1 //===- llvm-profdata.cpp - LLVM profile data tool -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // llvm-profdata merges .profdata files.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/ADT/SmallSet.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/IR/LLVMContext.h"
17 #include "llvm/Object/Binary.h"
18 #include "llvm/ProfileData/InstrProfCorrelator.h"
19 #include "llvm/ProfileData/InstrProfReader.h"
20 #include "llvm/ProfileData/InstrProfWriter.h"
21 #include "llvm/ProfileData/MemProf.h"
22 #include "llvm/ProfileData/ProfileCommon.h"
23 #include "llvm/ProfileData/RawMemProfReader.h"
24 #include "llvm/ProfileData/SampleProfReader.h"
25 #include "llvm/ProfileData/SampleProfWriter.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Discriminator.h"
28 #include "llvm/Support/Errc.h"
29 #include "llvm/Support/FileSystem.h"
30 #include "llvm/Support/Format.h"
31 #include "llvm/Support/FormattedStream.h"
32 #include "llvm/Support/InitLLVM.h"
33 #include "llvm/Support/MD5.h"
34 #include "llvm/Support/MemoryBuffer.h"
35 #include "llvm/Support/Path.h"
36 #include "llvm/Support/ThreadPool.h"
37 #include "llvm/Support/Threading.h"
38 #include "llvm/Support/WithColor.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include <algorithm>
41 #include <cmath>
42 #include <optional>
43 #include <queue>
44
45 using namespace llvm;
46
47 // We use this string to indicate that there are
48 // multiple static functions map to the same name.
49 const std::string DuplicateNameStr = "----";
50
51 enum ProfileFormat {
52 PF_None = 0,
53 PF_Text,
54 PF_Compact_Binary,
55 PF_Ext_Binary,
56 PF_GCC,
57 PF_Binary
58 };
59
60 enum class ShowFormat { Text, Json, Yaml };
61
warn(Twine Message,std::string Whence="",std::string Hint="")62 static void warn(Twine Message, std::string Whence = "",
63 std::string Hint = "") {
64 WithColor::warning();
65 if (!Whence.empty())
66 errs() << Whence << ": ";
67 errs() << Message << "\n";
68 if (!Hint.empty())
69 WithColor::note() << Hint << "\n";
70 }
71
warn(Error E,StringRef Whence="")72 static void warn(Error E, StringRef Whence = "") {
73 if (E.isA<InstrProfError>()) {
74 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
75 warn(IPE.message(), std::string(Whence), std::string(""));
76 });
77 }
78 }
79
exitWithError(Twine Message,std::string Whence="",std::string Hint="")80 static void exitWithError(Twine Message, std::string Whence = "",
81 std::string Hint = "") {
82 WithColor::error();
83 if (!Whence.empty())
84 errs() << Whence << ": ";
85 errs() << Message << "\n";
86 if (!Hint.empty())
87 WithColor::note() << Hint << "\n";
88 ::exit(1);
89 }
90
exitWithError(Error E,StringRef Whence="")91 static void exitWithError(Error E, StringRef Whence = "") {
92 if (E.isA<InstrProfError>()) {
93 handleAllErrors(std::move(E), [&](const InstrProfError &IPE) {
94 instrprof_error instrError = IPE.get();
95 StringRef Hint = "";
96 if (instrError == instrprof_error::unrecognized_format) {
97 // Hint in case user missed specifying the profile type.
98 Hint = "Perhaps you forgot to use the --sample or --memory option?";
99 }
100 exitWithError(IPE.message(), std::string(Whence), std::string(Hint));
101 });
102 return;
103 }
104
105 exitWithError(toString(std::move(E)), std::string(Whence));
106 }
107
exitWithErrorCode(std::error_code EC,StringRef Whence="")108 static void exitWithErrorCode(std::error_code EC, StringRef Whence = "") {
109 exitWithError(EC.message(), std::string(Whence));
110 }
111
112 namespace {
113 enum ProfileKinds { instr, sample, memory };
114 enum FailureMode { failIfAnyAreInvalid, failIfAllAreInvalid };
115 }
116
warnOrExitGivenError(FailureMode FailMode,std::error_code EC,StringRef Whence="")117 static void warnOrExitGivenError(FailureMode FailMode, std::error_code EC,
118 StringRef Whence = "") {
119 if (FailMode == failIfAnyAreInvalid)
120 exitWithErrorCode(EC, Whence);
121 else
122 warn(EC.message(), std::string(Whence));
123 }
124
handleMergeWriterError(Error E,StringRef WhenceFile="",StringRef WhenceFunction="",bool ShowHint=true)125 static void handleMergeWriterError(Error E, StringRef WhenceFile = "",
126 StringRef WhenceFunction = "",
127 bool ShowHint = true) {
128 if (!WhenceFile.empty())
129 errs() << WhenceFile << ": ";
130 if (!WhenceFunction.empty())
131 errs() << WhenceFunction << ": ";
132
133 auto IPE = instrprof_error::success;
134 E = handleErrors(std::move(E),
135 [&IPE](std::unique_ptr<InstrProfError> E) -> Error {
136 IPE = E->get();
137 return Error(std::move(E));
138 });
139 errs() << toString(std::move(E)) << "\n";
140
141 if (ShowHint) {
142 StringRef Hint = "";
143 if (IPE != instrprof_error::success) {
144 switch (IPE) {
145 case instrprof_error::hash_mismatch:
146 case instrprof_error::count_mismatch:
147 case instrprof_error::value_site_count_mismatch:
148 Hint = "Make sure that all profile data to be merged is generated "
149 "from the same binary.";
150 break;
151 default:
152 break;
153 }
154 }
155
156 if (!Hint.empty())
157 errs() << Hint << "\n";
158 }
159 }
160
161 namespace {
162 /// A remapper from original symbol names to new symbol names based on a file
163 /// containing a list of mappings from old name to new name.
164 class SymbolRemapper {
165 std::unique_ptr<MemoryBuffer> File;
166 DenseMap<StringRef, StringRef> RemappingTable;
167
168 public:
169 /// Build a SymbolRemapper from a file containing a list of old/new symbols.
create(StringRef InputFile)170 static std::unique_ptr<SymbolRemapper> create(StringRef InputFile) {
171 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
172 if (!BufOrError)
173 exitWithErrorCode(BufOrError.getError(), InputFile);
174
175 auto Remapper = std::make_unique<SymbolRemapper>();
176 Remapper->File = std::move(BufOrError.get());
177
178 for (line_iterator LineIt(*Remapper->File, /*SkipBlanks=*/true, '#');
179 !LineIt.is_at_eof(); ++LineIt) {
180 std::pair<StringRef, StringRef> Parts = LineIt->split(' ');
181 if (Parts.first.empty() || Parts.second.empty() ||
182 Parts.second.count(' ')) {
183 exitWithError("unexpected line in remapping file",
184 (InputFile + ":" + Twine(LineIt.line_number())).str(),
185 "expected 'old_symbol new_symbol'");
186 }
187 Remapper->RemappingTable.insert(Parts);
188 }
189 return Remapper;
190 }
191
192 /// Attempt to map the given old symbol into a new symbol.
193 ///
194 /// \return The new symbol, or \p Name if no such symbol was found.
operator ()(StringRef Name)195 StringRef operator()(StringRef Name) {
196 StringRef New = RemappingTable.lookup(Name);
197 return New.empty() ? Name : New;
198 }
199 };
200 }
201
202 struct WeightedFile {
203 std::string Filename;
204 uint64_t Weight;
205 };
206 typedef SmallVector<WeightedFile, 5> WeightedFileVector;
207
208 /// Keep track of merged data and reported errors.
209 struct WriterContext {
210 std::mutex Lock;
211 InstrProfWriter Writer;
212 std::vector<std::pair<Error, std::string>> Errors;
213 std::mutex &ErrLock;
214 SmallSet<instrprof_error, 4> &WriterErrorCodes;
215
WriterContextWriterContext216 WriterContext(bool IsSparse, std::mutex &ErrLock,
217 SmallSet<instrprof_error, 4> &WriterErrorCodes)
218 : Writer(IsSparse), ErrLock(ErrLock), WriterErrorCodes(WriterErrorCodes) {
219 }
220 };
221
222 /// Computer the overlap b/w profile BaseFilename and TestFileName,
223 /// and store the program level result to Overlap.
overlapInput(const std::string & BaseFilename,const std::string & TestFilename,WriterContext * WC,OverlapStats & Overlap,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)224 static void overlapInput(const std::string &BaseFilename,
225 const std::string &TestFilename, WriterContext *WC,
226 OverlapStats &Overlap,
227 const OverlapFuncFilters &FuncFilter,
228 raw_fd_ostream &OS, bool IsCS) {
229 auto ReaderOrErr = InstrProfReader::create(TestFilename);
230 if (Error E = ReaderOrErr.takeError()) {
231 // Skip the empty profiles by returning sliently.
232 instrprof_error IPE = InstrProfError::take(std::move(E));
233 if (IPE != instrprof_error::empty_raw_profile)
234 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), TestFilename);
235 return;
236 }
237
238 auto Reader = std::move(ReaderOrErr.get());
239 for (auto &I : *Reader) {
240 OverlapStats FuncOverlap(OverlapStats::FunctionLevel);
241 FuncOverlap.setFuncInfo(I.Name, I.Hash);
242
243 WC->Writer.overlapRecord(std::move(I), Overlap, FuncOverlap, FuncFilter);
244 FuncOverlap.dump(OS);
245 }
246 }
247
248 /// Load an input into a writer context.
loadInput(const WeightedFile & Input,SymbolRemapper * Remapper,const InstrProfCorrelator * Correlator,const StringRef ProfiledBinary,WriterContext * WC)249 static void loadInput(const WeightedFile &Input, SymbolRemapper *Remapper,
250 const InstrProfCorrelator *Correlator,
251 const StringRef ProfiledBinary, WriterContext *WC) {
252 std::unique_lock<std::mutex> CtxGuard{WC->Lock};
253
254 // Copy the filename, because llvm::ThreadPool copied the input "const
255 // WeightedFile &" by value, making a reference to the filename within it
256 // invalid outside of this packaged task.
257 std::string Filename = Input.Filename;
258
259 using ::llvm::memprof::RawMemProfReader;
260 if (RawMemProfReader::hasFormat(Input.Filename)) {
261 auto ReaderOrErr = RawMemProfReader::create(Input.Filename, ProfiledBinary);
262 if (!ReaderOrErr) {
263 exitWithError(ReaderOrErr.takeError(), Input.Filename);
264 }
265 std::unique_ptr<RawMemProfReader> Reader = std::move(ReaderOrErr.get());
266 // Check if the profile types can be merged, e.g. clang frontend profiles
267 // should not be merged with memprof profiles.
