xref: /netbsd-src/sys/arch/evbarm/lubbock/lubbock_machdep.c (revision 5fdf9d1befdde982def6f1a6a9cd016f1b31fcee)
1 /*	$NetBSD: lubbock_machdep.c,v 1.46 2024/02/20 23:36:02 andvar Exp $ */
2 
3 /*
4  * Copyright (c) 2002, 2003, 2005  Genetec Corporation.  All rights reserved.
5  * Written by Hiroyuki Bessho for Genetec Corporation.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of Genetec Corporation may not be used to endorse or
16  *    promote products derived from this software without specific prior
17  *    written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL GENETEC CORPORATION
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Machine dependent functions for kernel setup for
32  * Intel DBPXA250 evaluation board (a.k.a. Lubbock).
33  * Based on iq80310_machhdep.c
34  */
35 /*
36  * Copyright (c) 2001 Wasabi Systems, Inc.
37  * All rights reserved.
38  *
39  * Written by Jason R. Thorpe for Wasabi Systems, Inc.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed for the NetBSD Project by
52  *	Wasabi Systems, Inc.
53  * 4. The name of Wasabi Systems, Inc. may not be used to endorse
54  *    or promote products derived from this software without specific prior
55  *    written permission.
56  *
57  * THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
58  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
59  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
60  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
61  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
62  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
63  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
64  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
65  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
66  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
67  * POSSIBILITY OF SUCH DAMAGE.
68  */
69 
70 /*
71  * Copyright (c) 1997,1998 Mark Brinicombe.
72  * Copyright (c) 1997,1998 Causality Limited.
73  * All rights reserved.
74  *
75  * Redistribution and use in source and binary forms, with or without
76  * modification, are permitted provided that the following conditions
77  * are met:
78  * 1. Redistributions of source code must retain the above copyright
79  *    notice, this list of conditions and the following disclaimer.
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in the
82  *    documentation and/or other materials provided with the distribution.
83  * 3. All advertising materials mentioning features or use of this software
84  *    must display the following acknowledgement:
85  *	This product includes software developed by Mark Brinicombe
86  *	for the NetBSD Project.
87  * 4. The name of the company nor the name of the author may be used to
88  *    endorse or promote products derived from this software without specific
89  *    prior written permission.
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
92  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
93  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
94  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
95  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
96  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
97  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
98  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
99  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
100  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
101  * SUCH DAMAGE.
102  *
103  * Machine dependent functions for kernel setup for Intel IQ80310 evaluation
104  * boards using RedBoot firmware.
105  */
106 
107 /*
108  * DIP switches:
109  *
110  * S19: no-dot: set RB_KDB.  enter kgdb session.
111  * S20: no-dot: set RB_SINGLE. don't go multi user mode.
112  */
113 
114 #include <sys/cdefs.h>
115 __KERNEL_RCSID(0, "$NetBSD: lubbock_machdep.c,v 1.46 2024/02/20 23:36:02 andvar Exp $");
116 
117 #include "opt_arm_debug.h"
118 #include "opt_console.h"
119 #include "opt_ddb.h"
120 #include "opt_kgdb.h"
121 #include "opt_md.h"
122 #include "opt_com.h"
123 #include "lcd.h"
124 
125 #include <sys/param.h>
126 #include <sys/device.h>
127 #include <sys/systm.h>
128 #include <sys/kernel.h>
129 #include <sys/exec.h>
130 #include <sys/proc.h>
131 #include <sys/msgbuf.h>
132 #include <sys/reboot.h>
133 #include <sys/termios.h>
134 #include <sys/ksyms.h>
135 #include <sys/bus.h>
136 #include <sys/cpu.h>
