  */
381 static inline unsigned
npf_nat_which(const unsigned type,const npf_flow_t flow)382 npf_nat_which(const unsigned type, const npf_flow_t flow)
383 {
384 	unsigned which;
385 
386 	/* The logic below relies on these values being 0 or 1. */
387 	CTASSERT(NPF_SRC == 0 && NPF_DST == 1);
388 	CTASSERT(NPF_FLOW_FORW == NPF_SRC && NPF_FLOW_BACK == NPF_DST);
389 
390 	KASSERT(type == NPF_NATIN || type == NPF_NATOUT);
391 	KASSERT(flow == NPF_FLOW_FORW || flow == NPF_FLOW_BACK);
392 
393 	/*
394 	 * Outbound NAT rewrites:
395 	 *
396 	 * - Source (NPF_SRC) on "forwards" stream.
397 	 * - Destination (NPF_DST) on "backwards" stream.
398 	 *
399 	 * Inbound NAT is other way round.
400 	 */
401 	which = (type == NPF_NATOUT) ? flow : !flow;
402 	KASSERT(which == NPF_SRC || which == NPF_DST);
403 	return which;
404 }
405 
406 /*
407  * npf_nat_inspect: inspect packet against NAT ruleset and return a policy.
408  *
409  * => Acquire a reference on the policy, if found.
410  * => NAT lookup is protected by EBR.
411  */
412 static npf_natpolicy_t *
npf_nat_inspect(npf_cache_t * npc,const unsigned di)413 npf_nat_inspect(npf_cache_t *npc, const unsigned di)
414 {
415 	npf_t *npf = npc->npc_ctx;
416 	int slock = npf_config_read_enter(npf);
417 	npf_ruleset_t *rlset = npf_config_natset(npf);
418 	npf_natpolicy_t *np;
419 	npf_rule_t *rl;
420 
421 	rl = npf_ruleset_inspect(npc, rlset, di, NPF_LAYER_3);
422 	if (rl == NULL) {
423 		npf_config_read_exit(npf, slock);
424 		return NULL;
425 	}
426 	np = npf_rule_getnat(rl);
427 	atomic_inc_uint(&np->n_refcnt);
428 	npf_config_read_exit(npf, slock);
429 	return np;
430 }
431 
432 static void
npf_nat_algo_netmap(const npf_cache_t * npc,const npf_natpolicy_t * np,const unsigned which,npf_addr_t * addr)433 npf_nat_algo_netmap(const npf_cache_t *npc, const npf_natpolicy_t *np,
434     const unsigned which, npf_addr_t *addr)
435 {
436 	const npf_addr_t *orig_addr = npc->npc_ips[which];
437 
438 	/*
439 	 * NETMAP:
440 	 *
441 	 *	addr = net-addr | (orig-addr & ~mask)
442 	 */
443 	npf_addr_mask(&np->n_taddr, np->n_tmask, npc->npc_alen, addr);
444 	npf_addr_bitor(orig_addr, np->n_tmask, npc->npc_alen, addr);
445 }
446 
447 static inline npf_addr_t *
npf_nat_getaddr(npf_cache_t * npc,npf_natpolicy_t * np,const unsigned alen)448 npf_nat_getaddr(npf_cache_t *npc, npf_natpolicy_t *np, const unsigned alen)
449 {
450 	npf_tableset_t *ts = npf_config_tableset(np->n_npfctx);
451 	npf_table_t *t = npf_tableset_getbyid(ts, np->n_tid);
452 	unsigned idx;
453 
454 	/*
455 	 * Dynamically select the translation IP address.
456 	 */
457 	switch (np->n_algo) {
458 	case NPF_ALGO_RR:
459 		idx = atomic_inc_uint_nv(&np->n_rr_idx);
460 		break;
461 	case NPF_ALGO_IPHASH:
462 	default:
463 		idx = npf_addr_mix(alen,
464 		    npc->npc_ips[NPF_SRC],
465 		    npc->npc_ips[NPF_DST]);
466 		break;
467 	}
468 	return npf_table_getsome(t, alen, idx);
469 }
470 
471 /*
472  * npf_nat_create: create a new NAT translation entry.
