xref: /onnv-gate/usr/src/common/openssl/crypto/rand/md_rand.c (revision 2139:6243c3338933)
1 /* crypto/rand/md_rand.c */
2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3  * All rights reserved.
4  *
5  * This package is an SSL implementation written
6  * by Eric Young (eay@cryptsoft.com).
7  * The implementation was written so as to conform with Netscapes SSL.
8  *
9  * This library is free for commercial and non-commercial use as long as
10  * the following conditions are aheared to.  The following conditions
11  * apply to all code found in this distribution, be it the RC4, RSA,
12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
13  * included with this distribution is covered by the same copyright terms
14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
15  *
16  * Copyright remains Eric Young's, and as such any Copyright notices in
17  * the code are not to be removed.
18  * If this package is used in a product, Eric Young should be given attribution
19  * as the author of the parts of the library used.
20  * This can be in the form of a textual message at program startup or
21  * in documentation (online or textual) provided with the package.
22  *
23  * Redistribution and use in source and binary forms, with or without
24  * modification, are permitted provided that the following conditions
25  * are met:
26  * 1. Redistributions of source code must retain the copyright
27  *    notice, this list of conditions and the following disclaimer.
28  * 2. Redistributions in binary form must reproduce the above copyright
29  *    notice, this list of conditions and the following disclaimer in the
30  *    documentation and/or other materials provided with the distribution.
31  * 3. All advertising materials mentioning features or use of this software
32  *    must display the following acknowledgement:
33  *    "This product includes cryptographic software written by
34  *     Eric Young (eay@cryptsoft.com)"
35  *    The word 'cryptographic' can be left out if the rouines from the library
36  *    being used are not cryptographic related :-).
37  * 4. If you include any Windows specific code (or a derivative thereof) from
38  *    the apps directory (application code) you must include an acknowledgement:
39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
40  *
41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  *
53  * The licence and distribution terms for any publically available version or
54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
55  * copied and put under another distribution licence
56  * [including the GNU Public Licence.]
57  */
58 /* ====================================================================
59  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
60  *
61  * Redistribution and use in source and binary forms, with or without
62  * modification, are permitted provided that the following conditions
63  * are met:
64  *
65  * 1. Redistributions of source code must retain the above copyright
66  *    notice, this list of conditions and the following disclaimer.
67  *
68  * 2. Redistributions in binary form must reproduce the above copyright
69  *    notice, this list of conditions and the following disclaimer in
70  *    the documentation and/or other materials provided with the
71  *    distribution.
72  *
73  * 3. All advertising materials mentioning features or use of this
74  *    software must display the following acknowledgment:
75  *    "This product includes software developed by the OpenSSL Project
76  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
77  *
78  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
79  *    endorse or promote products derived from this software without
80  *    prior written permission. For written permission, please contact
81  *    openssl-core@openssl.org.
82  *
83  * 5. Products derived from this software may not be called "OpenSSL"
84  *    nor may "OpenSSL" appear in their names without prior written
85  *    permission of the OpenSSL Project.
86  *
87  * 6. Redistributions of any form whatsoever must retain the following
88  *    acknowledgment:
89  *    "This product includes software developed by the OpenSSL Project
90  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
91  *
92  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
93  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
94  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
95  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
96  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
97  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
98  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
99  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
100  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
101  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
103  * OF THE POSSIBILITY OF SUCH DAMAGE.
104  * ====================================================================
105  *
106  * This product includes cryptographic software written by Eric Young
107  * (eay@cryptsoft.com).  This product includes software written by Tim
108  * Hudson (tjh@cryptsoft.com).