137 #include <sys/conf.h>
138 
139 #include <uvm/uvm_extern.h>
140 
141 #include <dev/cons.h>
142 #include <dev/md.h>
143 #include <dev/ic/smc91cxxreg.h>
144 
145 #include <machine/db_machdep.h>
146 #include <ddb/db_sym.h>
147 #include <ddb/db_extern.h>
148 #ifdef KGDB
149 #include <sys/kgdb.h>
150 #endif
151 
152 #include <machine/bootconfig.h>
153 #include <arm/locore.h>
154 #include <arm/undefined.h>
155 
156 #include <arm/arm32/machdep.h>
157 
158 #include <arm/xscale/pxa2x0reg.h>
159 #include <arm/xscale/pxa2x0var.h>
160 #include <arm/xscale/pxa2x0_gpio.h>
161 #include <arm/sa11x0/sa1111_reg.h>
162 #include <evbarm/lubbock/lubbock_reg.h>
163 #include <evbarm/lubbock/lubbock_var.h>
164 
165 /* Kernel text starts 2MB in from the bottom of the kernel address space. */
166 #define	KERNEL_TEXT_BASE	(KERNEL_BASE + 0x00200000)
167 #define	KERNEL_VM_BASE		(KERNEL_BASE + 0x01000000)
168 
169 /*
170  * The range 0xc1000000 - 0xccffffff is available for kernel VM space
171  * Core-logic registers and I/O mappings occupy 0xfd000000 - 0xffffffff
172  */
173 #define KERNEL_VM_SIZE		0x0C000000
174 
175 BootConfig bootconfig;		/* Boot config storage */
176 char *boot_args = NULL;
177 char *boot_file = NULL;
178 
179 vaddr_t physical_start;
180 vaddr_t physical_freestart;
181 vaddr_t physical_freeend;
182 vaddr_t physical_end;
183 u_int free_pages;
184 
185 /*int debug_flags;*/
186 #ifndef PMAP_STATIC_L1S
187 int max_processes = 64;			/* Default number */
188 #endif	/* !PMAP_STATIC_L1S */
189 
190 /* Physical and virtual addresses for some global pages */
191 pv_addr_t minidataclean;
192 
193 paddr_t msgbufphys;
194 
195 #define KERNEL_PT_SYS		0	/* Page table for mapping proc0 zero page */
196 #define KERNEL_PT_KERNEL	1	/* Page table for mapping kernel */
197 #define	KERNEL_PT_KERNEL_NUM	4
198 #define KERNEL_PT_VMDATA	(KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
199 				        /* Page tables for mapping kernel VM */
200 #define	KERNEL_PT_VMDATA_NUM	4	/* start with 16MB of KVM */
201 #define NUM_KERNEL_PTS		(KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
202 
203 pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
204 
205 /* Prototypes */
206 
207 #if 0
208 void	process_kernel_args(char *);
209 #endif
210 
211 void	consinit(void);
212 void	kgdb_port_init(void);
213 void	change_clock(uint32_t v);
214 
215 bs_protos(bs_notimpl);
216 
217 #include "com.h"
218 #if NCOM > 0
219 #include <dev/ic/comreg.h>
220 #include <dev/ic/comvar.h>
221 #endif
222 
223 #ifndef CONSPEED
224 #define CONSPEED B115200	/* What RedBoot uses */
225 #endif
226 #ifndef CONMODE
227 #define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
228 #endif
229 
230 int comcnspeed = CONSPEED;
231 int comcnmode = CONMODE;
232 
233 static struct pxa2x0_gpioconf boarddep_gpioconf[] = {
234 	{ 44, GPIO_ALT_FN_1_IN },	/* BTCST */
235 	{ 45, GPIO_ALT_FN_2_OUT },	/* BTRST */
236 
237 	{ 29, GPIO_ALT_FN_1_IN },	/* SDATA_IN0 */
238 
239 	{ -1 }
240 };
241 static struct pxa2x0_gpioconf *lubbock_gpioconf[] = {
242 	pxa25x_com_btuart_gpioconf,
243 	pxa25x_com_ffuart_gpioconf,
244 #if 0
245 	pxa25x_com_stuart_gpioconf,
246 #endif
247 	pxa25x_pcic_gpioconf,
248 	pxa25x_pxaacu_gpioconf,
249 	boarddep_gpioconf,
250 	NULL
251 };
252 
253 /*
254  * void cpu_reboot(int howto, char *bootstr)
255  *
256  * Reboots the system
257  *
258  * Deal with any syncing, unmounting, dumping and shutdown hooks,
259  * then reset the CPU.
260  */
261 void
cpu_reboot(int howto,char * bootstr)262 cpu_reboot(int howto, char *bootstr)
263 {
264 #ifdef DIAGNOSTIC
265 	/* info */
266 	printf("boot: howto=%08x curproc=%p\n", howto, curproc);
267 #endif
268 
269 	/*
270 	 * If we are still cold then hit the air brakes
271 	 * and crash to earth fast
272 	 */
273 	if (cold) {
274 		doshutdownhooks();
275 		pmf_system_shutdown(boothowto);
276 		printf("The operating system has halted.\n");
277 		printf("Please press any key to reboot.\n\n");
278 		cngetc();
279 		printf("rebooting...\n");
280 		cpu_reset();
281 		/*NOTREACHED*/
282 	}
283 
284 	/* Disable console buffering */
285 /*	cnpollc(1);*/
286 
287 	/*
288 	 * If RB_NOSYNC was not specified sync the discs.
289 	 * Note: Unless cold is set to 1 here, syslogd will die during the
290 	 * unmount.  It looks like syslogd is getting woken up only to find
291 	 * that it cannot page part of the binary in as the filesystem has
292 	 * been unmounted.