473  *
474  * => The caller must pass the NAT policy with a reference acquired for us.
475  */
476 static npf_nat_t *
npf_nat_create(npf_cache_t * npc,npf_natpolicy_t * np,npf_conn_t * con)477 npf_nat_create(npf_cache_t *npc, npf_natpolicy_t *np, npf_conn_t *con)
478 {
479 	const unsigned proto = npc->npc_proto;
480 	const unsigned alen = npc->npc_alen;
481 	const nbuf_t *nbuf = npc->npc_nbuf;
482 	npf_t *npf = npc->npc_ctx;
483 	npf_addr_t *taddr;
484 	npf_nat_t *nt;
485 
486 	KASSERT(npf_iscached(npc, NPC_IP46));
487 	KASSERT(npf_iscached(npc, NPC_LAYER4));
488 
489 	/* Construct a new NAT entry and associate it with the connection. */
490 	nt = pool_cache_get(nat_cache, PR_NOWAIT);
491 	if (__predict_false(!nt)) {
492 		return NULL;
493 	}
494 	npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
495 	nt->nt_natpolicy = np;
496 	nt->nt_conn = con;
497 	nt->nt_alg = NULL;
498 
499 	/*
500 	 * Save the interface ID.
501 	 *
502 	 * Note: this can be different from the given connection if it
503 	 * was established on a different interface, using the global state
504 	 * mode (state.key.interface = 0).
505 	 */
506 	KASSERT(nbuf->nb_ifid != 0);
507 	nt->nt_ifid = nbuf->nb_ifid;
508 
509 	/*
510 	 * Select the translation address.
511 	 */
512 	if (np->n_flags & NPF_NAT_USETABLE) {
513 		int slock = npf_config_read_enter(npf);
514 		taddr = npf_nat_getaddr(npc, np, alen);
515 		if (__predict_false(!taddr)) {
516 			npf_config_read_exit(npf, slock);
517 			pool_cache_put(nat_cache, nt);
518 			return NULL;
519 		}
520 		memcpy(&nt->nt_taddr, taddr, alen);
521 		npf_config_read_exit(npf, slock);
522 
523 	} else if (np->n_algo == NPF_ALGO_NETMAP) {
524 		const unsigned which = npf_nat_which(np->n_type, NPF_FLOW_FORW);
525 		npf_nat_algo_netmap(npc, np, which, &nt->nt_taddr);
526 		taddr = &nt->nt_taddr;
527 	} else {
528 		/* Static IP address. */
529 		taddr = &np->n_taddr;
530 		memcpy(&nt->nt_taddr, taddr, alen);
531 	}
532 	nt->nt_alen = alen;
533 
534 	/* Save the original address which may be rewritten. */
535 	if (np->n_type == NPF_NATOUT) {
536 		/* Outbound NAT: source (think internal) address. */
537 		memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_SRC], alen);
538 	} else {
539 		/* Inbound NAT: destination (think external) address. */
540 		KASSERT(np->n_type == NPF_NATIN);
541 		memcpy(&nt->nt_oaddr, npc->npc_ips[NPF_DST], alen);
542 	}
543 
544 	/*
545 	 * Port translation, if required, and if it is TCP/UDP.
546 	 */
547 	if ((np->n_flags & NPF_NAT_PORTS) == 0 ||
548 	    (proto != IPPROTO_TCP && proto != IPPROTO_UDP)) {
549 		nt->nt_oport = 0;
550 		nt->nt_tport = 0;
551 		goto out;
552 	}
553 
554 	/* Save the relevant TCP/UDP port. */
555 	if (proto == IPPROTO_TCP) {
556 		const struct tcphdr *th = npc->npc_l4.tcp;
557 		nt->nt_oport = (np->n_type == NPF_NATOUT) ?
