xref: /netbsd-src/external/gpl3/gcc/dist/gcc/loop-unroll.cc (revision b1e838363e3c6fc78a55519254d99869742dd33c)
1 /* Loop unrolling.
2    Copyright (C) 2002-2022 Free Software Foundation, Inc.
3 
4 This file is part of GCC.
5 
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10 
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
14 for more details.
15 
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3.  If not see
18 <http://www.gnu.org/licenses/>.  */
19 
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "memmodel.h"
29 #include "optabs.h"
30 #include "emit-rtl.h"
31 #include "recog.h"
32 #include "profile.h"
33 #include "cfgrtl.h"
34 #include "cfgloop.h"
35 #include "dojump.h"
36 #include "expr.h"
37 #include "dumpfile.h"
38 
39 /* This pass performs loop unrolling.  We only perform this
40    optimization on innermost loops (with single exception) because
41    the impact on performance is greatest here, and we want to avoid
42    unnecessary code size growth.  The gain is caused by greater sequentiality
43    of code, better code to optimize for further passes and in some cases
44    by fewer testings of exit conditions.  The main problem is code growth,
45    that impacts performance negatively due to effect of caches.
46 
47    What we do:
48 
49    -- unrolling of loops that roll constant times; this is almost always
50       win, as we get rid of exit condition tests.
51    -- unrolling of loops that roll number of times that we can compute
52       in runtime; we also get rid of exit condition tests here, but there
53       is the extra expense for calculating the number of iterations
54    -- simple unrolling of remaining loops; this is performed only if we
55       are asked to, as the gain is questionable in this case and often
56       it may even slow down the code
57    For more detailed descriptions of each of those, see comments at
58    appropriate function below.
59 
60    There is a lot of parameters (defined and described in params.def) that
61    control how much we unroll.
62 
63    ??? A great problem is that we don't have a good way how to determine
64    how many times we should unroll the loop; the experiments I have made
65    showed that this choice may affect performance in order of several %.
66    */
67 
68 /* Information about induction variables to split.  */
69 
70 struct iv_to_split
71 {
72   rtx_insn *insn;	/* The insn in that the induction variable occurs.  */
73   rtx orig_var;		/* The variable (register) for the IV before split.  */
74   rtx base_var;		/* The variable on that the values in the further
75 			   iterations are based.  */
76   rtx step;		/* Step of the induction variable.  */
77   struct iv_to_split *next; /* Next entry in walking order.  */
78 };
79 
80 /* Information about accumulators to expand.  */
81 
82 struct var_to_expand
83 {
84   rtx_insn *insn;	           /* The insn in that the variable expansion occurs.  */
85   rtx reg;                         /* The accumulator which is expanded.  */
86   vec<rtx> var_expansions;   /* The copies of the accumulator which is expanded.  */
87   struct var_to_expand *next;	   /* Next entry in walking order.  */
88   enum rtx_code op;                /* The type of the accumulation - addition, subtraction
89                                       or multiplication.  */
90   int expansion_count;             /* Count the number of expansions generated so far.  */
91   int reuse_expansion;             /* The expansion we intend to reuse to expand
92                                       the accumulator.  If REUSE_EXPANSION is 0 reuse
93                                       the original accumulator.  Else use
94                                       var_expansions[REUSE_EXPANSION - 1].  */
95 };
96 
97 /* Hashtable helper for iv_to_split.  */
98 
99 struct iv_split_hasher : free_ptr_hash <iv_to_split>
100 {
101   static inline hashval_t hash (const iv_to_split *);
102   static inline bool equal (const iv_to_split *, const iv_to_split *);
103 };
104 
105 
106 /* A hash function for information about insns to split.  */
107 
108 inline hashval_t
hash(const iv_to_split * ivts)109 iv_split_hasher::hash (const iv_to_split *ivts)
110 {
111   return (hashval_t) INSN_UID (ivts->insn);
112 }
113 
114 /* An equality functions for information about insns to split.  */
115 
116 inline bool
equal(const iv_to_split * i1,const iv_to_split * i2)117 iv_split_hasher::equal (const iv_to_split *i1, const iv_to_split *i2)
118 {
119   return i1->insn == i2->insn;
120 }
121 
122 /* Hashtable helper for iv_to_split.  */
123 
124 struct var_expand_hasher : free_ptr_hash <var_to_expand>
125 {
126   static inline hashval_t hash (const var_to_expand *);
127   static inline bool equal (const var_to_expand *, const var_to_expand *);
128 };
129 
130 /* Return a hash for VES.  */
131 
132 inline hashval_t
hash(const var_to_expand * ves)133 var_expand_hasher::hash (const var_to_expand *ves)
134 {
135   return (hashval_t) INSN_UID (ves->insn);
136 }
137 
138 /* Return true if I1 and I2 refer to the same instruction.  */
139 
140 inline bool
equal(const var_to_expand * i1,const var_to_expand * i2)141 var_expand_hasher::equal (const var_to_expand *i1, const var_to_expand *i2)
142 {
143   return i1->insn == i2->insn;
144 }
145 
146 /* Information about optimization applied in
147    the unrolled loop.  */
148 
149 struct opt_info
150 {
151   hash_table<iv_split_hasher> *insns_to_split; /* A hashtable of insns to
152 						  split.  */
153   struct iv_to_split *iv_to_split_head; /* The first iv to split.  */
154   struct iv_to_split **iv_to_split_tail; /* Pointer to the tail of the list.  */
155   hash_table<var_expand_hasher> *insns_with_var_to_expand; /* A hashtable of
156 					insns with accumulators to expand.  */
157   struct var_to_expand *var_to_expand_head; /* The first var to expand.  */
158   struct var_to_expand **var_to_expand_tail; /* Pointer to the tail of the list.  */
159   unsigned first_new_block;        /* The first basic block that was
160                                       duplicated.  */
161   basic_block loop_exit;           /* The loop exit basic block.  */
162   basic_block loop_preheader;      /* The loop preheader basic block.  */
163 };
164 
165 static void decide_unroll_stupid (class loop *, int);
166 static void decide_unroll_constant_iterations (class loop *, int);
167 static void decide_unroll_runtime_iterations (class loop *, int);
168 static void unroll_loop_stupid (class loop *);
169 static void decide_unrolling (int);
170 static void unroll_loop_constant_iterations (class loop *);
171 static void unroll_loop_runtime_iterations (class loop *);
172 static struct opt_info *analyze_insns_in_loop (class loop *);
173 static void opt_info_start_duplication (struct opt_info *);
174 static void apply_opt_in_copies (struct opt_info *, unsigned, bool, bool);
175 static void free_opt_info (struct opt_info *);
176 static struct var_to_expand *analyze_insn_to_expand_var (class loop*, rtx_insn *);
177 static bool referenced_in_one_insn_in_loop_p (class loop *, rtx, int *);
178 static struct iv_to_split *analyze_iv_to_split_insn (rtx_insn *);
179 static void expand_var_during_unrolling (struct var_to_expand *, rtx_insn *);
180 static void insert_var_expansion_initialization (struct var_to_expand *,
181 						 basic_block);
182 static void combine_var_copies_in_loop_exit (struct var_to_expand *,
183 					     basic_block);
184 static rtx get_expansion (struct var_to_expand *);
185 
186 /* Emit a message summarizing the unroll that will be
187    performed for LOOP, along with the loop's location LOCUS, if
188    appropriate given the dump or -fopt-info settings.  */
189 
190 static void
report_unroll(class loop * loop,dump_location_t locus)191 report_unroll (class loop *loop, dump_location_t locus)
192 {
193   dump_flags_t report_flags = MSG_OPTIMIZED_LOCATIONS | TDF_DETAILS;
194 
195   if (loop->lpt_decision.decision == LPT_NONE)
196     return;
197 
198   if (!dump_enabled_p ())
199     return;
200 
201   dump_metadata_t metadata (report_flags, locus.get_impl_location ());
202   dump_printf_loc (metadata, locus.get_user_location (),
203                    "loop unrolled %d times",
204                    loop->lpt_decision.times);
205   if (profile_info && loop->header->count.initialized_p ())
206     dump_printf (metadata,
207                  " (header execution count %d)",
208                  (int)loop->header->count.to_gcov_type ());
209 
210   dump_printf (metadata, "\n");
211 }
212 
213 /* Decide whether unroll loops and how much.  */
214 static void
decide_unrolling(int flags)215 decide_unrolling (int flags)
216 {
217   /* Scan the loops, inner ones first.  */
218   for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
219     {
220       loop->lpt_decision.decision = LPT_NONE;
221       dump_user_location_t locus = get_loop_location (loop);
222 
223       if (dump_enabled_p ())
224 	dump_printf_loc (MSG_NOTE, locus,
225 			 "considering unrolling loop %d at BB %d\n",
226 			 loop->num, loop->header->index);
227 
228       if (loop->unroll == 1)
229 	{
230 	  if (dump_file)
