xref: /llvm-project/llvm/tools/llvm-stress/llvm-stress.cpp (revision 8e702735090388a3231a863e343f880d0f96fecb)
1 //===- llvm-stress.cpp - Generate random LL files to stress-test LLVM -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This program is a utility that generates random .ll files to stress-test
10 // different components in LLVM.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/CallingConv.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/FileSystem.h"
39 #include "llvm/Support/InitLLVM.h"
40 #include "llvm/Support/ToolOutputFile.h"
41 #include "llvm/Support/WithColor.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <algorithm>
44 #include <cassert>
45 #include <cstddef>
46 #include <cstdint>
47 #include <memory>
48 #include <string>
49 #include <system_error>
50 #include <vector>
51 
52 namespace llvm {
53 
54 static cl::OptionCategory StressCategory("Stress Options");
55 
56 static cl::opt<unsigned> SeedCL("seed", cl::desc("Seed used for randomness"),
57                                 cl::init(0), cl::cat(StressCategory));
58 
59 static cl::opt<unsigned> SizeCL(
60     "size",
61     cl::desc("The estimated size of the generated function (# of instrs)"),
62     cl::init(100), cl::cat(StressCategory));
63 
64 static cl::opt<std::string> OutputFilename("o",
65                                            cl::desc("Override output filename"),
66                                            cl::value_desc("filename"),
67                                            cl::cat(StressCategory));
68 
69 static cl::list<StringRef> AdditionalScalarTypes(
70     "types", cl::CommaSeparated,
71     cl::desc("Additional IR scalar types "
72              "(always includes i1, i8, i16, i32, i64, float and double)"));
73 
74 static cl::opt<bool> EnableScalableVectors(
75     "enable-scalable-vectors",
76     cl::desc("Generate IR involving scalable vector types"),
77     cl::init(false), cl::cat(StressCategory));
78 
79 
80 namespace {
81 
82 /// A utility class to provide a pseudo-random number generator which is
83 /// the same across all platforms. This is somewhat close to the libc
84 /// implementation. Note: This is not a cryptographically secure pseudorandom
85 /// number generator.
86 class Random {
87 public:
88   /// C'tor
89   Random(unsigned _seed):Seed(_seed) {}
90 
91   /// Return a random integer, up to a
92   /// maximum of 2**19 - 1.
93   uint32_t Rand() {
94     uint32_t Val = Seed + 0x000b07a1;
95     Seed = (Val * 0x3c7c0ac1);
96     // Only lowest 19 bits are random-ish.
97     return Seed & 0x7ffff;
98   }
99 
100   /// Return a random 64 bit integer.
101   uint64_t Rand64() {
102     uint64_t Val = Rand() & 0xffff;
103     Val |= uint64_t(Rand() & 0xffff) << 16;
104     Val |= uint64_t(Rand() & 0xffff) << 32;
105     Val |= uint64_t(Rand() & 0xffff) << 48;
106     return Val;
107   }
108 
109   /// Rand operator for STL algorithms.
110   ptrdiff_t operator()(ptrdiff_t y) {
111     return  Rand64() % y;
112   }
113 
114   /// Make this like a C++11 random device
115   using result_type = uint32_t ;
116 
117   static constexpr result_type min() { return 0; }
118   static constexpr result_type max() { return 0x7ffff; }
119 
120   uint32_t operator()() {
121     uint32_t Val = Rand();
122     assert(Val <= max() && "Random value out of range");
123     return Val;
124   }
125 
126 private:
127   unsigned Seed;
128 };
129 
130 /// Generate an empty function with a default argument list.
131 Function *GenEmptyFunction(Module *M) {
132   // Define a few arguments
133   LLVMContext &Context = M->getContext();
134   Type* ArgsTy[] = {
135     PointerType::get(Context, 0),
136     PointerType::get(Context, 0),
137     PointerType::get(Context, 0),
138     Type::getInt32Ty(Context),
139     Type::getInt64Ty(Context),
140     Type::getInt8Ty(Context)
141   };
142 
143   auto *FuncTy = FunctionType::get(Type::getVoidTy(Context), ArgsTy, false);
144   // Pick a unique name to describe the input parameters
145   Twine Name = "autogen_SD" + Twine{SeedCL};
146   auto *Func = Function::Create(FuncTy, GlobalValue::ExternalLinkage, Name, M);
147   Func->setCallingConv(CallingConv::C);
148   return Func;
149 }
150 
151 /// A base class, implementing utilities needed for
152 /// modifying and adding new random instructions.
