1 /*
2 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
3 * Portions Copyright (c) 2000 Akamba Corp.
4 * All rights reserved
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 *
27 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.24.2.22 2003/05/13 09:31:06 maxim Exp $
28 */
29
30 #include "opt_ipdn.h"
31
32 /*
33 * This module implements IP dummynet, a bandwidth limiter/delay emulator.
34 * Description of the data structures used is in ip_dummynet.h
35 * Here you mainly find the following blocks of code:
36 * + variable declarations;
37 * + heap management functions;
38 * + scheduler and dummynet functions;
39 * + configuration and initialization.
40 *
41 * Most important Changes:
42 *
43 * 011004: KLDable
44 * 010124: Fixed WF2Q behaviour
45 * 010122: Fixed spl protection.
46 * 000601: WF2Q support
47 * 000106: Large rewrite, use heaps to handle very many pipes.
48 * 980513: Initial release
49 */
50
51 #include <sys/param.h>
52 #include <sys/kernel.h>
53 #include <sys/malloc.h>
54 #include <sys/mbuf.h>
55 #include <sys/socketvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/systimer.h>
58 #include <sys/thread2.h>
59
60 #include <net/ethernet.h>
61 #include <net/netmsg2.h>
62 #include <net/netisr2.h>
63 #include <net/route.h>
64
65 #include <net/if.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip_var.h>
68
69 #include <net/dummynet/ip_dummynet.h>
70
71 #ifdef DUMMYNET_DEBUG
72 #define DPRINTF(fmt, ...) kprintf(fmt, __VA_ARGS__)
73 #else
74 #define DPRINTF(fmt, ...) ((void)0)
75 #endif
76
77 #ifndef DN_CALLOUT_FREQ_MAX
78 #define DN_CALLOUT_FREQ_MAX 10000
79 #endif
80
81 /*
82 * The maximum/minimum hash table size for queues.
83 * These values must be a power of 2.
84 */
85 #define DN_MIN_HASH_SIZE 4
86 #define DN_MAX_HASH_SIZE 65536
87
88 /*
89 * Some macros are used to compare key values and handle wraparounds.
90 * MAX64 returns the largest of two key values.
91 */
92 #define DN_KEY_LT(a, b) ((int64_t)((a) - (b)) < 0)
93 #define DN_KEY_LEQ(a, b) ((int64_t)((a) - (b)) <= 0)
94 #define DN_KEY_GT(a, b) ((int64_t)((a) - (b)) > 0)
95 #define DN_KEY_GEQ(a, b) ((int64_t)((a) - (b)) >= 0)
96 #define MAX64(x, y) ((((int64_t)((y) - (x))) > 0) ? (y) : (x))
97
98 #define DN_NR_HASH_MAX 16
99 #define DN_NR_HASH_MASK (DN_NR_HASH_MAX - 1)
100 #define DN_NR_HASH(nr) \
101 ((((nr) >> 12) ^ ((nr) >> 8) ^ ((nr) >> 4) ^ (nr)) & DN_NR_HASH_MASK)
102
103 MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
104
105 extern int ip_dn_cpu;
106
107 static dn_key curr_time = 0; /* current simulation time */
108 static int dn_hash_size = 64; /* default hash size */
109 static int pipe_expire = 1; /* expire queue if empty */
110 static int dn_max_ratio = 16; /* max queues/buckets ratio */
111
112 /*
113 * Statistics on number of queue searches and search steps
114 */
115 static int searches;
116 static int search_steps;
117
118 /*
119 * RED parameters
120 */
121 static int red_lookup_depth = 256; /* default lookup table depth */
122 static int red_avg_pkt_size = 512; /* default medium packet size */
123 static int red_max_pkt_size = 1500;/* default max packet size */
124
125 /*
126 * Three heaps contain queues and pipes that the scheduler handles:
127 *
128 * + ready_heap contains all dn_flow_queue related to fixed-rate pipes.
129 * + wfq_ready_heap contains the pipes associated with WF2Q flows
130 * + extract_heap contains pipes associated with delay lines.
131 */
132 static struct dn_heap ready_heap;
133 static struct dn_heap extract_heap;
134 static struct dn_heap wfq_ready_heap;
135
136 static struct dn_pipe_head pipe_table[DN_NR_HASH_MAX];
137 static struct dn_flowset_head flowset_table[DN_NR_HASH_MAX];
138
139 /*
140 * Variables for dummynet systimer
141 */
142 static struct netmsg_base dn_netmsg;
143 static struct systimer dn_clock;
144 #ifdef _KERNEL_VIRTUAL
145 static int dn_hz = 100;
146 #else
147 static int dn_hz = 1000;
148 #endif
149 static int dn_count;
150 static int dn_running;
151 static struct lock dn_lock = LOCK_INITIALIZER("dnlk", 0, 0);
152
153 static int sysctl_dn_hz(SYSCTL_HANDLER_ARGS);
154
155 SYSCTL_DECL(_net_inet_ip_dummynet);
156
157 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size, CTLFLAG_RW,
158 &dn_hash_size, 0, "Default hash table size");
159 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, curr_time, CTLFLAG_RD,
160 &curr_time, 0, "Current tick");
161 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire, CTLFLAG_RW,
162 &pipe_expire, 0, "Expire queue if empty");
163 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len, CTLFLAG_RW,
164 &dn_max_ratio, 0, "Max ratio between dynamic queues and buckets");
165
166 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap, CTLFLAG_RD,
167 &ready_heap.size, 0, "Size of ready heap");
168 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap, CTLFLAG_RD,
169 &extract_heap.size, 0, "Size of extract heap");
170
171 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, searches, CTLFLAG_RD,
172 &searches, 0, "Number of queue searches");
173 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, search_steps, CTLFLAG_RD,
174 &search_steps, 0, "Number of queue search steps");
175
176 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth, CTLFLAG_RD,
177 &red_lookup_depth, 0, "Depth of RED lookup table");
178 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size, CTLFLAG_RD,
179 &red_avg_pkt_size, 0, "RED Medium packet size");
180 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size, CTLFLAG_RD,
181 &red_max_pkt_size, 0, "RED Max packet size");
182
183 SYSCTL_PROC(_net_inet_ip_dummynet, OID_AUTO, hz, CTLTYPE_INT | CTLFLAG_RW,
184 0, 0, sysctl_dn_hz, "I", "Dummynet callout frequency");
185 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, running, CTLFLAG_RD,
186 &dn_running, 0, "Dummynet Active");
187 SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, count, CTLFLAG_RD,
188 &dn_count, 0, "Dummynet pipe+flow count");
189
190 static int heap_init(struct dn_heap *, int);
191 static int heap_insert(struct dn_heap *, dn_key, void *);
192 static void heap_extract(struct dn_heap *, void *);
193
194 static void transmit_event(struct dn_pipe *);
195 static void ready_event(struct dn_flow_queue *);
196 static void ready_event_wfq(struct dn_pipe *);
197
198 static int config_pipe(struct dn_ioc_pipe *);
199 static void dummynet_flush(void);
200
201 static void dummynet_clock(systimer_t, int, struct intrframe *);
202 static void dummynet(netmsg_t);
203
204 static struct dn_pipe *dn_find_pipe(int);
205 static struct dn_flow_set *dn_locate_flowset(int, int);
206
207 typedef void (*dn_pipe_iter_t)(struct dn_pipe *, void *);
208 static void dn_iterate_pipe(dn_pipe_iter_t, void *);
209
210 typedef void (*dn_flowset_iter_t)(struct dn_flow_set *, void *);
211 static void dn_iterate_flowset(dn_flowset_iter_t, void *);
212
213 static ip_dn_io_t dummynet_io;
214 static ip_dn_ctl_t dummynet_ctl;
215
216 /*
217 * Heap management functions.
218 *
219 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
220 * Some macros help finding parent/children so we can optimize them.
221 *
222 * heap_init() is called to expand the heap when needed.
223 * Increment size in blocks of 16 entries.
224 * XXX failure to allocate a new element is a pretty bad failure
225 * as we basically stall a whole queue forever!!
226 * Returns 1 on error, 0 on success
227 */
228 #define HEAP_FATHER(x) (((x) - 1) / 2)
229 #define HEAP_LEFT(x) (2*(x) + 1)
230 #define HEAP_IS_LEFT(x) ((x) & 1)
231 #define HEAP_RIGHT(x) (2*(x) + 2)
232 #define HEAP_SWAP(a, b, buffer) { buffer = a; a = b; b = buffer; }
233 #define HEAP_INCREMENT 15
234
235 static int
heap_init(struct dn_heap * h,int new_size)236 heap_init(struct dn_heap *h, int new_size)
237 {
238 struct dn_heap_entry *p;
239
240 if (h->size >= new_size) {
241 kprintf("%s, Bogus call, have %d want %d\n", __func__,
242 h->size, new_size);
243 return 0;
244 }
245
246 new_size = (new_size + HEAP_INCREMENT) & ~HEAP_INCREMENT;
247 p = kmalloc(new_size * sizeof(*p), M_DUMMYNET, M_WAITOK | M_ZERO);
248 if (h->size > 0) {
249 bcopy(h->p, p, h->size * sizeof(*p));
250 kfree(h->p, M_DUMMYNET);
251 }
252 h->p = p;
253 h->size = new_size;
254 return 0;
255 }
256
257 /*
258 * Insert element in heap. Normally, p != NULL, we insert p in
259 * a new position and bubble up. If p == NULL, then the element is
260 * already in place, and key is the position where to start the
261 * bubble-up.
262 * Returns 1 on failure (cannot allocate new heap entry)
263 *
264 * If offset > 0 the position (index, int) of the element in the heap is
265 * also stored in the element itself at the given offset in bytes.