268 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
269 consumeError(std::move(E));
270 WC->Errors.emplace_back(
271 make_error<StringError>(
272 "Cannot merge MemProf profile with Clang generated profile.",
273 std::error_code()),
274 Filename);
275 return;
276 }
277
278 auto MemProfError = [&](Error E) {
279 instrprof_error IPE = InstrProfError::take(std::move(E));
280 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
281 };
282
283 // Add the frame mappings into the writer context.
284 const auto &IdToFrame = Reader->getFrameMapping();
285 for (const auto &I : IdToFrame) {
286 bool Succeeded = WC->Writer.addMemProfFrame(
287 /*Id=*/I.first, /*Frame=*/I.getSecond(), MemProfError);
288 // If we weren't able to add the frame mappings then it doesn't make sense
289 // to try to add the records from this profile.
290 if (!Succeeded)
291 return;
292 }
293 const auto &FunctionProfileData = Reader->getProfileData();
294 // Add the memprof records into the writer context.
295 for (const auto &I : FunctionProfileData) {
296 WC->Writer.addMemProfRecord(/*Id=*/I.first, /*Record=*/I.second);
297 }
298 return;
299 }
300
301 auto ReaderOrErr = InstrProfReader::create(Input.Filename, Correlator);
302 if (Error E = ReaderOrErr.takeError()) {
303 // Skip the empty profiles by returning sliently.
304 instrprof_error IPE = InstrProfError::take(std::move(E));
305 if (IPE != instrprof_error::empty_raw_profile)
306 WC->Errors.emplace_back(make_error<InstrProfError>(IPE), Filename);
307 return;
308 }
309
310 auto Reader = std::move(ReaderOrErr.get());
311 if (Error E = WC->Writer.mergeProfileKind(Reader->getProfileKind())) {
312 consumeError(std::move(E));
313 WC->Errors.emplace_back(
314 make_error<StringError>(
315 "Merge IR generated profile with Clang generated profile.",
316 std::error_code()),
317 Filename);
318 return;
319 }
320
321 for (auto &I : *Reader) {
322 if (Remapper)
323 I.Name = (*Remapper)(I.Name);
324 const StringRef FuncName = I.Name;
325 bool Reported = false;
326 WC->Writer.addRecord(std::move(I), Input.Weight, [&](Error E) {
327 if (Reported) {
328 consumeError(std::move(E));
329 return;
330 }
331 Reported = true;
332 // Only show hint the first time an error occurs.
333 instrprof_error IPE = InstrProfError::take(std::move(E));
334 std::unique_lock<std::mutex> ErrGuard{WC->ErrLock};
335 bool firstTime = WC->WriterErrorCodes.insert(IPE).second;
336 handleMergeWriterError(make_error<InstrProfError>(IPE), Input.Filename,
337 FuncName, firstTime);
338 });
339 }
340
341 if (Reader->hasError()) {
342 if (Error E = Reader->getError())
343 WC->Errors.emplace_back(std::move(E), Filename);
344 }
345
346 std::vector<llvm::object::BuildID> BinaryIds;
347 if (Error E = Reader->readBinaryIds(BinaryIds))
348 WC->Errors.emplace_back(std::move(E), Filename);
349 WC->Writer.addBinaryIds(BinaryIds);
350 }
351
352 /// Merge the \p Src writer context into \p Dst.
mergeWriterContexts(WriterContext * Dst,WriterContext * Src)353 static void mergeWriterContexts(WriterContext *Dst, WriterContext *Src) {
354 for (auto &ErrorPair : Src->Errors)
355 Dst->Errors.push_back(std::move(ErrorPair));
356 Src->Errors.clear();
357
358 if (Error E = Dst->Writer.mergeProfileKind(Src->Writer.getProfileKind()))
359 exitWithError(std::move(E));
360
361 Dst->Writer.mergeRecordsFromWriter(std::move(Src->Writer), [&](Error E) {
362 instrprof_error IPE = InstrProfError::take(std::move(E));
363 std::unique_lock<std::mutex> ErrGuard{Dst->ErrLock};
364 bool firstTime = Dst->WriterErrorCodes.insert(IPE).second;
365 if (firstTime)
366 warn(toString(make_error<InstrProfError>(IPE)));
367 });
368 }
369
writeInstrProfile(StringRef OutputFilename,ProfileFormat OutputFormat,InstrProfWriter & Writer)370 static void writeInstrProfile(StringRef OutputFilename,
371 ProfileFormat OutputFormat,
372 InstrProfWriter &Writer) {
373 std::error_code EC;
374 raw_fd_ostream Output(OutputFilename.data(), EC,
375 OutputFormat == PF_Text ? sys::fs::OF_TextWithCRLF
376 : sys::fs::OF_None);
377 if (EC)
378 exitWithErrorCode(EC, OutputFilename);
379
380 if (OutputFormat == PF_Text) {
381 if (Error E = Writer.writeText(Output))
382 warn(std::move(E));
383 } else {
384 if (Output.is_displayed())
385 exitWithError("cannot write a non-text format profile to the terminal");
386 if (Error E = Writer.write(Output))
387 warn(std::move(E));
388 }
389 }
390
mergeInstrProfile(const WeightedFileVector & Inputs,StringRef DebugInfoFilename,SymbolRemapper * Remapper,StringRef OutputFilename,ProfileFormat OutputFormat,bool OutputSparse,unsigned NumThreads,FailureMode FailMode,const StringRef ProfiledBinary)391 static void mergeInstrProfile(const WeightedFileVector &Inputs,
392 StringRef DebugInfoFilename,
393 SymbolRemapper *Remapper,
394 StringRef OutputFilename,
395 ProfileFormat OutputFormat, bool OutputSparse,
396 unsigned NumThreads, FailureMode FailMode,
397 const StringRef ProfiledBinary) {
398 if (OutputFormat != PF_Binary && OutputFormat != PF_Compact_Binary &&
399 OutputFormat != PF_Ext_Binary && OutputFormat != PF_Text)
400 exitWithError("unknown format is specified");
401
402 std::unique_ptr<InstrProfCorrelator> Correlator;
403 if (!DebugInfoFilename.empty()) {
404 if (auto Err =
405 InstrProfCorrelator::get(DebugInfoFilename).moveInto(Correlator))
406 exitWithError(std::move(Err), DebugInfoFilename);
407 if (auto Err = Correlator->correlateProfileData())
408 exitWithError(std::move(Err), DebugInfoFilename);
409 }
410
411 std::mutex ErrorLock;
412 SmallSet<instrprof_error, 4> WriterErrorCodes;
413
414 // If NumThreads is not specified, auto-detect a good default.
415 if (NumThreads == 0)
416 NumThreads = std::min(hardware_concurrency().compute_thread_count(),
417 unsigned((Inputs.size() + 1) / 2));
418
419 // Initialize the writer contexts.
420 SmallVector<std::unique_ptr<WriterContext>, 4> Contexts;
421 for (unsigned I = 0; I < NumThreads; ++I)
422 Contexts.emplace_back(std::make_unique<WriterContext>(
423 OutputSparse, ErrorLock, WriterErrorCodes));
424
425 if (NumThreads == 1) {
426 for (const auto &Input : Inputs)
427 loadInput(Input, Remapper, Correlator.get(), ProfiledBinary,
428 Contexts[0].get());
429 } else {
430 ThreadPool Pool(hardware_concurrency(NumThreads));
431
432 // Load the inputs in parallel (N/NumThreads serial steps).
433 unsigned Ctx = 0;
434 for (const auto &Input : Inputs) {
435 Pool.async(loadInput, Input, Remapper, Correlator.get(), ProfiledBinary,
436 Contexts[Ctx].get());
437 Ctx = (Ctx + 1) % NumThreads;
438 }
439 Pool.wait();
440
441 // Merge the writer contexts together (~ lg(NumThreads) serial steps).
442 unsigned Mid = Contexts.size() / 2;
443 unsigned End = Contexts.size();
444 assert(Mid > 0 && "Expected more than one context");
445 do {
446 for (unsigned I = 0; I < Mid; ++I)
447 Pool.async(mergeWriterContexts, Contexts[I].get(),
448 Contexts[I + Mid].get());
449 Pool.wait();
450 if (End & 1) {
451 Pool.async(mergeWriterContexts, Contexts[0].get(),
452 Contexts[End - 1].get());
453 Pool.wait();
454 }
455 End = Mid;
456 Mid /= 2;
457 } while (Mid > 0);
458 }
459
460 // Handle deferred errors encountered during merging. If the number of errors
461 // is equal to the number of inputs the merge failed.
462 unsigned NumErrors = 0;
463 for (std::unique_ptr<WriterContext> &WC : Contexts) {
464 for (auto &ErrorPair : WC->Errors) {
465 ++NumErrors;
466 warn(toString(std::move(ErrorPair.first)), ErrorPair.second);
467 }
468 }
469 if (NumErrors == Inputs.size() ||
470 (NumErrors > 0 && FailMode == failIfAnyAreInvalid))
471 exitWithError("no profile can be merged");
472
473 writeInstrProfile(OutputFilename, OutputFormat, Contexts[0]->Writer);
474 }
475
476 /// The profile entry for a function in instrumentation profile.
477 struct InstrProfileEntry {
478 uint64_t MaxCount = 0;
479 uint64_t NumEdgeCounters = 0;
480 float ZeroCounterRatio = 0.0;
481 InstrProfRecord *ProfRecord;
482 InstrProfileEntry(InstrProfRecord *Record);
483 InstrProfileEntry() = default;
484 };
485
InstrProfileEntry(InstrProfRecord * Record)486 InstrProfileEntry::InstrProfileEntry(InstrProfRecord *Record) {
487 ProfRecord = Record;
488 uint64_t CntNum = Record->Counts.size();
489 uint64_t ZeroCntNum = 0;
490 for (size_t I = 0; I < CntNum; ++I) {
491 MaxCount = std::max(MaxCount, Record->Counts[I]);
492 ZeroCntNum += !Record->Counts[I];
493 }
494 ZeroCounterRatio = (float)ZeroCntNum / CntNum;
495 NumEdgeCounters = CntNum;
496 }
497
498 /// Either set all the counters in the instr profile entry \p IFE to
499 /// -1 / -2 /in order to drop the profile or scale up the
500 /// counters in \p IFP to be above hot / cold threshold. We use
501 /// the ratio of zero counters in the profile of a function to
502 /// decide the profile is helpful or harmful for performance,
503 /// and to choose whether to scale up or drop it.
updateInstrProfileEntry(InstrProfileEntry & IFE,bool SetToHot,uint64_t HotInstrThreshold,uint64_t ColdInstrThreshold,float ZeroCounterThreshold)504 static void updateInstrProfileEntry(InstrProfileEntry &IFE, bool SetToHot,
505 uint64_t HotInstrThreshold,
506 uint64_t ColdInstrThreshold,
507 float ZeroCounterThreshold) {
508 InstrProfRecord *ProfRecord = IFE.ProfRecord;
509 if (!IFE.MaxCount || IFE.ZeroCounterRatio > ZeroCounterThreshold) {
510 // If all or most of the counters of the function are zero, the
511 // profile is unaccountable and should be dropped. Reset all the
512 // counters to be -1 / -2 and PGO profile-use will drop the profile.