109  *
110  */
111 
112 #ifdef MD_RAND_DEBUG
113 # ifndef NDEBUG
114 #   define NDEBUG
115 # endif
116 #endif
117 
118 #include <assert.h>
119 #include <stdio.h>
120 #include <string.h>
121 
122 #include "e_os.h"
123 
124 #include <openssl/rand.h>
125 #include "rand_lcl.h"
126 
127 #include <openssl/crypto.h>
128 #include <openssl/err.h>
129 
130 #ifdef BN_DEBUG
131 # define PREDICT
132 #endif
133 
134 /* #define PREDICT	1 */
135 
136 #define STATE_SIZE	1023
137 static int state_num=0,state_index=0;
138 static unsigned char state[STATE_SIZE+MD_DIGEST_LENGTH];
139 static unsigned char md[MD_DIGEST_LENGTH];
140 static long md_count[2]={0,0};
141 static double entropy=0;
142 static int initialized=0;
143 
144 static unsigned int crypto_lock_rand = 0; /* may be set only when a thread
145                                            * holds CRYPTO_LOCK_RAND
146                                            * (to prevent double locking) */
147 /* access to lockin_thread is synchronized by CRYPTO_LOCK_RAND2 */
148 static unsigned long locking_thread = 0; /* valid iff crypto_lock_rand is set */
149 
150 
151 #ifdef PREDICT
152 int rand_predictable=0;
153 #endif
154 
155 const char *RAND_version="RAND" OPENSSL_VERSION_PTEXT;
156 
157 static void ssleay_rand_cleanup(void);
158 static void ssleay_rand_seed(const void *buf, int num);
159 static void ssleay_rand_add(const void *buf, int num, double add_entropy);
160 static int ssleay_rand_bytes(unsigned char *buf, int num);
161 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num);
162 static int ssleay_rand_status(void);
163 
164 RAND_METHOD rand_ssleay_meth={
165 	ssleay_rand_seed,
166 	ssleay_rand_bytes,
167 	ssleay_rand_cleanup,
168 	ssleay_rand_add,
169 	ssleay_rand_pseudo_bytes,
170 	ssleay_rand_status
171 	};
172 
RAND_SSLeay(void)173 RAND_METHOD *RAND_SSLeay(void)
174 	{
175 	return(&rand_ssleay_meth);
176 	}
177 
ssleay_rand_cleanup(void)178 static void ssleay_rand_cleanup(void)
179 	{
180 	OPENSSL_cleanse(state,sizeof(state));
181 	state_num=0;
182 	state_index=0;
183 	OPENSSL_cleanse(md,MD_DIGEST_LENGTH);
184 	md_count[0]=0;
185 	md_count[1]=0;
186 	entropy=0;
187 	initialized=0;
188 	}
189 
ssleay_rand_add(const void * buf,int num,double add)190 static void ssleay_rand_add(const void *buf, int num, double add)
191 	{
192 	int i,j,k,st_idx;
193 	long md_c[2];
194 	unsigned char local_md[MD_DIGEST_LENGTH];
195 	EVP_MD_CTX m;
196 	int do_not_lock;
197 
198 	/*
199 	 * (Based on the rand(3) manpage)
200 	 *
201 	 * The input is chopped up into units of 20 bytes (or less for
202 	 * the last block).  Each of these blocks is run through the hash
203 	 * function as follows:  The data passed to the hash function
204 	 * is the current 'md', the same number of bytes from the 'state'
205 	 * (the location determined by in incremented looping index) as
206 	 * the current 'block', the new key data 'block', and 'count'
207 	 * (which is incremented after each use).
208 	 * The result of this is kept in 'md' and also xored into the
209 	 * 'state' at the same locations that were used as input into the
210          * hash function.