153 struct Modifier {
154   /// Used to store the randomly generated values.
155   using PieceTable = std::vector<Value *>;
156 
157 public:
158   /// C'tor
159   Modifier(BasicBlock *Block, PieceTable *PT, Random *R)
160       : BB(Block), PT(PT), Ran(R), Context(BB->getContext()) {
161     ScalarTypes.assign({Type::getInt1Ty(Context), Type::getInt8Ty(Context),
162                         Type::getInt16Ty(Context), Type::getInt32Ty(Context),
163                         Type::getInt64Ty(Context), Type::getFloatTy(Context),
164                         Type::getDoubleTy(Context)});
165 
166     for (auto &Arg : AdditionalScalarTypes) {
167       Type *Ty = nullptr;
168       if (Arg == "half")
169         Ty = Type::getHalfTy(Context);
170       else if (Arg == "fp128")
171         Ty = Type::getFP128Ty(Context);
172       else if (Arg == "x86_fp80")
173         Ty = Type::getX86_FP80Ty(Context);
174       else if (Arg == "ppc_fp128")
175         Ty = Type::getPPC_FP128Ty(Context);
176       else if (Arg.starts_with("i")) {
177         unsigned N = 0;
178         Arg.drop_front().getAsInteger(10, N);
179         if (N > 0)
180           Ty = Type::getIntNTy(Context, N);
181       }
182       if (!Ty) {
183         errs() << "Invalid IR scalar type: '" << Arg << "'!\n";
184         exit(1);
185       }
186 
187       ScalarTypes.push_back(Ty);
188     }
189   }
190 
191   /// virtual D'tor to silence warnings.
192   virtual ~Modifier() = default;
193 
194   /// Add a new instruction.
195   virtual void Act() = 0;
196 
197   /// Add N new instructions,
198   virtual void ActN(unsigned n) {
199     for (unsigned i=0; i<n; ++i)
200       Act();
201   }
202 
203 protected:
204   /// Return a random integer.
205   uint32_t getRandom() {
206     return Ran->Rand();
207   }
208 
209   /// Return a random value from the list of known values.
210   Value *getRandomVal() {
211     assert(PT->size());
212     return PT->at(getRandom() % PT->size());
213   }
214 
215   Constant *getRandomConstant(Type *Tp) {
216     if (Tp->isIntegerTy()) {
217       if (getRandom() & 1)
218         return ConstantInt::getAllOnesValue(Tp);
219       return ConstantInt::getNullValue(Tp);
220     } else if (Tp->isFloatingPointTy()) {
221       if (getRandom() & 1)
222         return ConstantFP::getAllOnesValue(Tp);
223       return ConstantFP::getZero(Tp);
224     }
225     return UndefValue::get(Tp);
226   }
227 
228   /// Return a random value with a known type.
229   Value *getRandomValue(Type *Tp) {
230     unsigned index = getRandom();
231     for (unsigned i=0; i<PT->size(); ++i) {
232       Value *V = PT->at((index + i) % PT->size());
233       if (V->getType() == Tp)
234         return V;
235     }
236 
237     // If the requested type was not found, generate a constant value.
238     if (Tp->isIntegerTy()) {
239       if (getRandom() & 1)
240         return ConstantInt::getAllOnesValue(Tp);
241       return ConstantInt::getNullValue(Tp);
242     } else if (Tp->isFloatingPointTy()) {
243       if (getRandom() & 1)
244         return ConstantFP::getAllOnesValue(Tp);
245       return ConstantFP::getZero(Tp);
246     } else if (auto *VTp = dyn_cast<FixedVectorType>(Tp)) {
247       std::vector<Constant*> TempValues;
248       TempValues.reserve(VTp->getNumElements());
249       for (unsigned i = 0; i < VTp->getNumElements(); ++i)
250         TempValues.push_back(getRandomConstant(VTp->getScalarType()));
251 
252       ArrayRef<Constant*> VectorValue(TempValues);
253       return ConstantVector::get(VectorValue);
254     }
255 
256     return UndefValue::get(Tp);
257   }
258 
259   /// Return a random value of any pointer type.