266 */
267 #define SET_OFFSET(heap, node) \
268 if (heap->offset > 0) \
269 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node;
270
271 /*
272 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
273 */
274 #define RESET_OFFSET(heap, node) \
275 if (heap->offset > 0) \
276 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1;
277
278 static int
heap_insert(struct dn_heap * h,dn_key key1,void * p)279 heap_insert(struct dn_heap *h, dn_key key1, void *p)
280 {
281 int son;
282
283 if (p == NULL) { /* Data already there, set starting point */
284 son = key1;
285 } else { /* Insert new element at the end, possibly resize */
286 son = h->elements;
287 if (son == h->size) { /* Need resize... */
288 if (heap_init(h, h->elements + 1))
289 return 1; /* Failure... */
290 }
291 h->p[son].object = p;
292 h->p[son].key = key1;
293 h->elements++;
294 }
295
296 while (son > 0) { /* Bubble up */
297 int father = HEAP_FATHER(son);
298 struct dn_heap_entry tmp;
299
300 if (DN_KEY_LT(h->p[father].key, h->p[son].key))
301 break; /* Found right position */
302
303 /* 'son' smaller than 'father', swap and repeat */
304 HEAP_SWAP(h->p[son], h->p[father], tmp);
305 SET_OFFSET(h, son);
306 son = father;
307 }
308 SET_OFFSET(h, son);
309 return 0;
310 }
311
312 /*
313 * Remove top element from heap, or obj if obj != NULL
314 */
315 static void
heap_extract(struct dn_heap * h,void * obj)316 heap_extract(struct dn_heap *h, void *obj)
317 {
318 int child, father, max = h->elements - 1;
319
320 if (max < 0) {
321 kprintf("warning, extract from empty heap 0x%p\n", h);
322 return;
323 }
324
325 father = 0; /* Default: move up smallest child */
326 if (obj != NULL) { /* Extract specific element, index is at offset */
327 if (h->offset <= 0)
328 panic("%s from middle not supported on this heap!!!", __func__);
329
330 father = *((int *)((char *)obj + h->offset));
331 if (father < 0 || father >= h->elements) {
332 panic("%s father %d out of bound 0..%d", __func__,
333 father, h->elements);
334 }
335 }
336 RESET_OFFSET(h, father);
337
338 child = HEAP_LEFT(father); /* Left child */
339 while (child <= max) { /* Valid entry */
340 if (child != max && DN_KEY_LT(h->p[child + 1].key, h->p[child].key))
341 child = child + 1; /* Take right child, otherwise left */
342 h->p[father] = h->p[child];
343 SET_OFFSET(h, father);
344 father = child;
345 child = HEAP_LEFT(child); /* Left child for next loop */
346 }
347 h->elements--;
348 if (father != max) {
349 /*
350 * Fill hole with last entry and bubble up, reusing the insert code
351 */
352 h->p[father] = h->p[max];
353 heap_insert(h, father, NULL); /* This one cannot fail */
354 }
355 }
356
357 /*
358 * heapify() will reorganize data inside an array to maintain the
359 * heap property. It is needed when we delete a bunch of entries.
360 */
361 static void
heapify(struct dn_heap * h)362 heapify(struct dn_heap *h)
363 {
364 int i;
365
366 for (i = 0; i < h->elements; i++)
367 heap_insert(h, i , NULL);
368 }
369
370 /*
371 * Cleanup the heap and free data structure
372 */
373 static void
heap_free(struct dn_heap * h)374 heap_free(struct dn_heap *h)
375 {
376 if (h->size > 0)
377 kfree(h->p, M_DUMMYNET);
378 bzero(h, sizeof(*h));
379 }
380
381 /*
382 * --- End of heap management functions ---
383 */
384
385 /*
386 * Scheduler functions:
387 *
388 * transmit_event() is called when the delay-line needs to enter
389 * the scheduler, either because of existing pkts getting ready,
390 * or new packets entering the queue. The event handled is the delivery
391 * time of the packet.
392 *
393 * ready_event() does something similar with fixed-rate queues, and the
394 * event handled is the finish time of the head pkt.
395 *
396 * ready_event_wfq() does something similar with WF2Q queues, and the
397 * event handled is the start time of the head pkt.
398 *
399 * In all cases, we make sure that the data structures are consistent
400 * before passing pkts out, because this might trigger recursive
401 * invocations of the procedures.
402 */
403 static void
transmit_event(struct dn_pipe * pipe)404 transmit_event(struct dn_pipe *pipe)
405 {
406 struct dn_pkt *pkt;
407
408 while ((pkt = TAILQ_FIRST(&pipe->p_queue)) &&
409 DN_KEY_LEQ(pkt->output_time, curr_time)) {
410 TAILQ_REMOVE(&pipe->p_queue, pkt, dn_next);
411 ip_dn_packet_redispatch(pkt);
412 }
413
414 /*
415 * If there are leftover packets, put into the heap for next event
416 */
417 if ((pkt = TAILQ_FIRST(&pipe->p_queue)) != NULL) {
418 /*
419 * XXX should check errors on heap_insert, by draining the
420 * whole pipe and hoping in the future we are more successful
421 */
422 heap_insert(&extract_heap, pkt->output_time, pipe);
423 }
424 }
425
426 /*
427 * The following macro computes how many ticks we have to wait
428 * before being able to transmit a packet. The credit is taken from
429 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
430 */
431 #define SET_TICKS(pkt, q, p) \
432 (pkt->dn_m->m_pkthdr.len*8*dn_hz - (q)->numbytes + p->bandwidth - 1 ) / \
433 p->bandwidth;
434
435 /*
436 * Extract pkt from queue, compute output time (could be now)
437 * and put into delay line (p_queue)
438 */
439 static void
move_pkt(struct dn_pkt * pkt,struct dn_flow_queue * q,struct dn_pipe * p,int len)440 move_pkt(struct dn_pkt *pkt, struct dn_flow_queue *q,
441 struct dn_pipe *p, int len)
442 {
443 TAILQ_REMOVE(&q->queue, pkt, dn_next);
444 q->len--;
445 q->len_bytes -= len;
446
447 pkt->output_time = curr_time + p->delay;
448
449 TAILQ_INSERT_TAIL(&p->p_queue, pkt, dn_next);
450 }
451
452 /*
453 * ready_event() is invoked every time the queue must enter the
454 * scheduler, either because the first packet arrives, or because
455 * a previously scheduled event fired.
456 * On invokation, drain as many pkts as possible (could be 0) and then
457 * if there are leftover packets reinsert the pkt in the scheduler.
458 */
459 static void
ready_event(struct dn_flow_queue * q)460 ready_event(struct dn_flow_queue *q)
461 {
462 struct dn_pkt *pkt;
463 struct dn_pipe *p = q->fs->pipe;
464 int p_was_empty;
465
466 if (p == NULL) {
467 kprintf("ready_event- pipe is gone\n");
468 return;
469 }
470 p_was_empty = TAILQ_EMPTY(&p->p_queue);
471
472 /*
473 * Schedule fixed-rate queues linked to this pipe:
474 * Account for the bw accumulated since last scheduling, then
475 * drain as many pkts as allowed by q->numbytes and move to
476 * the delay line (in p) computing output time.
477 * bandwidth==0 (no limit) means we can drain the whole queue,
478 * setting len_scaled = 0 does the job.
479 */
480 q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
481 while ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
482 int len = pkt->dn_m->m_pkthdr.len;
483 int len_scaled = p->bandwidth ? len*8*dn_hz : 0;
484
485 if (len_scaled > q->numbytes)
486 break;
487 q->numbytes -= len_scaled;
488 move_pkt(pkt, q, p, len);
489 }
490
491 /*
492 * If we have more packets queued, schedule next ready event
493 * (can only occur when bandwidth != 0, otherwise we would have
494 * flushed the whole queue in the previous loop).
495 * To this purpose we record the current time and compute how many
496 * ticks to go for the finish time of the packet.
497 */
498 if ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
499 /* This implies bandwidth != 0 */
500 dn_key t = SET_TICKS(pkt, q, p); /* ticks i have to wait */
501
502 q->sched_time = curr_time;
503
504 /*
505 * XXX should check errors on heap_insert, and drain the whole
506 * queue on error hoping next time we are luckier.
507 */
508 heap_insert(&ready_heap, curr_time + t, q);
509 } else { /* RED needs to know when the queue becomes empty */
510 q->q_time = curr_time;
511 q->numbytes = 0;
512 }
513
514 /*
515 * If the delay line was empty call transmit_event(p) now.
516 * Otherwise, the scheduler will take care of it.
517 */
518 if (p_was_empty)
519 transmit_event(p);
520 }
521
522 /*
523 * Called when we can transmit packets on WF2Q queues. Take pkts out of
524 * the queues at their start time, and enqueue into the delay line.
525 * Packets are drained until p->numbytes < 0. As long as
526 * len_scaled >= p->numbytes, the packet goes into the delay line
527 * with a deadline p->delay. For the last packet, if p->numbytes < 0,
528 * there is an additional delay.
529 */
530 static void
ready_event_wfq(struct dn_pipe * p)531 ready_event_wfq(struct dn_pipe *p)
532 {
533 int p_was_empty = TAILQ_EMPTY(&p->p_queue);
534 struct dn_heap *sch = &p->scheduler_heap;
535 struct dn_heap *neh = &p->not_eligible_heap;
536
537 p->numbytes += (curr_time - p->sched_time) * p->bandwidth;
538
539 /*
540 * While we have backlogged traffic AND credit, we need to do
541 * something on the queue.