513 // All counters being -1 also implies that the function is hot so
514 // PGO profile-use will also set the entry count metadata to be
515 // above hot threshold.
516 // All counters being -2 implies that the function is warm so
517 // PGO profile-use will also set the entry count metadata to be
518 // above cold threshold.
519 auto Kind =
520 (SetToHot ? InstrProfRecord::PseudoHot : InstrProfRecord::PseudoWarm);
521 ProfRecord->setPseudoCount(Kind);
522 return;
523 }
524
525 // Scale up the MaxCount to be multiple times above hot / cold threshold.
526 const unsigned MultiplyFactor = 3;
527 uint64_t Threshold = (SetToHot ? HotInstrThreshold : ColdInstrThreshold);
528 uint64_t Numerator = Threshold * MultiplyFactor;
529
530 // Make sure Threshold for warm counters is below the HotInstrThreshold.
531 if (!SetToHot && Threshold >= HotInstrThreshold) {
532 Threshold = (HotInstrThreshold + ColdInstrThreshold) / 2;
533 }
534
535 uint64_t Denominator = IFE.MaxCount;
536 if (Numerator <= Denominator)
537 return;
538 ProfRecord->scale(Numerator, Denominator, [&](instrprof_error E) {
539 warn(toString(make_error<InstrProfError>(E)));
540 });
541 }
542
543 const uint64_t ColdPercentileIdx = 15;
544 const uint64_t HotPercentileIdx = 11;
545
546 using sampleprof::FSDiscriminatorPass;
547
548 // Internal options to set FSDiscriminatorPass. Used in merge and show
549 // commands.
550 static cl::opt<FSDiscriminatorPass> FSDiscriminatorPassOption(
551 "fs-discriminator-pass", cl::init(PassLast), cl::Hidden,
552 cl::desc("Zero out the discriminator bits for the FS discrimiantor "
553 "pass beyond this value. The enum values are defined in "
554 "Support/Discriminator.h"),
555 cl::values(clEnumVal(Base, "Use base discriminators only"),
556 clEnumVal(Pass1, "Use base and pass 1 discriminators"),
557 clEnumVal(Pass2, "Use base and pass 1-2 discriminators"),
558 clEnumVal(Pass3, "Use base and pass 1-3 discriminators"),
559 clEnumVal(PassLast, "Use all discriminator bits (default)")));
560
getDiscriminatorMask()561 static unsigned getDiscriminatorMask() {
562 return getN1Bits(getFSPassBitEnd(FSDiscriminatorPassOption.getValue()));
563 }
564
565 /// Adjust the instr profile in \p WC based on the sample profile in
566 /// \p Reader.
567 static void
adjustInstrProfile(std::unique_ptr<WriterContext> & WC,std::unique_ptr<sampleprof::SampleProfileReader> & Reader,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)568 adjustInstrProfile(std::unique_ptr<WriterContext> &WC,
569 std::unique_ptr<sampleprof::SampleProfileReader> &Reader,
570 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
571 unsigned InstrProfColdThreshold) {
572 // Function to its entry in instr profile.
573 StringMap<InstrProfileEntry> InstrProfileMap;
574 StringMap<StringRef> StaticFuncMap;
575 InstrProfSummaryBuilder IPBuilder(ProfileSummaryBuilder::DefaultCutoffs);
576
577 auto checkSampleProfileHasFUnique = [&Reader]() {
578 for (const auto &PD : Reader->getProfiles()) {
579 auto &FContext = PD.first;
580 if (FContext.toString().find(FunctionSamples::UniqSuffix) !=
581 std::string::npos) {
582 return true;
583 }
584 }
585 return false;
586 };
587
588 bool SampleProfileHasFUnique = checkSampleProfileHasFUnique();
589
590 auto buildStaticFuncMap = [&StaticFuncMap,
591 SampleProfileHasFUnique](const StringRef Name) {
592 std::string Prefixes[] = {".cpp:", "cc:", ".c:", ".hpp:", ".h:"};
593 size_t PrefixPos = StringRef::npos;
594 for (auto &Prefix : Prefixes) {
595 PrefixPos = Name.find_insensitive(Prefix);
596 if (PrefixPos == StringRef::npos)
597 continue;
598 PrefixPos += Prefix.size();
599 break;
600 }
601
602 if (PrefixPos == StringRef::npos) {
603 return;
604 }
605
606 StringRef NewName = Name.drop_front(PrefixPos);
607 StringRef FName = Name.substr(0, PrefixPos - 1);
608 if (NewName.size() == 0) {
609 return;
610 }
611
612 // This name should have a static linkage.
613 size_t PostfixPos = NewName.find(FunctionSamples::UniqSuffix);
614 bool ProfileHasFUnique = (PostfixPos != StringRef::npos);
615
616 // If sample profile and instrumented profile do not agree on symbol
617 // uniqification.
618 if (SampleProfileHasFUnique != ProfileHasFUnique) {
619 // If instrumented profile uses -funique-internal-linakge-symbols,
620 // we need to trim the name.
621 if (ProfileHasFUnique) {
622 NewName = NewName.substr(0, PostfixPos);
623 } else {
624 // If sample profile uses -funique-internal-linakge-symbols,
625 // we build the map.
626 std::string NStr =
627 NewName.str() + getUniqueInternalLinkagePostfix(FName);
628 NewName = StringRef(NStr);
629 StaticFuncMap[NewName] = Name;
630 return;
631 }
632 }
633
634 if (StaticFuncMap.find(NewName) == StaticFuncMap.end()) {
635 StaticFuncMap[NewName] = Name;
636 } else {
637 StaticFuncMap[NewName] = DuplicateNameStr;
638 }
639 };
640
641 // We need to flatten the SampleFDO profile as the InstrFDO
642 // profile does not have inlined callsite profiles.
643 // One caveat is the pre-inlined function -- their samples
644 // should be collapsed into the caller function.
645 // Here we do a DFS traversal to get the flatten profile
646 // info: the sum of entrycount and the max of maxcount.
647 // Here is the algorithm:
648 // recursive (FS, root_name) {
649 // name = FS->getName();
650 // get samples for FS;
651 // if (InstrProf.find(name) {
652 // root_name = name;
653 // } else {
654 // if (name is in static_func map) {
655 // root_name = static_name;
656 // }
657 // }
658 // update the Map entry for root_name;
659 // for (subfs: FS) {
660 // recursive(subfs, root_name);
661 // }
662 // }
663 //
664 // Here is an example.
665 //
666 // SampleProfile:
667 // foo:12345:1000
668 // 1: 1000
669 // 2.1: 1000
670 // 15: 5000
671 // 4: bar:1000
672 // 1: 1000
673 // 2: goo:3000
674 // 1: 3000
675 // 8: bar:40000
676 // 1: 10000
677 // 2: goo:30000
678 // 1: 30000
679 //
680 // InstrProfile has two entries:
681 // foo
682 // bar.cc:bar
683 //
684 // After BuildMaxSampleMap, we should have the following in FlattenSampleMap:
685 // {"foo", {1000, 5000}}
686 // {"bar.cc:bar", {11000, 30000}}
687 //
688 // foo's has an entry count of 1000, and max body count of 5000.
689 // bar.cc:bar has an entry count of 11000 (sum two callsites of 1000 and
690 // 10000), and max count of 30000 (from the callsite in line 8).
691 //
692 // Note that goo's count will remain in bar.cc:bar() as it does not have an
693 // entry in InstrProfile.
694 DenseMap<StringRef, std::pair<uint64_t, uint64_t>> FlattenSampleMap;
695 auto BuildMaxSampleMap = [&FlattenSampleMap, &StaticFuncMap,
696 &InstrProfileMap](const FunctionSamples &FS,
697 const StringRef &RootName) {
698 auto BuildMaxSampleMapImpl = [&](const FunctionSamples &FS,
699 const StringRef &RootName,
700 auto &BuildImpl) -> void {
701 const StringRef &Name = FS.getName();
702 const StringRef *NewRootName = &RootName;
703 uint64_t EntrySample = FS.getHeadSamplesEstimate();
704 uint64_t MaxBodySample = FS.getMaxCountInside(/* SkipCallSite*/ true);
705
706 auto It = InstrProfileMap.find(Name);
707 if (It != InstrProfileMap.end()) {
708 NewRootName = &Name;
709 } else {
710 auto NewName = StaticFuncMap.find(Name);
711 if (NewName != StaticFuncMap.end()) {
712 It = InstrProfileMap.find(NewName->second.str());
713 if (NewName->second != DuplicateNameStr) {
714 NewRootName = &NewName->second;
715 }
716 } else {
717 // Here the EntrySample is of an inlined function, so we should not
718 // update the EntrySample in the map.
719 EntrySample = 0;
720 }
721 }
722 EntrySample += FlattenSampleMap[*NewRootName].first;
723 MaxBodySample =
724 std::max(FlattenSampleMap[*NewRootName].second, MaxBodySample);
725 FlattenSampleMap[*NewRootName] =
726 std::make_pair(EntrySample, MaxBodySample);
727
728 for (const auto &C : FS.getCallsiteSamples())
729 for (const auto &F : C.second)
730 BuildImpl(F.second, *NewRootName, BuildImpl);
731 };
732 BuildMaxSampleMapImpl(FS, RootName, BuildMaxSampleMapImpl);
733 };
734
735 for (auto &PD : WC->Writer.getProfileData()) {
736 // Populate IPBuilder.
737 for (const auto &PDV : PD.getValue()) {
738 InstrProfRecord Record = PDV.second;
739 IPBuilder.addRecord(Record);
740 }
741
742 // If a function has multiple entries in instr profile, skip it.
743 if (PD.getValue().size() != 1)
744 continue;
745
746 // Initialize InstrProfileMap.
747 InstrProfRecord *R = &PD.getValue().begin()->second;
748 StringRef FullName = PD.getKey();
749 InstrProfileMap[FullName] = InstrProfileEntry(R);
750 buildStaticFuncMap(FullName);
751 }
752
753 for (auto &PD : Reader->getProfiles()) {
754 sampleprof::FunctionSamples &FS = PD.second;
755 BuildMaxSampleMap(FS, FS.getName());
756 }
757
758 ProfileSummary InstrPS = *IPBuilder.getSummary();
759 ProfileSummary SamplePS = Reader->getSummary();
760
761 // Compute cold thresholds for instr profile and sample profile.