231 	    fprintf (dump_file,
232 		     ";; Not unrolling loop, user didn't want it unrolled\n");
233 	  continue;
234 	}
235 
236       /* Do not peel cold areas.  */
237       if (optimize_loop_for_size_p (loop))
238 	{
239 	  if (dump_file)
240 	    fprintf (dump_file, ";; Not considering loop, cold area\n");
241 	  continue;
242 	}
243 
244       /* Can the loop be manipulated?  */
245       if (!can_duplicate_loop_p (loop))
246 	{
247 	  if (dump_file)
248 	    fprintf (dump_file,
249 		     ";; Not considering loop, cannot duplicate\n");
250 	  continue;
251 	}
252 
253       /* Skip non-innermost loops.  */
254       if (loop->inner)
255 	{
256 	  if (dump_file)
257 	    fprintf (dump_file, ";; Not considering loop, is not innermost\n");
258 	  continue;
259 	}
260 
261       loop->ninsns = num_loop_insns (loop);
262       loop->av_ninsns = average_num_loop_insns (loop);
263 
264       /* Try transformations one by one in decreasing order of priority.  */
265       decide_unroll_constant_iterations (loop, flags);
266       if (loop->lpt_decision.decision == LPT_NONE)
267 	decide_unroll_runtime_iterations (loop, flags);
268       if (loop->lpt_decision.decision == LPT_NONE)
269 	decide_unroll_stupid (loop, flags);
270 
271       report_unroll (loop, locus);
272     }
273 }
274 
275 /* Unroll LOOPS.  */
276 void
unroll_loops(int flags)277 unroll_loops (int flags)
278 {
279   bool changed = false;
280 
281   /* Now decide rest of unrolling.  */
282   decide_unrolling (flags);
283 
284   /* Scan the loops, inner ones first.  */
285   for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
286     {
287       /* And perform the appropriate transformations.  */
288       switch (loop->lpt_decision.decision)
289 	{
290 	case LPT_UNROLL_CONSTANT:
291 	  unroll_loop_constant_iterations (loop);
292 	  changed = true;
293 	  break;
294 	case LPT_UNROLL_RUNTIME:
295 	  unroll_loop_runtime_iterations (loop);
296 	  changed = true;
297 	  break;
298 	case LPT_UNROLL_STUPID:
299 	  unroll_loop_stupid (loop);
300 	  changed = true;
301 	  break;
302 	case LPT_NONE:
303 	  break;
304 	default:
305 	  gcc_unreachable ();
306 	}
307     }
308 
309     if (changed)
310       {
311 	calculate_dominance_info (CDI_DOMINATORS);
312 	fix_loop_structure (NULL);
313       }
314 
315   iv_analysis_done ();
316 }
317 
318 /* Check whether exit of the LOOP is at the end of loop body.  */
319 
320 static bool
loop_exit_at_end_p(class loop * loop)321 loop_exit_at_end_p (class loop *loop)
322 {
323   class niter_desc *desc = get_simple_loop_desc (loop);
324   rtx_insn *insn;
325 
326   /* We should never have conditional in latch block.  */
327   gcc_assert (desc->in_edge->dest != loop->header);
328 
329   if (desc->in_edge->dest != loop->latch)
330     return false;
331 
332   /* Check that the latch is empty.  */
333   FOR_BB_INSNS (loop->latch, insn)
334     {
335       if (INSN_P (insn) && active_insn_p (insn))
336 	return false;
337     }
338 
339   return true;
340 }
341 
342 /* Decide whether to unroll LOOP iterating constant number of times
343    and how much.  */
344 
345 static void
decide_unroll_constant_iterations(class loop * loop,int flags)346 decide_unroll_constant_iterations (class loop *loop, int flags)
347 {
348   unsigned nunroll, nunroll_by_av, best_copies, best_unroll = 0, n_copies, i;
349   class niter_desc *desc;
350   widest_int iterations;
351 
352   /* If we were not asked to unroll this loop, just return back silently.  */
353   if (!(flags & UAP_UNROLL) && !loop->unroll)
354     return;
355 
356   if (dump_enabled_p ())
357     dump_printf (MSG_NOTE,
358 		 "considering unrolling loop with constant "
359 		 "number of iterations\n");
360 
361   /* nunroll = total number of copies of the original loop body in
362      unrolled loop (i.e. if it is 2, we have to duplicate loop body once).  */
363   nunroll = param_max_unrolled_insns / loop->ninsns;
364   nunroll_by_av
365     = param_max_average_unrolled_insns / loop->av_ninsns;
366   if (nunroll > nunroll_by_av)
367     nunroll = nunroll_by_av;
368   if (nunroll > (unsigned) param_max_unroll_times)
369     nunroll = param_max_unroll_times;
370 
371   if (targetm.loop_unroll_adjust)
372     nunroll = targetm.loop_unroll_adjust (nunroll, loop);
373 
374   /* Skip big loops.  */
375   if (nunroll <= 1)
376     {
377       if (dump_file)
378 	fprintf (dump_file, ";; Not considering loop, is too big\n");
379       return;
380     }
381 
382   /* Check for simple loops.  */
383   desc = get_simple_loop_desc (loop);
384 
385   /* Check number of iterations.  */
386   if (!desc->simple_p || !desc->const_iter || desc->assumptions)
387     {
388       if (dump_file)
389 	fprintf (dump_file,
390 		 ";; Unable to prove that the loop iterates constant times\n");
391       return;
392     }
393 
394   /* Check for an explicit unrolling factor.  */
395   if (loop->unroll > 0 && loop->unroll < USHRT_MAX)
396     {
397       /* However we cannot unroll completely at the RTL level a loop with
398 	 constant number of iterations; it should have been peeled instead.  */
399       if (desc->niter == 0 || (unsigned) loop->unroll > desc->niter - 1)
400 	{
401 	  if (dump_file)
402 	    fprintf (dump_file, ";; Loop should have been peeled\n");
403 	}
404       else
405 	{
406 	  loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
407 	  loop->lpt_decision.times = loop->unroll - 1;
408 	}
409       return;
410     }
411 
412   /* Check whether the loop rolls enough to consider.
413      Consult also loop bounds and profile; in the case the loop has more
414      than one exit it may well loop less than determined maximal number
415      of iterations.  */
416   if (desc->niter < 2 * nunroll
417       || ((get_estimated_loop_iterations (loop, &iterations)
418 	   || get_likely_max_loop_iterations (loop, &iterations))
419 	  && wi::ltu_p (iterations, 2 * nunroll)))
420     {
421       if (dump_file)
422 	fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
423       return;
424     }
425 
426   /* Success; now compute number of iterations to unroll.  We alter
427      nunroll so that as few as possible copies of loop body are
428      necessary, while still not decreasing the number of unrollings
429      too much (at most by 1).  */
430   best_copies = 2 * nunroll + 10;
431 
432   i = 2 * nunroll + 2;
433   if (i > desc->niter - 2)
434     i = desc->niter - 2;
435 
436   for (; i >= nunroll - 1; i--)
437     {
438       unsigned exit_mod = desc->niter % (i + 1);
439 
440       if (!loop_exit_at_end_p (loop))
441 	n_copies = exit_mod + i + 1;
442       else if (exit_mod != (unsigned) i
443 	       || desc->noloop_assumptions != NULL_RTX)
444 	n_copies = exit_mod + i + 2;
445       else
446 	n_copies = i + 1;
447 
448       if (n_copies < best_copies)
449 	{
450 	  best_copies = n_copies;
451 	  best_unroll = i;
452 	}
453     }
454 
455   loop->lpt_decision.decision = LPT_UNROLL_CONSTANT;
456   loop->lpt_decision.times = best_unroll;
457 }
458 
459 /* Unroll LOOP with constant number of iterations LOOP->LPT_DECISION.TIMES times.
460    The transformation does this:
461 
462    for (i = 0; i < 102; i++)
463      body;
464 
465    ==>  (LOOP->LPT_DECISION.TIMES == 3)
466 
467    i = 0;
468    body; i++;
469    body; i++;
470    while (i < 102)
471      {
472        body; i++;
473        body; i++;
474        body; i++;
475        body; i++;
476      }
477   */
478 static void
unroll_loop_constant_iterations(class loop * loop)479 unroll_loop_constant_iterations (class loop *loop)
480 {
481   unsigned HOST_WIDE_INT niter;
482   unsigned exit_mod;
483   unsigned i;
484   edge e;
485   unsigned max_unroll = loop->lpt_decision.times;
486   class niter_desc *desc = get_simple_loop_desc (loop);
487   bool exit_at_end = loop_exit_at_end_p (loop);
488   struct opt_info *opt_info = NULL;
489   bool ok;
490 
491   niter = desc->niter;
492 
493   /* Should not get here (such loop should be peeled instead).  */
494   gcc_assert (niter > max_unroll + 1);
495 
496   exit_mod = niter % (max_unroll + 1);
497 
498   auto_sbitmap wont_exit (max_unroll + 2);
499   bitmap_ones (wont_exit);
500 
501   auto_vec<edge> remove_edges;
502   if (flag_split_ivs_in_unroller
503       || flag_variable_expansion_in_unroller)
504     opt_info = analyze_insns_in_loop (loop);
505 
506   if (!exit_at_end)
507     {
508       /* The exit is not at the end of the loop; leave exit test
509 	 in the first copy, so that the loops that start with test
510 	 of exit condition have continuous body after unrolling.  */
511 
512       if (dump_file)
513 	fprintf (dump_file, ";; Condition at beginning of loop.\n");
514 
515       /* Peel exit_mod iterations.  */
516       bitmap_clear_bit (wont_exit, 0);
517       if (desc->noloop_assumptions)
518 	bitmap_clear_bit (wont_exit, 1);
519 
520       if (exit_mod)
521 	{
522 	  opt_info_start_duplication (opt_info);
523 	  ok = duplicate_loop_body_to_header_edge (
524 	    loop, loop_preheader_edge (loop), exit_mod, wont_exit,
525 	    desc->out_edge, &remove_edges,
526 	    DLTHE_FLAG_UPDATE_FREQ