542 */
543 while (p->numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
544 if (sch->elements > 0) { /* Have some eligible pkts to send out */
545 struct dn_flow_queue *q = sch->p[0].object;
546 struct dn_pkt *pkt = TAILQ_FIRST(&q->queue);
547 struct dn_flow_set *fs = q->fs;
548 uint64_t len = pkt->dn_m->m_pkthdr.len;
549 int len_scaled = p->bandwidth ? len*8*dn_hz : 0;
550
551 heap_extract(sch, NULL); /* Remove queue from heap */
552 p->numbytes -= len_scaled;
553 move_pkt(pkt, q, p, len);
554
555 p->V += (len << MY_M) / p->sum; /* Update V */
556 q->S = q->F; /* Update start time */
557
558 if (q->len == 0) { /* Flow not backlogged any more */
559 fs->backlogged--;
560 heap_insert(&p->idle_heap, q->F, q);
561 } else { /* Still backlogged */
562 /*
563 * Update F and position in backlogged queue, then
564 * put flow in not_eligible_heap (we will fix this later).
565 */
566 len = TAILQ_FIRST(&q->queue)->dn_m->m_pkthdr.len;
567 q->F += (len << MY_M) / (uint64_t)fs->weight;
568 if (DN_KEY_LEQ(q->S, p->V))
569 heap_insert(neh, q->S, q);
570 else
571 heap_insert(sch, q->F, q);
572 }
573 }
574
575 /*
576 * Now compute V = max(V, min(S_i)). Remember that all elements in
577 * sch have by definition S_i <= V so if sch is not empty, V is surely
578 * the max and we must not update it. Conversely, if sch is empty
579 * we only need to look at neh.
580 */
581 if (sch->elements == 0 && neh->elements > 0)
582 p->V = MAX64(p->V, neh->p[0].key);
583
584 /*
585 * Move from neh to sch any packets that have become eligible
586 */
587 while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
588 struct dn_flow_queue *q = neh->p[0].object;
589
590 heap_extract(neh, NULL);
591 heap_insert(sch, q->F, q);
592 }
593 }
594
595 if (sch->elements == 0 && neh->elements == 0 && p->numbytes >= 0 &&
596 p->idle_heap.elements > 0) {
597 /*
598 * No traffic and no events scheduled. We can get rid of idle-heap.
599 */
600 int i;
601
602 for (i = 0; i < p->idle_heap.elements; i++) {
603 struct dn_flow_queue *q = p->idle_heap.p[i].object;
604
605 q->F = 0;
606 q->S = q->F + 1;
607 }
608 p->sum = 0;
609 p->V = 0;
610 p->idle_heap.elements = 0;
611 }
612
613 /*
614 * If we are getting clocks from dummynet and if we are under credit,
615 * schedule the next ready event.
616 * Also fix the delivery time of the last packet.
617 */
618 if (p->numbytes < 0) { /* This implies bandwidth>0 */
619 dn_key t = 0; /* Number of ticks i have to wait */
620
621 if (p->bandwidth > 0)
622 t = (p->bandwidth - 1 - p->numbytes) / p->bandwidth;
623 TAILQ_LAST(&p->p_queue, dn_pkt_queue)->output_time += t;
624 p->sched_time = curr_time;
625
626 /*
627 * XXX should check errors on heap_insert, and drain the whole
628 * queue on error hoping next time we are luckier.
629 */
630 heap_insert(&wfq_ready_heap, curr_time + t, p);
631 }
632
633 /*
634 * If the delay line was empty call transmit_event(p) now.
635 * Otherwise, the scheduler will take care of it.
636 */
637 if (p_was_empty)
638 transmit_event(p);
639 }
640
641 static void
dn_expire_pipe_cb(struct dn_pipe * pipe,void * dummy __unused)642 dn_expire_pipe_cb(struct dn_pipe *pipe, void *dummy __unused)
643 {
644 if (pipe->idle_heap.elements > 0 &&
645 DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) {
646 struct dn_flow_queue *q = pipe->idle_heap.p[0].object;
647
648 heap_extract(&pipe->idle_heap, NULL);
649 q->S = q->F + 1; /* Mark timestamp as invalid */
650 pipe->sum -= q->fs->weight;
651 }
652 }
653
654 /*
655 * This is called once per tick, or dn_hz times per second. It is used to
656 * increment the current tick counter and schedule expired events.
657 */
658 static void
dummynet(netmsg_t msg)659 dummynet(netmsg_t msg)
660 {
661 void *p;
662 struct dn_heap *h;
663 struct dn_heap *heaps[3];
664 int i;
665
666 heaps[0] = &ready_heap; /* Fixed-rate queues */
667 heaps[1] = &wfq_ready_heap; /* WF2Q queues */
668 heaps[2] = &extract_heap; /* Delay line */
669
670 /* Reply ASAP */
671 crit_enter();
672 lwkt_replymsg(&msg->lmsg, 0);
673 crit_exit();
674
675 curr_time++;
676 for (i = 0; i < 3; i++) {
677 h = heaps[i];
678 while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
679 if (h->p[0].key > curr_time) {
680 kprintf("-- dummynet: warning, heap %d is %d ticks late\n",
681 i, (int)(curr_time - h->p[0].key));
682 }
683
684 p = h->p[0].object; /* Store a copy before heap_extract */
685 heap_extract(h, NULL); /* Need to extract before processing */
686
687 if (i == 0)
688 ready_event(p);
689 else if (i == 1)
690 ready_event_wfq(p);
691 else
692 transmit_event(p);
693 }
694 }
695
696 /* Sweep pipes trying to expire idle flow_queues */
697 dn_iterate_pipe(dn_expire_pipe_cb, NULL);
698 }
699
700 /*
701 * Unconditionally expire empty queues in case of shortage.
702 * Returns the number of queues freed.
703 */
704 static int
expire_queues(struct dn_flow_set * fs)705 expire_queues(struct dn_flow_set *fs)
706 {
707 int i, initial_elements = fs->rq_elements;
708
709 if (fs->last_expired == time_uptime)
710 return 0;
711
712 fs->last_expired = time_uptime;
713
714 for (i = 0; i <= fs->rq_size; i++) { /* Last one is overflow */
715 struct dn_flow_queue *q, *qn;
716
717 LIST_FOREACH_MUTABLE(q, &fs->rq[i], q_link, qn) {
718 if (!TAILQ_EMPTY(&q->queue) || q->S != q->F + 1)
719 continue;
720
721 /*
722 * Entry is idle, expire it
723 */
724 LIST_REMOVE(q, q_link);
725 kfree(q, M_DUMMYNET);
726
727 KASSERT(fs->rq_elements > 0,
728 ("invalid rq_elements %d", fs->rq_elements));
729 fs->rq_elements--;
730 }
731 }
732 return initial_elements - fs->rq_elements;
733 }
734
735 /*
736 * If room, create a new queue and put at head of slot i;
737 * otherwise, create or use the default queue.
738 */
739 static struct dn_flow_queue *
create_queue(struct dn_flow_set * fs,int i)740 create_queue(struct dn_flow_set *fs, int i)
741 {
742 struct dn_flow_queue *q;
743
744 if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
745 expire_queues(fs) == 0) {
746 /*
747 * No way to get room, use or create overflow queue.
748 */
749 i = fs->rq_size;
750 if (!LIST_EMPTY(&fs->rq[i]))
751 return LIST_FIRST(&fs->rq[i]);
752 }
753
754 q = kmalloc(sizeof(*q), M_DUMMYNET, M_INTWAIT | M_NULLOK | M_ZERO);
755 if (q == NULL)
756 return NULL;
757
758 q->fs = fs;
759 q->hash_slot = i;
760 q->S = q->F + 1; /* hack - mark timestamp as invalid */
761 TAILQ_INIT(&q->queue);
762
763 LIST_INSERT_HEAD(&fs->rq[i], q, q_link);
764 fs->rq_elements++;
765
766 return q;
767 }
768
769 /*
770 * Given a flow_set and a pkt in last_pkt, find a matching queue
771 * after appropriate masking. The queue is moved to front
772 * so that further searches take less time.
773 */
774 static struct dn_flow_queue *
find_queue(struct dn_flow_set * fs,struct dn_flow_id * id)775 find_queue(struct dn_flow_set *fs, struct dn_flow_id *id)
776 {
777 struct dn_flow_queue *q;
778 int i = 0;
779
780 if (!(fs->flags_fs & DN_HAVE_FLOW_MASK)) {
781 q = LIST_FIRST(&fs->rq[0]);
782 } else {
783 struct dn_flow_queue *qn;
784
785 /* First, do the masking */
786 id->fid_dst_ip &= fs->flow_mask.fid_dst_ip;
787 id->fid_src_ip &= fs->flow_mask.fid_src_ip;
788 id->fid_dst_port &= fs->flow_mask.fid_dst_port;
789 id->fid_src_port &= fs->flow_mask.fid_src_port;
790 id->fid_proto &= fs->flow_mask.fid_proto;
791 id->fid_flags = 0; /* we don't care about this one */
792
793 /* Then, hash function */
794 i = ((id->fid_dst_ip) & 0xffff) ^
795 ((id->fid_dst_ip >> 15) & 0xffff) ^
796 ((id->fid_src_ip << 1) & 0xffff) ^
797 ((id->fid_src_ip >> 16 ) & 0xffff) ^
798 (id->fid_dst_port << 1) ^ (id->fid_src_port) ^
799 (id->fid_proto);
800 i = i % fs->rq_size;
801
802 /*
803 * Finally, scan the current list for a match and
804 * expire idle flow queues
805 */
806 searches++;
807 LIST_FOREACH_MUTABLE(q, &fs->rq[i], q_link, qn) {
808 search_steps++;
809 if (id->fid_dst_ip == q->id.fid_dst_ip &&
810 id->fid_src_ip == q->id.fid_src_ip &&
811 id->fid_dst_port == q->id.fid_dst_port &&
812 id->fid_src_port == q->id.fid_src_port &&
813 id->fid_proto == q->id.fid_proto &&
814 id->fid_flags == q->id.fid_flags) {
815 break; /* Found */
816 } else if (pipe_expire && TAILQ_EMPTY(&q->queue) &&
817 q->S == q->F + 1) {
818 /*
819 * Entry is idle and not in any heap, expire it
820 */
821 LIST_REMOVE(q, q_link);
822 kfree(q, M_DUMMYNET);
823
824 KASSERT(fs->rq_elements > 0,
825 ("invalid rq_elements %d", fs->rq_elements));
826 fs->rq_elements--;
827 }
828 }
829 if (q && LIST_FIRST(&fs->rq[i]) != q) { /* Found and not in front */
830 LIST_REMOVE(q, q_link);
831 LIST_INSERT_HEAD(&fs->rq[i], q, q_link);
832 }
833 }
834 if (q == NULL) { /* No match, need to allocate a new entry */
835 q = create_queue(fs, i);
836 if (q != NULL)
837 q->id = *id;
838 }
839 return q;
840 }
841
842 static int
red_drops(struct dn_flow_set * fs,struct dn_flow_queue * q,int len)843 red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
844 {
845 /*
846 * RED algorithm
847 *
848 * RED calculates the average queue size (avg) using a low-pass filter
849 * with an exponential weighted (w_q) moving average:
850 * avg <- (1-w_q) * avg + w_q * q_size
851 * where q_size is the queue length (measured in bytes or * packets).