211 	 */
212 
213 	/* check if we already have the lock */
214 	if (crypto_lock_rand)
215 		{
216 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
217 		do_not_lock = (locking_thread == CRYPTO_thread_id());
218 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
219 		}
220 	else
221 		do_not_lock = 0;
222 
223 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
224 	st_idx=state_index;
225 
226 	/* use our own copies of the counters so that even
227 	 * if a concurrent thread seeds with exactly the
228 	 * same data and uses the same subarray there's _some_
229 	 * difference */
230 	md_c[0] = md_count[0];
231 	md_c[1] = md_count[1];
232 
233 	memcpy(local_md, md, sizeof md);
234 
235 	/* state_index <= state_num <= STATE_SIZE */
236 	state_index += num;
237 	if (state_index >= STATE_SIZE)
238 		{
239 		state_index%=STATE_SIZE;
240 		state_num=STATE_SIZE;
241 		}
242 	else if (state_num < STATE_SIZE)
243 		{
244 		if (state_index > state_num)
245 			state_num=state_index;
246 		}
247 	/* state_index <= state_num <= STATE_SIZE */
248 
249 	/* state[st_idx], ..., state[(st_idx + num - 1) % STATE_SIZE]
250 	 * are what we will use now, but other threads may use them
251 	 * as well */
252 
253 	md_count[1] += (num / MD_DIGEST_LENGTH) + (num % MD_DIGEST_LENGTH > 0);
254 
255 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
256 
257 	EVP_MD_CTX_init(&m);
258 	for (i=0; i<num; i+=MD_DIGEST_LENGTH)
259 		{
260 		j=(num-i);
261 		j=(j > MD_DIGEST_LENGTH)?MD_DIGEST_LENGTH:j;
262 
263 		MD_Init(&m);
264 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
265 		k=(st_idx+j)-STATE_SIZE;
266 		if (k > 0)
267 			{
268 			MD_Update(&m,&(state[st_idx]),j-k);
269 			MD_Update(&m,&(state[0]),k);
270 			}
271 		else
272 			MD_Update(&m,&(state[st_idx]),j);
273 
274 		MD_Update(&m,buf,j);
275 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
276 		MD_Final(&m,local_md);
277 		md_c[1]++;
278 
279 		buf=(const char *)buf + j;
280 
281 		for (k=0; k<j; k++)
282 			{
283 			/* Parallel threads may interfere with this,
284 			 * but always each byte of the new state is
285 			 * the XOR of some previous value of its
286 			 * and local_md (itermediate values may be lost).
287 			 * Alway using locking could hurt performance more
288 			 * than necessary given that conflicts occur only
289 			 * when the total seeding is longer than the random
290 			 * state. */
291 			state[st_idx++]^=local_md[k];
292 			if (st_idx >= STATE_SIZE)
293 				st_idx=0;
294 			}
295 		}
296 	EVP_MD_CTX_cleanup(&m);
297 
298 	if (!do_not_lock) CRYPTO_w_lock(CRYPTO_LOCK_RAND);
299 	/* Don't just copy back local_md into md -- this could mean that
300 	 * other thread's seeding remains without effect (except for
301 	 * the incremented counter).  By XORing it we keep at least as
302 	 * much entropy as fits into md. */
303 	for (k = 0; k < (int)sizeof(md); k++)
304 		{
305 		md[k] ^= local_md[k];
306 		}
307 	if (entropy < ENTROPY_NEEDED) /* stop counting when we have enough */
308 	    entropy += add;
309 	if (!do_not_lock) CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
310 
311 #if !defined(OPENSSL_THREADS) && !defined(OPENSSL_SYS_WIN32)
312 	assert(md_c[1] == md_count[1]);
313 #endif
314 	}
315 
ssleay_rand_seed(const void * buf,int num)316 static void ssleay_rand_seed(const void *buf, int num)
317 	{
318 	ssleay_rand_add(buf, num, (double)num);
319 	}
320 
ssleay_rand_bytes(unsigned char * buf,int num)321 static int ssleay_rand_bytes(unsigned char *buf, int num)
322 	{
323 	static volatile int stirred_pool = 0;
324 	int i,j,k,st_num,st_idx;
325 	int num_ceil;
326 	int ok;
327 	long md_c[2];
328 	unsigned char local_md[MD_DIGEST_LENGTH];
329 	EVP_MD_CTX m;
330 #ifndef GETPID_IS_MEANINGLESS
331 	pid_t curr_pid = getpid();
332 #endif
333 	int do_stir_pool = 0;
334 
335 #ifdef PREDICT
336 	if (rand_predictable)
337 		{
338 		static unsigned char val=0;
339 
340 		for (i=0; i<num; i++)
341 			buf[i]=val++;
342 		return(1);
343 		}
344 #endif
345 
346 	if (num <= 0)
347 		return 1;
348 
349 	EVP_MD_CTX_init(&m);
350 	/* round upwards to multiple of MD_DIGEST_LENGTH/2 */
351 	num_ceil = (1 + (num-1)/(MD_DIGEST_LENGTH/2)) * (MD_DIGEST_LENGTH/2);
352 
353 	/*
354 	 * (Based on the rand(3) manpage:)
355 	 *
356 	 * For each group of 10 bytes (or less), we do the following:
357 	 *
358 	 * Input into the hash function the local 'md' (which is initialized from
359 	 * the global 'md' before any bytes are generated), the bytes that are to
360 	 * be overwritten by the random bytes, and bytes from the 'state'
361 	 * (incrementing looping index). From this digest output (which is kept
362 	 * in 'md'), the top (up to) 10 bytes are returned to the caller and the
363 	 * bottom 10 bytes are xored into the 'state'.