558 		    th->th_sport : th->th_dport;
559 	} else {
560 		const struct udphdr *uh = npc->npc_l4.udp;
561 		nt->nt_oport = (np->n_type == NPF_NATOUT) ?
562 		    uh->uh_sport : uh->uh_dport;
563 	}
564 
565 	/* Get a new port for translation. */
566 	if ((np->n_flags & NPF_NAT_PORTMAP) != 0) {
567 		npf_portmap_t *pm = np->n_npfctx->portmap;
568 		nt->nt_tport = npf_portmap_get(pm, alen, taddr);
569 	} else {
570 		nt->nt_tport = np->n_tport;
571 	}
572 out:
573 	mutex_enter(&np->n_lock);
574 	LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
575 	/* Note: we also consume the reference on policy. */
576 	mutex_exit(&np->n_lock);
577 	return nt;
578 }
579 
580 /*
581  * npf_dnat_translate: perform translation given the state data.
582  */
583 static inline int
npf_dnat_translate(npf_cache_t * npc,npf_nat_t * nt,npf_flow_t flow)584 npf_dnat_translate(npf_cache_t *npc, npf_nat_t *nt, npf_flow_t flow)
585 {
586 	const npf_natpolicy_t *np = nt->nt_natpolicy;
587 	const unsigned which = npf_nat_which(np->n_type, flow);
588 	const npf_addr_t *addr;
589 	in_port_t port;
590 
591 	KASSERT(npf_iscached(npc, NPC_IP46));
592 	KASSERT(npf_iscached(npc, NPC_LAYER4));
593 
594 	if (flow == NPF_FLOW_FORW) {
595 		/* "Forwards" stream: use translation address/port. */
596 		addr = &nt->nt_taddr;
597 		port = nt->nt_tport;
598 	} else {
599 		/* "Backwards" stream: use original address/port. */
600 		addr = &nt->nt_oaddr;
601 		port = nt->nt_oport;
602 	}
603 	KASSERT((np->n_flags & NPF_NAT_PORTS) != 0 || port == 0);
604 
605 	/* Execute ALG translation first. */
606 	if ((npc->npc_info & NPC_ALG_EXEC) == 0) {
607 		npc->npc_info |= NPC_ALG_EXEC;
608 		npf_alg_exec(npc, nt, flow);
609 		npf_recache(npc);
610 	}
611 	KASSERT(!nbuf_flag_p(npc->npc_nbuf, NBUF_DATAREF_RESET));
612 
613 	/* Finally, perform the translation. */
614 	return npf_napt_rwr(npc, which, addr, port);
615 }
616 
617 /*
618  * npf_snat_translate: perform translation given the algorithm.
619  */
620 static inline int
npf_snat_translate(npf_cache_t * npc,const npf_natpolicy_t * np,npf_flow_t flow)621 npf_snat_translate(npf_cache_t *npc, const npf_natpolicy_t *np, npf_flow_t flow)
622 {
623 	const unsigned which = npf_nat_which(np->n_type, flow);
624 	const npf_addr_t *taddr;
625 	npf_addr_t addr;
626 
627 	KASSERT(np->n_flags & NPF_NAT_STATIC);
628 
629 	switch (np->n_algo) {
630 	case NPF_ALGO_NETMAP:
631 		npf_nat_algo_netmap(npc, np, which, &addr);
632 		taddr = &addr;
633 		break;
634 	case NPF_ALGO_NPT66:
635 		return npf_npt66_rwr(npc, which, &np->n_taddr,
636 		    np->n_tmask, np->n_npt66_adj);
637 	default:
638 		taddr = &np->n_taddr;
639 		break;
640 	}
641 	return npf_napt_rwr(npc, which, taddr, np->n_tport);
642 }
643 
644 /*
645  * Associate NAT policy with an existing connection state.