852 *
853 * If q_size == 0, we compute the idle time for the link, and set
854 * avg = (1 - w_q)^(idle/s)
855 * where s is the time needed for transmitting a medium-sized packet.
856 *
857 * Now, if avg < min_th the packet is enqueued.
858 * If avg > max_th the packet is dropped. Otherwise, the packet is
859 * dropped with probability P function of avg.
860 */
861
862 int64_t p_b = 0;
863 u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ? q->len_bytes : q->len;
864
865 DPRINTF("\n%d q: %2u ", (int)curr_time, q_size);
866
867 /* Average queue size estimation */
868 if (q_size != 0) {
869 /*
870 * Queue is not empty, avg <- avg + (q_size - avg) * w_q
871 */
872 int diff = SCALE(q_size) - q->avg;
873 int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
874
875 q->avg += (int)v;
876 } else {
877 /*
878 * Queue is empty, find for how long the queue has been
879 * empty and use a lookup table for computing
880 * (1 - * w_q)^(idle_time/s) where s is the time to send a
881 * (small) packet.
882 * XXX check wraps...
883 */
884 if (q->avg) {
885 u_int t = (curr_time - q->q_time) / fs->lookup_step;
886
887 q->avg = (t < fs->lookup_depth) ?
888 SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
889 }
890 }
891 DPRINTF("avg: %u ", SCALE_VAL(q->avg));
892
893 /* Should i drop? */
894
895 if (q->avg < fs->min_th) {
896 /* Accept packet */
897 q->count = -1;
898 return 0;
899 }
900
901 if (q->avg >= fs->max_th) { /* Average queue >= Max threshold */
902 if (fs->flags_fs & DN_IS_GENTLE_RED) {
903 /*
904 * According to Gentle-RED, if avg is greater than max_th the
905 * packet is dropped with a probability
906 * p_b = c_3 * avg - c_4
907 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
908 */
909 p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) - fs->c_4;
910 } else {
911 q->count = -1;
912 kprintf("- drop\n");
913 return 1;
914 }
915 } else if (q->avg > fs->min_th) {
916 /*
917 * We compute p_b using the linear dropping function p_b = c_1 *
918 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
919 * max_p * min_th / (max_th - min_th)
920 */
921 p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
922 }
923 if (fs->flags_fs & DN_QSIZE_IS_BYTES)
924 p_b = (p_b * len) / fs->max_pkt_size;
925
926 if (++q->count == 0) {
927 q->random = krandom() & 0xffff;
928 } else {
929 /*
930 * q->count counts packets arrived since last drop, so a greater
931 * value of q->count means a greater packet drop probability.
932 */
933 if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
934 q->count = 0;
935 DPRINTF("%s", "- red drop");
936 /* After a drop we calculate a new random value */
937 q->random = krandom() & 0xffff;
938 return 1; /* Drop */
939 }
940 }
941 /* End of RED algorithm */
942 return 0; /* Accept */
943 }
944
945 static void
dn_iterate_pipe(dn_pipe_iter_t func,void * arg)946 dn_iterate_pipe(dn_pipe_iter_t func, void *arg)
947 {
948 int i;
949
950 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
951 struct dn_pipe_head *pipe_hdr = &pipe_table[i];
952 struct dn_pipe *pipe, *pipe_next;
953
954 LIST_FOREACH_MUTABLE(pipe, pipe_hdr, p_link, pipe_next)
955 func(pipe, arg);
956 }
957 }
958
959 static void
dn_iterate_flowset(dn_flowset_iter_t func,void * arg)960 dn_iterate_flowset(dn_flowset_iter_t func, void *arg)
961 {
962 int i;
963
964 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
965 struct dn_flowset_head *fs_hdr = &flowset_table[i];
966 struct dn_flow_set *fs, *fs_next;
967
968 LIST_FOREACH_MUTABLE(fs, fs_hdr, fs_link, fs_next)
969 func(fs, arg);
970 }
971 }
972
973 static struct dn_pipe *
dn_find_pipe(int pipe_nr)974 dn_find_pipe(int pipe_nr)
975 {
976 struct dn_pipe_head *pipe_hdr;
977 struct dn_pipe *p;
978
979 pipe_hdr = &pipe_table[DN_NR_HASH(pipe_nr)];
980 LIST_FOREACH(p, pipe_hdr, p_link) {
981 if (p->pipe_nr == pipe_nr)
982 break;
983 }
984 return p;
985 }
986
987 static struct dn_flow_set *
dn_find_flowset(int fs_nr)988 dn_find_flowset(int fs_nr)
989 {
990 struct dn_flowset_head *fs_hdr;
991 struct dn_flow_set *fs;
992
993 fs_hdr = &flowset_table[DN_NR_HASH(fs_nr)];
994 LIST_FOREACH(fs, fs_hdr, fs_link) {
995 if (fs->fs_nr == fs_nr)
996 break;
997 }
998 return fs;
999 }
1000
1001 static struct dn_flow_set *
dn_locate_flowset(int pipe_nr,int is_pipe)1002 dn_locate_flowset(int pipe_nr, int is_pipe)
1003 {
1004 struct dn_flow_set *fs = NULL;
1005
1006 if (!is_pipe) {
1007 fs = dn_find_flowset(pipe_nr);
1008 } else {
1009 struct dn_pipe *p;
1010
1011 p = dn_find_pipe(pipe_nr);
1012 if (p != NULL)
1013 fs = &p->fs;
1014 }
1015 return fs;
1016 }
1017
1018 /*
1019 * Dummynet hook for packets. Below 'pipe' is a pipe or a queue
1020 * depending on whether WF2Q or fixed bw is used.
1021 *
1022 * pipe_nr pipe or queue the packet is destined for.
1023 * dir where shall we send the packet after dummynet.
1024 * m the mbuf with the packet
1025 * fwa->oif the 'ifp' parameter from the caller.
1026 * NULL in ip_input, destination interface in ip_output
1027 * fwa->ro route parameter (only used in ip_output, NULL otherwise)
1028 * fwa->dst destination address, only used by ip_output
1029 * fwa->rule matching rule, in case of multiple passes
1030 * fwa->flags flags from the caller, only used in ip_output
1031 */
1032 static int
dummynet_io(struct mbuf * m)1033 dummynet_io(struct mbuf *m)
1034 {
1035 struct dn_pkt *pkt;
1036 struct m_tag *tag;
1037 struct dn_flow_set *fs;
1038 struct dn_pipe *pipe;
1039 uint64_t len = m->m_pkthdr.len;
1040 struct dn_flow_queue *q = NULL;
1041 int is_pipe, pipe_nr;
1042
1043 tag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);
1044 pkt = m_tag_data(tag);
1045
1046 is_pipe = pkt->dn_flags & DN_FLAGS_IS_PIPE;
1047 pipe_nr = pkt->pipe_nr;
1048
1049 /*
1050 * This is a dummynet rule, so we expect a O_PIPE or O_QUEUE rule
1051 */
1052 fs = dn_locate_flowset(pipe_nr, is_pipe);
1053 if (fs == NULL)
1054 goto dropit; /* This queue/pipe does not exist! */
1055
1056 pipe = fs->pipe;
1057 if (pipe == NULL) { /* Must be a queue, try find a matching pipe */
1058 pipe = dn_find_pipe(fs->parent_nr);
1059 if (pipe != NULL) {
1060 fs->pipe = pipe;
1061 } else {
1062 kprintf("No pipe %d for queue %d, drop pkt\n",
1063 fs->parent_nr, fs->fs_nr);
1064 goto dropit;
1065 }
1066 }
1067
1068 q = find_queue(fs, &pkt->id);
1069 if (q == NULL)
1070 goto dropit; /* Cannot allocate queue */
1071
1072 /*
1073 * Update statistics, then check reasons to drop pkt
1074 */
1075 q->tot_bytes += len;
1076 q->tot_pkts++;
1077
1078 if (fs->plr && krandom() < fs->plr)
1079 goto dropit; /* Random pkt drop */
1080
1081 if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
1082 if (q->len_bytes > fs->qsize)
1083 goto dropit; /* Queue size overflow */
1084 } else {
1085 if (q->len >= fs->qsize)
1086 goto dropit; /* Queue count overflow */
1087 }
1088
1089 if ((fs->flags_fs & DN_IS_RED) && red_drops(fs, q, len))
1090 goto dropit;
1091
1092 TAILQ_INSERT_TAIL(&q->queue, pkt, dn_next);
1093 q->len++;
1094 q->len_bytes += len;
1095
1096 if (TAILQ_FIRST(&q->queue) != pkt) /* Flow was not idle, we are done */
1097 goto done;
1098
1099 /*
1100 * If we reach this point the flow was previously idle, so we need
1101 * to schedule it. This involves different actions for fixed-rate
1102 * or WF2Q queues.