260   Value *getRandomPointerValue() {
261     unsigned index = getRandom();
262     for (unsigned i=0; i<PT->size(); ++i) {
263       Value *V = PT->at((index + i) % PT->size());
264       if (V->getType()->isPointerTy())
265         return V;
266     }
267     return UndefValue::get(PointerType::get(Context, 0));
268   }
269 
270   /// Return a random value of any vector type.
271   Value *getRandomVectorValue() {
272     unsigned index = getRandom();
273     for (unsigned i=0; i<PT->size(); ++i) {
274       Value *V = PT->at((index + i) % PT->size());
275       if (V->getType()->isVectorTy())
276         return V;
277     }
278     return UndefValue::get(pickVectorType());
279   }
280 
281   /// Pick a random type.
282   Type *pickType() {
283     return (getRandom() & 1) ? pickVectorType() : pickScalarType();
284   }
285 
286   /// Pick a random vector type.
287   Type *pickVectorType(VectorType *VTy = nullptr) {
288 
289     Type *Ty = pickScalarType();
290 
291     if (VTy)
292       return VectorType::get(Ty, VTy->getElementCount());
293 
294     // Select either fixed length or scalable vectors with 50% probability
295     // (only if scalable vectors are enabled)
296     bool Scalable = EnableScalableVectors && getRandom() & 1;
297 
298     // Pick a random vector width in the range 2**0 to 2**4.
299     // by adding two randoms we are generating a normal-like distribution
300     // around 2**3.
301     unsigned width = 1<<((getRandom() % 3) + (getRandom() % 3));
302     return VectorType::get(Ty, width, Scalable);
303   }
304 
305   /// Pick a random scalar type.
306   Type *pickScalarType() {
307     return ScalarTypes[getRandom() % ScalarTypes.size()];
308   }
309 
310   /// Basic block to populate
311   BasicBlock *BB;
312 
313   /// Value table
314   PieceTable *PT;
315 
316   /// Random number generator
317   Random *Ran;
318 
319   /// Context
320   LLVMContext &Context;
321 
322   std::vector<Type *> ScalarTypes;
323 };
324 
325 struct LoadModifier: public Modifier {
326   LoadModifier(BasicBlock *BB, PieceTable *PT, Random *R)
327       : Modifier(BB, PT, R) {}
328 
329   void Act() override {
330     // Try to use predefined pointers. If non-exist, use undef pointer value;
331     Value *Ptr = getRandomPointerValue();
332     Type *Ty = pickType();
333     Value *V = new LoadInst(Ty, Ptr, "L", BB->getTerminator()->getIterator());
334     PT->push_back(V);
335   }
336 };
337 
338 struct StoreModifier: public Modifier {
339   StoreModifier(BasicBlock *BB, PieceTable *PT, Random *R)
340       : Modifier(BB, PT, R) {}
341 
342   void Act() override {
343     // Try to use predefined pointers. If non-exist, use undef pointer value;
344     Value *Ptr = getRandomPointerValue();
345     Type *ValTy = pickType();
346 
347     // Do not store vectors of i1s because they are unsupported
348     // by the codegen.
349     if (ValTy->isVectorTy() && ValTy->getScalarSizeInBits() == 1)
350       return;
351 
352     Value *Val = getRandomValue(ValTy);
353     new StoreInst(Val, Ptr, BB->getTerminator()->getIterator());
354   }
355 };
356 
357 struct BinModifier: public Modifier {
358   BinModifier(BasicBlock *BB, PieceTable *PT, Random *R)
359       : Modifier(BB, PT, R) {}
360 
361   void Act() override {
362     Value *Val0 = getRandomVal();
363     Value *Val1 = getRandomValue(Val0->getType());
364 
365     // Don't handle pointer types.
366     if (Val0->getType()->isPointerTy() ||
367         Val1->getType()->isPointerTy())
368       return;
369 
370     // Don't handle i1 types.