364 	 *
365 	 * Finally, after we have finished 'num' random bytes for the
366 	 * caller, 'count' (which is incremented) and the local and global 'md'
367 	 * are fed into the hash function and the results are kept in the
368 	 * global 'md'.
369 	 */
370 
371 	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
372 
373 	/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
374 	CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
375 	locking_thread = CRYPTO_thread_id();
376 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
377 	crypto_lock_rand = 1;
378 
379 	if (!initialized)
380 		{
381 		RAND_poll();
382 		initialized = 1;
383 		}
384 
385 	if (!stirred_pool)
386 		do_stir_pool = 1;
387 
388 	ok = (entropy >= ENTROPY_NEEDED);
389 	if (!ok)
390 		{
391 		/* If the PRNG state is not yet unpredictable, then seeing
392 		 * the PRNG output may help attackers to determine the new
393 		 * state; thus we have to decrease the entropy estimate.
394 		 * Once we've had enough initial seeding we don't bother to
395 		 * adjust the entropy count, though, because we're not ambitious
396 		 * to provide *information-theoretic* randomness.
397 		 *
398 		 * NOTE: This approach fails if the program forks before
399 		 * we have enough entropy. Entropy should be collected
400 		 * in a separate input pool and be transferred to the
401 		 * output pool only when the entropy limit has been reached.
402 		 */
403 		entropy -= num;
404 		if (entropy < 0)
405 			entropy = 0;
406 		}
407 
408 	if (do_stir_pool)
409 		{
410 		/* In the output function only half of 'md' remains secret,
411 		 * so we better make sure that the required entropy gets
412 		 * 'evenly distributed' through 'state', our randomness pool.
413 		 * The input function (ssleay_rand_add) chains all of 'md',
414 		 * which makes it more suitable for this purpose.
415 		 */
416 
417 		int n = STATE_SIZE; /* so that the complete pool gets accessed */
418 		while (n > 0)
419 			{
420 #if MD_DIGEST_LENGTH > 20
421 # error "Please adjust DUMMY_SEED."
422 #endif
423 #define DUMMY_SEED "...................." /* at least MD_DIGEST_LENGTH */
424 			/* Note that the seed does not matter, it's just that
425 			 * ssleay_rand_add expects to have something to hash. */
426 			ssleay_rand_add(DUMMY_SEED, MD_DIGEST_LENGTH, 0.0);
427 			n -= MD_DIGEST_LENGTH;
428 			}
429 		if (ok)
430 			stirred_pool = 1;
431 		}
432 
433 	st_idx=state_index;
434 	st_num=state_num;
435 	md_c[0] = md_count[0];
436 	md_c[1] = md_count[1];
437 	memcpy(local_md, md, sizeof md);
438 
439 	state_index+=num_ceil;
440 	if (state_index > state_num)
441 		state_index %= state_num;
442 
443 	/* state[st_idx], ..., state[(st_idx + num_ceil - 1) % st_num]
444 	 * are now ours (but other threads may use them too) */
445 
446 	md_count[0] += 1;
447 
448 	/* before unlocking, we must clear 'crypto_lock_rand' */
449 	crypto_lock_rand = 0;
450 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
451 
452 	while (num > 0)
453 		{
454 		/* num_ceil -= MD_DIGEST_LENGTH/2 */
455 		j=(num >= MD_DIGEST_LENGTH/2)?MD_DIGEST_LENGTH/2:num;
456 		num-=j;
457 		MD_Init(&m);
458 #ifndef GETPID_IS_MEANINGLESS