762 uint64_t HotSampleThreshold =
763 ProfileSummaryBuilder::getEntryForPercentile(
764 SamplePS.getDetailedSummary(),
765 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
766 .MinCount;
767 uint64_t ColdSampleThreshold =
768 ProfileSummaryBuilder::getEntryForPercentile(
769 SamplePS.getDetailedSummary(),
770 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
771 .MinCount;
772 uint64_t HotInstrThreshold =
773 ProfileSummaryBuilder::getEntryForPercentile(
774 InstrPS.getDetailedSummary(),
775 ProfileSummaryBuilder::DefaultCutoffs[HotPercentileIdx])
776 .MinCount;
777 uint64_t ColdInstrThreshold =
778 InstrProfColdThreshold
779 ? InstrProfColdThreshold
780 : ProfileSummaryBuilder::getEntryForPercentile(
781 InstrPS.getDetailedSummary(),
782 ProfileSummaryBuilder::DefaultCutoffs[ColdPercentileIdx])
783 .MinCount;
784
785 // Find hot/warm functions in sample profile which is cold in instr profile
786 // and adjust the profiles of those functions in the instr profile.
787 for (const auto &E : FlattenSampleMap) {
788 uint64_t SampleMaxCount = std::max(E.second.first, E.second.second);
789 if (SampleMaxCount < ColdSampleThreshold)
790 continue;
791 const StringRef &Name = E.first;
792 auto It = InstrProfileMap.find(Name);
793 if (It == InstrProfileMap.end()) {
794 auto NewName = StaticFuncMap.find(Name);
795 if (NewName != StaticFuncMap.end()) {
796 It = InstrProfileMap.find(NewName->second.str());
797 if (NewName->second == DuplicateNameStr) {
798 WithColor::warning()
799 << "Static function " << Name
800 << " has multiple promoted names, cannot adjust profile.\n";
801 }
802 }
803 }
804 if (It == InstrProfileMap.end() ||
805 It->second.MaxCount > ColdInstrThreshold ||
806 It->second.NumEdgeCounters < SupplMinSizeThreshold)
807 continue;
808 bool SetToHot = SampleMaxCount >= HotSampleThreshold;
809 updateInstrProfileEntry(It->second, SetToHot, HotInstrThreshold,
810 ColdInstrThreshold, ZeroCounterThreshold);
811 }
812 }
813
814 /// The main function to supplement instr profile with sample profile.
815 /// \Inputs contains the instr profile. \p SampleFilename specifies the
816 /// sample profile. \p OutputFilename specifies the output profile name.
817 /// \p OutputFormat specifies the output profile format. \p OutputSparse
818 /// specifies whether to generate sparse profile. \p SupplMinSizeThreshold
819 /// specifies the minimal size for the functions whose profile will be
820 /// adjusted. \p ZeroCounterThreshold is the threshold to check whether
821 /// a function contains too many zero counters and whether its profile
822 /// should be dropped. \p InstrProfColdThreshold is the user specified
823 /// cold threshold which will override the cold threshold got from the
824 /// instr profile summary.
supplementInstrProfile(const WeightedFileVector & Inputs,StringRef SampleFilename,StringRef OutputFilename,ProfileFormat OutputFormat,bool OutputSparse,unsigned SupplMinSizeThreshold,float ZeroCounterThreshold,unsigned InstrProfColdThreshold)825 static void supplementInstrProfile(
826 const WeightedFileVector &Inputs, StringRef SampleFilename,
827 StringRef OutputFilename, ProfileFormat OutputFormat, bool OutputSparse,
828 unsigned SupplMinSizeThreshold, float ZeroCounterThreshold,
829 unsigned InstrProfColdThreshold) {
830 if (OutputFilename.compare("-") == 0)
831 exitWithError("cannot write indexed profdata format to stdout");
832 if (Inputs.size() != 1)
833 exitWithError("expect one input to be an instr profile");
834 if (Inputs[0].Weight != 1)
835 exitWithError("expect instr profile doesn't have weight");
836
837 StringRef InstrFilename = Inputs[0].Filename;
838
839 // Read sample profile.
840 LLVMContext Context;
841 auto ReaderOrErr = sampleprof::SampleProfileReader::create(
842 SampleFilename.str(), Context, FSDiscriminatorPassOption);
843 if (std::error_code EC = ReaderOrErr.getError())
844 exitWithErrorCode(EC, SampleFilename);
845 auto Reader = std::move(ReaderOrErr.get());
846 if (std::error_code EC = Reader->read())
847 exitWithErrorCode(EC, SampleFilename);
848
849 // Read instr profile.
850 std::mutex ErrorLock;
851 SmallSet<instrprof_error, 4> WriterErrorCodes;
852 auto WC = std::make_unique<WriterContext>(OutputSparse, ErrorLock,
853 WriterErrorCodes);
854 loadInput(Inputs[0], nullptr, nullptr, /*ProfiledBinary=*/"", WC.get());
855 if (WC->Errors.size() > 0)
856 exitWithError(std::move(WC->Errors[0].first), InstrFilename);
857
858 adjustInstrProfile(WC, Reader, SupplMinSizeThreshold, ZeroCounterThreshold,
859 InstrProfColdThreshold);
860 writeInstrProfile(OutputFilename, OutputFormat, WC->Writer);
861 }
862
863 /// Make a copy of the given function samples with all symbol names remapped
864 /// by the provided symbol remapper.
865 static sampleprof::FunctionSamples
remapSamples(const sampleprof::FunctionSamples & Samples,SymbolRemapper & Remapper,sampleprof_error & Error)866 remapSamples(const sampleprof::FunctionSamples &Samples,
867 SymbolRemapper &Remapper, sampleprof_error &Error) {
868 sampleprof::FunctionSamples Result;
869 Result.setName(Remapper(Samples.getName()));
870 Result.addTotalSamples(Samples.getTotalSamples());
871 Result.addHeadSamples(Samples.getHeadSamples());
872 for (const auto &BodySample : Samples.getBodySamples()) {
873 uint32_t MaskedDiscriminator =
874 BodySample.first.Discriminator & getDiscriminatorMask();
875 Result.addBodySamples(BodySample.first.LineOffset, MaskedDiscriminator,
876 BodySample.second.getSamples());
877 for (const auto &Target : BodySample.second.getCallTargets()) {
878 Result.addCalledTargetSamples(BodySample.first.LineOffset,
879 MaskedDiscriminator,
880 Remapper(Target.first()), Target.second);
881 }
882 }
883 for (const auto &CallsiteSamples : Samples.getCallsiteSamples()) {
884 sampleprof::FunctionSamplesMap &Target =
885 Result.functionSamplesAt(CallsiteSamples.first);
886 for (const auto &Callsite : CallsiteSamples.second) {
887 sampleprof::FunctionSamples Remapped =
888 remapSamples(Callsite.second, Remapper, Error);
889 MergeResult(Error,
890 Target[std::string(Remapped.getName())].merge(Remapped));
891 }
892 }
893 return Result;
894 }
895
896 static sampleprof::SampleProfileFormat FormatMap[] = {
897 sampleprof::SPF_None,
898 sampleprof::SPF_Text,
899 sampleprof::SPF_Compact_Binary,
900 sampleprof::SPF_Ext_Binary,
901 sampleprof::SPF_GCC,
902 sampleprof::SPF_Binary};
903
904 static std::unique_ptr<MemoryBuffer>
getInputFileBuf(const StringRef & InputFile)905 getInputFileBuf(const StringRef &InputFile) {
906 if (InputFile == "")
907 return {};
908
909 auto BufOrError = MemoryBuffer::getFileOrSTDIN(InputFile);
910 if (!BufOrError)
911 exitWithErrorCode(BufOrError.getError(), InputFile);
912
913 return std::move(*BufOrError);
914 }
915
populateProfileSymbolList(MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & PSL)916 static void populateProfileSymbolList(MemoryBuffer *Buffer,
917 sampleprof::ProfileSymbolList &PSL) {
918 if (!Buffer)
919 return;
920
921 SmallVector<StringRef, 32> SymbolVec;
922 StringRef Data = Buffer->getBuffer();
923 Data.split(SymbolVec, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
924
925 for (StringRef SymbolStr : SymbolVec)
926 PSL.add(SymbolStr.trim());
927 }
928
handleExtBinaryWriter(sampleprof::SampleProfileWriter & Writer,ProfileFormat OutputFormat,MemoryBuffer * Buffer,sampleprof::ProfileSymbolList & WriterList,bool CompressAllSections,bool UseMD5,bool GenPartialProfile)929 static void handleExtBinaryWriter(sampleprof::SampleProfileWriter &Writer,
930 ProfileFormat OutputFormat,
931 MemoryBuffer *Buffer,
932 sampleprof::ProfileSymbolList &WriterList,
933 bool CompressAllSections, bool UseMD5,
934 bool GenPartialProfile) {
935 populateProfileSymbolList(Buffer, WriterList);
936 if (WriterList.size() > 0 && OutputFormat != PF_Ext_Binary)
937 warn("Profile Symbol list is not empty but the output format is not "
938 "ExtBinary format. The list will be lost in the output. ");
939
940 Writer.setProfileSymbolList(&WriterList);
941
942 if (CompressAllSections) {
943 if (OutputFormat != PF_Ext_Binary)
944 warn("-compress-all-section is ignored. Specify -extbinary to enable it");
945 else
946 Writer.setToCompressAllSections();
947 }
948 if (UseMD5) {
949 if (OutputFormat != PF_Ext_Binary)
950 warn("-use-md5 is ignored. Specify -extbinary to enable it");
951 else
952 Writer.setUseMD5();
953 }
954 if (GenPartialProfile) {
955 if (OutputFormat != PF_Ext_Binary)
956 warn("-gen-partial-profile is ignored. Specify -extbinary to enable it");
957 else
958 Writer.setPartialProfile();
959 }
960 }
961
962 static void
mergeSampleProfile(const WeightedFileVector & Inputs,SymbolRemapper * Remapper,StringRef OutputFilename,ProfileFormat OutputFormat,StringRef ProfileSymbolListFile,bool CompressAllSections,bool UseMD5,bool GenPartialProfile,bool GenCSNestedProfile,bool SampleMergeColdContext,bool SampleTrimColdContext,bool SampleColdContextFrameDepth,FailureMode FailMode,bool DropProfileSymbolList)963 mergeSampleProfile(const WeightedFileVector &Inputs, SymbolRemapper *Remapper,
964 StringRef OutputFilename, ProfileFormat OutputFormat,
965 StringRef ProfileSymbolListFile, bool CompressAllSections,
966 bool UseMD5, bool GenPartialProfile, bool GenCSNestedProfile,
967 bool SampleMergeColdContext, bool SampleTrimColdContext,
968 bool SampleColdContextFrameDepth, FailureMode FailMode,
969 bool DropProfileSymbolList) {
970 using namespace sampleprof;
971 SampleProfileMap ProfileMap;
972 SmallVector<std::unique_ptr<sampleprof::SampleProfileReader>, 5> Readers;
973 LLVMContext Context;
974 sampleprof::ProfileSymbolList WriterList;
975 std::optional<bool> ProfileIsProbeBased;
976 std::optional<bool> ProfileIsCS;
977 for (const auto &Input : Inputs) {
978 auto ReaderOrErr = SampleProfileReader::create(Input.Filename, Context,
979 FSDiscriminatorPassOption);
980 if (std::error_code EC = ReaderOrErr.getError()) {
981 warnOrExitGivenError(FailMode, EC, Input.Filename);
982 continue;
983 }
984
985 // We need to keep the readers around until after all the files are
986 // read so that we do not lose the function names stored in each
987 // reader's memory. The function names are needed to write out the
988 // merged profile map.