371     if (Val0->getType()->getScalarSizeInBits() == 1)
372       return;
373 
374     bool isFloat = Val0->getType()->getScalarType()->isFloatingPointTy();
375     Instruction* Term = BB->getTerminator();
376     unsigned R = getRandom() % (isFloat ? 7 : 13);
377     Instruction::BinaryOps Op;
378 
379     switch (R) {
380     default: llvm_unreachable("Invalid BinOp");
381     case 0:{Op = (isFloat?Instruction::FAdd : Instruction::Add); break; }
382     case 1:{Op = (isFloat?Instruction::FSub : Instruction::Sub); break; }
383     case 2:{Op = (isFloat?Instruction::FMul : Instruction::Mul); break; }
384     case 3:{Op = (isFloat?Instruction::FDiv : Instruction::SDiv); break; }
385     case 4:{Op = (isFloat?Instruction::FDiv : Instruction::UDiv); break; }
386     case 5:{Op = (isFloat?Instruction::FRem : Instruction::SRem); break; }
387     case 6:{Op = (isFloat?Instruction::FRem : Instruction::URem); break; }
388     case 7: {Op = Instruction::Shl;  break; }
389     case 8: {Op = Instruction::LShr; break; }
390     case 9: {Op = Instruction::AShr; break; }
391     case 10:{Op = Instruction::And;  break; }
392     case 11:{Op = Instruction::Or;   break; }
393     case 12:{Op = Instruction::Xor;  break; }
394     }
395 
396     PT->push_back(
397         BinaryOperator::Create(Op, Val0, Val1, "B", Term->getIterator()));
398   }
399 };
400 
401 /// Generate constant values.
402 struct ConstModifier: public Modifier {
403   ConstModifier(BasicBlock *BB, PieceTable *PT, Random *R)
404       : Modifier(BB, PT, R) {}
405 
406   void Act() override {
407     Type *Ty = pickType();
408 
409     if (Ty->isVectorTy()) {
410       switch (getRandom() % 2) {
411       case 0: if (Ty->isIntOrIntVectorTy())
412                 return PT->push_back(ConstantVector::getAllOnesValue(Ty));
413               break;
414       case 1: if (Ty->isIntOrIntVectorTy())
415                 return PT->push_back(ConstantVector::getNullValue(Ty));
416       }
417     }
418 
419     if (Ty->isFloatingPointTy()) {
420       // Generate 128 random bits, the size of the (currently)
421       // largest floating-point types.
422       uint64_t RandomBits[2];
423       for (unsigned i = 0; i < 2; ++i)
424         RandomBits[i] = Ran->Rand64();
425 
426       APInt RandomInt(Ty->getPrimitiveSizeInBits(), ArrayRef(RandomBits));
427       APFloat RandomFloat(Ty->getFltSemantics(), RandomInt);
428 
429       if (getRandom() & 1)
430         return PT->push_back(ConstantFP::getZero(Ty));
431       return PT->push_back(ConstantFP::get(Ty->getContext(), RandomFloat));
432     }
433 
434     if (Ty->isIntegerTy()) {
435       switch (getRandom() % 7) {
436       case 0:
437         return PT->push_back(ConstantInt::get(
438             Ty, APInt::getAllOnes(Ty->getPrimitiveSizeInBits())));
439       case 1:
440         return PT->push_back(
441             ConstantInt::get(Ty, APInt::getZero(Ty->getPrimitiveSizeInBits())));
442       case 2:
443       case 3:
444       case 4:
445       case 5:
446       case 6:
447         PT->push_back(ConstantInt::get(Ty, getRandom()));
448       }
449     }
450   }
451 };
452 
453 struct AllocaModifier: public Modifier {
454   AllocaModifier(BasicBlock *BB, PieceTable *PT, Random *R)
455       : Modifier(BB, PT, R) {}
456 
457   void Act() override {
458     Type *Tp = pickType();
459     const DataLayout &DL = BB->getDataLayout();
460     PT->push_back(new AllocaInst(Tp, DL.getAllocaAddrSpace(), "A",
461                                  BB->getFirstNonPHIIt()));
462   }
463 };
464 
465 struct ExtractElementModifier: public Modifier {
466   ExtractElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
467       : Modifier(BB, PT, R) {}
468 
469   void Act() override {