527 	      | (opt_info && exit_mod > 1 ? DLTHE_RECORD_COPY_NUMBER : 0));
528 	  gcc_assert (ok);
529 
530           if (opt_info && exit_mod > 1)
531  	    apply_opt_in_copies (opt_info, exit_mod, false, false);
532 
533 	  desc->noloop_assumptions = NULL_RTX;
534 	  desc->niter -= exit_mod;
535 	  loop->nb_iterations_upper_bound -= exit_mod;
536 	  if (loop->any_estimate
537 	      && wi::leu_p (exit_mod, loop->nb_iterations_estimate))
538 	    loop->nb_iterations_estimate -= exit_mod;
539 	  else
540 	    loop->any_estimate = false;
541 	  if (loop->any_likely_upper_bound
542 	      && wi::leu_p (exit_mod, loop->nb_iterations_likely_upper_bound))
543 	    loop->nb_iterations_likely_upper_bound -= exit_mod;
544 	  else
545 	    loop->any_likely_upper_bound = false;
546 	}
547 
548       bitmap_set_bit (wont_exit, 1);
549     }
550   else
551     {
552       /* Leave exit test in last copy, for the same reason as above if
553 	 the loop tests the condition at the end of loop body.  */
554 
555       if (dump_file)
556 	fprintf (dump_file, ";; Condition at end of loop.\n");
557 
558       /* We know that niter >= max_unroll + 2; so we do not need to care of
559 	 case when we would exit before reaching the loop.  So just peel
560 	 exit_mod + 1 iterations.  */
561       if (exit_mod != max_unroll
562 	  || desc->noloop_assumptions)
563 	{
564 	  bitmap_clear_bit (wont_exit, 0);
565 	  if (desc->noloop_assumptions)
566 	    bitmap_clear_bit (wont_exit, 1);
567 
568           opt_info_start_duplication (opt_info);
569 	  ok = duplicate_loop_body_to_header_edge (
570 	    loop, loop_preheader_edge (loop), exit_mod + 1, wont_exit,
571 	    desc->out_edge, &remove_edges,
572 	    DLTHE_FLAG_UPDATE_FREQ
573 	      | (opt_info && exit_mod > 0 ? DLTHE_RECORD_COPY_NUMBER : 0));
574 	  gcc_assert (ok);
575 
576           if (opt_info && exit_mod > 0)
577   	    apply_opt_in_copies (opt_info, exit_mod + 1, false, false);
578 
579 	  desc->niter -= exit_mod + 1;
580 	  loop->nb_iterations_upper_bound -= exit_mod + 1;
581 	  if (loop->any_estimate
582 	      && wi::leu_p (exit_mod + 1, loop->nb_iterations_estimate))
583 	    loop->nb_iterations_estimate -= exit_mod + 1;
584 	  else
585 	    loop->any_estimate = false;
586 	  if (loop->any_likely_upper_bound
587 	      && wi::leu_p (exit_mod + 1, loop->nb_iterations_likely_upper_bound))
588 	    loop->nb_iterations_likely_upper_bound -= exit_mod + 1;
589 	  else
590 	    loop->any_likely_upper_bound = false;
591 	  desc->noloop_assumptions = NULL_RTX;
592 
593 	  bitmap_set_bit (wont_exit, 0);
594 	  bitmap_set_bit (wont_exit, 1);
595 	}
596 
597       bitmap_clear_bit (wont_exit, max_unroll);
598     }
599 
600   /* Now unroll the loop.  */
601 
602   opt_info_start_duplication (opt_info);
603   ok = duplicate_loop_body_to_header_edge (
604     loop, loop_latch_edge (loop), max_unroll, wont_exit, desc->out_edge,
605     &remove_edges,
606     DLTHE_FLAG_UPDATE_FREQ | (opt_info ? DLTHE_RECORD_COPY_NUMBER : 0));
607   gcc_assert (ok);
608 
609   if (opt_info)
610     {
611       apply_opt_in_copies (opt_info, max_unroll, true, true);
612       free_opt_info (opt_info);
613     }
614 
615   if (exit_at_end)
616     {
617       basic_block exit_block = get_bb_copy (desc->in_edge->src);
618       /* Find a new in and out edge; they are in the last copy we have made.  */
619 
620       if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
621 	{
622 	  desc->out_edge = EDGE_SUCC (exit_block, 0);
623 	  desc->in_edge = EDGE_SUCC (exit_block, 1);
624 	}
625       else
626 	{
627 	  desc->out_edge = EDGE_SUCC (exit_block, 1);
628 	  desc->in_edge = EDGE_SUCC (exit_block, 0);
629 	}
630     }
631 
632   desc->niter /= max_unroll + 1;
633   loop->nb_iterations_upper_bound
634     = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
635   if (loop->any_estimate)
636     loop->nb_iterations_estimate
637       = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
638   if (loop->any_likely_upper_bound)
639     loop->nb_iterations_likely_upper_bound
640       = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
641   desc->niter_expr = gen_int_mode (desc->niter, desc->mode);
642 
643   /* Remove the edges.  */
644   FOR_EACH_VEC_ELT (remove_edges, i, e)
645     remove_path (e);
646 
647   if (dump_file)
648     fprintf (dump_file,
649 	     ";; Unrolled loop %d times, constant # of iterations %i insns\n",
650 	     max_unroll, num_loop_insns (loop));
651 }
652 
653 /* Decide whether to unroll LOOP iterating runtime computable number of times
654    and how much.  */
655 static void
decide_unroll_runtime_iterations(class loop * loop,int flags)656 decide_unroll_runtime_iterations (class loop *loop, int flags)
657 {
658   unsigned nunroll, nunroll_by_av, i;
659   class niter_desc *desc;
660   widest_int iterations;
661 
662   /* If we were not asked to unroll this loop, just return back silently.  */
663   if (!(flags & UAP_UNROLL) && !loop->unroll)
664     return;
665 
666   if (dump_enabled_p ())
667     dump_printf (MSG_NOTE,
668 		 "considering unrolling loop with runtime-"
669 		 "computable number of iterations\n");
670 
671   /* nunroll = total number of copies of the original loop body in
672      unrolled loop (i.e. if it is 2, we have to duplicate loop body once.  */
673   nunroll = param_max_unrolled_insns / loop->ninsns;
674   nunroll_by_av = param_max_average_unrolled_insns / loop->av_ninsns;
675   if (nunroll > nunroll_by_av)
676     nunroll = nunroll_by_av;
677   if (nunroll > (unsigned) param_max_unroll_times)
678     nunroll = param_max_unroll_times;
679 
680   if (targetm.loop_unroll_adjust)
681     nunroll = targetm.loop_unroll_adjust (nunroll, loop);
682 
683   if (loop->unroll > 0 && loop->unroll < USHRT_MAX)
684     nunroll = loop->unroll;
685 
686   /* Skip big loops.  */
687   if (nunroll <= 1)
688     {
689       if (dump_file)
690 	fprintf (dump_file, ";; Not considering loop, is too big\n");
691       return;
692     }
693 
694   /* Check for simple loops.  */
695   desc = get_simple_loop_desc (loop);
696 
697   /* Check simpleness.  */
698   if (!desc->simple_p || desc->assumptions)
699     {
700       if (dump_file)
701 	fprintf (dump_file,
702 		 ";; Unable to prove that the number of iterations "
703 		 "can be counted in runtime\n");
704       return;
705     }
706 
707   if (desc->const_iter)
708     {
709       if (dump_file)
710 	fprintf (dump_file, ";; Loop iterates constant times\n");
711       return;
712     }
713 
714   /* Check whether the loop rolls.  */
715   if ((get_estimated_loop_iterations (loop, &iterations)
716        || get_likely_max_loop_iterations (loop, &iterations))
717       && wi::ltu_p (iterations, 2 * nunroll))
718     {
719       if (dump_file)
720 	fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
721       return;
722     }
723 
724   /* Success; now force nunroll to be power of 2, as code-gen
725      requires it, we are unable to cope with overflows in
726      computation of number of iterations.  */
727   for (i = 1; 2 * i <= nunroll; i *= 2)
728     continue;
729 
730   loop->lpt_decision.decision = LPT_UNROLL_RUNTIME;
731   loop->lpt_decision.times = i - 1;
732 }
733 
734 /* Splits edge E and inserts the sequence of instructions INSNS on it, and
735    returns the newly created block.  If INSNS is NULL_RTX, nothing is changed
736    and NULL is returned instead.  */
737 
738 basic_block
split_edge_and_insert(edge e,rtx_insn * insns)739 split_edge_and_insert (edge e, rtx_insn *insns)
740 {
741   basic_block bb;
742 
743   if (!insns)
744     return NULL;
745   bb = split_edge (e);
746   emit_insn_after (insns, BB_END (bb));
747 
748   /* ??? We used to assume that INSNS can contain control flow insns, and
749      that we had to try to find sub basic blocks in BB to maintain a valid
750      CFG.  For this purpose we used to set the BB_SUPERBLOCK flag on BB
751      and call break_superblocks when going out of cfglayout mode.  But it
752      turns out that this never happens; and that if it does ever happen,
753      the verify_flow_info at the end of the RTL loop passes would fail.
754 
755      There are two reasons why we expected we could have control flow insns
756      in INSNS.  The first is when a comparison has to be done in parts, and
757      the second is when the number of iterations is computed for loops with
758      the number of iterations known at runtime.  In both cases, test cases
759      to get control flow in INSNS appear to be impossible to construct:
760 
761       * If do_compare_rtx_and_jump needs several branches to do comparison
762 	in a mode that needs comparison by parts, we cannot analyze the
763 	number of iterations of the loop, and we never get to unrolling it.
764 
765       * The code in expand_divmod that was suspected to cause creation of
766 	branching code seems to be only accessed for signed division.  The
767 	divisions used by # of iterations analysis are always unsigned.
768 	Problems might arise on architectures that emits branching code
769 	for some operations that may appear in the unroller (especially
770 	for division), but we have no such architectures.