293 	 */
294 	if (!(howto & RB_NOSYNC))
295 		bootsync();
296 
297 	/* Say NO to interrupts */
298 	splhigh();
299 
300 	/* Do a dump if requested. */
301 	if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
302 		dumpsys();
303 
304 	/* Run any shutdown hooks */
305 	doshutdownhooks();
306 
307 	pmf_system_shutdown(boothowto);
308 
309 	/* Make sure IRQ's are disabled */
310 	IRQdisable;
311 
312 	if (howto & RB_HALT) {
313 		printf("The operating system has halted.\n");
314 		printf("Please press any key to reboot.\n\n");
315 		cngetc();
316 	}
317 
318 	printf("rebooting...\n");
319 	cpu_reset();
320 	/*NOTREACHED*/
321 }
322 
323 static inline
324 pd_entry_t *
read_ttb(void)325 read_ttb(void)
326 {
327   long ttb;
328 
329   __asm volatile("mrc	p15, 0, %0, c2, c0, 0" : "=r" (ttb));
330 
331 
332   return (pd_entry_t *)(ttb & ~((1<<14)-1));
333 }
334 
335 /*
336  * Static device mappings. These peripheral registers are mapped at
337  * fixed virtual addresses very early in initarm() so that we can use
338  * them while booting the kernel, and stay at the same address
339  * throughout whole kernel's life time.
340  *
341  * We use this table twice; once with bootstrap page table, and once
342  * with kernel's page table which we build up in initarm().
343  *
344  * Since we map these registers into the bootstrap page table using
345  * pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
346  * registers segment-aligned and segment-rounded in order to avoid
347  * using the 2nd page tables.
348  */
349 
350 static const struct pmap_devmap lubbock_devmap[] = {
351     DEVMAP_ENTRY(
352 	    LUBBOCK_OBIO_VBASE,
353 	    LUBBOCK_OBIO_PBASE,
354 	    LUBBOCK_OBIO_SIZE
355     ),
356     DEVMAP_ENTRY(
357 	    LUBBOCK_GPIO_VBASE,
358 	    PXA2X0_GPIO_BASE,
359 	    PXA250_GPIO_SIZE
360     ),
361     DEVMAP_ENTRY(
362 	    LUBBOCK_CLKMAN_VBASE,
363 	    PXA2X0_CLKMAN_BASE,
364 	    PXA2X0_CLKMAN_SIZE
365     ),
366     DEVMAP_ENTRY(
367 	    LUBBOCK_INTCTL_VBASE,
368 	    PXA2X0_INTCTL_BASE,
369 	    PXA2X0_INTCTL_SIZE
370     ),
371     DEVMAP_ENTRY(
372 	    LUBBOCK_FFUART_VBASE,
373 	    PXA2X0_FFUART_BASE,
374 	    4 * COM_NPORTS
375     ),
376     DEVMAP_ENTRY(
377 	    LUBBOCK_BTUART_VBASE,
378 	    PXA2X0_BTUART_BASE,
379 	    4 * COM_NPORTS
380     ),
381 
382     DEVMAP_ENTRY_END
383 };
384 
385 /*
386  * vaddr_t initarm(...)
387  *
388  * Initial entry point on startup. This gets called before main() is
389  * entered.
390  * It should be responsible for setting up everything that must be
391  * in place when main is called.
392  * This includes
393  *   Taking a copy of the boot configuration structure.
394  *   Initialising the physical console so characters can be printed.