470     Value *Val0 = getRandomVectorValue();
471     Value *V = ExtractElementInst::Create(
472         Val0, getRandomValue(Type::getInt32Ty(BB->getContext())), "E",
473         BB->getTerminator()->getIterator());
474     return PT->push_back(V);
475   }
476 };
477 
478 struct ShuffModifier: public Modifier {
479   ShuffModifier(BasicBlock *BB, PieceTable *PT, Random *R)
480       : Modifier(BB, PT, R) {}
481 
482   void Act() override {
483     Value *Val0 = getRandomVectorValue();
484     Value *Val1 = getRandomValue(Val0->getType());
485 
486     // Can't express arbitrary shufflevectors for scalable vectors
487     if (isa<ScalableVectorType>(Val0->getType()))
488       return;
489 
490     unsigned Width = cast<FixedVectorType>(Val0->getType())->getNumElements();
491     std::vector<Constant*> Idxs;
492 
493     Type *I32 = Type::getInt32Ty(BB->getContext());
494     for (unsigned i=0; i<Width; ++i) {
495       Constant *CI = ConstantInt::get(I32, getRandom() % (Width*2));
496       // Pick some undef values.
497       if (!(getRandom() % 5))
498         CI = UndefValue::get(I32);
499       Idxs.push_back(CI);
500     }
501 
502     Constant *Mask = ConstantVector::get(Idxs);
503 
504     Value *V = new ShuffleVectorInst(Val0, Val1, Mask, "Shuff",
505                                      BB->getTerminator()->getIterator());
506     PT->push_back(V);
507   }
508 };
509 
510 struct InsertElementModifier: public Modifier {
511   InsertElementModifier(BasicBlock *BB, PieceTable *PT, Random *R)
512       : Modifier(BB, PT, R) {}
513 
514   void Act() override {
515     Value *Val0 = getRandomVectorValue();
516     Value *Val1 = getRandomValue(Val0->getType()->getScalarType());
517 
518     Value *V = InsertElementInst::Create(
519         Val0, Val1, getRandomValue(Type::getInt32Ty(BB->getContext())), "I",
520         BB->getTerminator()->getIterator());
521     return PT->push_back(V);
522   }
523 };
524 
525 struct CastModifier: public Modifier {
526   CastModifier(BasicBlock *BB, PieceTable *PT, Random *R)
527       : Modifier(BB, PT, R) {}
528 
529   void Act() override {
530     Value *V = getRandomVal();
531     Type *VTy = V->getType();
532     Type *DestTy = pickScalarType();
533 
534     // Handle vector casts vectors.
535     if (VTy->isVectorTy())
536       DestTy = pickVectorType(cast<VectorType>(VTy));
537 
538     // no need to cast.
539     if (VTy == DestTy) return;
540 
541     // Pointers:
542     if (VTy->isPointerTy()) {
543       if (!DestTy->isPointerTy())
544         DestTy = PointerType::get(Context, 0);
545       return PT->push_back(
546           new BitCastInst(V, DestTy, "PC", BB->getTerminator()->getIterator()));
547     }
548 
549     unsigned VSize = VTy->getScalarType()->getPrimitiveSizeInBits();
550     unsigned DestSize = DestTy->getScalarType()->getPrimitiveSizeInBits();
551 
552     // Generate lots of bitcasts.
553     if ((getRandom() & 1) && VSize == DestSize) {
554       return PT->push_back(
555           new BitCastInst(V, DestTy, "BC", BB->getTerminator()->getIterator()));
556     }
557 
558     // Both types are integers:
559     if (VTy->isIntOrIntVectorTy() && DestTy->isIntOrIntVectorTy()) {
560       if (VSize > DestSize) {
561         return PT->push_back(
562             new TruncInst(V, DestTy, "Tr", BB->getTerminator()->getIterator()));
563       } else {
564         assert(VSize < DestSize && "Different int types with the same size?");
565         if (getRandom() & 1)
566           return PT->push_back(new ZExtInst(
567               V, DestTy, "ZE", BB->getTerminator()->getIterator()));
568         return PT->push_back(
569             new SExtInst(V, DestTy, "Se", BB->getTerminator()->getIterator()));
570       }
571     }
572 
573     // Fp to int.