771 
772      Considering all this, it was decided that we should for now assume
773      that INSNS can in theory contain control flow insns, but in practice
774      it never does.  So we don't handle the theoretical case, and should
775      a real failure ever show up, we have a pretty good clue for how to
776      fix it.  */
777 
778   return bb;
779 }
780 
781 /* Prepare a sequence comparing OP0 with OP1 using COMP and jumping to LABEL if
782    true, with probability PROB.  If CINSN is not NULL, it is the insn to copy
783    in order to create a jump.  */
784 
785 static rtx_insn *
compare_and_jump_seq(rtx op0,rtx op1,enum rtx_code comp,rtx_code_label * label,profile_probability prob,rtx_insn * cinsn)786 compare_and_jump_seq (rtx op0, rtx op1, enum rtx_code comp,
787 		      rtx_code_label *label, profile_probability prob,
788 		      rtx_insn *cinsn)
789 {
790   rtx_insn *seq;
791   rtx_jump_insn *jump;
792   rtx cond;
793   machine_mode mode;
794 
795   mode = GET_MODE (op0);
796   if (mode == VOIDmode)
797     mode = GET_MODE (op1);
798 
799   start_sequence ();
800   if (GET_MODE_CLASS (mode) == MODE_CC)
801     {
802       /* A hack -- there seems to be no easy generic way how to make a
803 	 conditional jump from a ccmode comparison.  */
804       gcc_assert (cinsn);
805       cond = XEXP (SET_SRC (pc_set (cinsn)), 0);
806       gcc_assert (GET_CODE (cond) == comp);
807       gcc_assert (rtx_equal_p (op0, XEXP (cond, 0)));
808       gcc_assert (rtx_equal_p (op1, XEXP (cond, 1)));
809       emit_jump_insn (copy_insn (PATTERN (cinsn)));
810       jump = as_a <rtx_jump_insn *> (get_last_insn ());
811       JUMP_LABEL (jump) = JUMP_LABEL (cinsn);
812       LABEL_NUSES (JUMP_LABEL (jump))++;
813       redirect_jump (jump, label, 0);
814     }
815   else
816     {
817       gcc_assert (!cinsn);
818 
819       op0 = force_operand (op0, NULL_RTX);
820       op1 = force_operand (op1, NULL_RTX);
821       do_compare_rtx_and_jump (op0, op1, comp, 0,
822 			       mode, NULL_RTX, NULL, label,
823 			       profile_probability::uninitialized ());
824       jump = as_a <rtx_jump_insn *> (get_last_insn ());
825       jump->set_jump_target (label);
826       LABEL_NUSES (label)++;
827     }
828   if (prob.initialized_p ())
829     add_reg_br_prob_note (jump, prob);
830 
831   seq = get_insns ();
832   end_sequence ();
833 
834   return seq;
835 }
836 
837 /* Unroll LOOP for which we are able to count number of iterations in
838    runtime LOOP->LPT_DECISION.TIMES times.  The times value must be a
839    power of two.  The transformation does this (with some extra care
840    for case n < 0):
841 
842    for (i = 0; i < n; i++)
843      body;
844 
845    ==>  (LOOP->LPT_DECISION.TIMES == 3)
846 
847    i = 0;
848    mod = n % 4;
849 
850    switch (mod)
851      {
852        case 3:
853          body; i++;
854        case 2:
855          body; i++;
856        case 1:
857          body; i++;
858        case 0: ;
859      }
860 
861    while (i < n)
862      {
863        body; i++;
864        body; i++;
865        body; i++;
866        body; i++;
867      }
868    */
869 static void
unroll_loop_runtime_iterations(class loop * loop)870 unroll_loop_runtime_iterations (class loop *loop)
871 {
872   rtx old_niter, niter, tmp;
873   rtx_insn *init_code, *branch_code;
874   unsigned i;
875   profile_probability p;
876   basic_block preheader, *body, swtch, ezc_swtch = NULL;
877   int may_exit_copy;
878   profile_count iter_count, new_count;
879   unsigned n_peel;
880   edge e;
881   bool extra_zero_check, last_may_exit;
882   unsigned max_unroll = loop->lpt_decision.times;
883   class niter_desc *desc = get_simple_loop_desc (loop);
884   bool exit_at_end = loop_exit_at_end_p (loop);
885   struct opt_info *opt_info = NULL;
886   bool ok;
887 
888   if (flag_split_ivs_in_unroller
889       || flag_variable_expansion_in_unroller)
890     opt_info = analyze_insns_in_loop (loop);
891 
892   /* Remember blocks whose dominators will have to be updated.  */
893   auto_vec<basic_block> dom_bbs;
894 
895   body = get_loop_body (loop);
896   for (i = 0; i < loop->num_nodes; i++)
897     {
898       for (basic_block bb : get_dominated_by (CDI_DOMINATORS, body[i]))
899 	if (!flow_bb_inside_loop_p (loop, bb))
900 	  dom_bbs.safe_push (bb);
901     }
902   free (body);
903 
904   if (!exit_at_end)
905     {
906       /* Leave exit in first copy (for explanation why see comment in
907 	 unroll_loop_constant_iterations).  */
908       may_exit_copy = 0;
909       n_peel = max_unroll - 1;
910       extra_zero_check = true;
911       last_may_exit = false;
912     }
913   else
914     {
915       /* Leave exit in last copy (for explanation why see comment in
916 	 unroll_loop_constant_iterations).  */
917       may_exit_copy = max_unroll;
918       n_peel = max_unroll;
919       extra_zero_check = false;
920       last_may_exit = true;
921     }
922 
923   /* Get expression for number of iterations.  */
924   start_sequence ();
925   old_niter = niter = gen_reg_rtx (desc->mode);
926   tmp = force_operand (copy_rtx (desc->niter_expr), niter);
927   if (tmp != niter)
928     emit_move_insn (niter, tmp);
929 
930   /* For loops that exit at end and whose number of iterations is reliable,
931      add one to niter to account for first pass through loop body before
932      reaching exit test. */
933   if (exit_at_end && !desc->noloop_assumptions)
934     {
935       niter = expand_simple_binop (desc->mode, PLUS,
936 				   niter, const1_rtx,
937 				   NULL_RTX, 0, OPTAB_LIB_WIDEN);
938       old_niter = niter;
939     }
940 
941   /* Count modulo by ANDing it with max_unroll; we use the fact that
942      the number of unrollings is a power of two, and thus this is correct
943      even if there is overflow in the computation.  */
944   niter = expand_simple_binop (desc->mode, AND,
945 			       niter, gen_int_mode (max_unroll, desc->mode),
946 			       NULL_RTX, 0, OPTAB_LIB_WIDEN);
947 
948   init_code = get_insns ();
949   end_sequence ();
950   unshare_all_rtl_in_chain (init_code);
951 
952   /* Precondition the loop.  */
953   split_edge_and_insert (loop_preheader_edge (loop), init_code);
954 
955   auto_vec<edge> remove_edges;
956 
957   auto_sbitmap wont_exit (max_unroll + 2);
958 
959   if (extra_zero_check || desc->noloop_assumptions)
960     {
961       /* Peel the first copy of loop body.  Leave the exit test if the number
962 	 of iterations is not reliable.  Also record the place of the extra zero
963 	 check.  */
964       bitmap_clear (wont_exit);
965       if (!desc->noloop_assumptions)
966 	bitmap_set_bit (wont_exit, 1);
967       ezc_swtch = loop_preheader_edge (loop)->src;
968       ok = duplicate_loop_body_to_header_edge (loop, loop_preheader_edge (loop),
969 					       1, wont_exit, desc->out_edge,
970 					       &remove_edges,
971 					       DLTHE_FLAG_UPDATE_FREQ);
972       gcc_assert (ok);
973     }
974 
975   /* Record the place where switch will be built for preconditioning.  */
976   swtch = split_edge (loop_preheader_edge (loop));
977 
978   /* Compute count increments for each switch block and initialize
979      innermost switch block.  Switch blocks and peeled loop copies are built
980      from innermost outward.  */
981   iter_count = new_count = swtch->count.apply_scale (1, max_unroll + 1);
982   swtch->count = new_count;
983 
984   for (i = 0; i < n_peel; i++)
985     {
986       /* Peel the copy.  */
987       bitmap_clear (wont_exit);
988       if (i != n_peel - 1 || !last_may_exit)
989 	bitmap_set_bit (wont_exit, 1);
990       ok = duplicate_loop_body_to_header_edge (loop, loop_preheader_edge (loop),
991 					       1, wont_exit, desc->out_edge,
992 					       &remove_edges,
993 					       DLTHE_FLAG_UPDATE_FREQ);
994       gcc_assert (ok);
995 
996       /* Create item for switch.  */
997       unsigned j = n_peel - i - (extra_zero_check ? 0 : 1);
998       p = profile_probability::always ().apply_scale (1, i + 2);
999 
1000       preheader = split_edge (loop_preheader_edge (loop));
1001       /* Add in count of edge from switch block.  */
1002       preheader->count += iter_count;
1003       branch_code = compare_and_jump_seq (copy_rtx (niter),
1004 					  gen_int_mode (j, desc->mode), EQ,
1005 					  block_label (preheader), p, NULL);
1006 
1007       /* We rely on the fact that the compare and jump cannot be optimized out,
1008 	 and hence the cfg we create is correct.  */
1009       gcc_assert (branch_code != NULL_RTX);
1010 
1011       swtch = split_edge_and_insert (single_pred_edge (swtch), branch_code);
1012       set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1013       single_succ_edge (swtch)->probability = p.invert ();
1014       new_count += iter_count;
1015       swtch->count = new_count;
1016       e = make_edge (swtch, preheader,
1017 		     single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1018       e->probability = p;
1019     }
1020 
1021   if (extra_zero_check)
1022     {
1023       /* Add branch for zero iterations.  */
1024       p = profile_probability::always ().apply_scale (1, max_unroll + 1);
1025       swtch = ezc_swtch;
1026       preheader = split_edge (loop_preheader_edge (loop));
1027       /* Recompute count adjustments since initial peel copy may
1028 	 have exited and reduced those values that were computed above.  */
1029       iter_count = swtch->count.apply_scale (1, max_unroll + 1);
1030       /* Add in count of edge from switch block.  */
1031       preheader->count += iter_count;
1032       branch_code = compare_and_jump_seq (copy_rtx (niter), const0_rtx, EQ,
1033 					  block_label (preheader), p,
1034 					  NULL);
1035       gcc_assert (branch_code != NULL_RTX);
1036 
1037       swtch = split_edge_and_insert (single_succ_edge (swtch), branch_code);
1038       set_immediate_dominator (CDI_DOMINATORS, preheader, swtch);
1039       single_succ_edge (swtch)->probability = p.invert ();