395  *   Setting up page tables for the kernel
396  *   Relocating the kernel to the bottom of physical memory
397  */
398 vaddr_t
initarm(void * arg)399 initarm(void *arg)
400 {
401 	int loop;
402 	int loop1;
403 	u_int l1pagetable;
404 	paddr_t memstart;
405 	psize_t memsize;
406 	int led_data = 0;
407 #define LEDSTEP_P() 	ioreg_write(LUBBOCK_OBIO_PBASE+LUBBOCK_HEXLED, led_data++)
408 #define LEDSTEP() hex_led(led_data++)
409 
410 	/* use physical address until pagetable is set */
411 	LEDSTEP_P();
412 
413 	/* map some peripheral registers at static I/O area */
414 	pmap_devmap_bootstrap((vaddr_t)read_ttb(), lubbock_devmap);
415 
416 	LEDSTEP_P();
417 
418 	/* start 32.768 kHz OSC */
419 	ioreg_write(LUBBOCK_CLKMAN_VBASE + 0x08, 2);
420 	/* Get ready for splfoo() */
421 	pxa2x0_intr_bootstrap(LUBBOCK_INTCTL_VBASE);
422 
423 	LEDSTEP();
424 
425 	/*
426 	 * Heads up ... Setup the CPU / MMU / TLB functions
427 	 */
428 	if (set_cpufuncs())
429 		panic("cpu not recognized!");
430 
431 	LEDSTEP();
432 
433 
434 #if 0
435 	/* Calibrate the delay loop. */
436 #endif
437 
438 	/*
439 	 * Okay, RedBoot has provided us with the following memory map:
440 	 *
441 	 * Physical Address Range     Description
442 	 * -----------------------    ----------------------------------
443 	 * 0x00000000 - 0x01ffffff    flash Memory   (32MB)
444 	 * 0x04000000 - 0x05ffffff    Application flash Memory  (32MB)
445 	 * 0x08000000 - 0x080000ff    I/O baseboard registers
446 	 * 0x0a000000 - 0x0a0fffff    SRAM (1MB)
447 	 * 0x0c000000 - 0x0c0fffff    Ethernet Controller
448 	 * 0x0e000000 - 0x0e0fffff    Ethernet Controller (Attribute)
449 	 * 0x10000000 - 0x103fffff    SA-1111 Companion Chip
450 	 * 0x14000000 - 0x17ffffff    Expansion Card (64MB)
451 	 * 0x40000000 - 0x480fffff    Processor Registers
452 	 * 0xa0000000 - 0xa3ffffff    SDRAM Bank 0 (64MB)
453 	 *
454 	 *
455 	 * Virtual Address Range    X C B  Description
456 	 * -----------------------  - - -  ----------------------------------
457 	 * 0x00000000 - 0x00003fff  N Y Y  SDRAM
458 	 * 0x00004000 - 0x000fffff  N Y N  Boot ROM
459 	 * 0x00100000 - 0x01ffffff  N N N  Application Flash
460 	 * 0x04000000 - 0x05ffffff  N N N  Exp Application Flash
461 	 * 0x08000000 - 0x080fffff  N N N  I/O baseboard registers
462 	 * 0x0a000000 - 0x0a0fffff  N N N  SRAM
463 	 * 0x40000000 - 0x480fffff  N N N  Processor Registers
464 	 * 0xa0000000 - 0xa000ffff  N Y N  RedBoot SDRAM
465 	 * 0xa0017000 - 0xa3ffffff  Y Y Y  SDRAM
466 	 * 0xc0000000 - 0xcfffffff  Y Y Y  Cache Flush Region
467 	 * (done by this routine)
468 	 * 0xfd000000 - 0xfd0000ff  N N N  I/O baseboard registers
469 	 * 0xfd100000 - 0xfd3fffff  N N N  Processor Registers.
470 	 * 0xfd400000 - 0xfd4fffff  N N N  FF-UART
471 	 * 0xfd500000 - 0xfd5fffff  N N N  BT-UART
472 	 *
473 	 * RedBoot's first level page table is at 0xa0004000.  There
474 	 * are also 2 second-level tables at 0xa0008000 and
475 	 * 0xa0008400.  We will continue to use them until we switch to
476 	 * our pagetable by cpu_setttb().
477 	 *
478 	 */
479 
480 	/* setup GPIO for BTUART, in case bootloader doesn't take care of it */
481 	pxa2x0_gpio_bootstrap(LUBBOCK_GPIO_VBASE);
482 	pxa2x0_gpio_config(lubbock_gpioconf);
483 
484 	/* turn on clock to UART block.
485 	   XXX: this should not be done here. */
486 	ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, CKEN_FFUART|CKEN_BTUART |
487 	    ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN));
488 
489 	LEDSTEP();
490 
491 	consinit();
492 	LEDSTEP();
493 #ifdef KGDB
494 	kgdb_port_init();
495 	LEDSTEP();
496 #endif
497 
498 
499 	/* Talk to the user */
500 	printf("\nNetBSD/evbarm (lubbock) booting ...\n");
501 
502 	/* Tweak memory controller */
503 	{
504 		/* Modify access timing for CS3 (91c96) */
505 
506 		uint32_t tmp =
507 			ioreg_read(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1);
508 		ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MSC1,
509 			     (tmp & 0xffff) | (0x3881<<16));
510 		/* RRR=3, RDN=8, RDF=8
511 		 * XXX: can be faster?
512 		 */
513 	}
514 
515 
516 	/* Initialize for PCMCIA/CF sockets */
517 	{
518 		uint32_t tmp;
519 
520 		/* Activate two sockets.
521 		   XXX: This code segment should be moved to
522 		        pcmcia MD attach routine.
523 		   XXX: These bits should be toggled based on
524 		        existene of PCMCIA/CF cards
525 		*/
526 		ioreg_write(PXA2X0_MEMCTL_BASE+MEMCTL_MECR,
527 			     MECR_NOS|MECR_CIT);
528 
529 		tmp = ioreg_read(LUBBOCK_SACC_PBASE+SACCSBI_SKCR);
530 		ioreg_write(LUBBOCK_SACC_PBASE+SACCSBI_SKCR,
531 			     (tmp & ~(1<<4)) | (1<<0));
532 	}
533 
534 #if 0
535 	/*
536 	 * Examine the boot args string for options we need to know about
537 	 * now.
