xref: /openbsd-src/gnu/llvm/llvm/lib/Analysis/models/gen-inline-oz-test-model.py (revision d415bd752c734aee168c4ee86ff32e8cc249eb16)
1"""Generate a mock model for LLVM tests.
2
3The generated model is not a neural net - it is just a tf.function with the
4correct input and output parameters. By construction, the mock model will always
5output 1.
6"""
7
8import os
9import importlib.util
10import sys
11
12import tensorflow as tf
13
14POLICY_DECISION_LABEL = 'inlining_decision'
15POLICY_OUTPUT_SPEC = """
16[
17    {
18        "logging_name": "inlining_decision",
19        "tensor_spec": {
20            "name": "StatefulPartitionedCall",
21            "port": 0,
22            "type": "int64_t",
23            "shape": [
24                1
25            ]
26        }
27    }
28]
29"""
30
31
32# pylint: disable=g-complex-comprehension
33def get_input_signature():
34  """Returns the list of features for LLVM inlining."""
35  # int64 features
36  inputs = [
37      tf.TensorSpec(dtype=tf.int64, shape=(), name=key) for key in [
38          'caller_basic_block_count',
39          'caller_conditionally_executed_blocks',
40          'caller_users',
41          'callee_basic_block_count',
42          'callee_conditionally_executed_blocks',
43          'callee_users',
44          'nr_ctant_params',
45          'node_count',
46          'edge_count',
47          'callsite_height',
48          'cost_estimate',
49          'inlining_default',
50          'sroa_savings',
51          'sroa_losses',
52          'load_elimination',
53          'call_penalty',
54          'call_argument_setup',
55          'load_relative_intrinsic',
56          'lowered_call_arg_setup',
57          'indirect_call_penalty',
58          'jump_table_penalty',
59          'case_cluster_penalty',
60          'switch_penalty',
61          'unsimplified_common_instructions',
62          'num_loops',
63          'dead_blocks',
64          'simplified_instructions',
65          'constant_args',
66          'constant_offset_ptr_args',
67          'callsite_cost',
68          'cold_cc_penalty',
69          'last_call_to_static_bonus',
70          'is_multiple_blocks',
71          'nested_inlines',
72          'nested_inline_cost_estimate',
73          'threshold',
74      ]
75  ]
76
77  # float32 features
78  inputs.extend([
79      tf.TensorSpec(dtype=tf.float32, shape=(), name=key)
80      for key in ['discount', 'reward']
81  ])
82
83  # int32 features
84  inputs.extend([
85      tf.TensorSpec(dtype=tf.int32, shape=(), name=key)
86      for key in ['step_type']
87  ])
88  return inputs
89
90
91def get_output_signature():
92  return POLICY_DECISION_LABEL
93
94
95def get_output_spec():
96  return POLICY_OUTPUT_SPEC
97
98def get_output_spec_path(path):
99  return os.path.join(path, 'output_spec.json')
100
101
102def build_mock_model(path, signature):
103  """Build and save the mock model with the given signature"""
104  module = tf.Module()
105  def action(*inputs):
106    return {signature['output']: tf.constant(value=1, dtype=tf.int64)}
107
108  module.action = tf.function()(action)
109  action = {'action': module.action.get_concrete_function(signature['inputs'])}
110  tf.saved_model.save(module, path, signatures=action)
111
112  output_spec_path = get_output_spec_path(path)
113  with open(output_spec_path, 'w') as f:
114    print(f'Writing output spec to {output_spec_path}.')
115    f.write(signature['output_spec'])
116
117
118def get_signature():
119  return {
120      'inputs': get_input_signature(),
121      'output': get_output_signature(),
122      'output_spec': get_output_spec()
123  }
124
125
126def main(argv):
127  assert len(argv) == 2
128  model_path = argv[1]
129
130  print(f'Output model to: [{argv[1]}]')
131  signature = get_signature()
132  build_mock_model(model_path, signature)
133
134
135if __name__ == '__main__':
136  main(sys.argv)
137