646  */
647 npf_nat_t *
npf_nat_share_policy(npf_cache_t * npc,npf_conn_t * con,npf_nat_t * src_nt)648 npf_nat_share_policy(npf_cache_t *npc, npf_conn_t *con, npf_nat_t *src_nt)
649 {
650 	npf_natpolicy_t *np = src_nt->nt_natpolicy;
651 	npf_nat_t *nt;
652 	int ret;
653 
654 	/* Create a new NAT entry. */
655 	nt = npf_nat_create(npc, np, con);
656 	if (__predict_false(nt == NULL)) {
657 		return NULL;
658 	}
659 	atomic_inc_uint(&np->n_refcnt);
660 
661 	/* Associate the NAT translation entry with the connection. */
662 	ret = npf_conn_setnat(npc, con, nt, np->n_type);
663 	if (__predict_false(ret)) {
664 		/* Will release the reference. */
665 		npf_nat_destroy(con, nt);
666 		return NULL;
667 	}
668 	return nt;
669 }
670 
671 /*
672  * npf_nat_lookup: lookup the (dynamic) NAT state and return its entry,
673  *
674  * => Checks that the packet is on the interface where NAT policy is applied.
675  * => Determines the flow direction in the context of the NAT policy.
676  */
677 static npf_nat_t *
npf_nat_lookup(const npf_cache_t * npc,npf_conn_t * con,const unsigned di,npf_flow_t * flow)678 npf_nat_lookup(const npf_cache_t *npc, npf_conn_t *con,
679     const unsigned di, npf_flow_t *flow)
680 {
681 	const nbuf_t *nbuf = npc->npc_nbuf;
682 	const npf_natpolicy_t *np;
683 	npf_nat_t *nt;
684 
685 	if ((nt = npf_conn_getnat(con)) == NULL) {
686 		return NULL;
687 	}
688 	if (nt->nt_ifid != nbuf->nb_ifid) {
689 		return NULL;
690 	}
691 
692 	np = nt->nt_natpolicy;
693 	KASSERT(atomic_load_relaxed(&np->n_refcnt) > 0);
694 
695 	/*
696 	 * We rely on NPF_NAT{IN,OUT} being equal to PFIL_{IN,OUT}.
697 	 */
698 	CTASSERT(NPF_NATIN == PFIL_IN && NPF_NATOUT == PFIL_OUT);
699 	*flow = (np->n_type == di) ? NPF_FLOW_FORW : NPF_FLOW_BACK;
700 	return nt;
701 }
702 
703 /*
704  * npf_do_nat:
705  *
706  *	- Inspect packet for a NAT policy, unless a connection with a NAT
707  *	  association already exists.  In such case, determine whether it
708  *	  is a "forwards" or "backwards" stream.
709  *
710  *	- Perform translation: rewrite source or destination fields,
711  *	  depending on translation type and direction.
712  *
713  *	- Associate a NAT policy with a connection (may establish a new).
714  */
715 int
npf_do_nat(npf_cache_t * npc,npf_conn_t * con,const unsigned di)716 npf_do_nat(npf_cache_t *npc, npf_conn_t *con, const unsigned di)
717 {
718 	nbuf_t *nbuf = npc->npc_nbuf;
719 	npf_conn_t *ncon = NULL;
720 	npf_natpolicy_t *np;
721 	npf_flow_t flow;
722 	npf_nat_t *nt;
723 	int error;
724 
725 	/* All relevant data should be already cached. */
726 	if (!npf_iscached(npc, NPC_IP46) || !npf_iscached(npc, NPC_LAYER4)) {
727 		return 0;
728 	}
729 	KASSERT(!nbuf_flag_p(nbuf, NBUF_DATAREF_RESET));
730 
731 	/*
732 	 * Return the NAT entry associated with the connection, if any.
733 	 * Determines whether the stream is "forwards" or "backwards".
734 	 * Note: no need to lock, since reference on connection is held.