538 	 */
539 	process_kernel_args((char *)nwbootinfo.bt_args);
540 #endif
541 
542 	{
543 		int processor_card_id;
544 
545 		processor_card_id = 0x000f &
546 			ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_MISCRD);
547 		switch(processor_card_id){
548 		case 0:
549 			/* Cotulla */
550 			memstart = 0xa0000000;
551 			memsize =  0x04000000; /* 64MB */
552 			break;
553 		case 1:
554 			/* XXX: Sabiani */
555 			memstart = 0xa0000000;
556 			memsize = 0x04000000; /* 64MB */
557 			break;
558 		default:
559 			/* XXX: Unknown  */
560 			memstart = 0xa0000000;
561 			memsize = 0x04000000; /* 64MB */
562 		}
563 	}
564 
565 	printf("initarm: Configuring system ...\n");
566 
567 	/* Fake bootconfig structure for the benefit of pmap.c */
568 	/* XXX must make the memory description h/w independent */
569 	bootconfig.dramblocks = 1;
570 	bootconfig.dram[0].address = memstart;
571 	bootconfig.dram[0].pages = memsize / PAGE_SIZE;
572 
573 	/*
574 	 * Set up the variables that define the availability of
575 	 * physical memory.  For now, we're going to set
576 	 * physical_freestart to 0xa0200000 (where the kernel
577 	 * was loaded), and allocate the memory we need downwards.
578 	 * If we get too close to the page tables that RedBoot
579 	 * set up, we will panic.  We will update physical_freestart
580 	 * and physical_freeend later to reflect what pmap_bootstrap()
581 	 * wants to see.
582 	 *
583 	 * XXX pmap_bootstrap() needs an enema.
584 	 */
585 	physical_start = bootconfig.dram[0].address;
586 	physical_end = physical_start + (bootconfig.dram[0].pages * PAGE_SIZE);
587 
588 	physical_freestart = 0xa0009000UL;
589 	physical_freeend = 0xa0200000UL;
590 
591 	physmem = (physical_end - physical_start) / PAGE_SIZE;
592 
593 #ifdef VERBOSE_INIT_ARM
594 	/* Tell the user about the memory */
595 	printf("physmemory: 0x%"PRIxPSIZE" pages at 0x%08lx -> 0x%08lx\n", physmem,
596 	    physical_start, physical_end - 1);
597 #endif
598 
599 	/*
600 	 * Okay, the kernel starts 2MB in from the bottom of physical
601 	 * memory.  We are going to allocate our bootstrap pages downwards
602 	 * from there.
603 	 *
604 	 * We need to allocate some fixed page tables to get the kernel
605 	 * going.  We allocate one page directory and a number of page
606 	 * tables and store the physical addresses in the kernel_pt_table
607 	 * array.
608 	 *
609 	 * The kernel page directory must be on a 16K boundary.  The page
610 	 * tables must be on 4K boundaries.  What we do is allocate the
611 	 * page directory on the first 16K boundary that we encounter, and
612 	 * the page tables on 4K boundaries otherwise.  Since we allocate
613 	 * at least 3 L2 page tables, we are guaranteed to encounter at
614 	 * least one 16K aligned region.
615 	 */
616 
617 #ifdef VERBOSE_INIT_ARM
618 	printf("Allocating page tables\n");
619 #endif
620 
621 	free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
622 
623 #ifdef VERBOSE_INIT_ARM
624 	printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
625 	       physical_freestart, free_pages, free_pages);
626 #endif
627 
628 	/* Define a macro to simplify memory allocation */
629 #define	valloc_pages(var, np)				\
630 	alloc_pages((var).pv_pa, (np));			\
631 	(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
632 
633 #define alloc_pages(var, np)				\
634 	physical_freeend -= ((np) * PAGE_SIZE);		\
635 	if (physical_freeend < physical_freestart)	\
636 		panic("initarm: out of memory");	\
637 	(var) = physical_freeend;			\
638 	free_pages -= (np);				\
639 	memset((char *)(var), 0, ((np) * PAGE_SIZE));
640 
641 	loop1 = 0;
642 	kernel_l1pt.pv_pa = 0;
643 	kernel_l1pt.pv_va = 0;
644 	for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
645 		/* Are we 16KB aligned for an L1 ? */
646 		if (((physical_freeend - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) == 0
647 		    && kernel_l1pt.pv_pa == 0) {
648 			valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
649 		} else {
650 			valloc_pages(kernel_pt_table[loop1],
651 			    L2_TABLE_SIZE / PAGE_SIZE);
652 			++loop1;
653 		}
654 	}
655 
656 	/* This should never be able to happen but better confirm that. */
657 	if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
658 		panic("initarm: Failed to align the kernel page directory");
659 
660 	LEDSTEP();
661 
662 	/*
663 	 * Allocate a page for the system page mapped to V0x00000000
664 	 * This page will just contain the system vectors and can be
665 	 * shared by all processes.