1103 */
1104 if (is_pipe) {
1105 /*
1106 * Fixed-rate queue: just insert into the ready_heap.
1107 */
1108 dn_key t = 0;
1109
1110 if (pipe->bandwidth)
1111 t = SET_TICKS(pkt, q, pipe);
1112
1113 q->sched_time = curr_time;
1114 if (t == 0) /* Must process it now */
1115 ready_event(q);
1116 else
1117 heap_insert(&ready_heap, curr_time + t, q);
1118 } else {
1119 /*
1120 * WF2Q:
1121 * First, compute start time S: if the flow was idle (S=F+1)
1122 * set S to the virtual time V for the controlling pipe, and update
1123 * the sum of weights for the pipe; otherwise, remove flow from
1124 * idle_heap and set S to max(F, V).
1125 * Second, compute finish time F = S + len/weight.
1126 * Third, if pipe was idle, update V = max(S, V).
1127 * Fourth, count one more backlogged flow.
1128 */
1129 if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid */
1130 q->S = pipe->V;
1131 pipe->sum += fs->weight; /* Add weight of new queue */
1132 } else {
1133 heap_extract(&pipe->idle_heap, q);
1134 q->S = MAX64(q->F, pipe->V);
1135 }
1136 q->F = q->S + (len << MY_M) / (uint64_t)fs->weight;
1137
1138 if (pipe->not_eligible_heap.elements == 0 &&
1139 pipe->scheduler_heap.elements == 0)
1140 pipe->V = MAX64(q->S, pipe->V);
1141
1142 fs->backlogged++;
1143
1144 /*
1145 * Look at eligibility. A flow is not eligibile if S>V (when
1146 * this happens, it means that there is some other flow already
1147 * scheduled for the same pipe, so the scheduler_heap cannot be
1148 * empty). If the flow is not eligible we just store it in the
1149 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1150 * and possibly invoke ready_event_wfq() right now if there is
1151 * leftover credit.
1152 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1153 * and for all flows in not_eligible_heap (NEH), S_i > V.
1154 * So when we need to compute max(V, min(S_i)) forall i in SCH+NEH,
1155 * we only need to look into NEH.
1156 */
1157 if (DN_KEY_GT(q->S, pipe->V)) { /* Not eligible */
1158 if (pipe->scheduler_heap.elements == 0)
1159 kprintf("++ ouch! not eligible but empty scheduler!\n");
1160 heap_insert(&pipe->not_eligible_heap, q->S, q);
1161 } else {
1162 heap_insert(&pipe->scheduler_heap, q->F, q);
1163 if (pipe->numbytes >= 0) { /* Pipe is idle */
1164 if (pipe->scheduler_heap.elements != 1)
1165 kprintf("*** OUCH! pipe should have been idle!\n");
1166 DPRINTF("Waking up pipe %d at %d\n",
1167 pipe->pipe_nr, (int)(q->F >> MY_M));
1168 pipe->sched_time = curr_time;
1169 ready_event_wfq(pipe);
1170 }
1171 }
1172 }
1173 done:
1174 return 0;
1175
1176 dropit:
1177 if (q)
1178 q->drops++;
1179 return ENOBUFS;
1180 }
1181
1182 /*
1183 * Dispose all packets and flow_queues on a flow_set.
1184 * If all=1, also remove red lookup table and other storage,
1185 * including the descriptor itself.
1186 * For the one in dn_pipe MUST also cleanup ready_heap...
1187 */
1188 static void
purge_flow_set(struct dn_flow_set * fs,int all)1189 purge_flow_set(struct dn_flow_set *fs, int all)
1190 {
1191 int i;
1192 #ifdef INVARIANTS
1193 int rq_elements = 0;
1194 #endif
1195
1196 for (i = 0; i <= fs->rq_size; i++) {
1197 struct dn_flow_queue *q;
1198
1199 while ((q = LIST_FIRST(&fs->rq[i])) != NULL) {
1200 struct dn_pkt *pkt;
1201
1202 while ((pkt = TAILQ_FIRST(&q->queue)) != NULL) {
1203 TAILQ_REMOVE(&q->queue, pkt, dn_next);
1204 ip_dn_packet_free(pkt);
1205 }
1206
1207 LIST_REMOVE(q, q_link);
1208 kfree(q, M_DUMMYNET);
1209
1210 #ifdef INVARIANTS
1211 rq_elements++;
1212 #endif
1213 }
1214 }
1215 KASSERT(rq_elements == fs->rq_elements,
1216 ("# rq elements mismatch, freed %d, total %d",
1217 rq_elements, fs->rq_elements));
1218 fs->rq_elements = 0;
1219
1220 if (all) {
1221 /* RED - free lookup table */
1222 if (fs->w_q_lookup)
1223 kfree(fs->w_q_lookup, M_DUMMYNET);
1224
1225 if (fs->rq)
1226 kfree(fs->rq, M_DUMMYNET);
1227
1228 /*
1229 * If this fs is not part of a pipe, free it
1230 *
1231 * fs->pipe == NULL could happen, if 'fs' is a WF2Q and
1232 * - No packet belongs to that flow set is delivered by
1233 * dummynet_io(), i.e. parent pipe is not installed yet.
1234 * - Parent pipe is deleted.
1235 */
1236 if (fs->pipe == NULL || (fs->pipe && fs != &fs->pipe->fs))
1237 kfree(fs, M_DUMMYNET);
1238 }
1239 }
1240
1241 /*
1242 * Dispose all packets queued on a pipe (not a flow_set).
1243 * Also free all resources associated to a pipe, which is about
1244 * to be deleted.
1245 */
1246 static void
purge_pipe(struct dn_pipe * pipe)1247 purge_pipe(struct dn_pipe *pipe)
1248 {
1249 struct dn_pkt *pkt;
1250
1251 purge_flow_set(&pipe->fs, 1);
1252
1253 while ((pkt = TAILQ_FIRST(&pipe->p_queue)) != NULL) {
1254 TAILQ_REMOVE(&pipe->p_queue, pkt, dn_next);
1255 ip_dn_packet_free(pkt);
1256 }
1257
1258 heap_free(&pipe->scheduler_heap);
1259 heap_free(&pipe->not_eligible_heap);
1260 heap_free(&pipe->idle_heap);
1261 }
1262
1263 /*
1264 * Delete all pipes and heaps returning memory.
1265 */
1266 static void
dummynet_flush(void)1267 dummynet_flush(void)
1268 {
1269 struct dn_pipe_head pipe_list;
1270 struct dn_flowset_head fs_list;
1271 struct dn_pipe *p;
1272 struct dn_flow_set *fs;
1273 int i;
1274
1275 lockmgr(&dn_lock, LK_EXCLUSIVE);
1276
1277 /*
1278 * Prevent future matches...
1279 */
1280 LIST_INIT(&pipe_list);
1281 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
1282 struct dn_pipe_head *pipe_hdr = &pipe_table[i];
1283
1284 while ((p = LIST_FIRST(pipe_hdr)) != NULL) {
1285 LIST_REMOVE(p, p_link);
1286 LIST_INSERT_HEAD(&pipe_list, p, p_link);
1287 --dn_count;
1288 }
1289 }
1290
1291 LIST_INIT(&fs_list);
1292 for (i = 0; i < DN_NR_HASH_MAX; ++i) {
1293 struct dn_flowset_head *fs_hdr = &flowset_table[i];
1294
1295 while ((fs = LIST_FIRST(fs_hdr)) != NULL) {
1296 LIST_REMOVE(fs, fs_link);
1297 LIST_INSERT_HEAD(&fs_list, fs, fs_link);
1298 --dn_count;
1299 }
1300 }
1301
1302 /* Free heaps so we don't have unwanted events */
1303 heap_free(&ready_heap);
1304 heap_free(&wfq_ready_heap);
1305 heap_free(&extract_heap);
1306
1307 /*
1308 * Now purge all queued pkts and delete all pipes
1309 */
1310 /* Scan and purge all flow_sets. */
1311 while ((fs = LIST_FIRST(&fs_list)) != NULL) {
1312 LIST_REMOVE(fs, fs_link);
1313 purge_flow_set(fs, 1);
1314 }
1315
1316 while ((p = LIST_FIRST(&pipe_list)) != NULL) {
1317 LIST_REMOVE(p, p_link);
1318 purge_pipe(p);
1319 kfree(p, M_DUMMYNET);
1320 }
1321
1322 /*
1323 * Everything has been cleaned out, clear the run state.