735 	 */
736 	if (con && (nt = npf_nat_lookup(npc, con, di, &flow)) != NULL) {
737 		np = nt->nt_natpolicy;
738 		goto translate;
739 	}
740 
741 	/*
742 	 * Inspect the packet for a NAT policy, if there is no connection.
743 	 * Note: acquires a reference if found.
744 	 */
745 	np = npf_nat_inspect(npc, di);
746 	if (np == NULL) {
747 		/* If packet does not match - done. */
748 		return 0;
749 	}
750 	flow = NPF_FLOW_FORW;
751 
752 	/* Static NAT - just perform the translation. */
753 	if (np->n_flags & NPF_NAT_STATIC) {
754 		if (nbuf_cksum_barrier(nbuf, di)) {
755 			npf_recache(npc);
756 		}
757 		error = npf_snat_translate(npc, np, flow);
758 		npf_natpolicy_release(np);
759 		return error;
760 	}
761 
762 	/*
763 	 * If there is no local connection (no "stateful" rule - unusual,
764 	 * but possible configuration), establish one before translation.
765 	 * Note that it is not a "pass" connection, therefore passing of
766 	 * "backwards" stream depends on other, stateless filtering rules.
767 	 */
768 	if (con == NULL) {
769 		ncon = npf_conn_establish(npc, di, true);
770 		if (ncon == NULL) {
771 			npf_natpolicy_release(np);
772 			return ENOMEM;
773 		}
774 		con = ncon;
775 	}
776 
777 	/*
778 	 * Create a new NAT entry and associate with the connection.
779 	 * We will consume the reference on success (release on error).
780 	 */
781 	nt = npf_nat_create(npc, np, con);
782 	if (nt == NULL) {
783 		npf_natpolicy_release(np);
784 		error = ENOMEM;
785 		goto out;
786 	}
787 
788 	/* Determine whether any ALG matches. */
789 	if (npf_alg_match(npc, nt, di)) {
790 		KASSERT(nt->nt_alg != NULL);
791 	}
792 
793 	/* Associate the NAT translation entry with the connection. */
794 	error = npf_conn_setnat(npc, con, nt, np->n_type);
795 	if (error) {
796 		/* Will release the reference. */
797 		npf_nat_destroy(con, nt);
798 		goto out;
799 	}
800 
801 translate:
802 	/* May need to process the delayed checksums first (XXX: NetBSD). */
803 	if (nbuf_cksum_barrier(nbuf, di)) {
804 		npf_recache(npc);
805 	}
806 
807 	/* Perform the translation. */
808 	error = npf_dnat_translate(npc, nt, flow);
809 out:
810 	if (__predict_false(ncon)) {
811 		if (error) {
812 			/* It was created for NAT - just expire. */
813 			npf_conn_expire(ncon);
814 		}
815 		npf_conn_release(ncon);
816 	}
817 	return error;
818 }
819 
820 /*
821  * npf_nat_gettrans: return translation IP address and port.
822  */
823 void
npf_nat_gettrans(npf_nat_t * nt,npf_addr_t ** addr,in_port_t * port)824 npf_nat_gettrans(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
825 {
826 	*addr = &nt->nt_taddr;
827 	*port = nt->nt_tport;
828 }
829 
830 /*
831  * npf_nat_getorig: return original IP address and port from translation entry.
832  */
833 void
npf_nat_getorig(npf_nat_t * nt,npf_addr_t ** addr,in_port_t * port)834 npf_nat_getorig(npf_nat_t *nt, npf_addr_t **addr, in_port_t *port)
835 {
836 	*addr = &nt->nt_oaddr;
837 	*port = nt->nt_oport;
838 }
839 
840 /*
841  * npf_nat_setalg: associate an ALG with the NAT entry.