574     if (VTy->isFPOrFPVectorTy() && DestTy->isIntOrIntVectorTy()) {
575       if (getRandom() & 1)
576         return PT->push_back(new FPToSIInst(
577             V, DestTy, "FC", BB->getTerminator()->getIterator()));
578       return PT->push_back(
579           new FPToUIInst(V, DestTy, "FC", BB->getTerminator()->getIterator()));
580     }
581 
582     // Int to fp.
583     if (VTy->isIntOrIntVectorTy() && DestTy->isFPOrFPVectorTy()) {
584       if (getRandom() & 1)
585         return PT->push_back(new SIToFPInst(
586             V, DestTy, "FC", BB->getTerminator()->getIterator()));
587       return PT->push_back(
588           new UIToFPInst(V, DestTy, "FC", BB->getTerminator()->getIterator()));
589     }
590 
591     // Both floats.
592     if (VTy->isFPOrFPVectorTy() && DestTy->isFPOrFPVectorTy()) {
593       if (VSize > DestSize) {
594         return PT->push_back(new FPTruncInst(
595             V, DestTy, "Tr", BB->getTerminator()->getIterator()));
596       } else if (VSize < DestSize) {
597         return PT->push_back(
598             new FPExtInst(V, DestTy, "ZE", BB->getTerminator()->getIterator()));
599       }
600       // If VSize == DestSize, then the two types must be fp128 and ppc_fp128,
601       // for which there is no defined conversion. So do nothing.
602     }
603   }
604 };
605 
606 struct SelectModifier: public Modifier {
607   SelectModifier(BasicBlock *BB, PieceTable *PT, Random *R)
608       : Modifier(BB, PT, R) {}
609 
610   void Act() override {
611     // Try a bunch of different select configuration until a valid one is found.
612     Value *Val0 = getRandomVal();
613     Value *Val1 = getRandomValue(Val0->getType());
614 
615     Type *CondTy = Type::getInt1Ty(Context);
616 
617     // If the value type is a vector, and we allow vector select, then in 50%
618     // of the cases generate a vector select.
619     if (auto *VTy = dyn_cast<VectorType>(Val0->getType()))
620       if (getRandom() & 1)
621         CondTy = VectorType::get(CondTy, VTy->getElementCount());
622 
623     Value *Cond = getRandomValue(CondTy);
624     Value *V = SelectInst::Create(Cond, Val0, Val1, "Sl",
625                                   BB->getTerminator()->getIterator());
626     return PT->push_back(V);
627   }
628 };
629 
630 struct CmpModifier: public Modifier {
631   CmpModifier(BasicBlock *BB, PieceTable *PT, Random *R)
632       : Modifier(BB, PT, R) {}
633 
634   void Act() override {
635     Value *Val0 = getRandomVal();
636     Value *Val1 = getRandomValue(Val0->getType());
637 
638     if (Val0->getType()->isPointerTy()) return;
639     bool fp = Val0->getType()->getScalarType()->isFloatingPointTy();
640 
641     int op;
642     if (fp) {
643       op = getRandom() %
644       (CmpInst::LAST_FCMP_PREDICATE - CmpInst::FIRST_FCMP_PREDICATE) +
645        CmpInst::FIRST_FCMP_PREDICATE;
646     } else {
647       op = getRandom() %
648       (CmpInst::LAST_ICMP_PREDICATE - CmpInst::FIRST_ICMP_PREDICATE) +
649        CmpInst::FIRST_ICMP_PREDICATE;
650     }
651 
652     Value *V = CmpInst::Create(fp ? Instruction::FCmp : Instruction::ICmp,
653                                (CmpInst::Predicate)op, Val0, Val1, "Cmp",
654                                BB->getTerminator()->getIterator());
655     return PT->push_back(V);
656   }
657 };
658 
659 } // end anonymous namespace
660 
661 static void FillFunction(Function *F, Random &R) {
662   // Create a legal entry block.
663   BasicBlock *BB = BasicBlock::Create(F->getContext(), "BB", F);
664   ReturnInst::Create(F->getContext(), BB);
665 
666   // Create the value table.
