xref: /netbsd-src/external/lgpl3/gmp/dist/mpz/stronglucas.c (revision 72c7faa4dbb41dbb0238d6b4a109da0d4b236dd4)
1 /* mpz_stronglucas(n, t1, t2) -- An implementation of the strong Lucas
2    primality test on n, using parameters as suggested by the BPSW test.
3 
4    THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY.  THEY'RE ALMOST
5    CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN
6    FUTURE GNU MP RELEASES.
7 
8 Copyright 2018 Free Software Foundation, Inc.
9 
10 Contributed by Marco Bodrato.
11 
12 This file is part of the GNU MP Library.
13 
14 The GNU MP Library is free software; you can redistribute it and/or modify
15 it under the terms of either:
16 
17   * the GNU Lesser General Public License as published by the Free
18     Software Foundation; either version 3 of the License, or (at your
19     option) any later version.
20 
21 or
22 
23   * the GNU General Public License as published by the Free Software
24     Foundation; either version 2 of the License, or (at your option) any
25     later version.
26 
27 or both in parallel, as here.
28 
29 The GNU MP Library is distributed in the hope that it will be useful, but
30 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
31 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
32 for more details.
33 
34 You should have received copies of the GNU General Public License and the
35 GNU Lesser General Public License along with the GNU MP Library.  If not,
36 see https://www.gnu.org/licenses/.  */
37 
38 #include "gmp-impl.h"
39 #include "longlong.h"
40 
41 /* Returns an approximation of the sqare root of x.
42  * It gives:
43  *   limb_apprsqrt (x) ^ 2 <= x < (limb_apprsqrt (x)+1) ^ 2
44  * or
45  *   x <= limb_apprsqrt (x) ^ 2 <= x * 9/8
46  */
47 static mp_limb_t
limb_apprsqrt(mp_limb_t x)48 limb_apprsqrt (mp_limb_t x)
49 {
50   int s;
51 
52   ASSERT (x > 2);
53   count_leading_zeros (s, x);
54   s = (GMP_LIMB_BITS - s) >> 1;
55   return ((CNST_LIMB(1) << s) + (x >> s)) >> 1;
56 }
57 
58 /* Performs strong Lucas' test on x, with parameters suggested */
59 /* for the BPSW test. Qk and V are passed to recycle variables. */
60 /* Requires GCD (x,6) = 1.*/
61 int
mpz_stronglucas(mpz_srcptr x,mpz_ptr V,mpz_ptr Qk)62 mpz_stronglucas (mpz_srcptr x, mpz_ptr V, mpz_ptr Qk)
63 {
64   mp_bitcnt_t b0;
65   mpz_t n;
66   mp_limb_t D; /* The absolute value is stored. */
67   long Q;
68   mpz_t T1, T2;
69 
70   /* Test on the absolute value. */
71   mpz_roinit_n (n, PTR (x), ABSIZ (x));
72 
73   ASSERT (mpz_odd_p (n));
74   /* ASSERT (mpz_gcd_ui (NULL, n, 6) == 1);	*/
75 #if GMP_NUMB_BITS % 16 == 0
76   /* (2^12 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1)	*/
77   D = mpn_mod_34lsub1 (PTR (n), SIZ (n));
78   /* (2^12 - 1) = 3^2 * 5 * 7 * 13		*/
79   ASSERT (D % 3 != 0 && D % 5 != 0 && D % 7 != 0);
80   if ((D % 5 & 2) != 0)
81     /* (5/n) = -1, iff n = 2 or 3 (mod 5)	*/
82     /* D = 5; Q = -1 */
83     return mpn_strongfibo (PTR (n), SIZ (n), PTR (V));