989 Readers.push_back(std::move(ReaderOrErr.get()));
990 const auto Reader = Readers.back().get();
991 if (std::error_code EC = Reader->read()) {
992 warnOrExitGivenError(FailMode, EC, Input.Filename);
993 Readers.pop_back();
994 continue;
995 }
996
997 SampleProfileMap &Profiles = Reader->getProfiles();
998 if (ProfileIsProbeBased &&
999 ProfileIsProbeBased != FunctionSamples::ProfileIsProbeBased)
1000 exitWithError(
1001 "cannot merge probe-based profile with non-probe-based profile");
1002 ProfileIsProbeBased = FunctionSamples::ProfileIsProbeBased;
1003 if (ProfileIsCS && ProfileIsCS != FunctionSamples::ProfileIsCS)
1004 exitWithError("cannot merge CS profile with non-CS profile");
1005 ProfileIsCS = FunctionSamples::ProfileIsCS;
1006 for (SampleProfileMap::iterator I = Profiles.begin(), E = Profiles.end();
1007 I != E; ++I) {
1008 sampleprof_error Result = sampleprof_error::success;
1009 FunctionSamples Remapped =
1010 Remapper ? remapSamples(I->second, *Remapper, Result)
1011 : FunctionSamples();
1012 FunctionSamples &Samples = Remapper ? Remapped : I->second;
1013 SampleContext FContext = Samples.getContext();
1014 MergeResult(Result, ProfileMap[FContext].merge(Samples, Input.Weight));
1015 if (Result != sampleprof_error::success) {
1016 std::error_code EC = make_error_code(Result);
1017 handleMergeWriterError(errorCodeToError(EC), Input.Filename,
1018 FContext.toString());
1019 }
1020 }
1021
1022 if (!DropProfileSymbolList) {
1023 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
1024 Reader->getProfileSymbolList();
1025 if (ReaderList)
1026 WriterList.merge(*ReaderList);
1027 }
1028 }
1029
1030 if (ProfileIsCS && (SampleMergeColdContext || SampleTrimColdContext)) {
1031 // Use threshold calculated from profile summary unless specified.
1032 SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
1033 auto Summary = Builder.computeSummaryForProfiles(ProfileMap);
1034 uint64_t SampleProfColdThreshold =
1035 ProfileSummaryBuilder::getColdCountThreshold(
1036 (Summary->getDetailedSummary()));
1037
1038 // Trim and merge cold context profile using cold threshold above;
1039 SampleContextTrimmer(ProfileMap)
1040 .trimAndMergeColdContextProfiles(
1041 SampleProfColdThreshold, SampleTrimColdContext,
1042 SampleMergeColdContext, SampleColdContextFrameDepth, false);
1043 }
1044
1045 if (ProfileIsCS && GenCSNestedProfile) {
1046 CSProfileConverter CSConverter(ProfileMap);
1047 CSConverter.convertProfiles();
1048 ProfileIsCS = FunctionSamples::ProfileIsCS = false;
1049 }
1050
1051 auto WriterOrErr =
1052 SampleProfileWriter::create(OutputFilename, FormatMap[OutputFormat]);
1053 if (std::error_code EC = WriterOrErr.getError())
1054 exitWithErrorCode(EC, OutputFilename);
1055
1056 auto Writer = std::move(WriterOrErr.get());
1057 // WriterList will have StringRef refering to string in Buffer.
1058 // Make sure Buffer lives as long as WriterList.
1059 auto Buffer = getInputFileBuf(ProfileSymbolListFile);
1060 handleExtBinaryWriter(*Writer, OutputFormat, Buffer.get(), WriterList,
1061 CompressAllSections, UseMD5, GenPartialProfile);
1062 if (std::error_code EC = Writer->write(ProfileMap))
1063 exitWithErrorCode(std::move(EC));
1064 }
1065
parseWeightedFile(const StringRef & WeightedFilename)1066 static WeightedFile parseWeightedFile(const StringRef &WeightedFilename) {
1067 StringRef WeightStr, FileName;
1068 std::tie(WeightStr, FileName) = WeightedFilename.split(',');
1069
1070 uint64_t Weight;
1071 if (WeightStr.getAsInteger(10, Weight) || Weight < 1)
1072 exitWithError("input weight must be a positive integer");
1073
1074 return {std::string(FileName), Weight};
1075 }
1076
addWeightedInput(WeightedFileVector & WNI,const WeightedFile & WF)1077 static void addWeightedInput(WeightedFileVector &WNI, const WeightedFile &WF) {
1078 StringRef Filename = WF.Filename;
1079 uint64_t Weight = WF.Weight;
1080
1081 // If it's STDIN just pass it on.
1082 if (Filename == "-") {
1083 WNI.push_back({std::string(Filename), Weight});
1084 return;
1085 }
1086
1087 llvm::sys::fs::file_status Status;
1088 llvm::sys::fs::status(Filename, Status);
1089 if (!llvm::sys::fs::exists(Status))
1090 exitWithErrorCode(make_error_code(errc::no_such_file_or_directory),
1091 Filename);
1092 // If it's a source file, collect it.
1093 if (llvm::sys::fs::is_regular_file(Status)) {
1094 WNI.push_back({std::string(Filename), Weight});
1095 return;
1096 }
1097
1098 if (llvm::sys::fs::is_directory(Status)) {
1099 std::error_code EC;
1100 for (llvm::sys::fs::recursive_directory_iterator F(Filename, EC), E;
1101 F != E && !EC; F.increment(EC)) {
1102 if (llvm::sys::fs::is_regular_file(F->path())) {
1103 addWeightedInput(WNI, {F->path(), Weight});
1104 }
1105 }
1106 if (EC)
1107 exitWithErrorCode(EC, Filename);
1108 }
1109 }
1110
parseInputFilenamesFile(MemoryBuffer * Buffer,WeightedFileVector & WFV)1111 static void parseInputFilenamesFile(MemoryBuffer *Buffer,
1112 WeightedFileVector &WFV) {
1113 if (!Buffer)
1114 return;
1115
1116 SmallVector<StringRef, 8> Entries;
1117 StringRef Data = Buffer->getBuffer();
1118 Data.split(Entries, '\n', /*MaxSplit=*/-1, /*KeepEmpty=*/false);
1119 for (const StringRef &FileWeightEntry : Entries) {
1120 StringRef SanitizedEntry = FileWeightEntry.trim(" \t\v\f\r");
1121 // Skip comments.
1122 if (SanitizedEntry.startswith("#"))
1123 continue;
1124 // If there's no comma, it's an unweighted profile.
1125 else if (!SanitizedEntry.contains(','))
1126 addWeightedInput(WFV, {std::string(SanitizedEntry), 1});
1127 else
1128 addWeightedInput(WFV, parseWeightedFile(SanitizedEntry));
1129 }
1130 }
1131
merge_main(int argc,const char * argv[])1132 static int merge_main(int argc, const char *argv[]) {
1133 cl::list<std::string> InputFilenames(cl::Positional,
1134 cl::desc("<filename...>"));
1135 cl::list<std::string> WeightedInputFilenames("weighted-input",
1136 cl::desc("<weight>,<filename>"));
1137 cl::opt<std::string> InputFilenamesFile(
1138 "input-files", cl::init(""),
1139 cl::desc("Path to file containing newline-separated "
1140 "[<weight>,]<filename> entries"));
1141 cl::alias InputFilenamesFileA("f", cl::desc("Alias for --input-files"),
1142 cl::aliasopt(InputFilenamesFile));
1143 cl::opt<bool> DumpInputFileList(
1144 "dump-input-file-list", cl::init(false), cl::Hidden,
1145 cl::desc("Dump the list of input files and their weights, then exit"));
1146 cl::opt<std::string> RemappingFile("remapping-file", cl::value_desc("file"),
1147 cl::desc("Symbol remapping file"));
1148 cl::alias RemappingFileA("r", cl::desc("Alias for --remapping-file"),
1149 cl::aliasopt(RemappingFile));
1150 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
1151 cl::init("-"), cl::desc("Output file"));
1152 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
1153 cl::aliasopt(OutputFilename));
1154 cl::opt<ProfileKinds> ProfileKind(
1155 cl::desc("Profile kind:"), cl::init(instr),
1156 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
1157 clEnumVal(sample, "Sample profile")));
1158 cl::opt<ProfileFormat> OutputFormat(
1159 cl::desc("Format of output profile"), cl::init(PF_Binary),
1160 cl::values(
1161 clEnumValN(PF_Binary, "binary", "Binary encoding (default)"),
1162 clEnumValN(PF_Compact_Binary, "compbinary",
1163 "Compact binary encoding"),
1164 clEnumValN(PF_Ext_Binary, "extbinary", "Extensible binary encoding"),
1165 clEnumValN(PF_Text, "text", "Text encoding"),
1166 clEnumValN(PF_GCC, "gcc",
1167 "GCC encoding (only meaningful for -sample)")));
1168 cl::opt<FailureMode> FailureMode(
1169 "failure-mode", cl::init(failIfAnyAreInvalid), cl::desc("Failure mode:"),
1170 cl::values(clEnumValN(failIfAnyAreInvalid, "any",
1171 "Fail if any profile is invalid."),
1172 clEnumValN(failIfAllAreInvalid, "all",
1173 "Fail only if all profiles are invalid.")));
1174 cl::opt<bool> OutputSparse("sparse", cl::init(false),
1175 cl::desc("Generate a sparse profile (only meaningful for -instr)"));
1176 cl::opt<unsigned> NumThreads(
1177 "num-threads", cl::init(0),
1178 cl::desc("Number of merge threads to use (default: autodetect)"));
1179 cl::alias NumThreadsA("j", cl::desc("Alias for --num-threads"),
1180 cl::aliasopt(NumThreads));
1181 cl::opt<std::string> ProfileSymbolListFile(
1182 "prof-sym-list", cl::init(""),
1183 cl::desc("Path to file containing the list of function symbols "
1184 "used to populate profile symbol list"));
1185 cl::opt<bool> CompressAllSections(
1186 "compress-all-sections", cl::init(false), cl::Hidden,
1187 cl::desc("Compress all sections when writing the profile (only "
1188 "meaningful for -extbinary)"));
1189 cl::opt<bool> UseMD5(
1190 "use-md5", cl::init(false), cl::Hidden,
1191 cl::desc("Choose to use MD5 to represent string in name table (only "
1192 "meaningful for -extbinary)"));
1193 cl::opt<bool> SampleMergeColdContext(
1194 "sample-merge-cold-context", cl::init(false), cl::Hidden,
1195 cl::desc(
1196 "Merge context sample profiles whose count is below cold threshold"));
1197 cl::opt<bool> SampleTrimColdContext(