1040       e = make_edge (swtch, preheader,
1041 		     single_succ_edge (swtch)->flags & EDGE_IRREDUCIBLE_LOOP);
1042       e->probability = p;
1043     }
1044 
1045   /* Recount dominators for outer blocks.  */
1046   iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
1047 
1048   /* And unroll loop.  */
1049 
1050   bitmap_ones (wont_exit);
1051   bitmap_clear_bit (wont_exit, may_exit_copy);
1052   opt_info_start_duplication (opt_info);
1053 
1054   ok = duplicate_loop_body_to_header_edge (
1055     loop, loop_latch_edge (loop), max_unroll, wont_exit, desc->out_edge,
1056     &remove_edges,
1057     DLTHE_FLAG_UPDATE_FREQ | (opt_info ? DLTHE_RECORD_COPY_NUMBER : 0));
1058   gcc_assert (ok);
1059 
1060   if (opt_info)
1061     {
1062       apply_opt_in_copies (opt_info, max_unroll, true, true);
1063       free_opt_info (opt_info);
1064     }
1065 
1066   if (exit_at_end)
1067     {
1068       basic_block exit_block = get_bb_copy (desc->in_edge->src);
1069       /* Find a new in and out edge; they are in the last copy we have
1070 	 made.  */
1071 
1072       if (EDGE_SUCC (exit_block, 0)->dest == desc->out_edge->dest)
1073 	{
1074 	  desc->out_edge = EDGE_SUCC (exit_block, 0);
1075 	  desc->in_edge = EDGE_SUCC (exit_block, 1);
1076 	}
1077       else
1078 	{
1079 	  desc->out_edge = EDGE_SUCC (exit_block, 1);
1080 	  desc->in_edge = EDGE_SUCC (exit_block, 0);
1081 	}
1082     }
1083 
1084   /* Remove the edges.  */
1085   FOR_EACH_VEC_ELT (remove_edges, i, e)
1086     remove_path (e);
1087 
1088   /* We must be careful when updating the number of iterations due to
1089      preconditioning and the fact that the value must be valid at entry
1090      of the loop.  After passing through the above code, we see that
1091      the correct new number of iterations is this:  */
1092   gcc_assert (!desc->const_iter);
1093   desc->niter_expr =
1094     simplify_gen_binary (UDIV, desc->mode, old_niter,
1095 			 gen_int_mode (max_unroll + 1, desc->mode));
1096   loop->nb_iterations_upper_bound
1097     = wi::udiv_trunc (loop->nb_iterations_upper_bound, max_unroll + 1);
1098   if (loop->any_estimate)
1099     loop->nb_iterations_estimate
1100       = wi::udiv_trunc (loop->nb_iterations_estimate, max_unroll + 1);
1101   if (loop->any_likely_upper_bound)
1102     loop->nb_iterations_likely_upper_bound
1103       = wi::udiv_trunc (loop->nb_iterations_likely_upper_bound, max_unroll + 1);
1104   if (exit_at_end)
1105     {
1106       desc->niter_expr =
1107 	simplify_gen_binary (MINUS, desc->mode, desc->niter_expr, const1_rtx);
1108       desc->noloop_assumptions = NULL_RTX;
1109       --loop->nb_iterations_upper_bound;
1110       if (loop->any_estimate
1111 	  && loop->nb_iterations_estimate != 0)
1112 	--loop->nb_iterations_estimate;
1113       else
1114 	loop->any_estimate = false;
1115       if (loop->any_likely_upper_bound
1116 	  && loop->nb_iterations_likely_upper_bound != 0)
1117 	--loop->nb_iterations_likely_upper_bound;
1118       else
1119 	loop->any_likely_upper_bound = false;
1120     }
1121 
1122   if (dump_file)
1123     fprintf (dump_file,
1124 	     ";; Unrolled loop %d times, counting # of iterations "
1125 	     "in runtime, %i insns\n",
1126 	     max_unroll, num_loop_insns (loop));
1127 }
1128 
1129 /* Decide whether to unroll LOOP stupidly and how much.  */
1130 static void
decide_unroll_stupid(class loop * loop,int flags)1131 decide_unroll_stupid (class loop *loop, int flags)
1132 {
1133   unsigned nunroll, nunroll_by_av, i;
1134   class niter_desc *desc;
1135   widest_int iterations;
1136 
1137   /* If we were not asked to unroll this loop, just return back silently.  */
1138   if (!(flags & UAP_UNROLL_ALL) && !loop->unroll)
1139     return;
1140 
1141   if (dump_enabled_p ())
1142     dump_printf (MSG_NOTE, "considering unrolling loop stupidly\n");
1143 
1144   /* nunroll = total number of copies of the original loop body in
1145      unrolled loop (i.e. if it is 2, we have to duplicate loop body once.  */
1146   nunroll = param_max_unrolled_insns / loop->ninsns;
1147   nunroll_by_av
1148     = param_max_average_unrolled_insns / loop->av_ninsns;
1149   if (nunroll > nunroll_by_av)
1150     nunroll = nunroll_by_av;
1151   if (nunroll > (unsigned) param_max_unroll_times)
1152     nunroll = param_max_unroll_times;
1153 
1154   if (targetm.loop_unroll_adjust)
1155     nunroll = targetm.loop_unroll_adjust (nunroll, loop);
1156 
1157   if (loop->unroll > 0 && loop->unroll < USHRT_MAX)
1158     nunroll = loop->unroll;
1159 
1160   /* Skip big loops.  */
1161   if (nunroll <= 1)
1162     {
1163       if (dump_file)
1164 	fprintf (dump_file, ";; Not considering loop, is too big\n");
1165       return;
1166     }
1167 
1168   /* Check for simple loops.  */
1169   desc = get_simple_loop_desc (loop);
1170 
1171   /* Check simpleness.  */
1172   if (desc->simple_p && !desc->assumptions)
1173     {
1174       if (dump_file)
1175 	fprintf (dump_file, ";; Loop is simple\n");
1176       return;
1177     }
1178 
1179   /* Do not unroll loops with branches inside -- it increases number
1180      of mispredicts.
1181      TODO: this heuristic needs tunning; call inside the loop body
1182      is also relatively good reason to not unroll.  */
1183   if (num_loop_branches (loop) > 1)
1184     {
1185       if (dump_file)
1186 	fprintf (dump_file, ";; Not unrolling, contains branches\n");
1187       return;
1188     }
1189 
1190   /* Check whether the loop rolls.  */
1191   if ((get_estimated_loop_iterations (loop, &iterations)
1192        || get_likely_max_loop_iterations (loop, &iterations))
1193       && wi::ltu_p (iterations, 2 * nunroll))
1194     {
1195       if (dump_file)
1196 	fprintf (dump_file, ";; Not unrolling loop, doesn't roll\n");
1197       return;
1198     }
1199 
1200   /* Success.  Now force nunroll to be power of 2, as it seems that this
1201      improves results (partially because of better alignments, partially
1202      because of some dark magic).  */
1203   for (i = 1; 2 * i <= nunroll; i *= 2)
1204     continue;
1205 
1206   loop->lpt_decision.decision = LPT_UNROLL_STUPID;
1207   loop->lpt_decision.times = i - 1;
1208 }
1209 
1210 /* Unroll a LOOP LOOP->LPT_DECISION.TIMES times.  The transformation does this:
1211 
1212    while (cond)
1213      body;
1214 
1215    ==>  (LOOP->LPT_DECISION.TIMES == 3)
1216 
1217    while (cond)
1218      {
1219        body;
1220        if (!cond) break;
1221        body;
1222        if (!cond) break;
1223        body;
1224        if (!cond) break;
1225        body;
1226      }
1227    */
1228 static void
unroll_loop_stupid(class loop * loop)1229 unroll_loop_stupid (class loop *loop)
1230 {
1231   unsigned nunroll = loop->lpt_decision.times;
1232   class niter_desc *desc = get_simple_loop_desc (loop);
1233   struct opt_info *opt_info = NULL;
1234   bool ok;
1235 
1236   if (flag_split_ivs_in_unroller
1237       || flag_variable_expansion_in_unroller)
1238     opt_info = analyze_insns_in_loop (loop);
1239 
1240   auto_sbitmap wont_exit (nunroll + 1);
1241   bitmap_clear (wont_exit);
1242   opt_info_start_duplication (opt_info);
1243 
1244   ok = duplicate_loop_body_to_header_edge (
1245     loop, loop_latch_edge (loop), nunroll, wont_exit, NULL, NULL,
1246     DLTHE_FLAG_UPDATE_FREQ | (opt_info ? DLTHE_RECORD_COPY_NUMBER : 0));
1247   gcc_assert (ok);
1248 
1249   if (opt_info)
1250     {
1251       apply_opt_in_copies (opt_info, nunroll, true, true);
1252       free_opt_info (opt_info);
1253     }
1254 
1255   if (desc->simple_p)
1256     {
1257       /* We indeed may get here provided that there are nontrivial assumptions
1258 	 for a loop to be really simple.  We could update the counts, but the
1259 	 problem is that we are unable to decide which exit will be taken
1260 	 (not really true in case the number of iterations is constant,
1261 	 but no one will do anything with this information, so we do not
1262 	 worry about it).  */
1263       desc->simple_p = false;
1264     }
1265 
1266   if (dump_file)
1267     fprintf (dump_file, ";; Unrolled loop %d times, %i insns\n",
1268 	     nunroll, num_loop_insns (loop));
1269 }
1270 
1271 /* Returns true if REG is referenced in one nondebug insn in LOOP.
1272    Set *DEBUG_USES to the number of debug insns that reference the
1273    variable.  */
1274 
1275 static bool
referenced_in_one_insn_in_loop_p(class loop * loop,rtx reg,int * debug_uses)1276 referenced_in_one_insn_in_loop_p (class loop *loop, rtx reg,
1277 				  int *debug_uses)
1278 {
1279   basic_block *body, bb;
1280   unsigned i;
1281   int count_ref = 0;
1282   rtx_insn *insn;
1283 
1284   body = get_loop_body (loop);
1285   for (i = 0; i < loop->num_nodes; i++)
1286     {
1287       bb = body[i];
1288 
1289       FOR_BB_INSNS (bb, insn)
1290 	if (!rtx_referenced_p (reg, insn))
1291 	  continue;
1292 	else if (DEBUG_INSN_P (insn))
1293 	  ++*debug_uses;
1294 	else if (++count_ref > 1)
1295 	  break;
1296     }
1297   free (body);
1298   return (count_ref  == 1);
1299 }
1300 
1301 /* Reset the DEBUG_USES debug insns in LOOP that reference REG.  */
1302 
1303 static void
reset_debug_uses_in_loop(class loop * loop,rtx reg,int debug_uses)1304 reset_debug_uses_in_loop (class loop *loop, rtx reg, int debug_uses)
1305 {
1306   basic_block *body, bb;
1307   unsigned i;
1308   rtx_insn *insn;
1309 
1310   body = get_loop_body (loop);
1311   for (i = 0; debug_uses && i < loop->num_nodes; i++)
1312     {
1313       bb = body[i];
1314 
1315       FOR_BB_INSNS (bb, insn)
1316 	if (!DEBUG_INSN_P (insn) || !rtx_referenced_p (reg, insn))
1317 	  continue;
1318 	else
1319 	  {
1320 	    validate_change (insn, &INSN_VAR_LOCATION_LOC (insn),
1321 			     gen_rtx_UNKNOWN_VAR_LOC (), 0);
1322 	    if (!--debug_uses)
1323 	      break;
1324 	  }
1325     }
1326   free (body);
1327 }
1328 
1329 /* Determine whether INSN contains an accumulator
1330    which can be expanded into separate copies,
1331    one for each copy of the LOOP body.