84   else if (! POW2_P (D % 7))
85     /* (-7/n) = -1, iff n = 3,5 or 6 (mod 7)	*/
86     D = 7; /* Q = 2 */
87     /* (9/n) = -1, never: 9 = 3^2	*/
88   else if (mpz_kronecker_ui (n, 11) == -1)
89     /* (-11/n) = (n/11)	*/
90     D = 11; /* Q = 3 */
91   else if ((((D % 13 - (D % 13 >> 3)) & 7) > 4) ||
92 	   (((D % 13 - (D % 13 >> 3)) & 7) == 2))
93     /* (13/n) = -1, iff n = 2,5,6,7,8 or 11 (mod 13)	*/
94     D = 13; /* Q = -3 */
95   else if (D % 3 == 2)
96     /* (-15/n) = (n/15) = (n/5)*(n/3)	*/
97     /* Here, (n/5) = 1, and		*/
98     /* (n/3) = -1, iff n = 2 (mod 3)	*/
99     D = 15; /* Q = 4 */
100 #if GMP_NUMB_BITS % 32 == 0
101   /* (2^24 - 1) | (2^{GMP_NUMB_BITS*3/4} - 1)	*/
102   /* (2^24 - 1) = (2^12 - 1) * 17 * 241		*/
103   else if (! POW2_P (D % 17) && ! POW2_P (17 - D % 17))
104     D = 17; /* Q = -4 */
105 #endif
106 #else
107   if (mpz_kronecker_ui (n, 5) == -1)
108     return mpn_strongfibo (PTR (n), SIZ (n), PTR (V));
109 #endif
110   else
111   {
112     mp_limb_t tl;
113     mp_limb_t maxD;
114     int jac_bit1;
115 
116     if (UNLIKELY (mpz_perfect_square_p (n)))
117       return 0; /* A square is composite. */
118 
119     /* Check Ds up to square root (in case, n is prime)
120        or avoid overflows */
121     if (SIZ (n) == 1)
122       maxD = limb_apprsqrt (* PTR (n));
123     else if (BITS_PER_ULONG >= GMP_NUMB_BITS && SIZ (n) == 2)
124       mpn_sqrtrem (&maxD, (mp_ptr) NULL, PTR (n), 2);
125     else
126       maxD = GMP_NUMB_MAX;
127     maxD = MIN (maxD, ULONG_MAX);
128 
129     D = GMP_NUMB_BITS % 16 == 0 ? (GMP_NUMB_BITS % 32 == 0 ? 17 : 15) : 5;
130 
131     /* Search a D such that (D/n) = -1 in the sequence 5,-7,9,-11,.. */
132     /* For those Ds we have (D/n) = (n/|D|) */
133     /* FIXME: Should we loop only on prime Ds?	*/
134     /* The only interesting composite D is 15.	*/
135     do
136       {
137 	if (UNLIKELY (D >= maxD))
138 	  return 1;
139 	D += 2;
140 	jac_bit1 = 0;
141 	JACOBI_MOD_OR_MODEXACT_1_ODD (jac_bit1, tl, PTR (n), SIZ (n), D);
142 	if (UNLIKELY (tl == 0))
143 	  return 0;
144       }
145     while (mpn_jacobi_base (tl, D, jac_bit1) == 1);
146   }
147 
148   /* D= P^2 - 4Q; P = 1; Q = (1-D)/4 */
149   Q = (D & 2) ? (D >> 2) + 1 : -(long) (D >> 2);
150   /* ASSERT (mpz_si_kronecker ((D & 2) ? NEG_CAST (long, D) : D, n) == -1); */
151 
152   /* n-(D/n) = n+1 = d*2^{b0}, with d = (n>>b0) | 1 */
153   b0 = mpz_scan0 (n, 0);
154 
155   mpz_init (T1);
156   mpz_init (T2);
157 
158   /* If Ud != 0 && Vd != 0 */
159   if (mpz_lucas_mod (V, Qk, Q, b0, n, T1, T2) == 0)
160     if (LIKELY (--b0 != 0))
161       do
162 	{
163 	  /* V_{2k} <- V_k ^ 2 - 2Q^k */
164 	  mpz_mul (T2, V, V);
165 	  mpz_submul_ui (T2, Qk, 2);
166 	  mpz_tdiv_r (V, T2, n);
167 	  if (SIZ (V) == 0 || UNLIKELY (--b0 == 0))
168 	    break;
169 	  /* Q^{2k} = (Q^k)^2 */
170 	  mpz_mul (T2, Qk, Qk);
171 	  mpz_tdiv_r (Qk, T2, n);
172 	} while (1);
173 
174   mpz_clear (T1);
175   mpz_clear (T2);
176 
177   return (b0 != 0);
178 }
179