1324 */
1325 KKASSERT(dn_count == 0);
1326 if (dn_running) {
1327 systimer_del(&dn_clock);
1328 dn_running = 0;
1329 }
1330 lockmgr(&dn_lock, LK_RELEASE);
1331 }
1332
1333 /*
1334 * setup RED parameters
1335 */
1336 static int
config_red(const struct dn_ioc_flowset * ioc_fs,struct dn_flow_set * x)1337 config_red(const struct dn_ioc_flowset *ioc_fs, struct dn_flow_set *x)
1338 {
1339 int i;
1340
1341 x->w_q = ioc_fs->w_q;
1342 x->min_th = SCALE(ioc_fs->min_th);
1343 x->max_th = SCALE(ioc_fs->max_th);
1344 x->max_p = ioc_fs->max_p;
1345
1346 x->c_1 = ioc_fs->max_p / (ioc_fs->max_th - ioc_fs->min_th);
1347 x->c_2 = SCALE_MUL(x->c_1, SCALE(ioc_fs->min_th));
1348 if (x->flags_fs & DN_IS_GENTLE_RED) {
1349 x->c_3 = (SCALE(1) - ioc_fs->max_p) / ioc_fs->max_th;
1350 x->c_4 = (SCALE(1) - 2 * ioc_fs->max_p);
1351 }
1352
1353 /* If the lookup table already exist, free and create it again */
1354 if (x->w_q_lookup) {
1355 kfree(x->w_q_lookup, M_DUMMYNET);
1356 x->w_q_lookup = NULL ;
1357 }
1358
1359 if (red_lookup_depth == 0) {
1360 kprintf("net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1361 kfree(x, M_DUMMYNET);
1362 return EINVAL;
1363 }
1364 x->lookup_depth = red_lookup_depth;
1365 x->w_q_lookup = kmalloc(x->lookup_depth * sizeof(int),
1366 M_DUMMYNET, M_WAITOK);
1367
1368 /* Fill the lookup table with (1 - w_q)^x */
1369 x->lookup_step = ioc_fs->lookup_step;
1370 x->lookup_weight = ioc_fs->lookup_weight;
1371
1372 x->w_q_lookup[0] = SCALE(1) - x->w_q;
1373 for (i = 1; i < x->lookup_depth; i++)
1374 x->w_q_lookup[i] = SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
1375
1376 if (red_avg_pkt_size < 1)
1377 red_avg_pkt_size = 512;
1378 x->avg_pkt_size = red_avg_pkt_size;
1379
1380 if (red_max_pkt_size < 1)
1381 red_max_pkt_size = 1500;
1382 x->max_pkt_size = red_max_pkt_size;
1383
1384 return 0;
1385 }
1386
1387 static void
alloc_hash(struct dn_flow_set * x,const struct dn_ioc_flowset * ioc_fs)1388 alloc_hash(struct dn_flow_set *x, const struct dn_ioc_flowset *ioc_fs)
1389 {
1390 int i, alloc_size;
1391
1392 if (x->flags_fs & DN_HAVE_FLOW_MASK) {
1393 int l = ioc_fs->rq_size;
1394
1395 /* Allocate some slots */
1396 if (l == 0)
1397 l = dn_hash_size;
1398
1399 if (l < DN_MIN_HASH_SIZE)
1400 l = DN_MIN_HASH_SIZE;
1401 else if (l > DN_MAX_HASH_SIZE)
1402 l = DN_MAX_HASH_SIZE;
1403
1404 x->rq_size = l;
1405 } else {
1406 /* One is enough for null mask */
1407 x->rq_size = 1;
1408 }
1409 alloc_size = x->rq_size + 1;
1410
1411 x->rq = kmalloc(alloc_size * sizeof(struct dn_flowqueue_head),
1412 M_DUMMYNET, M_WAITOK | M_ZERO);
1413 x->rq_elements = 0;
1414
1415 for (i = 0; i < alloc_size; ++i)
1416 LIST_INIT(&x->rq[i]);
1417 }
1418
1419 static void
set_flowid_parms(struct dn_flow_id * id,const struct dn_ioc_flowid * ioc_id)1420 set_flowid_parms(struct dn_flow_id *id, const struct dn_ioc_flowid *ioc_id)
1421 {
1422 id->fid_dst_ip = ioc_id->u.ip.dst_ip;
1423 id->fid_src_ip = ioc_id->u.ip.src_ip;
1424 id->fid_dst_port = ioc_id->u.ip.dst_port;
1425 id->fid_src_port = ioc_id->u.ip.src_port;
1426 id->fid_proto = ioc_id->u.ip.proto;
1427 id->fid_flags = ioc_id->u.ip.flags;
1428 }
1429
1430 static void
set_fs_parms(struct dn_flow_set * x,const struct dn_ioc_flowset * ioc_fs)1431 set_fs_parms(struct dn_flow_set *x, const struct dn_ioc_flowset *ioc_fs)
1432 {
1433 x->flags_fs = ioc_fs->flags_fs;
1434 x->qsize = ioc_fs->qsize;
1435 x->plr = ioc_fs->plr;
1436 set_flowid_parms(&x->flow_mask, &ioc_fs->flow_mask);
1437 if (x->flags_fs & DN_QSIZE_IS_BYTES) {
1438 if (x->qsize > 1024 * 1024)
1439 x->qsize = 1024 * 1024;
1440 } else {
1441 if (x->qsize == 0 || x->qsize > 100)
1442 x->qsize = 50;
1443 }
1444
1445 /* Configuring RED */
1446 if (x->flags_fs & DN_IS_RED)
1447 config_red(ioc_fs, x); /* XXX should check errors */
1448 }
1449
1450 /*
1451 * setup pipe or queue parameters.
1452 */
1453
1454 static int
config_pipe(struct dn_ioc_pipe * ioc_pipe)1455 config_pipe(struct dn_ioc_pipe *ioc_pipe)
1456 {
1457 struct dn_ioc_flowset *ioc_fs = &ioc_pipe->fs;
1458 int error;
1459
1460 /*
1461 * The config program passes parameters as follows:
1462 * bw bits/second (0 means no limits)
1463 * delay ms (must be translated into ticks)
1464 * qsize slots or bytes
1465 */
1466 ioc_pipe->delay = (ioc_pipe->delay * dn_hz) / 1000;
1467
1468 /*
1469 * We need either a pipe number or a flow_set number
1470 */
1471 if (ioc_pipe->pipe_nr == 0 && ioc_fs->fs_nr == 0)
1472 return EINVAL;
1473 if (ioc_pipe->pipe_nr != 0 && ioc_fs->fs_nr != 0)
1474 return EINVAL;
1475
1476 /*
1477 * Validate pipe number
1478 */
1479 if (ioc_pipe->pipe_nr > DN_PIPE_NR_MAX || ioc_pipe->pipe_nr < 0)
1480 return EINVAL;
1481
1482 lockmgr(&dn_lock, LK_EXCLUSIVE);
1483 error = EINVAL;
1484
1485 if (ioc_pipe->pipe_nr != 0) { /* This is a pipe */
1486 struct dn_pipe *x, *p;
1487
1488 /* Locate pipe */
1489 p = dn_find_pipe(ioc_pipe->pipe_nr);
1490
1491 if (p == NULL) { /* New pipe */
1492 x = kmalloc(sizeof(struct dn_pipe), M_DUMMYNET, M_WAITOK | M_ZERO);
1493 x->pipe_nr = ioc_pipe->pipe_nr;
1494 x->fs.pipe = x;
1495 TAILQ_INIT(&x->p_queue);
1496
1497 /*
1498 * idle_heap is the only one from which we extract from the middle.
1499 */
1500 x->idle_heap.size = x->idle_heap.elements = 0;
1501 x->idle_heap.offset = __offsetof(struct dn_flow_queue, heap_pos);
1502 } else {
1503 int i;
1504
1505 x = p;
1506
1507 /* Flush accumulated credit for all queues */
1508 for (i = 0; i <= x->fs.rq_size; i++) {
1509 struct dn_flow_queue *q;
1510
1511 LIST_FOREACH(q, &x->fs.rq[i], q_link)
1512 q->numbytes = 0;
1513 }
1514 }
1515
1516 x->bandwidth = ioc_pipe->bandwidth;
1517 x->numbytes = 0; /* Just in case... */
1518 x->delay = ioc_pipe->delay;
1519
1520 set_fs_parms(&x->fs, ioc_fs);
1521
1522 if (x->fs.rq == NULL) { /* A new pipe */
1523 struct dn_pipe_head *pipe_hdr;
1524
1525 alloc_hash(&x->fs, ioc_fs);
1526
1527 pipe_hdr = &pipe_table[DN_NR_HASH(x->pipe_nr)];
1528 LIST_INSERT_HEAD(pipe_hdr, x, p_link);
1529 ++dn_count;
1530 }
1531 } else { /* Config flow_set */
1532 struct dn_flow_set *x, *fs;
1533
1534 /* Locate flow_set */
1535 fs = dn_find_flowset(ioc_fs->fs_nr);
1536
1537 if (fs == NULL) { /* New flow_set */
1538 if (ioc_fs->parent_nr == 0) /* Need link to a pipe */
1539 goto back;
1540
1541 x = kmalloc(sizeof(struct dn_flow_set), M_DUMMYNET,
1542 M_WAITOK | M_ZERO);
1543 x->fs_nr = ioc_fs->fs_nr;
1544 x->parent_nr = ioc_fs->parent_nr;
1545 x->weight = ioc_fs->weight;
1546 if (x->weight == 0)
1547 x->weight = 1;
1548 else if (x->weight > 100)
1549 x->weight = 100;
1550 } else {
1551 /* Change parent pipe not allowed; must delete and recreate */
1552 if (ioc_fs->parent_nr != 0 && fs->parent_nr != ioc_fs->parent_nr)
1553 goto back;
1554 x = fs;
1555 }
1556
1557 set_fs_parms(x, ioc_fs);
1558
1559 if (x->rq == NULL) { /* A new flow_set */
1560 struct dn_flowset_head *fs_hdr;
1561
1562 alloc_hash(x, ioc_fs);
1563
1564 fs_hdr = &flowset_table[DN_NR_HASH(x->fs_nr)];
1565 LIST_INSERT_HEAD(fs_hdr, x, fs_link);
1566 ++dn_count;
1567 }
1568 }
1569 error = 0;
1570
1571 /*
1572 * We have at least one entry, set run state and start the systimer
1573 * poll if necessary.
1574 */
1575 if (dn_running == 0) {
1576 dn_running = 1;
1577 systimer_init_periodic_nq(&dn_clock, dummynet_clock, NULL, dn_hz);
1578 }
1579
1580 back:
1581 lockmgr(&dn_lock, LK_RELEASE);
1582 return error;
1583 }
1584
1585 /*
1586 * Helper function to remove from a heap queues which are linked to
1587 * a flow_set about to be deleted.