666 	 */
667 	alloc_pages(systempage.pv_pa, 1);
668 
669 	/* Allocate stacks for all modes */
670 	valloc_pages(irqstack, IRQ_STACK_SIZE);
671 	valloc_pages(abtstack, ABT_STACK_SIZE);
672 	valloc_pages(undstack, UND_STACK_SIZE);
673 	valloc_pages(kernelstack, UPAGES);
674 
675 	/* Allocate enough pages for cleaning the Mini-Data cache. */
676 	KASSERT(xscale_minidata_clean_size <= PAGE_SIZE);
677 	valloc_pages(minidataclean, 1);
678 
679 #ifdef VERBOSE_INIT_ARM
680 	printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
681 	    irqstack.pv_va);
682 	printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
683 	    abtstack.pv_va);
684 	printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
685 	    undstack.pv_va);
686 	printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
687 	    kernelstack.pv_va);
688 #endif
689 
690 	/*
691 	 * XXX Defer this to later so that we can reclaim the memory
692 	 * XXX used by the RedBoot page tables.
693 	 */
694 	alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / PAGE_SIZE);
695 
696 	/*
697 	 * Ok we have allocated physical pages for the primary kernel
698 	 * page tables
699 	 */
700 
701 #ifdef VERBOSE_INIT_ARM
702 	printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
703 #endif
704 
705 	/*
706 	 * Now we start construction of the L1 page table
707 	 * We start by mapping the L2 page tables into the L1.
708 	 * This means that we can replace L1 mappings later on if necessary
709 	 */
710 	l1pagetable = kernel_l1pt.pv_pa;
711 
712 	/* Map the L2 pages tables in the L1 page table */
713 	pmap_link_l2pt(l1pagetable, 0x00000000,
714 	    &kernel_pt_table[KERNEL_PT_SYS]);
715 	for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
716 		pmap_link_l2pt(l1pagetable, KERNEL_BASE + loop * 0x00400000,
717 		    &kernel_pt_table[KERNEL_PT_KERNEL + loop]);
718 	for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
719 		pmap_link_l2pt(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
720 		    &kernel_pt_table[KERNEL_PT_VMDATA + loop]);
721 
722 	/* update the top of the kernel VM */
723 	pmap_curmaxkvaddr =
724 	    KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
725 
726 #ifdef VERBOSE_INIT_ARM
727 	printf("Mapping kernel\n");
728 #endif
729 
730 	/* Now we fill in the L2 pagetable for the kernel static code/data */
731 	{
732 		extern char etext[], _end[];
733 		size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
734 		size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
735 		u_int logical;
736 
737 		textsize = (textsize + PGOFSET) & ~PGOFSET;
738 		totalsize = (totalsize + PGOFSET) & ~PGOFSET;
739 
740 		logical = 0x00200000;	/* offset of kernel in RAM */
741 
742 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
743 		    physical_start + logical, textsize,
744 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
745 		logical += pmap_map_chunk(l1pagetable, KERNEL_BASE + logical,
746 		    physical_start + logical, totalsize - textsize,
747 		    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
748 	}
749 
750 #ifdef VERBOSE_INIT_ARM
751 	printf("Constructing L2 page tables\n");
752 #endif
753 
754 	/* Map the stack pages */
755 	pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
756 	    IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
757 	pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
758 	    ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
759 	pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
760 	    UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
761 	pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
762 	    UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
763 
764 	pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
765 	    L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
766 
767 	for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
768 		pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
769 		    kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
770 		    VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
771 	}
772 
773 	/* Map the Mini-Data cache clean area. */
774 	xscale_setup_minidata(l1pagetable, minidataclean.pv_va,
775 	    minidataclean.pv_pa);
776 
777 	/* Map the vector page. */
778 #if 1
779 	/* MULTI-ICE requires that page 0 is NC/NB so that it can download the
780 	 * cache-clean code there.  */
781 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
782 	    VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
783 #else
784 	pmap_map_entry(l1pagetable, vector_page, systempage.pv_pa,
785 	    VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
786 #endif
787 
788 	/*
789 	 * map integrated peripherals at same address in l1pagetable
790 	 * so that we can continue to use console.
791 	 */
792 	pmap_devmap_bootstrap(l1pagetable, lubbock_devmap);
793 
794 	/*
795 	 * Give the XScale global cache clean code an appropriately
796 	 * sized chunk of unmapped VA space starting at 0xff000000
797 	 * (our device mappings end before this address).