842  */
843 void
npf_nat_setalg(npf_nat_t * nt,npf_alg_t * alg,uintptr_t arg)844 npf_nat_setalg(npf_nat_t *nt, npf_alg_t *alg, uintptr_t arg)
845 {
846 	nt->nt_alg = alg;
847 	nt->nt_alg_arg = arg;
848 }
849 
850 npf_alg_t *
npf_nat_getalg(const npf_nat_t * nt)851 npf_nat_getalg(const npf_nat_t *nt)
852 {
853 	return nt->nt_alg;
854 }
855 
856 uintptr_t
npf_nat_getalgarg(const npf_nat_t * nt)857 npf_nat_getalgarg(const npf_nat_t *nt)
858 {
859 	return nt->nt_alg_arg;
860 }
861 
862 /*
863  * npf_nat_destroy: destroy NAT structure (performed on connection expiration).
864  */
865 void
npf_nat_destroy(npf_conn_t * con,npf_nat_t * nt)866 npf_nat_destroy(npf_conn_t *con, npf_nat_t *nt)
867 {
868 	npf_natpolicy_t *np = nt->nt_natpolicy;
869 	npf_t *npf = np->n_npfctx;
870 	npf_alg_t *alg;
871 
872 	/* Execute the ALG destroy callback, if any. */
873 	if ((alg = npf_nat_getalg(nt)) != NULL) {
874 		npf_alg_destroy(npf, alg, nt, con);
875 		nt->nt_alg = NULL;
876 	}
877 
878 	/* Return taken port to the portmap. */
879 	if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
880 		npf_portmap_t *pm = npf->portmap;
881 		npf_portmap_put(pm, nt->nt_alen, &nt->nt_taddr, nt->nt_tport);
882 	}
883 	npf_stats_inc(np->n_npfctx, NPF_STAT_NAT_DESTROY);
884 
885 	/*
886 	 * Remove the connection from the list and drop the reference on
887 	 * the NAT policy.  Note: this might trigger its destruction.
888 	 */
889 	mutex_enter(&np->n_lock);
890 	LIST_REMOVE(nt, nt_entry);
891 	mutex_exit(&np->n_lock);
892 	npf_natpolicy_release(np);
893 
894 	pool_cache_put(nat_cache, nt);
895 }
896 
897 /*
898  * npf_nat_export: serialize the NAT entry with a NAT policy ID.
899  */
900 void
npf_nat_export(npf_t * npf,const npf_nat_t * nt,nvlist_t * con_nv)901 npf_nat_export(npf_t *npf, const npf_nat_t *nt, nvlist_t *con_nv)
902 {
903 	npf_natpolicy_t *np = nt->nt_natpolicy;
904 	unsigned alen = nt->nt_alen;
905 	nvlist_t *nat_nv;
906 
907 	nat_nv = nvlist_create(0);
908 	if (nt->nt_ifid) {
909 		char ifname[IFNAMSIZ];
910 		npf_ifmap_copyname(npf, nt->nt_ifid, ifname, sizeof(ifname));
911 		nvlist_add_string(nat_nv, "ifname", ifname);
912 	}
913 	nvlist_add_number(nat_nv, "alen", alen);
914 
915 	nvlist_add_binary(nat_nv, "oaddr", &nt->nt_oaddr, alen);
916 	nvlist_add_number(nat_nv, "oport", nt->nt_oport);
917 
918 	nvlist_add_binary(nat_nv, "taddr", &nt->nt_taddr, alen);
919 	nvlist_add_number(nat_nv, "tport", nt->nt_tport);
920 
921 	nvlist_add_number(nat_nv, "nat-policy", np->n_id);
922 	nvlist_move_nvlist(con_nv, "nat", nat_nv);
923 }
924 
925 /*
926  * npf_nat_import: find the NAT policy and unserialize the NAT entry.