1332 
1333    for (i = 0 ; i < n; i++)
1334      sum += a[i];
1335 
1336    ==>
1337 
1338    sum += a[i]
1339    ....
1340    i = i+1;
1341    sum1 += a[i]
1342    ....
1343    i = i+1
1344    sum2 += a[i];
1345    ....
1346 
1347    Return NULL if INSN contains no opportunity for expansion of accumulator.
1348    Otherwise, allocate a VAR_TO_EXPAND structure, fill it with the relevant
1349    information and return a pointer to it.
1350 */
1351 
1352 static struct var_to_expand *
analyze_insn_to_expand_var(class loop * loop,rtx_insn * insn)1353 analyze_insn_to_expand_var (class loop *loop, rtx_insn *insn)
1354 {
1355   rtx set, dest, src;
1356   struct var_to_expand *ves;
1357   unsigned accum_pos;
1358   enum rtx_code code;
1359   int debug_uses = 0;
1360 
1361   set = single_set (insn);
1362   if (!set)
1363     return NULL;
1364 
1365   dest = SET_DEST (set);
1366   src = SET_SRC (set);
1367   code = GET_CODE (src);
1368 
1369   if (code != PLUS && code != MINUS && code != MULT && code != FMA)
1370     return NULL;
1371 
1372   if (FLOAT_MODE_P (GET_MODE (dest)))
1373     {
1374       if (!flag_associative_math)
1375         return NULL;
1376       /* In the case of FMA, we're also changing the rounding.  */
1377       if (code == FMA && !flag_unsafe_math_optimizations)
1378 	return NULL;
1379     }
1380 
1381   /* Hmm, this is a bit paradoxical.  We know that INSN is a valid insn
1382      in MD.  But if there is no optab to generate the insn, we cannot
1383      perform the variable expansion.  This can happen if an MD provides
1384      an insn but not a named pattern to generate it, for example to avoid
1385      producing code that needs additional mode switches like for x87/mmx.
1386 
1387      So we check have_insn_for which looks for an optab for the operation
1388      in SRC.  If it doesn't exist, we can't perform the expansion even
1389      though INSN is valid.  */
1390   if (!have_insn_for (code, GET_MODE (src)))
1391     return NULL;
1392 
1393   if (!REG_P (dest)
1394       && !(GET_CODE (dest) == SUBREG
1395            && REG_P (SUBREG_REG (dest))))
1396     return NULL;
1397 
1398   /* Find the accumulator use within the operation.  */
1399   if (code == FMA)
1400     {
1401       /* We only support accumulation via FMA in the ADD position.  */
1402       if (!rtx_equal_p  (dest, XEXP (src, 2)))
1403 	return NULL;
1404       accum_pos = 2;
1405     }
1406   else if (rtx_equal_p (dest, XEXP (src, 0)))
1407     accum_pos = 0;
1408   else if (rtx_equal_p (dest, XEXP (src, 1)))
1409     {
1410       /* The method of expansion that we are using; which includes the
1411 	 initialization of the expansions with zero and the summation of
1412          the expansions at the end of the computation will yield wrong
1413 	 results for (x = something - x) thus avoid using it in that case.  */
1414       if (code == MINUS)
1415 	return NULL;
1416       accum_pos = 1;
1417     }
1418   else
1419     return NULL;
1420 
1421   /* It must not otherwise be used.  */
1422   if (code == FMA)
1423     {
1424       if (rtx_referenced_p (dest, XEXP (src, 0))
1425 	  || rtx_referenced_p (dest, XEXP (src, 1)))
1426 	return NULL;
1427     }
1428   else if (rtx_referenced_p (dest, XEXP (src, 1 - accum_pos)))
1429     return NULL;
1430 
1431   /* It must be used in exactly one insn.  */
1432   if (!referenced_in_one_insn_in_loop_p (loop, dest, &debug_uses))
1433     return NULL;
1434 
1435   if (dump_file)
1436     {
1437       fprintf (dump_file, "\n;; Expanding Accumulator ");
1438       print_rtl (dump_file, dest);
1439       fprintf (dump_file, "\n");
1440     }
1441 
1442   if (debug_uses)
1443     /* Instead of resetting the debug insns, we could replace each
1444        debug use in the loop with the sum or product of all expanded
1445        accumulators.  Since we'll only know of all expansions at the
1446        end, we'd have to keep track of which vars_to_expand a debug
1447        insn in the loop references, take note of each copy of the
1448        debug insn during unrolling, and when it's all done, compute
1449        the sum or product of each variable and adjust the original
1450        debug insn and each copy thereof.  What a pain!  */
1451     reset_debug_uses_in_loop (loop, dest, debug_uses);
1452 
1453   /* Record the accumulator to expand.  */
1454   ves = XNEW (struct var_to_expand);
1455   ves->insn = insn;
1456   ves->reg = copy_rtx (dest);
1457   ves->var_expansions.create (1);
1458   ves->next = NULL;
1459   ves->op = GET_CODE (src);
1460   ves->expansion_count = 0;
1461   ves->reuse_expansion = 0;
1462   return ves;
1463 }
1464 
1465 /* Determine whether there is an induction variable in INSN that
1466    we would like to split during unrolling.
1467 
1468    I.e. replace
1469 
1470    i = i + 1;
1471    ...
1472    i = i + 1;
1473    ...
1474    i = i + 1;
1475    ...
1476 
1477    type chains by
1478 
1479    i0 = i + 1
1480    ...
1481    i = i0 + 1
1482    ...
1483    i = i0 + 2
1484    ...
1485 
1486    Return NULL if INSN contains no interesting IVs.  Otherwise, allocate
1487    an IV_TO_SPLIT structure, fill it with the relevant information and return a
1488    pointer to it.  */
1489 
1490 static struct iv_to_split *
analyze_iv_to_split_insn(rtx_insn * insn)1491 analyze_iv_to_split_insn (rtx_insn *insn)
1492 {
1493   rtx set, dest;
1494   class rtx_iv iv;
1495   struct iv_to_split *ivts;
1496   scalar_int_mode mode;
1497   bool ok;
1498 
1499   /* For now we just split the basic induction variables.  Later this may be
1500      extended for example by selecting also addresses of memory references.  */
1501   set = single_set (insn);
1502   if (!set)
1503     return NULL;
1504 
1505   dest = SET_DEST (set);
1506   if (!REG_P (dest) || !is_a <scalar_int_mode> (GET_MODE (dest), &mode))
1507     return NULL;
1508 
1509   if (!biv_p (insn, mode, dest))
1510     return NULL;
1511 
1512   ok = iv_analyze_result (insn, dest, &iv);
1513 
1514   /* This used to be an assert under the assumption that if biv_p returns
1515      true that iv_analyze_result must also return true.  However, that
1516      assumption is not strictly correct as evidenced by pr25569.
1517 
1518      Returning NULL when iv_analyze_result returns false is safe and
1519      avoids the problems in pr25569 until the iv_analyze_* routines
1520      can be fixed, which is apparently hard and time consuming
1521      according to their author.  */
1522   if (! ok)
1523     return NULL;
1524 
1525   if (iv.step == const0_rtx
1526       || iv.mode != iv.extend_mode)
1527     return NULL;
1528 
1529   /* Record the insn to split.  */
1530   ivts = XNEW (struct iv_to_split);
1531   ivts->insn = insn;
1532   ivts->orig_var = dest;
1533   ivts->base_var = NULL_RTX;
1534   ivts->step = iv.step;
1535   ivts->next = NULL;
1536 
1537   return ivts;
1538 }
1539 
1540 /* Determines which of insns in LOOP can be optimized.