1588 */
1589 static void
fs_remove_from_heap(struct dn_heap * h,struct dn_flow_set * fs)1590 fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
1591 {
1592 int i = 0, found = 0;
1593
1594 while (i < h->elements) {
1595 if (((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
1596 h->elements--;
1597 h->p[i] = h->p[h->elements];
1598 found++;
1599 } else {
1600 i++;
1601 }
1602 }
1603 if (found)
1604 heapify(h);
1605 }
1606
1607 /*
1608 * helper function to remove a pipe from a heap (can be there at most once)
1609 */
1610 static void
pipe_remove_from_heap(struct dn_heap * h,struct dn_pipe * p)1611 pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
1612 {
1613 if (h->elements > 0) {
1614 int i;
1615
1616 for (i = 0; i < h->elements; i++) {
1617 if (h->p[i].object == p) { /* found it */
1618 h->elements--;
1619 h->p[i] = h->p[h->elements];
1620 heapify(h);
1621 break;
1622 }
1623 }
1624 }
1625 }
1626
1627 static void
dn_unref_pipe_cb(struct dn_flow_set * fs,void * pipe0)1628 dn_unref_pipe_cb(struct dn_flow_set *fs, void *pipe0)
1629 {
1630 struct dn_pipe *pipe = pipe0;
1631
1632 if (fs->pipe == pipe) {
1633 kprintf("++ ref to pipe %d from fs %d\n",
1634 pipe->pipe_nr, fs->fs_nr);
1635 fs->pipe = NULL;
1636 purge_flow_set(fs, 0);
1637 }
1638 }
1639
1640 /*
1641 * Fully delete a pipe or a queue, cleaning up associated info.
1642 */
1643 static int
delete_pipe(const struct dn_ioc_pipe * ioc_pipe)1644 delete_pipe(const struct dn_ioc_pipe *ioc_pipe)
1645 {
1646 struct dn_pipe *p;
1647 int error;
1648
1649 if (ioc_pipe->pipe_nr == 0 && ioc_pipe->fs.fs_nr == 0)
1650 return EINVAL;
1651 if (ioc_pipe->pipe_nr != 0 && ioc_pipe->fs.fs_nr != 0)
1652 return EINVAL;
1653
1654 if (ioc_pipe->pipe_nr > DN_NR_HASH_MAX || ioc_pipe->pipe_nr < 0)
1655 return EINVAL;
1656
1657 lockmgr(&dn_lock, LK_EXCLUSIVE);
1658
1659 error = EINVAL;
1660 if (ioc_pipe->pipe_nr != 0) { /* This is an old-style pipe */
1661 /* Locate pipe */
1662 p = dn_find_pipe(ioc_pipe->pipe_nr);
1663 if (p == NULL)
1664 goto back; /* Not found */
1665
1666 /* Unlink from pipe hash table */
1667 LIST_REMOVE(p, p_link);
1668 --dn_count;
1669
1670 /* Remove all references to this pipe from flow_sets */
1671 dn_iterate_flowset(dn_unref_pipe_cb, p);
1672
1673 fs_remove_from_heap(&ready_heap, &p->fs);
1674 purge_pipe(p); /* Remove all data associated to this pipe */
1675
1676 /* Remove reference to here from extract_heap and wfq_ready_heap */
1677 pipe_remove_from_heap(&extract_heap, p);
1678 pipe_remove_from_heap(&wfq_ready_heap, p);
1679
1680 kfree(p, M_DUMMYNET);
1681 } else { /* This is a WF2Q queue (dn_flow_set) */
1682 struct dn_flow_set *fs;
1683
1684 /* Locate flow_set */
1685 fs = dn_find_flowset(ioc_pipe->fs.fs_nr);
1686 if (fs == NULL)
1687 goto back; /* Not found */
1688
1689 LIST_REMOVE(fs, fs_link);
1690 --dn_count;
1691
1692 if ((p = fs->pipe) != NULL) {
1693 /* Update total weight on parent pipe and cleanup parent heaps */
1694 p->sum -= fs->weight * fs->backlogged;
1695 fs_remove_from_heap(&p->not_eligible_heap, fs);
1696 fs_remove_from_heap(&p->scheduler_heap, fs);
1697 #if 1 /* XXX should i remove from idle_heap as well ? */
1698 fs_remove_from_heap(&p->idle_heap, fs);
1699 #endif
1700 }
1701 purge_flow_set(fs, 1);
1702 }
1703 error = 0;
1704
1705 /*
1706 * If there are no more pipes or flow-sets, clear the run state.
1707 */
1708 if (dn_count == 0 && dn_running) {
1709 systimer_del(&dn_clock);
1710 dn_running = 0;
1711 }
1712 back:
1713 lockmgr(&dn_lock, LK_RELEASE);
1714
1715 return error;
1716 }
1717
1718 /*
1719 * helper function used to copy data from kernel in DUMMYNET_GET
1720 */
1721 static void
dn_copy_flowid(const struct dn_flow_id * id,struct dn_ioc_flowid * ioc_id)1722 dn_copy_flowid(const struct dn_flow_id *id, struct dn_ioc_flowid *ioc_id)
1723 {
1724 ioc_id->type = ETHERTYPE_IP;
1725 ioc_id->u.ip.dst_ip = id->fid_dst_ip;
1726 ioc_id->u.ip.src_ip = id->fid_src_ip;
1727 ioc_id->u.ip.dst_port = id->fid_dst_port;
1728 ioc_id->u.ip.src_port = id->fid_src_port;
1729 ioc_id->u.ip.proto = id->fid_proto;
1730 ioc_id->u.ip.flags = id->fid_flags;
1731 }
1732
1733 static void *
dn_copy_flowqueues(const struct dn_flow_set * fs,void * bp)1734 dn_copy_flowqueues(const struct dn_flow_set *fs, void *bp)
1735 {
1736 struct dn_ioc_flowqueue *ioc_fq = bp;
1737 int i, copied = 0;
1738
1739 for (i = 0; i <= fs->rq_size; i++) {
1740 const struct dn_flow_queue *q;
1741
1742 LIST_FOREACH(q, &fs->rq[i], q_link) {
1743 if (q->hash_slot != i) { /* XXX ASSERT */
1744 kprintf("++ at %d: wrong slot (have %d, "
1745 "should be %d)\n", copied, q->hash_slot, i);
1746 }
1747 if (q->fs != fs) { /* XXX ASSERT */
1748 kprintf("++ at %d: wrong fs ptr (have %p, should be %p)\n",
1749 i, q->fs, fs);
1750 }
1751
1752 copied++;
1753
1754 ioc_fq->len = q->len;
1755 ioc_fq->len_bytes = q->len_bytes;
1756 ioc_fq->tot_pkts = q->tot_pkts;
1757 ioc_fq->tot_bytes = q->tot_bytes;
1758 ioc_fq->drops = q->drops;
1759 ioc_fq->hash_slot = q->hash_slot;
1760 ioc_fq->S = q->S;
1761 ioc_fq->F = q->F;
1762 dn_copy_flowid(&q->id, &ioc_fq->id);
1763
1764 ioc_fq++;
1765 }
1766 }
1767
1768 if (copied != fs->rq_elements) { /* XXX ASSERT */
1769 kprintf("++ wrong count, have %d should be %d\n",
1770 copied, fs->rq_elements);
1771 }
1772 return ioc_fq;
1773 }
1774
1775 static void
dn_copy_flowset(const struct dn_flow_set * fs,struct dn_ioc_flowset * ioc_fs,u_short fs_type)1776 dn_copy_flowset(const struct dn_flow_set *fs, struct dn_ioc_flowset *ioc_fs,
1777 u_short fs_type)
1778 {
1779 ioc_fs->fs_type = fs_type;
1780
1781 ioc_fs->fs_nr = fs->fs_nr;
1782 ioc_fs->flags_fs = fs->flags_fs;
1783 ioc_fs->parent_nr = fs->parent_nr;
1784
1785 ioc_fs->weight = fs->weight;
1786 ioc_fs->qsize = fs->qsize;
1787 ioc_fs->plr = fs->plr;
1788
1789 ioc_fs->rq_size = fs->rq_size;
1790 ioc_fs->rq_elements = fs->rq_elements;
1791
1792 ioc_fs->w_q = fs->w_q;
1793 ioc_fs->max_th = fs->max_th;
1794 ioc_fs->min_th = fs->min_th;
1795 ioc_fs->max_p = fs->max_p;
1796
1797 dn_copy_flowid(&fs->flow_mask, &ioc_fs->flow_mask);
1798 }
1799
1800 static void
dn_calc_pipe_size_cb(struct dn_pipe * pipe,void * sz)1801 dn_calc_pipe_size_cb(struct dn_pipe *pipe, void *sz)
1802 {
1803 size_t *size = sz;
1804
1805 *size += sizeof(struct dn_ioc_pipe) +
1806 pipe->fs.rq_elements * sizeof(struct dn_ioc_flowqueue);
1807 }
1808
1809 static void
dn_calc_fs_size_cb(struct dn_flow_set * fs,void * sz)1810 dn_calc_fs_size_cb(struct dn_flow_set *fs, void *sz)
1811 {
1812 size_t *size = sz;
1813
1814 *size += sizeof(struct dn_ioc_flowset) +
1815 fs->rq_elements * sizeof(struct dn_ioc_flowqueue);
1816 }
1817
1818 static void
dn_copyout_pipe_cb(struct dn_pipe * pipe,void * bp0)1819 dn_copyout_pipe_cb(struct dn_pipe *pipe, void *bp0)
1820 {
1821 char **bp = bp0;
1822 struct dn_ioc_pipe *ioc_pipe = (struct dn_ioc_pipe *)(*bp);
1823
1824 /*
1825 * Copy flow set descriptor associated with this pipe
1826 */
1827 dn_copy_flowset(&pipe->fs, &ioc_pipe->fs, DN_IS_PIPE);
1828
1829 /*
1830 * Copy pipe descriptor
1831 */
1832 ioc_pipe->bandwidth = pipe->bandwidth;
1833 ioc_pipe->pipe_nr = pipe->pipe_nr;
1834 ioc_pipe->V = pipe->V;
1835 /* Convert delay to milliseconds */
1836 ioc_pipe->delay = (pipe->delay * 1000) / dn_hz;
1837
1838 /*
1839 * Copy flow queue descriptors
1840 */
1841 *bp += sizeof(*ioc_pipe);
1842 *bp = dn_copy_flowqueues(&pipe->fs, *bp);
1843 }
1844
1845 static void
dn_copyout_fs_cb(struct dn_flow_set * fs,void * bp0)1846 dn_copyout_fs_cb(struct dn_flow_set *fs, void *bp0)
1847 {
1848 char **bp = bp0;
1849 struct dn_ioc_flowset *ioc_fs = (struct dn_ioc_flowset *)(*bp);
1850
1851 /*
1852 * Copy flow set descriptor
1853 */
1854 dn_copy_flowset(fs, ioc_fs, DN_IS_QUEUE);
1855
1856 /*
1857 * Copy flow queue descriptors
1858 */
1859 *bp += sizeof(*ioc_fs);
1860 *bp = dn_copy_flowqueues(fs, *bp);
1861 }
1862
1863 static int
dummynet_get(struct dn_sopt * dn_sopt)1864 dummynet_get(struct dn_sopt *dn_sopt)
1865 {
1866 char *buf, *bp;
1867 size_t size = 0;
1868
1869 /*
1870 * Compute size of data structures: list of pipes and flow_sets.