798 	 */
799 	xscale_cache_clean_addr = 0xff000000U;
800 
801 	/*
802 	 * Now we have the real page tables in place so we can switch to them.
803 	 * Once this is done we will be running with the REAL kernel page
804 	 * tables.
805 	 */
806 
807 	/*
808 	 * Update the physical_freestart/physical_freeend/free_pages
809 	 * variables.
810 	 */
811 	{
812 		extern char _end[];
813 
814 		physical_freestart = physical_start +
815 		    (((((uintptr_t) _end) + PGOFSET) & ~PGOFSET) -
816 		     KERNEL_BASE);
817 		physical_freeend = physical_end;
818 		free_pages =
819 		    (physical_freeend - physical_freestart) / PAGE_SIZE;
820 	}
821 
822 	/* Switch tables */
823 #ifdef VERBOSE_INIT_ARM
824 	printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
825 	       physical_freestart, free_pages, free_pages);
826 	printf("switching to new L1 page table  @%#lx...", kernel_l1pt.pv_pa);
827 #endif
828 
829 	LEDSTEP();
830 
831 	cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
832 	cpu_setttb(kernel_l1pt.pv_pa, true);
833 	cpu_tlb_flushID();
834 	cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
835 	LEDSTEP();
836 
837 	/*
838 	 * Moved from cpu_startup() as data_abort_handler() references
839 	 * this during uvm init
840 	 */
841 	uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
842 
843 #ifdef VERBOSE_INIT_ARM
844 	printf("bootstrap done.\n");
845 #endif
846 
847 	arm32_vector_init(ARM_VECTORS_LOW, ARM_VEC_ALL);
848 
849 	/*
850 	 * Pages were allocated during the secondary bootstrap for the
851 	 * stacks for different CPU modes.
852 	 * We must now set the r13 registers in the different CPU modes to
853 	 * point to these stacks.
854 	 * Since the ARM stacks use STMFD etc. we must set r13 to the top end
855 	 * of the stack memory.
856 	 */
857 	printf("init subsystems: stacks ");
858 
859 	set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
860 	set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
861 	set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
862 
863 	/*
864 	 * Well we should set a data abort handler.
865 	 * Once things get going this will change as we will need a proper
866 	 * handler.
867 	 * Until then we will use a handler that just panics but tells us
868 	 * why.
869 	 * Initialisation of the vectors will just panic on a data abort.
870 	 * This just fills in a slightly better one.
871 	 */
872 	printf("vectors ");
873 	data_abort_handler_address = (u_int)data_abort_handler;
874 	prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
875 	undefined_handler_address = (u_int)undefinedinstruction_bounce;
876 
877 	/* Initialise the undefined instruction handlers */
878 	printf("undefined ");
879 	undefined_init();
880 
881 	/* Load memory into UVM. */
882 	printf("page ");
883 	uvm_md_init();
884 	uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
885 	    atop(physical_freestart), atop(physical_freeend),
886 	    VM_FREELIST_DEFAULT);
887 
888 	/* Boot strap pmap telling it where managed kernel virtual memory is */
889 	printf("pmap ");
890 	LEDSTEP();
891 	pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
892 	LEDSTEP();
893 
894 #ifdef __HAVE_MEMORY_DISK__
895 	md_root_setconf(memory_disk, sizeof memory_disk);
896 #endif
897 
898 	{
899 		uint16_t sw = ioreg16_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW);
900 
901 		if (0 == (sw & (1<<13))) /* check S19 */
902 			boothowto |= RB_KDB;
903 		if (0 == (sw & (1<<12))) /* S20 */
904 			boothowto |= RB_SINGLE;
905 	}
906 
907 	LEDSTEP();
908 
909 #ifdef KGDB
910 	if (boothowto & RB_KDB) {
911 		kgdb_debug_init = 1;
912 		kgdb_connect(1);
913 	}
914 #endif
915 
916 #ifdef DDB
917 	db_machine_init();
918 
919 	/* Firmware doesn't load symbols. */
920 	ddb_init(0, NULL, NULL);
921 
922 	if (boothowto & RB_KDB)
923 		Debugger();
924 #endif
925 
926 	/* We return the new stack pointer address */