1198 "sample-trim-cold-context", cl::init(false), cl::Hidden,
1199 cl::desc(
1200 "Trim context sample profiles whose count is below cold threshold"));
1201 cl::opt<uint32_t> SampleColdContextFrameDepth(
1202 "sample-frame-depth-for-cold-context", cl::init(1),
1203 cl::desc("Keep the last K frames while merging cold profile. 1 means the "
1204 "context-less base profile"));
1205 cl::opt<bool> GenPartialProfile(
1206 "gen-partial-profile", cl::init(false), cl::Hidden,
1207 cl::desc("Generate a partial profile (only meaningful for -extbinary)"));
1208 cl::opt<std::string> SupplInstrWithSample(
1209 "supplement-instr-with-sample", cl::init(""), cl::Hidden,
1210 cl::desc("Supplement an instr profile with sample profile, to correct "
1211 "the profile unrepresentativeness issue. The sample "
1212 "profile is the input of the flag. Output will be in instr "
1213 "format (The flag only works with -instr)"));
1214 cl::opt<float> ZeroCounterThreshold(
1215 "zero-counter-threshold", cl::init(0.7), cl::Hidden,
1216 cl::desc("For the function which is cold in instr profile but hot in "
1217 "sample profile, if the ratio of the number of zero counters "
1218 "divided by the total number of counters is above the "
1219 "threshold, the profile of the function will be regarded as "
1220 "being harmful for performance and will be dropped."));
1221 cl::opt<unsigned> SupplMinSizeThreshold(
1222 "suppl-min-size-threshold", cl::init(10), cl::Hidden,
1223 cl::desc("If the size of a function is smaller than the threshold, "
1224 "assume it can be inlined by PGO early inliner and it won't "
1225 "be adjusted based on sample profile."));
1226 cl::opt<unsigned> InstrProfColdThreshold(
1227 "instr-prof-cold-threshold", cl::init(0), cl::Hidden,
1228 cl::desc("User specified cold threshold for instr profile which will "
1229 "override the cold threshold got from profile summary. "));
1230 cl::opt<bool> GenCSNestedProfile(
1231 "gen-cs-nested-profile", cl::Hidden, cl::init(false),
1232 cl::desc("Generate nested function profiles for CSSPGO"));
1233 cl::opt<std::string> DebugInfoFilename(
1234 "debug-info", cl::init(""),
1235 cl::desc("Use the provided debug info to correlate the raw profile."));
1236 cl::opt<std::string> ProfiledBinary(
1237 "profiled-binary", cl::init(""),
1238 cl::desc("Path to binary from which the profile was collected."));
1239 cl::opt<bool> DropProfileSymbolList(
1240 "drop-profile-symbol-list", cl::init(false), cl::Hidden,
1241 cl::desc("Drop the profile symbol list when merging AutoFDO profiles "
1242 "(only meaningful for -sample)"));
1243
1244 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data merger\n");
1245
1246 WeightedFileVector WeightedInputs;
1247 for (StringRef Filename : InputFilenames)
1248 addWeightedInput(WeightedInputs, {std::string(Filename), 1});
1249 for (StringRef WeightedFilename : WeightedInputFilenames)
1250 addWeightedInput(WeightedInputs, parseWeightedFile(WeightedFilename));
1251
1252 // Make sure that the file buffer stays alive for the duration of the
1253 // weighted input vector's lifetime.
1254 auto Buffer = getInputFileBuf(InputFilenamesFile);
1255 parseInputFilenamesFile(Buffer.get(), WeightedInputs);
1256
1257 if (WeightedInputs.empty())
1258 exitWithError("no input files specified. See " +
1259 sys::path::filename(argv[0]) + " -help");
1260
1261 if (DumpInputFileList) {
1262 for (auto &WF : WeightedInputs)
1263 outs() << WF.Weight << "," << WF.Filename << "\n";
1264 return 0;
1265 }
1266
1267 std::unique_ptr<SymbolRemapper> Remapper;
1268 if (!RemappingFile.empty())
1269 Remapper = SymbolRemapper::create(RemappingFile);
1270
1271 if (!SupplInstrWithSample.empty()) {
1272 if (ProfileKind != instr)
1273 exitWithError(
1274 "-supplement-instr-with-sample can only work with -instr. ");
1275
1276 supplementInstrProfile(WeightedInputs, SupplInstrWithSample, OutputFilename,
1277 OutputFormat, OutputSparse, SupplMinSizeThreshold,
1278 ZeroCounterThreshold, InstrProfColdThreshold);
1279 return 0;
1280 }
1281
1282 if (ProfileKind == instr)
1283 mergeInstrProfile(WeightedInputs, DebugInfoFilename, Remapper.get(),
1284 OutputFilename, OutputFormat, OutputSparse, NumThreads,
1285 FailureMode, ProfiledBinary);
1286 else
1287 mergeSampleProfile(
1288 WeightedInputs, Remapper.get(), OutputFilename, OutputFormat,
1289 ProfileSymbolListFile, CompressAllSections, UseMD5, GenPartialProfile,
1290 GenCSNestedProfile, SampleMergeColdContext, SampleTrimColdContext,
1291 SampleColdContextFrameDepth, FailureMode, DropProfileSymbolList);
1292 return 0;
1293 }
1294
1295 /// Computer the overlap b/w profile BaseFilename and profile TestFilename.
overlapInstrProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,raw_fd_ostream & OS,bool IsCS)1296 static void overlapInstrProfile(const std::string &BaseFilename,
1297 const std::string &TestFilename,
1298 const OverlapFuncFilters &FuncFilter,
1299 raw_fd_ostream &OS, bool IsCS) {
1300 std::mutex ErrorLock;
1301 SmallSet<instrprof_error, 4> WriterErrorCodes;
1302 WriterContext Context(false, ErrorLock, WriterErrorCodes);
1303 WeightedFile WeightedInput{BaseFilename, 1};
1304 OverlapStats Overlap;
1305 Error E = Overlap.accumulateCounts(BaseFilename, TestFilename, IsCS);
1306 if (E)
1307 exitWithError(std::move(E), "error in getting profile count sums");
1308 if (Overlap.Base.CountSum < 1.0f) {
1309 OS << "Sum of edge counts for profile " << BaseFilename << " is 0.\n";
1310 exit(0);
1311 }
1312 if (Overlap.Test.CountSum < 1.0f) {
1313 OS << "Sum of edge counts for profile " << TestFilename << " is 0.\n";
1314 exit(0);
1315 }
1316 loadInput(WeightedInput, nullptr, nullptr, /*ProfiledBinary=*/"", &Context);
1317 overlapInput(BaseFilename, TestFilename, &Context, Overlap, FuncFilter, OS,
1318 IsCS);
1319 Overlap.dump(OS);
1320 }
1321
1322 namespace {
1323 struct SampleOverlapStats {
1324 SampleContext BaseName;
1325 SampleContext TestName;
1326 // Number of overlap units
1327 uint64_t OverlapCount;
1328 // Total samples of overlap units
1329 uint64_t OverlapSample;
1330 // Number of and total samples of units that only present in base or test
1331 // profile
1332 uint64_t BaseUniqueCount;
1333 uint64_t BaseUniqueSample;
1334 uint64_t TestUniqueCount;
1335 uint64_t TestUniqueSample;
1336 // Number of units and total samples in base or test profile
1337 uint64_t BaseCount;
1338 uint64_t BaseSample;
1339 uint64_t TestCount;
1340 uint64_t TestSample;
1341 // Number of and total samples of units that present in at least one profile
1342 uint64_t UnionCount;
1343 uint64_t UnionSample;
1344 // Weighted similarity
1345 double Similarity;
1346 // For SampleOverlapStats instances representing functions, weights of the
1347 // function in base and test profiles
1348 double BaseWeight;
1349 double TestWeight;
1350
SampleOverlapStats__anona85dd3c20e11::SampleOverlapStats1351 SampleOverlapStats()
1352 : OverlapCount(0), OverlapSample(0), BaseUniqueCount(0),
1353 BaseUniqueSample(0), TestUniqueCount(0), TestUniqueSample(0),
1354 BaseCount(0), BaseSample(0), TestCount(0), TestSample(0), UnionCount(0),
1355 UnionSample(0), Similarity(0.0), BaseWeight(0.0), TestWeight(0.0) {}
1356 };
1357 } // end anonymous namespace
1358
1359 namespace {
1360 struct FuncSampleStats {
1361 uint64_t SampleSum;
1362 uint64_t MaxSample;
1363 uint64_t HotBlockCount;
FuncSampleStats__anona85dd3c20f11::FuncSampleStats1364 FuncSampleStats() : SampleSum(0), MaxSample(0), HotBlockCount(0) {}
FuncSampleStats__anona85dd3c20f11::FuncSampleStats1365 FuncSampleStats(uint64_t SampleSum, uint64_t MaxSample,
1366 uint64_t HotBlockCount)
1367 : SampleSum(SampleSum), MaxSample(MaxSample),
1368 HotBlockCount(HotBlockCount) {}
1369 };
1370 } // end anonymous namespace
1371
1372 namespace {
1373 enum MatchStatus { MS_Match, MS_FirstUnique, MS_SecondUnique, MS_None };
1374
1375 // Class for updating merging steps for two sorted maps. The class should be
1376 // instantiated with a map iterator type.
1377 template <class T> class MatchStep {
1378 public:
1379 MatchStep() = delete;
1380
MatchStep(T FirstIter,T FirstEnd,T SecondIter,T SecondEnd)1381 MatchStep(T FirstIter, T FirstEnd, T SecondIter, T SecondEnd)
1382 : FirstIter(FirstIter), FirstEnd(FirstEnd), SecondIter(SecondIter),
1383 SecondEnd(SecondEnd), Status(MS_None) {}
1384
areBothFinished() const1385 bool areBothFinished() const {
1386 return (FirstIter == FirstEnd && SecondIter == SecondEnd);
1387 }
1388
isFirstFinished() const1389 bool isFirstFinished() const { return FirstIter == FirstEnd; }
1390
isSecondFinished() const1391 bool isSecondFinished() const { return SecondIter == SecondEnd; }
1392
1393 /// Advance one step based on the previous match status unless the previous
1394 /// status is MS_None. Then update Status based on the comparison between two
1395 /// container iterators at the current step. If the previous status is
1396 /// MS_None, it means two iterators are at the beginning and no comparison has
1397 /// been made, so we simply update Status without advancing the iterators.