459 		if (curr_pid) /* just in the first iteration to save time */
460 			{
461 			MD_Update(&m,(unsigned char*)&curr_pid,sizeof curr_pid);
462 			curr_pid = 0;
463 			}
464 #endif
465 		MD_Update(&m,local_md,MD_DIGEST_LENGTH);
466 		MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
467 #ifndef PURIFY
468 		MD_Update(&m,buf,j); /* purify complains */
469 #endif
470 		k=(st_idx+MD_DIGEST_LENGTH/2)-st_num;
471 		if (k > 0)
472 			{
473 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2-k);
474 			MD_Update(&m,&(state[0]),k);
475 			}
476 		else
477 			MD_Update(&m,&(state[st_idx]),MD_DIGEST_LENGTH/2);
478 		MD_Final(&m,local_md);
479 
480 		for (i=0; i<MD_DIGEST_LENGTH/2; i++)
481 			{
482 			state[st_idx++]^=local_md[i]; /* may compete with other threads */
483 			if (st_idx >= st_num)
484 				st_idx=0;
485 			if (i < j)
486 				*(buf++)=local_md[i+MD_DIGEST_LENGTH/2];
487 			}
488 		}
489 
490 	MD_Init(&m);
491 	MD_Update(&m,(unsigned char *)&(md_c[0]),sizeof(md_c));
492 	MD_Update(&m,local_md,MD_DIGEST_LENGTH);
493 	CRYPTO_w_lock(CRYPTO_LOCK_RAND);
494 	MD_Update(&m,md,MD_DIGEST_LENGTH);
495 	MD_Final(&m,md);
496 	CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
497 
498 	EVP_MD_CTX_cleanup(&m);
499 	if (ok)
500 		return(1);
501 	else
502 		{
503 		RANDerr(RAND_F_SSLEAY_RAND_BYTES,RAND_R_PRNG_NOT_SEEDED);
504 		ERR_add_error_data(1, "You need to read the OpenSSL FAQ, "
505 			"http://www.openssl.org/support/faq.html");
506 		return(0);
507 		}
508 	}
509 
510 /* pseudo-random bytes that are guaranteed to be unique but not
511    unpredictable */
ssleay_rand_pseudo_bytes(unsigned char * buf,int num)512 static int ssleay_rand_pseudo_bytes(unsigned char *buf, int num)
513 	{
514 	int ret;
515 	unsigned long err;
516 
517 	ret = RAND_bytes(buf, num);
518 	if (ret == 0)
519 		{
520 		err = ERR_peek_error();
521 		if (ERR_GET_LIB(err) == ERR_LIB_RAND &&
522 		    ERR_GET_REASON(err) == RAND_R_PRNG_NOT_SEEDED)
523 			ERR_clear_error();
524 		}
525 	return (ret);
526 	}
527 
ssleay_rand_status(void)528 static int ssleay_rand_status(void)
529 	{
530 	int ret;
531 	int do_not_lock;
532 
533 	/* check if we already have the lock
534 	 * (could happen if a RAND_poll() implementation calls RAND_status()) */
535 	if (crypto_lock_rand)
536 		{
537 		CRYPTO_r_lock(CRYPTO_LOCK_RAND2);
538 		do_not_lock = (locking_thread == CRYPTO_thread_id());
539 		CRYPTO_r_unlock(CRYPTO_LOCK_RAND2);
540 		}
541 	else
542 		do_not_lock = 0;
543 
544 	if (!do_not_lock)
545 		{
546 		CRYPTO_w_lock(CRYPTO_LOCK_RAND);
547 
548 		/* prevent ssleay_rand_bytes() from trying to obtain the lock again */
549 		CRYPTO_w_lock(CRYPTO_LOCK_RAND2);
550 		locking_thread = CRYPTO_thread_id();
551 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND2);
552 		crypto_lock_rand = 1;
553 		}
554 
555 	if (!initialized)
556 		{
557 		RAND_poll();
558 		initialized = 1;
559 		}
560 
561 	ret = entropy >= ENTROPY_NEEDED;
562 
563 	if (!do_not_lock)
564 		{
565 		/* before unlocking, we must clear 'crypto_lock_rand' */
566 		crypto_lock_rand = 0;
567 
568 		CRYPTO_w_unlock(CRYPTO_LOCK_RAND);
569 		}
570 
571 	return ret;
572 	}
573