1541    Return a OPT_INFO struct with the relevant hash tables filled
1542    with all insns to be optimized.  The FIRST_NEW_BLOCK field
1543    is undefined for the return value.  */
1544 
1545 static struct opt_info *
analyze_insns_in_loop(class loop * loop)1546 analyze_insns_in_loop (class loop *loop)
1547 {
1548   basic_block *body, bb;
1549   unsigned i;
1550   struct opt_info *opt_info = XCNEW (struct opt_info);
1551   rtx_insn *insn;
1552   struct iv_to_split *ivts = NULL;
1553   struct var_to_expand *ves = NULL;
1554   iv_to_split **slot1;
1555   var_to_expand **slot2;
1556   auto_vec<edge> edges = get_loop_exit_edges (loop);
1557   edge exit;
1558   bool can_apply = false;
1559 
1560   iv_analysis_loop_init (loop);
1561 
1562   body = get_loop_body (loop);
1563 
1564   if (flag_split_ivs_in_unroller)
1565     {
1566       opt_info->insns_to_split
1567        	= new hash_table<iv_split_hasher> (5 * loop->num_nodes);
1568       opt_info->iv_to_split_head = NULL;
1569       opt_info->iv_to_split_tail = &opt_info->iv_to_split_head;
1570     }
1571 
1572   /* Record the loop exit bb and loop preheader before the unrolling.  */
1573   opt_info->loop_preheader = loop_preheader_edge (loop)->src;
1574 
1575   if (edges.length () == 1)
1576     {
1577       exit = edges[0];
1578       if (!(exit->flags & EDGE_COMPLEX))
1579 	{
1580 	  opt_info->loop_exit = split_edge (exit);
1581 	  can_apply = true;
1582 	}
1583     }
1584 
1585   if (flag_variable_expansion_in_unroller
1586       && can_apply)
1587     {
1588       opt_info->insns_with_var_to_expand
1589        	= new hash_table<var_expand_hasher> (5 * loop->num_nodes);
1590       opt_info->var_to_expand_head = NULL;
1591       opt_info->var_to_expand_tail = &opt_info->var_to_expand_head;
1592     }
1593 
1594   for (i = 0; i < loop->num_nodes; i++)
1595     {
1596       bb = body[i];
1597       if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
1598 	continue;
1599 
1600       FOR_BB_INSNS (bb, insn)
1601       {
1602         if (!INSN_P (insn))
1603           continue;
1604 
1605         if (opt_info->insns_to_split)
1606           ivts = analyze_iv_to_split_insn (insn);
1607 
1608         if (ivts)
1609           {
1610             slot1 = opt_info->insns_to_split->find_slot (ivts, INSERT);
1611 	    gcc_assert (*slot1 == NULL);
1612             *slot1 = ivts;
1613 	    *opt_info->iv_to_split_tail = ivts;
1614 	    opt_info->iv_to_split_tail = &ivts->next;
1615             continue;
1616           }
1617 
1618         if (opt_info->insns_with_var_to_expand)
1619           ves = analyze_insn_to_expand_var (loop, insn);
1620 
1621         if (ves)
1622           {
1623             slot2 = opt_info->insns_with_var_to_expand->find_slot (ves, INSERT);
1624 	    gcc_assert (*slot2 == NULL);
1625             *slot2 = ves;
1626 	    *opt_info->var_to_expand_tail = ves;
1627 	    opt_info->var_to_expand_tail = &ves->next;
1628           }
1629       }
1630     }
1631 
1632   free (body);
1633   return opt_info;
1634 }
1635 
1636 /* Called just before loop duplication.  Records start of duplicated area
1637    to OPT_INFO.  */
1638 
1639 static void
opt_info_start_duplication(struct opt_info * opt_info)1640 opt_info_start_duplication (struct opt_info *opt_info)
1641 {
1642   if (opt_info)
1643     opt_info->first_new_block = last_basic_block_for_fn (cfun);
1644 }
1645 
1646 /* Determine the number of iterations between initialization of the base
1647    variable and the current copy (N_COPY).  N_COPIES is the total number
1648    of newly created copies.  UNROLLING is true if we are unrolling
1649    (not peeling) the loop.  */
1650 
1651 static unsigned
determine_split_iv_delta(unsigned n_copy,unsigned n_copies,bool unrolling)1652 determine_split_iv_delta (unsigned n_copy, unsigned n_copies, bool unrolling)
1653 {
1654   if (unrolling)
1655     {
1656       /* If we are unrolling, initialization is done in the original loop
1657 	 body (number 0).  */
1658       return n_copy;
1659     }
1660   else
1661     {
1662       /* If we are peeling, the copy in that the initialization occurs has
1663 	 number 1.  The original loop (number 0) is the last.  */
1664       if (n_copy)
1665 	return n_copy - 1;
1666       else
1667 	return n_copies;
1668     }
1669 }
1670 
1671 /* Allocate basic variable for the induction variable chain.  */
1672 
1673 static void
allocate_basic_variable(struct iv_to_split * ivts)1674 allocate_basic_variable (struct iv_to_split *ivts)
1675 {
1676   rtx expr = SET_SRC (single_set (ivts->insn));
1677 
1678   ivts->base_var = gen_reg_rtx (GET_MODE (expr));
1679 }
1680 
1681 /* Insert initialization of basic variable of IVTS before INSN, taking
1682    the initial value from INSN.  */
1683 
1684 static void
insert_base_initialization(struct iv_to_split * ivts,rtx_insn * insn)1685 insert_base_initialization (struct iv_to_split *ivts, rtx_insn *insn)
1686 {
1687   rtx expr = copy_rtx (SET_SRC (single_set (insn)));
1688   rtx_insn *seq;
1689 
1690   start_sequence ();
1691   expr = force_operand (expr, ivts->base_var);
1692   if (expr != ivts->base_var)
1693     emit_move_insn (ivts->base_var, expr);
1694   seq = get_insns ();
1695   end_sequence ();
1696 
1697   emit_insn_before (seq, insn);
1698 }
1699 
1700 /* Replace the use of induction variable described in IVTS in INSN
1701    by base variable + DELTA * step.  */
1702 
1703 static void
split_iv(struct iv_to_split * ivts,rtx_insn * insn,unsigned delta)1704 split_iv (struct iv_to_split *ivts, rtx_insn *insn, unsigned delta)
1705 {
1706   rtx expr, *loc, incr, var;
1707   rtx_insn *seq;
1708   machine_mode mode = GET_MODE (ivts->base_var);
1709   rtx src, dest, set;
1710 
1711   /* Construct base + DELTA * step.  */
1712   if (!delta)
1713     expr = ivts->base_var;
1714   else
1715     {
1716       incr = simplify_gen_binary (MULT, mode,
1717 				  copy_rtx (ivts->step),
1718 				  gen_int_mode (delta, mode));
1719       expr = simplify_gen_binary (PLUS, GET_MODE (ivts->base_var),
1720 				  ivts->base_var, incr);
1721     }
1722 
1723   /* Figure out where to do the replacement.  */
1724   loc = &SET_SRC (single_set (insn));
1725 
1726   /* If we can make the replacement right away, we're done.  */
1727   if (validate_change (insn, loc, expr, 0))
1728     return;
1729 
1730   /* Otherwise, force EXPR into a register and try again.  */
1731   start_sequence ();
1732   var = gen_reg_rtx (mode);
1733   expr = force_operand (expr, var);
1734   if (expr != var)
1735     emit_move_insn (var, expr);
1736   seq = get_insns ();
1737   end_sequence ();
1738   emit_insn_before (seq, insn);
1739 
1740   if (validate_change (insn, loc, var, 0))
1741     return;
1742 
1743   /* The last chance.  Try recreating the assignment in insn
1744      completely from scratch.  */
1745   set = single_set (insn);
1746   gcc_assert (set);
1747 
1748   start_sequence ();
1749   *loc = var;
1750   src = copy_rtx (SET_SRC (set));
1751   dest = copy_rtx (SET_DEST (set));
1752   src = force_operand (src, dest);
1753   if (src != dest)
1754     emit_move_insn (dest, src);
1755   seq = get_insns ();
1756   end_sequence ();
1757 
1758   emit_insn_before (seq, insn);
1759   delete_insn (insn);
1760 }
1761 
1762 
1763 /* Return one expansion of the accumulator recorded in struct VE.  */
1764 
1765 static rtx
get_expansion(struct var_to_expand * ve)1766 get_expansion (struct var_to_expand *ve)
1767 {
1768   rtx reg;
1769 
1770   if (ve->reuse_expansion == 0)
1771     reg = ve->reg;
1772   else
1773     reg = ve->var_expansions[ve->reuse_expansion - 1];
1774 
1775   if (ve->var_expansions.length () == (unsigned) ve->reuse_expansion)
1776     ve->reuse_expansion = 0;
1777   else
1778     ve->reuse_expansion++;
1779 
1780   return reg;
1781 }
1782 
1783 
1784 /* Given INSN replace the uses of the accumulator recorded in VE
1785    with a new register.  */
1786 
1787 static void
expand_var_during_unrolling(struct var_to_expand * ve,rtx_insn * insn)1788 expand_var_during_unrolling (struct var_to_expand *ve, rtx_insn *insn)
1789 {
1790   rtx new_reg, set;
1791   bool really_new_expansion = false;
1792 
1793   set = single_set (insn);
1794   gcc_assert (set);
1795 
1796   /* Generate a new register only if the expansion limit has not been
1797      reached.  Else reuse an already existing expansion.  */
1798   if (param_max_variable_expansions > ve->expansion_count)
1799     {
1800       really_new_expansion = true;
1801       new_reg = gen_reg_rtx (GET_MODE (ve->reg));
1802     }
1803   else
1804     new_reg = get_expansion (ve);
1805 
1806   validate_replace_rtx_group (SET_DEST (set), new_reg, insn);
1807   if (apply_change_group ())
1808     if (really_new_expansion)
1809       {
1810         ve->var_expansions.safe_push (new_reg);
1811         ve->expansion_count++;
1812       }
1813 }
1814 
1815 /* Initialize the variable expansions in loop preheader.  PLACE is the
1816    loop-preheader basic block where the initialization of the
1817    expansions should take place.  The expansions are initialized with
1818    (-0) when the operation is plus or minus to honor sign zero.  This
1819    way we can prevent cases where the sign of the final result is
1820    effected by the sign of the expansion.  Here is an example to
1821    demonstrate this:
1822 
1823    for (i = 0 ; i < n; i++)
1824      sum += something;
1825 
1826    ==>
1827 
1828    sum += something
1829    ....
1830    i = i+1;
1831    sum1 += something
1832    ....
1833    i = i+1
1834    sum2 += something;
1835    ....