667   Modifier::PieceTable PT;
668 
669   // Consider arguments as legal values.
670   for (auto &arg : F->args())
671     PT.push_back(&arg);
672 
673   // List of modifiers which add new random instructions.
674   std::vector<std::unique_ptr<Modifier>> Modifiers;
675   Modifiers.emplace_back(new LoadModifier(BB, &PT, &R));
676   Modifiers.emplace_back(new StoreModifier(BB, &PT, &R));
677   auto SM = Modifiers.back().get();
678   Modifiers.emplace_back(new ExtractElementModifier(BB, &PT, &R));
679   Modifiers.emplace_back(new ShuffModifier(BB, &PT, &R));
680   Modifiers.emplace_back(new InsertElementModifier(BB, &PT, &R));
681   Modifiers.emplace_back(new BinModifier(BB, &PT, &R));
682   Modifiers.emplace_back(new CastModifier(BB, &PT, &R));
683   Modifiers.emplace_back(new SelectModifier(BB, &PT, &R));
684   Modifiers.emplace_back(new CmpModifier(BB, &PT, &R));
685 
686   // Generate the random instructions
687   AllocaModifier{BB, &PT, &R}.ActN(5); // Throw in a few allocas
688   ConstModifier{BB, &PT, &R}.ActN(40); // Throw in a few constants
689 
690   for (unsigned i = 0; i < SizeCL / Modifiers.size(); ++i)
691     for (auto &Mod : Modifiers)
692       Mod->Act();
693 
694   SM->ActN(5); // Throw in a few stores.
695 }
696 
697 static void IntroduceControlFlow(Function *F, Random &R) {
698   std::vector<Instruction*> BoolInst;
699   for (auto &Instr : F->front()) {
700     if (Instr.getType() == IntegerType::getInt1Ty(F->getContext()))
701       BoolInst.push_back(&Instr);
702   }
703 
704   llvm::shuffle(BoolInst.begin(), BoolInst.end(), R);
705 
706   for (auto *Instr : BoolInst) {
707     BasicBlock *Curr = Instr->getParent();
708     BasicBlock::iterator Loc = Instr->getIterator();
709     BasicBlock *Next = Curr->splitBasicBlock(Loc, "CF");
710     Instr->moveBefore(Curr->getTerminator()->getIterator());
711     if (Curr != &F->getEntryBlock()) {
712       BranchInst::Create(Curr, Next, Instr,
713                          Curr->getTerminator()->getIterator());
714       Curr->getTerminator()->eraseFromParent();
715     }
716   }
717 }
718 
719 } // end namespace llvm
720 
721 int main(int argc, char **argv) {
722   using namespace llvm;
723 
724   InitLLVM X(argc, argv);
725   cl::HideUnrelatedOptions({&StressCategory, &getColorCategory()});
726   cl::ParseCommandLineOptions(argc, argv, "llvm codegen stress-tester\n");
727 
728   LLVMContext Context;
729   auto M = std::make_unique<Module>("/tmp/autogen.bc", Context);
730   Function *F = GenEmptyFunction(M.get());
731 
732   // Pick an initial seed value
733   Random R(SeedCL);
734   // Generate lots of random instructions inside a single basic block.
735   FillFunction(F, R);
736   // Break the basic block into many loops.
737   IntroduceControlFlow(F, R);
738 
739   // Figure out what stream we are supposed to write to...
740   std::unique_ptr<ToolOutputFile> Out;
741   // Default to standard output.
742   if (OutputFilename.empty())
743     OutputFilename = "-";
744 
745   std::error_code EC;
746   Out.reset(new ToolOutputFile(OutputFilename, EC, sys::fs::OF_None));
747   if (EC) {
748     errs() << EC.message() << '\n';
749     return 1;
750   }
751 
752   // Check that the generated module is accepted by the verifier.
753   if (verifyModule(*M.get(), &Out->os()))
754     report_fatal_error("Broken module found, compilation aborted!");
755 
756   // Output textual IR.
757   M->print(Out->os(), nullptr);
758 
759   Out->keep();
760 
761   return 0;
762 }
763