1871 */
1872 dn_iterate_pipe(dn_calc_pipe_size_cb, &size);
1873 dn_iterate_flowset(dn_calc_fs_size_cb, &size);
1874
1875 /*
1876 * Copyout pipe/flow_set/flow_queue
1877 */
1878 bp = buf = kmalloc(size, M_TEMP, M_WAITOK | M_ZERO);
1879 dn_iterate_pipe(dn_copyout_pipe_cb, &bp);
1880 dn_iterate_flowset(dn_copyout_fs_cb, &bp);
1881
1882 /* Temp memory will be freed by caller */
1883 dn_sopt->dn_sopt_arg = buf;
1884 dn_sopt->dn_sopt_arglen = size;
1885 return 0;
1886 }
1887
1888 /*
1889 * Handler for the various dummynet socket options (get, flush, config, del)
1890 */
1891 static int
dummynet_ctl(struct dn_sopt * dn_sopt)1892 dummynet_ctl(struct dn_sopt *dn_sopt)
1893 {
1894 int error = 0;
1895
1896 switch (dn_sopt->dn_sopt_name) {
1897 case IP_DUMMYNET_GET:
1898 error = dummynet_get(dn_sopt);
1899 break;
1900
1901 case IP_DUMMYNET_FLUSH:
1902 dummynet_flush();
1903 break;
1904
1905 case IP_DUMMYNET_CONFIGURE:
1906 KKASSERT(dn_sopt->dn_sopt_arglen == sizeof(struct dn_ioc_pipe));
1907 error = config_pipe(dn_sopt->dn_sopt_arg);
1908 break;
1909
1910 case IP_DUMMYNET_DEL: /* Remove a pipe or flow_set */
1911 KKASSERT(dn_sopt->dn_sopt_arglen == sizeof(struct dn_ioc_pipe));
1912 error = delete_pipe(dn_sopt->dn_sopt_arg);
1913 break;
1914
1915 default:
1916 kprintf("%s -- unknown option %d\n", __func__, dn_sopt->dn_sopt_name);
1917 error = EINVAL;
1918 break;
1919 }
1920 return error;
1921 }
1922
1923 static void
dummynet_clock(systimer_t info __unused,int in_ipi __unused,struct intrframe * frame __unused)1924 dummynet_clock(systimer_t info __unused, int in_ipi __unused,
1925 struct intrframe *frame __unused)
1926 {
1927 KASSERT(mycpuid == ip_dn_cpu,
1928 ("dummynet systimer comes on cpu%d, should be %d!",
1929 mycpuid, ip_dn_cpu));
1930
1931 crit_enter();
1932 if (DUMMYNET_LOADED && (dn_netmsg.lmsg.ms_flags & MSGF_DONE))
1933 lwkt_sendmsg_oncpu(netisr_cpuport(mycpuid), &dn_netmsg.lmsg);
1934 crit_exit();
1935 }
1936
1937 static int
sysctl_dn_hz(SYSCTL_HANDLER_ARGS)1938 sysctl_dn_hz(SYSCTL_HANDLER_ARGS)
1939 {
1940 int error, val, origcpu;
1941
1942 val = dn_hz;
1943 error = sysctl_handle_int(oidp, &val, 0, req);
1944 if (error || req->newptr == NULL)
1945 return error;
1946 if (val <= 0)
1947 return EINVAL;
1948 else if (val > DN_CALLOUT_FREQ_MAX)
1949 val = DN_CALLOUT_FREQ_MAX;
1950
1951 origcpu = mycpuid;
1952 lwkt_migratecpu(ip_dn_cpu);
1953
1954 lockmgr(&dn_lock, LK_EXCLUSIVE);
1955 crit_enter();
1956 dn_hz = val;
1957 if (dn_running)
1958 systimer_adjust_periodic(&dn_clock, val);
1959 crit_exit();
1960 lockmgr(&dn_lock, LK_RELEASE);
1961
1962 lwkt_migratecpu(origcpu);
1963
1964 return 0;
1965 }
1966
1967 static void
ip_dn_init_dispatch(netmsg_t msg)1968 ip_dn_init_dispatch(netmsg_t msg)
1969 {
1970 int i, error = 0;
1971
1972 KASSERT(mycpuid == ip_dn_cpu,
1973 ("%s runs on cpu%d, instead of cpu%d", __func__,
1974 mycpuid, ip_dn_cpu));
1975
1976 crit_enter();
1977
1978 if (DUMMYNET_LOADED) {
1979 kprintf("DUMMYNET already loaded\n");
1980 error = EEXIST;
1981 goto back;
1982 }
1983
1984 kprintf("DUMMYNET initialized (011031)\n");
1985
1986 for (i = 0; i < DN_NR_HASH_MAX; ++i)
1987 LIST_INIT(&pipe_table[i]);
1988
1989 for (i = 0; i < DN_NR_HASH_MAX; ++i)
1990 LIST_INIT(&flowset_table[i]);
1991
1992 ready_heap.size = ready_heap.elements = 0;
1993 ready_heap.offset = 0;
1994
1995 wfq_ready_heap.size = wfq_ready_heap.elements = 0;
1996 wfq_ready_heap.offset = 0;
1997
1998 extract_heap.size = extract_heap.elements = 0;
1999 extract_heap.offset = 0;
2000
2001 ip_dn_ctl_ptr = dummynet_ctl;
2002 ip_dn_io_ptr = dummynet_io;
2003
2004 netmsg_init(&dn_netmsg, NULL, &netisr_adone_rport,
2005 0, dummynet);
2006
2007 KKASSERT(dn_running == 0);
2008 #if 0
2009 /* REMOVED, initialized on first insertion */
2010 systimer_init_periodic_nq(&dn_clock, dummynet_clock, NULL, dn_hz);
2011 #endif
2012
2013 back:
2014 crit_exit();
2015 lwkt_replymsg(&msg->lmsg, error);
2016 }
2017
2018 static int
ip_dn_init(void)2019 ip_dn_init(void)
2020 {
2021 struct netmsg_base smsg;
2022
2023 if (ip_dn_cpu >= ncpus) {
2024 kprintf("%s: CPU%d does not exist, switch to CPU0\n",
2025 __func__, ip_dn_cpu);
2026 ip_dn_cpu = 0;
2027 }
2028
2029 netmsg_init(&smsg, NULL, &curthread->td_msgport,
2030 0, ip_dn_init_dispatch);
2031 lwkt_domsg(netisr_cpuport(ip_dn_cpu), &smsg.lmsg, 0);
2032 return smsg.lmsg.ms_error;
2033 }
2034
2035 #ifdef KLD_MODULE
2036
2037 static void
ip_dn_stop_dispatch(netmsg_t msg)2038 ip_dn_stop_dispatch(netmsg_t msg)
2039 {
2040 crit_enter();
2041
2042 dummynet_flush();
2043
2044 ip_dn_ctl_ptr = NULL;
2045 ip_dn_io_ptr = NULL;
2046 KKASSERT(dn_running == 0);
2047
2048 crit_exit();
2049 lwkt_replymsg(&msg->lmsg, 0);
2050 }
2051
2052
2053 static void
ip_dn_stop(void)2054 ip_dn_stop(void)
2055 {
2056 struct netmsg_base smsg;
2057
2058 netmsg_init(&smsg, NULL, &curthread->td_msgport,
2059 0, ip_dn_stop_dispatch);
2060 lwkt_domsg(netisr_cpuport(ip_dn_cpu), &smsg.lmsg, 0);
2061
2062 netmsg_service_sync();
2063 }
2064
2065 #endif /* KLD_MODULE */
2066
2067 static int
dummynet_modevent(module_t mod,int type,void * data)2068 dummynet_modevent(module_t mod, int type, void *data)
2069 {
2070 switch (type) {
2071 case MOD_LOAD:
2072 return ip_dn_init();
2073
2074 case MOD_UNLOAD:
2075 #ifndef KLD_MODULE
2076 kprintf("dummynet statically compiled, cannot unload\n");
2077 return EINVAL;
2078 #else
2079 ip_dn_stop();
2080 #endif
2081 break;
2082
2083 default:
2084 break;
2085 }
2086 return 0;
2087 }
2088
2089 static moduledata_t dummynet_mod = {
2090 "dummynet",
2091 dummynet_modevent,
2092 NULL
2093 };
2094 DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_END, SI_ORDER_ANY);
2095 MODULE_VERSION(dummynet, 1);
2096