1836 
1837    When SUM is initialized with -zero and SOMETHING is also -zero; the
1838    final result of sum should be -zero thus the expansions sum1 and sum2
1839    should be initialized with -zero as well (otherwise we will get +zero
1840    as the final result).  */
1841 
1842 static void
insert_var_expansion_initialization(struct var_to_expand * ve,basic_block place)1843 insert_var_expansion_initialization (struct var_to_expand *ve,
1844 				     basic_block place)
1845 {
1846   rtx_insn *seq;
1847   rtx var, zero_init;
1848   unsigned i;
1849   machine_mode mode = GET_MODE (ve->reg);
1850   bool honor_signed_zero_p = HONOR_SIGNED_ZEROS (mode);
1851 
1852   if (ve->var_expansions.length () == 0)
1853     return;
1854 
1855   start_sequence ();
1856   switch (ve->op)
1857     {
1858     case FMA:
1859       /* Note that we only accumulate FMA via the ADD operand.  */
1860     case PLUS:
1861     case MINUS:
1862       FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1863         {
1864 	  if (honor_signed_zero_p)
1865 	    zero_init = simplify_gen_unary (NEG, mode, CONST0_RTX (mode), mode);
1866 	  else
1867 	    zero_init = CONST0_RTX (mode);
1868           emit_move_insn (var, zero_init);
1869         }
1870       break;
1871 
1872     case MULT:
1873       FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1874         {
1875           zero_init = CONST1_RTX (GET_MODE (var));
1876           emit_move_insn (var, zero_init);
1877         }
1878       break;
1879 
1880     default:
1881       gcc_unreachable ();
1882     }
1883 
1884   seq = get_insns ();
1885   end_sequence ();
1886 
1887   emit_insn_after (seq, BB_END (place));
1888 }
1889 
1890 /* Combine the variable expansions at the loop exit.  PLACE is the
1891    loop exit basic block where the summation of the expansions should
1892    take place.  */
1893 
1894 static void
combine_var_copies_in_loop_exit(struct var_to_expand * ve,basic_block place)1895 combine_var_copies_in_loop_exit (struct var_to_expand *ve, basic_block place)
1896 {
1897   rtx sum = ve->reg;
1898   rtx expr, var;
1899   rtx_insn *seq, *insn;
1900   unsigned i;
1901 
1902   if (ve->var_expansions.length () == 0)
1903     return;
1904 
1905   /* ve->reg might be SUBREG or some other non-shareable RTL, and we use
1906      it both here and as the destination of the assignment.  */
1907   sum = copy_rtx (sum);
1908   start_sequence ();
1909   switch (ve->op)
1910     {
1911     case FMA:
1912       /* Note that we only accumulate FMA via the ADD operand.  */
1913     case PLUS:
1914     case MINUS:
1915       FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1916 	sum = simplify_gen_binary (PLUS, GET_MODE (ve->reg), var, sum);
1917       break;
1918 
1919     case MULT:
1920       FOR_EACH_VEC_ELT (ve->var_expansions, i, var)
1921 	sum = simplify_gen_binary (MULT, GET_MODE (ve->reg), var, sum);
1922       break;
1923 
1924     default:
1925       gcc_unreachable ();
1926     }
1927 
1928   expr = force_operand (sum, ve->reg);
1929   if (expr != ve->reg)
1930     emit_move_insn (ve->reg, expr);
1931   seq = get_insns ();
1932   end_sequence ();
1933 
1934   insn = BB_HEAD (place);
1935   while (!NOTE_INSN_BASIC_BLOCK_P (insn))
1936     insn = NEXT_INSN (insn);
1937 
1938   emit_insn_after (seq, insn);
1939 }
1940 
1941 /* Strip away REG_EQUAL notes for IVs we're splitting.
1942 
1943    Updating REG_EQUAL notes for IVs we split is tricky: We
1944    cannot tell until after unrolling, DF-rescanning, and liveness
1945    updating, whether an EQ_USE is reached by the split IV while
1946    the IV reg is still live.  See PR55006.
1947 
1948    ??? We cannot use remove_reg_equal_equiv_notes_for_regno,
1949    because RTL loop-iv requires us to defer rescanning insns and
1950    any notes attached to them.  So resort to old techniques...  */
1951 
1952 static void
maybe_strip_eq_note_for_split_iv(struct opt_info * opt_info,rtx_insn * insn)1953 maybe_strip_eq_note_for_split_iv (struct opt_info *opt_info, rtx_insn *insn)
1954 {
1955   struct iv_to_split *ivts;
1956   rtx note = find_reg_equal_equiv_note (insn);
1957   if (! note)
1958     return;
1959   for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1960     if (reg_mentioned_p (ivts->orig_var, note))
1961       {
1962 	remove_note (insn, note);
1963 	return;
1964       }
1965 }
1966 
1967 /* Apply loop optimizations in loop copies using the
1968    data which gathered during the unrolling.  Structure
1969    OPT_INFO record that data.
1970 
1971    UNROLLING is true if we unrolled (not peeled) the loop.
1972    REWRITE_ORIGINAL_BODY is true if we should also rewrite the original body of
1973    the loop (as it should happen in complete unrolling, but not in ordinary
1974    peeling of the loop).  */
1975 
1976 static void
apply_opt_in_copies(struct opt_info * opt_info,unsigned n_copies,bool unrolling,bool rewrite_original_loop)1977 apply_opt_in_copies (struct opt_info *opt_info,
1978                      unsigned n_copies, bool unrolling,
1979                      bool rewrite_original_loop)
1980 {
1981   unsigned i, delta;
1982   basic_block bb, orig_bb;
1983   rtx_insn *insn, *orig_insn, *next;
1984   struct iv_to_split ivts_templ, *ivts;
1985   struct var_to_expand ve_templ, *ves;
1986 
1987   /* Sanity check -- we need to put initialization in the original loop
1988      body.  */
1989   gcc_assert (!unrolling || rewrite_original_loop);
1990 
1991   /* Allocate the basic variables (i0).  */
1992   if (opt_info->insns_to_split)
1993     for (ivts = opt_info->iv_to_split_head; ivts; ivts = ivts->next)
1994       allocate_basic_variable (ivts);
1995 
1996   for (i = opt_info->first_new_block;
1997        i < (unsigned) last_basic_block_for_fn (cfun);
1998        i++)
1999     {
2000       bb = BASIC_BLOCK_FOR_FN (cfun, i);
2001       orig_bb = get_bb_original (bb);
2002 
2003       /* bb->aux holds position in copy sequence initialized by
2004 	 duplicate_loop_body_to_header_edge.  */
2005       delta = determine_split_iv_delta ((size_t)bb->aux, n_copies,
2006 					unrolling);
2007       bb->aux = 0;
2008       orig_insn = BB_HEAD (orig_bb);
2009       FOR_BB_INSNS_SAFE (bb, insn, next)
2010         {
2011 	  if (!INSN_P (insn)
2012 	      || (DEBUG_BIND_INSN_P (insn)
2013 		  && INSN_VAR_LOCATION_DECL (insn)
2014 		  && TREE_CODE (INSN_VAR_LOCATION_DECL (insn)) == LABEL_DECL))
2015             continue;
2016 
2017 	  while (!INSN_P (orig_insn)
2018 		 || (DEBUG_BIND_INSN_P (orig_insn)
2019 		     && INSN_VAR_LOCATION_DECL (orig_insn)
2020 		     && (TREE_CODE (INSN_VAR_LOCATION_DECL (orig_insn))
2021 			 == LABEL_DECL)))
2022             orig_insn = NEXT_INSN (orig_insn);
2023 
2024           ivts_templ.insn = orig_insn;
2025           ve_templ.insn = orig_insn;
2026 
2027           /* Apply splitting iv optimization.  */
2028           if (opt_info->insns_to_split)
2029             {
2030 	      maybe_strip_eq_note_for_split_iv (opt_info, insn);
2031 
2032               ivts = opt_info->insns_to_split->find (&ivts_templ);
2033 
2034               if (ivts)
2035                 {
2036 		  gcc_assert (GET_CODE (PATTERN (insn))
2037 			      == GET_CODE (PATTERN (orig_insn)));
2038 
2039                   if (!delta)
2040                     insert_base_initialization (ivts, insn);
2041                   split_iv (ivts, insn, delta);
2042                 }
2043             }
2044           /* Apply variable expansion optimization.  */
2045           if (unrolling && opt_info->insns_with_var_to_expand)
2046             {
2047               ves = (struct var_to_expand *)
2048 		opt_info->insns_with_var_to_expand->find (&ve_templ);
2049               if (ves)
2050                 {
2051 		  gcc_assert (GET_CODE (PATTERN (insn))
2052 			      == GET_CODE (PATTERN (orig_insn)));
2053                   expand_var_during_unrolling (ves, insn);
2054                 }
2055             }
2056           orig_insn = NEXT_INSN (orig_insn);
2057         }
2058     }
2059 
2060   if (!rewrite_original_loop)
2061     return;
2062 
2063   /* Initialize the variable expansions in the loop preheader
2064      and take care of combining them at the loop exit.  */
2065   if (opt_info->insns_with_var_to_expand)
2066     {
2067       for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2068 	insert_var_expansion_initialization (ves, opt_info->loop_preheader);
2069       for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2070 	combine_var_copies_in_loop_exit (ves, opt_info->loop_exit);
2071     }
2072 
2073   /* Rewrite also the original loop body.  Find them as originals of the blocks
2074      in the last copied iteration, i.e. those that have
2075      get_bb_copy (get_bb_original (bb)) == bb.  */
2076   for (i = opt_info->first_new_block;
2077        i < (unsigned) last_basic_block_for_fn (cfun);
2078        i++)
2079     {
2080       bb = BASIC_BLOCK_FOR_FN (cfun, i);
2081       orig_bb = get_bb_original (bb);
2082       if (get_bb_copy (orig_bb) != bb)
2083 	continue;
2084 
2085       delta = determine_split_iv_delta (0, n_copies, unrolling);
2086       for (orig_insn = BB_HEAD (orig_bb);
2087            orig_insn != NEXT_INSN (BB_END (bb));
2088            orig_insn = next)
2089         {
2090           next = NEXT_INSN (orig_insn);
2091 
2092           if (!INSN_P (orig_insn))
2093  	    continue;
2094 
2095           ivts_templ.insn = orig_insn;
2096           if (opt_info->insns_to_split)
2097             {
2098 	      maybe_strip_eq_note_for_split_iv (opt_info, orig_insn);
2099 
2100               ivts = (struct iv_to_split *)
2101 		opt_info->insns_to_split->find (&ivts_templ);
2102               if (ivts)
2103                 {
2104                   if (!delta)
2105                     insert_base_initialization (ivts, orig_insn);
2106                   split_iv (ivts, orig_insn, delta);
2107                   continue;
2108                 }
2109             }
2110 
2111         }
2112     }
2113 }
2114 
2115 /* Release OPT_INFO.  */
2116 
2117 static void
free_opt_info(struct opt_info * opt_info)2118 free_opt_info (struct opt_info *opt_info)
2119 {
2120   delete opt_info->insns_to_split;
2121   opt_info->insns_to_split = NULL;
2122   if (opt_info->insns_with_var_to_expand)
2123     {
2124       struct var_to_expand *ves;
2125 
2126       for (ves = opt_info->var_to_expand_head; ves; ves = ves->next)
2127 	ves->var_expansions.release ();
2128       delete opt_info->insns_with_var_to_expand;
2129       opt_info->insns_with_var_to_expand = NULL;
2130     }
2131   free (opt_info);
2132 }
2133