1398 void updateOneStep();
1399
getFirstIter() const1400 T getFirstIter() const { return FirstIter; }
1401
getSecondIter() const1402 T getSecondIter() const { return SecondIter; }
1403
getMatchStatus() const1404 MatchStatus getMatchStatus() const { return Status; }
1405
1406 private:
1407 // Current iterator and end iterator of the first container.
1408 T FirstIter;
1409 T FirstEnd;
1410 // Current iterator and end iterator of the second container.
1411 T SecondIter;
1412 T SecondEnd;
1413 // Match status of the current step.
1414 MatchStatus Status;
1415 };
1416 } // end anonymous namespace
1417
updateOneStep()1418 template <class T> void MatchStep<T>::updateOneStep() {
1419 switch (Status) {
1420 case MS_Match:
1421 ++FirstIter;
1422 ++SecondIter;
1423 break;
1424 case MS_FirstUnique:
1425 ++FirstIter;
1426 break;
1427 case MS_SecondUnique:
1428 ++SecondIter;
1429 break;
1430 case MS_None:
1431 break;
1432 }
1433
1434 // Update Status according to iterators at the current step.
1435 if (areBothFinished())
1436 return;
1437 if (FirstIter != FirstEnd &&
1438 (SecondIter == SecondEnd || FirstIter->first < SecondIter->first))
1439 Status = MS_FirstUnique;
1440 else if (SecondIter != SecondEnd &&
1441 (FirstIter == FirstEnd || SecondIter->first < FirstIter->first))
1442 Status = MS_SecondUnique;
1443 else
1444 Status = MS_Match;
1445 }
1446
1447 // Return the sum of line/block samples, the max line/block sample, and the
1448 // number of line/block samples above the given threshold in a function
1449 // including its inlinees.
getFuncSampleStats(const sampleprof::FunctionSamples & Func,FuncSampleStats & FuncStats,uint64_t HotThreshold)1450 static void getFuncSampleStats(const sampleprof::FunctionSamples &Func,
1451 FuncSampleStats &FuncStats,
1452 uint64_t HotThreshold) {
1453 for (const auto &L : Func.getBodySamples()) {
1454 uint64_t Sample = L.second.getSamples();
1455 FuncStats.SampleSum += Sample;
1456 FuncStats.MaxSample = std::max(FuncStats.MaxSample, Sample);
1457 if (Sample >= HotThreshold)
1458 ++FuncStats.HotBlockCount;
1459 }
1460
1461 for (const auto &C : Func.getCallsiteSamples()) {
1462 for (const auto &F : C.second)
1463 getFuncSampleStats(F.second, FuncStats, HotThreshold);
1464 }
1465 }
1466
1467 /// Predicate that determines if a function is hot with a given threshold. We
1468 /// keep it separate from its callsites for possible extension in the future.
isFunctionHot(const FuncSampleStats & FuncStats,uint64_t HotThreshold)1469 static bool isFunctionHot(const FuncSampleStats &FuncStats,
1470 uint64_t HotThreshold) {
1471 // We intentionally compare the maximum sample count in a function with the
1472 // HotThreshold to get an approximate determination on hot functions.
1473 return (FuncStats.MaxSample >= HotThreshold);
1474 }
1475
1476 namespace {
1477 class SampleOverlapAggregator {
1478 public:
SampleOverlapAggregator(const std::string & BaseFilename,const std::string & TestFilename,double LowSimilarityThreshold,double Epsilon,const OverlapFuncFilters & FuncFilter)1479 SampleOverlapAggregator(const std::string &BaseFilename,
1480 const std::string &TestFilename,
1481 double LowSimilarityThreshold, double Epsilon,
1482 const OverlapFuncFilters &FuncFilter)
1483 : BaseFilename(BaseFilename), TestFilename(TestFilename),
1484 LowSimilarityThreshold(LowSimilarityThreshold), Epsilon(Epsilon),
1485 FuncFilter(FuncFilter) {}
1486
1487 /// Detect 0-sample input profile and report to output stream. This interface
1488 /// should be called after loadProfiles().
1489 bool detectZeroSampleProfile(raw_fd_ostream &OS) const;
1490
1491 /// Write out function-level similarity statistics for functions specified by
1492 /// options --function, --value-cutoff, and --similarity-cutoff.
1493 void dumpFuncSimilarity(raw_fd_ostream &OS) const;
1494
1495 /// Write out program-level similarity and overlap statistics.
1496 void dumpProgramSummary(raw_fd_ostream &OS) const;
1497
1498 /// Write out hot-function and hot-block statistics for base_profile,
1499 /// test_profile, and their overlap. For both cases, the overlap HO is
1500 /// calculated as follows:
1501 /// Given the number of functions (or blocks) that are hot in both profiles
1502 /// HCommon and the number of functions (or blocks) that are hot in at
1503 /// least one profile HUnion, HO = HCommon / HUnion.
1504 void dumpHotFuncAndBlockOverlap(raw_fd_ostream &OS) const;
1505
1506 /// This function tries matching functions in base and test profiles. For each
1507 /// pair of matched functions, it aggregates the function-level
1508 /// similarity into a profile-level similarity. It also dump function-level
1509 /// similarity information of functions specified by --function,
1510 /// --value-cutoff, and --similarity-cutoff options. The program-level
1511 /// similarity PS is computed as follows:
1512 /// Given function-level similarity FS(A) for all function A, the
1513 /// weight of function A in base profile WB(A), and the weight of function
1514 /// A in test profile WT(A), compute PS(base_profile, test_profile) =
1515 /// sum_A(FS(A) * avg(WB(A), WT(A))) ranging in [0.0f to 1.0f] with 0.0
1516 /// meaning no-overlap.
1517 void computeSampleProfileOverlap(raw_fd_ostream &OS);
1518
1519 /// Initialize ProfOverlap with the sum of samples in base and test
1520 /// profiles. This function also computes and keeps the sum of samples and
1521 /// max sample counts of each function in BaseStats and TestStats for later
1522 /// use to avoid re-computations.
1523 void initializeSampleProfileOverlap();
1524
1525 /// Load profiles specified by BaseFilename and TestFilename.
1526 std::error_code loadProfiles();
1527
1528 using FuncSampleStatsMap =
1529 std::unordered_map<SampleContext, FuncSampleStats, SampleContext::Hash>;
1530
1531 private:
1532 SampleOverlapStats ProfOverlap;
1533 SampleOverlapStats HotFuncOverlap;
1534 SampleOverlapStats HotBlockOverlap;
1535 std::string BaseFilename;
1536 std::string TestFilename;
1537 std::unique_ptr<sampleprof::SampleProfileReader> BaseReader;
1538 std::unique_ptr<sampleprof::SampleProfileReader> TestReader;
1539 // BaseStats and TestStats hold FuncSampleStats for each function, with
1540 // function name as the key.
1541 FuncSampleStatsMap BaseStats;
1542 FuncSampleStatsMap TestStats;
1543 // Low similarity threshold in floating point number
1544 double LowSimilarityThreshold;
1545 // Block samples above BaseHotThreshold or TestHotThreshold are considered hot
1546 // for tracking hot blocks.
1547 uint64_t BaseHotThreshold;
1548 uint64_t TestHotThreshold;
1549 // A small threshold used to round the results of floating point accumulations
1550 // to resolve imprecision.
1551 const double Epsilon;
1552 std::multimap<double, SampleOverlapStats, std::greater<double>>
1553 FuncSimilarityDump;
1554 // FuncFilter carries specifications in options --value-cutoff and
1555 // --function.
1556 OverlapFuncFilters FuncFilter;
1557 // Column offsets for printing the function-level details table.
1558 static const unsigned int TestWeightCol = 15;
1559 static const unsigned int SimilarityCol = 30;
1560 static const unsigned int OverlapCol = 43;
1561 static const unsigned int BaseUniqueCol = 53;
1562 static const unsigned int TestUniqueCol = 67;
1563 static const unsigned int BaseSampleCol = 81;
1564 static const unsigned int TestSampleCol = 96;
1565 static const unsigned int FuncNameCol = 111;
1566
1567 /// Return a similarity of two line/block sample counters in the same
1568 /// function in base and test profiles. The line/block-similarity BS(i) is
1569 /// computed as follows:
1570 /// For an offsets i, given the sample count at i in base profile BB(i),
1571 /// the sample count at i in test profile BT(i), the sum of sample counts
1572 /// in this function in base profile SB, and the sum of sample counts in
1573 /// this function in test profile ST, compute BS(i) = 1.0 - fabs(BB(i)/SB -
1574 /// BT(i)/ST), ranging in [0.0f to 1.0f] with 0.0 meaning no-overlap.
1575 double computeBlockSimilarity(uint64_t BaseSample, uint64_t TestSample,
1576 const SampleOverlapStats &FuncOverlap) const;
1577
1578 void updateHotBlockOverlap(uint64_t BaseSample, uint64_t TestSample,
1579 uint64_t HotBlockCount);
1580
1581 void getHotFunctions(const FuncSampleStatsMap &ProfStats,
1582 FuncSampleStatsMap &HotFunc,
1583 uint64_t HotThreshold) const;
1584
1585 void computeHotFuncOverlap();
1586
1587 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1588 /// Difference for two sample units in a matched function according to the
1589 /// given match status.
1590 void updateOverlapStatsForFunction(uint64_t BaseSample, uint64_t TestSample,
1591 uint64_t HotBlockCount,
1592 SampleOverlapStats &FuncOverlap,
1593 double &Difference, MatchStatus Status);
1594
1595 /// This function updates statistics in FuncOverlap, HotBlockOverlap, and
1596 /// Difference for unmatched callees that only present in one profile in a
1597 /// matched caller function.
1598 void updateForUnmatchedCallee(const sampleprof::FunctionSamples &Func,
1599 SampleOverlapStats &FuncOverlap,
1600 double &Difference, MatchStatus Status);
1601
1602 /// This function updates sample overlap statistics of an overlap function in
1603 /// base and test profile. It also calculates a function-internal similarity
1604 /// FIS as follows:
1605 /// For offsets i that have samples in at least one profile in this
1606 /// function A, given BS(i) returned by computeBlockSimilarity(), compute
1607 /// FIS(A) = (2.0 - sum_i(1.0 - BS(i))) / 2, ranging in [0.0f to 1.0f] with
1608 /// 0.0 meaning no overlap.
1609 double computeSampleFunctionInternalOverlap(
1610 const sampleprof::FunctionSamples &BaseFunc,
1611 const sampleprof::FunctionSamples &TestFunc,
1612 SampleOverlapStats &FuncOverlap);
1613
1614 /// Function-level similarity (FS) is a weighted value over function internal
1615 /// similarity (FIS). This function computes a function's FS from its FIS by
1616 /// applying the weight.