927  */
928 npf_nat_t *
npf_nat_import(npf_t * npf,const nvlist_t * nat,npf_ruleset_t * natlist,npf_conn_t * con)929 npf_nat_import(npf_t *npf, const nvlist_t *nat,
930     npf_ruleset_t *natlist, npf_conn_t *con)
931 {
932 	npf_natpolicy_t *np;
933 	npf_nat_t *nt;
934 	const char *ifname;
935 	const void *taddr, *oaddr;
936 	size_t alen, len;
937 	uint64_t np_id;
938 
939 	np_id = dnvlist_get_number(nat, "nat-policy", UINT64_MAX);
940 	if ((np = npf_ruleset_findnat(natlist, np_id)) == NULL) {
941 		return NULL;
942 	}
943 	nt = pool_cache_get(nat_cache, PR_WAITOK);
944 	memset(nt, 0, sizeof(npf_nat_t));
945 
946 	ifname = dnvlist_get_string(nat, "ifname", NULL);
947 	if (ifname && (nt->nt_ifid = npf_ifmap_register(npf, ifname)) == 0) {
948 		goto err;
949 	}
950 
951 	alen = dnvlist_get_number(nat, "alen", 0);
952 	if (alen == 0 || alen > sizeof(npf_addr_t)) {
953 		goto err;
954 	}
955 
956 	taddr = dnvlist_get_binary(nat, "taddr", &len, NULL, 0);
957 	if (!taddr || len != alen) {
958 		goto err;
959 	}
960 	memcpy(&nt->nt_taddr, taddr, sizeof(npf_addr_t));
961 
962 	oaddr = dnvlist_get_binary(nat, "oaddr", &len, NULL, 0);
963 	if (!oaddr || len != alen) {
964 		goto err;
965 	}
966 	memcpy(&nt->nt_oaddr, oaddr, sizeof(npf_addr_t));
967 
968 	nt->nt_oport = dnvlist_get_number(nat, "oport", 0);
969 	nt->nt_tport = dnvlist_get_number(nat, "tport", 0);
970 
971 	/* Take a specific port from port-map. */
972 	if ((np->n_flags & NPF_NAT_PORTMAP) != 0 && nt->nt_tport) {
973 		npf_portmap_t *pm = npf->portmap;
974 
975 		if (!npf_portmap_take(pm, nt->nt_alen,
976 		    &nt->nt_taddr, nt->nt_tport)) {
977 			goto err;
978 		}
979 	}
980 	npf_stats_inc(npf, NPF_STAT_NAT_CREATE);
981 
982 	/*
983 	 * Associate, take a reference and insert.  Unlocked/non-atomic
984 	 * since the policy is not yet globally visible.
985 	 */
986 	nt->nt_natpolicy = np;
987 	nt->nt_conn = con;
988 	atomic_store_relaxed(&np->n_refcnt,
989 	    atomic_load_relaxed(&np->n_refcnt) + 1);
990 	LIST_INSERT_HEAD(&np->n_nat_list, nt, nt_entry);
991 	return nt;
992 err:
993 	pool_cache_put(nat_cache, nt);
994 	return NULL;
995 }
996 
997 #if defined(DDB) || defined(_NPF_TESTING)
998 
999 void
npf_nat_dump(const npf_nat_t * nt)1000 npf_nat_dump(const npf_nat_t *nt)
1001 {
1002 	const npf_natpolicy_t *np;
1003 	struct in_addr ip;
1004 
1005 	np = nt->nt_natpolicy;
1006 	memcpy(&ip, &nt->nt_taddr, sizeof(ip));
1007 	printf("\tNATP(%p): type %u flags 0x%x taddr %s tport %d\n", np,
1008 	    np->n_type, np->n_flags, inet_ntoa(ip), ntohs(np->n_tport));
1009 	memcpy(&ip, &nt->nt_oaddr, sizeof(ip));
1010 	printf("\tNAT: original address %s oport %d tport %d\n",
1011 	    inet_ntoa(ip), ntohs(nt->nt_oport), ntohs(nt->nt_tport));
1012 	if (nt->nt_alg) {
1013 		printf("\tNAT ALG = %p, ARG = %p\n",
1014 		    nt->nt_alg, (void *)nt->nt_alg_arg);
1015 	}
1016 }
1017 
1018 #endif
1019