927 	return kernelstack.pv_va + USPACE_SVC_STACK_TOP;
928 }
929 
930 #if 0
931 void
932 process_kernel_args(char *args)
933 {
934 
935 	boothowto = 0;
936 
937 	/* Make a local copy of the bootargs */
938 	strncpy(bootargs, args, MAX_BOOT_STRING);
939 
940 	args = bootargs;
941 	boot_file = bootargs;
942 
943 	/* Skip the kernel image filename */
944 	while (*args != ' ' && *args != 0)
945 		++args;
946 
947 	if (*args != 0)
948 		*args++ = 0;
949 
950 	while (*args == ' ')
951 		++args;
952 
953 	boot_args = args;
954 
955 	printf("bootfile: %s\n", boot_file);
956 	printf("bootargs: %s\n", boot_args);
957 
958 	parse_mi_bootargs(boot_args);
959 }
960 #endif
961 
962 #ifdef KGDB
963 #ifndef KGDB_DEVNAME
964 #define KGDB_DEVNAME "ffuart"
965 #endif
966 const char kgdb_devname[] = KGDB_DEVNAME;
967 
968 #if (NCOM > 0)
969 #ifndef KGDB_DEVMODE
970 #define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
971 #endif
972 int comkgdbmode = KGDB_DEVMODE;
973 #endif /* NCOM */
974 
975 #endif /* KGDB */
976 
977 
978 void
consinit(void)979 consinit(void)
980 {
981 	static int consinit_called = 0;
982 	uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
983 #if 0
984 	char *console = CONSDEVNAME;
985 #endif
986 
987 	if (consinit_called != 0)
988 		return;
989 
990 	consinit_called = 1;
991 
992 #if NCOM > 0
993 
994 #ifdef FFUARTCONSOLE
995 	/* Check switch. */
996 	if (0 == (ioreg_read(LUBBOCK_OBIO_VBASE+LUBBOCK_USERSW) & (1<<15))) {
997 		/* We don't use FF serial when S17=no-dot position */
998 	}
999 #ifdef KGDB
1000 	else if (0 == strcmp(kgdb_devname, "ffuart")) {
1001 		/* port is reserved for kgdb */
1002 	}
1003 #endif
1004 	else if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_FFUART_BASE,
1005 		     comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1006 #if 0
1007 		/* XXX: can't call pxa2x0_clkman_config yet */
1008 		pxa2x0_clkman_config(CKEN_FFUART, 1);
1009 #else
1010 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1011 		    ckenreg|CKEN_FFUART);
1012 #endif
1013 
1014 		return;
1015 	}
1016 #endif /* FFUARTCONSOLE */
1017 
1018 #ifdef BTUARTCONSOLE
1019 #ifdef KGDB
1020 	if (0 == strcmp(kgdb_devname, "btuart")) {
1021 		/* port is reserved for kgdb */
1022 	} else
1023 #endif
1024 	if (0 == comcnattach(&pxa2x0_a4x_bs_tag, PXA2X0_BTUART_BASE,
1025 		comcnspeed, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comcnmode)) {
1026 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN,
1027 		    ckenreg|CKEN_BTUART);
1028 		return;
1029 	}
1030 #endif /* BTUARTCONSOLE */
1031 
1032 
1033 #endif /* NCOM */
1034 
1035 }
1036 
1037 #ifdef KGDB
1038 void
kgdb_port_init(void)1039 kgdb_port_init(void)
1040 {
1041 #if (NCOM > 0) && defined(COM_PXA2X0)
1042 	paddr_t paddr = 0;
1043 	uint32_t ckenreg = ioreg_read(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN);
1044 
1045 	if (0 == strcmp(kgdb_devname, "ffuart")) {
1046 		paddr = PXA2X0_FFUART_BASE;
1047 		ckenreg |= CKEN_FFUART;
1048 	}
1049 	else if (0 == strcmp(kgdb_devname, "btuart")) {
1050 		paddr = PXA2X0_BTUART_BASE;
1051 		ckenreg |= CKEN_BTUART;
1052 	}
1053 
1054 	if (paddr &&
1055 	    0 == com_kgdb_attach(&pxa2x0_a4x_bs_tag, paddr,
1056 		kgdb_rate, PXA2X0_COM_FREQ, COM_TYPE_PXA2x0, comkgdbmode)) {
1057 
1058 		ioreg_write(LUBBOCK_CLKMAN_VBASE+CLKMAN_CKEN, ckenreg);
1059 	}
1060 #endif
1061 }
1062 #endif
1063 
1064 #if 0
1065 /*
1066  * display a number in hex LED.
1067  * a digit is blank when the corresponding bit in arg blank is 1
1068  */
1069 unsigned short led_control_value = 0;
1070 
1071 void
1072 hex_led_blank(uint32_t value, int blank)
1073 {
1074 	int save = disable_interrupts(I32_bit);
1075 
1076 	ioreg_write(LUBBOCK_OBIO_VBASE+0x10, value);
1077 	led_control_value = (led_control_value & 0xff)
1078 		| ((blank & 0xff)<<8);
1079 	ioreg_write(LUBBOCK_OBIO_VBASE+0x40, led_control_value);
1080 	restore_interrupts(save);
1081 }
1082 #endif
1083