1617 double weightForFuncSimilarity(double FuncSimilarity, uint64_t BaseFuncSample,
1618 uint64_t TestFuncSample) const;
1619
1620 /// The function-level similarity FS(A) for a function A is computed as
1621 /// follows:
1622 /// Compute a function-internal similarity FIS(A) by
1623 /// computeSampleFunctionInternalOverlap(). Then, with the weight of
1624 /// function A in base profile WB(A), and the weight of function A in test
1625 /// profile WT(A), compute FS(A) = FIS(A) * (1.0 - fabs(WB(A) - WT(A)))
1626 /// ranging in [0.0f to 1.0f] with 0.0 meaning no overlap.
1627 double
1628 computeSampleFunctionOverlap(const sampleprof::FunctionSamples *BaseFunc,
1629 const sampleprof::FunctionSamples *TestFunc,
1630 SampleOverlapStats *FuncOverlap,
1631 uint64_t BaseFuncSample,
1632 uint64_t TestFuncSample);
1633
1634 /// Profile-level similarity (PS) is a weighted aggregate over function-level
1635 /// similarities (FS). This method weights the FS value by the function
1636 /// weights in the base and test profiles for the aggregation.
1637 double weightByImportance(double FuncSimilarity, uint64_t BaseFuncSample,
1638 uint64_t TestFuncSample) const;
1639 };
1640 } // end anonymous namespace
1641
detectZeroSampleProfile(raw_fd_ostream & OS) const1642 bool SampleOverlapAggregator::detectZeroSampleProfile(
1643 raw_fd_ostream &OS) const {
1644 bool HaveZeroSample = false;
1645 if (ProfOverlap.BaseSample == 0) {
1646 OS << "Sum of sample counts for profile " << BaseFilename << " is 0.\n";
1647 HaveZeroSample = true;
1648 }
1649 if (ProfOverlap.TestSample == 0) {
1650 OS << "Sum of sample counts for profile " << TestFilename << " is 0.\n";
1651 HaveZeroSample = true;
1652 }
1653 return HaveZeroSample;
1654 }
1655
computeBlockSimilarity(uint64_t BaseSample,uint64_t TestSample,const SampleOverlapStats & FuncOverlap) const1656 double SampleOverlapAggregator::computeBlockSimilarity(
1657 uint64_t BaseSample, uint64_t TestSample,
1658 const SampleOverlapStats &FuncOverlap) const {
1659 double BaseFrac = 0.0;
1660 double TestFrac = 0.0;
1661 if (FuncOverlap.BaseSample > 0)
1662 BaseFrac = static_cast<double>(BaseSample) / FuncOverlap.BaseSample;
1663 if (FuncOverlap.TestSample > 0)
1664 TestFrac = static_cast<double>(TestSample) / FuncOverlap.TestSample;
1665 return 1.0 - std::fabs(BaseFrac - TestFrac);
1666 }
1667
updateHotBlockOverlap(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount)1668 void SampleOverlapAggregator::updateHotBlockOverlap(uint64_t BaseSample,
1669 uint64_t TestSample,
1670 uint64_t HotBlockCount) {
1671 bool IsBaseHot = (BaseSample >= BaseHotThreshold);
1672 bool IsTestHot = (TestSample >= TestHotThreshold);
1673 if (!IsBaseHot && !IsTestHot)
1674 return;
1675
1676 HotBlockOverlap.UnionCount += HotBlockCount;
1677 if (IsBaseHot)
1678 HotBlockOverlap.BaseCount += HotBlockCount;
1679 if (IsTestHot)
1680 HotBlockOverlap.TestCount += HotBlockCount;
1681 if (IsBaseHot && IsTestHot)
1682 HotBlockOverlap.OverlapCount += HotBlockCount;
1683 }
1684
getHotFunctions(const FuncSampleStatsMap & ProfStats,FuncSampleStatsMap & HotFunc,uint64_t HotThreshold) const1685 void SampleOverlapAggregator::getHotFunctions(
1686 const FuncSampleStatsMap &ProfStats, FuncSampleStatsMap &HotFunc,
1687 uint64_t HotThreshold) const {
1688 for (const auto &F : ProfStats) {
1689 if (isFunctionHot(F.second, HotThreshold))
1690 HotFunc.emplace(F.first, F.second);
1691 }
1692 }
1693
computeHotFuncOverlap()1694 void SampleOverlapAggregator::computeHotFuncOverlap() {
1695 FuncSampleStatsMap BaseHotFunc;
1696 getHotFunctions(BaseStats, BaseHotFunc, BaseHotThreshold);
1697 HotFuncOverlap.BaseCount = BaseHotFunc.size();
1698
1699 FuncSampleStatsMap TestHotFunc;
1700 getHotFunctions(TestStats, TestHotFunc, TestHotThreshold);
1701 HotFuncOverlap.TestCount = TestHotFunc.size();
1702 HotFuncOverlap.UnionCount = HotFuncOverlap.TestCount;
1703
1704 for (const auto &F : BaseHotFunc) {
1705 if (TestHotFunc.count(F.first))
1706 ++HotFuncOverlap.OverlapCount;
1707 else
1708 ++HotFuncOverlap.UnionCount;
1709 }
1710 }
1711
updateOverlapStatsForFunction(uint64_t BaseSample,uint64_t TestSample,uint64_t HotBlockCount,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)1712 void SampleOverlapAggregator::updateOverlapStatsForFunction(
1713 uint64_t BaseSample, uint64_t TestSample, uint64_t HotBlockCount,
1714 SampleOverlapStats &FuncOverlap, double &Difference, MatchStatus Status) {
1715 assert(Status != MS_None &&
1716 "Match status should be updated before updating overlap statistics");
1717 if (Status == MS_FirstUnique) {
1718 TestSample = 0;
1719 FuncOverlap.BaseUniqueSample += BaseSample;
1720 } else if (Status == MS_SecondUnique) {
1721 BaseSample = 0;
1722 FuncOverlap.TestUniqueSample += TestSample;
1723 } else {
1724 ++FuncOverlap.OverlapCount;
1725 }
1726
1727 FuncOverlap.UnionSample += std::max(BaseSample, TestSample);
1728 FuncOverlap.OverlapSample += std::min(BaseSample, TestSample);
1729 Difference +=
1730 1.0 - computeBlockSimilarity(BaseSample, TestSample, FuncOverlap);
1731 updateHotBlockOverlap(BaseSample, TestSample, HotBlockCount);
1732 }
1733
updateForUnmatchedCallee(const sampleprof::FunctionSamples & Func,SampleOverlapStats & FuncOverlap,double & Difference,MatchStatus Status)1734 void SampleOverlapAggregator::updateForUnmatchedCallee(
1735 const sampleprof::FunctionSamples &Func, SampleOverlapStats &FuncOverlap,
1736 double &Difference, MatchStatus Status) {
1737 assert((Status == MS_FirstUnique || Status == MS_SecondUnique) &&
1738 "Status must be either of the two unmatched cases");
1739 FuncSampleStats FuncStats;
1740 if (Status == MS_FirstUnique) {
1741 getFuncSampleStats(Func, FuncStats, BaseHotThreshold);
1742 updateOverlapStatsForFunction(FuncStats.SampleSum, 0,
1743 FuncStats.HotBlockCount, FuncOverlap,
1744 Difference, Status);
1745 } else {
1746 getFuncSampleStats(Func, FuncStats, TestHotThreshold);
1747 updateOverlapStatsForFunction(0, FuncStats.SampleSum,
1748 FuncStats.HotBlockCount, FuncOverlap,
1749 Difference, Status);
1750 }
1751 }
1752
computeSampleFunctionInternalOverlap(const sampleprof::FunctionSamples & BaseFunc,const sampleprof::FunctionSamples & TestFunc,SampleOverlapStats & FuncOverlap)1753 double SampleOverlapAggregator::computeSampleFunctionInternalOverlap(
1754 const sampleprof::FunctionSamples &BaseFunc,
1755 const sampleprof::FunctionSamples &TestFunc,
1756 SampleOverlapStats &FuncOverlap) {
1757
1758 using namespace sampleprof;
1759
1760 double Difference = 0;
1761
1762 // Accumulate Difference for regular line/block samples in the function.
1763 // We match them through sort-merge join algorithm because
1764 // FunctionSamples::getBodySamples() returns a map of sample counters ordered
1765 // by their offsets.
1766 MatchStep<BodySampleMap::const_iterator> BlockIterStep(
1767 BaseFunc.getBodySamples().cbegin(), BaseFunc.getBodySamples().cend(),
1768 TestFunc.getBodySamples().cbegin(), TestFunc.getBodySamples().cend());
1769 BlockIterStep.updateOneStep();
1770 while (!BlockIterStep.areBothFinished()) {
1771 uint64_t BaseSample =
1772 BlockIterStep.isFirstFinished()
1773 ? 0
1774 : BlockIterStep.getFirstIter()->second.getSamples();
1775 uint64_t TestSample =
1776 BlockIterStep.isSecondFinished()
1777 ? 0
1778 : BlockIterStep.getSecondIter()->second.getSamples();
1779 updateOverlapStatsForFunction(BaseSample, TestSample, 1, FuncOverlap,
1780 Difference, BlockIterStep.getMatchStatus());
1781
1782 BlockIterStep.updateOneStep();
1783 }
1784
1785 // Accumulate Difference for callsite lines in the function. We match
1786 // them through sort-merge algorithm because
1787 // FunctionSamples::getCallsiteSamples() returns a map of callsite records
1788 // ordered by their offsets.
1789 MatchStep<CallsiteSampleMap::const_iterator> CallsiteIterStep(
1790 BaseFunc.getCallsiteSamples().cbegin(),
1791 BaseFunc.getCallsiteSamples().cend(),
1792 TestFunc.getCallsiteSamples().cbegin(),
1793 TestFunc.getCallsiteSamples().cend());
1794 CallsiteIterStep.updateOneStep();
1795 while (!CallsiteIterStep.areBothFinished()) {
1796 MatchStatus CallsiteStepStatus = CallsiteIterStep.getMatchStatus();
1797 assert(CallsiteStepStatus != MS_None &&
1798 "Match status should be updated before entering loop body");
1799
1800 if (CallsiteStepStatus != MS_Match) {
1801 auto Callsite = (CallsiteStepStatus == MS_FirstUnique)
1802 ? CallsiteIterStep.getFirstIter()
1803 : CallsiteIterStep.getSecondIter();
1804 for (const auto &F : Callsite->second)
1805 updateForUnmatchedCallee(F.second, FuncOverlap, Difference,
1806 CallsiteStepStatus);
1807 } else {
1808 // There may be multiple inlinees at the same offset, so we need to try
1809 // matching all of them. This match is implemented through sort-merge
1810 // algorithm because callsite records at the same offset are ordered by
1811 // function names.
1812 MatchStep<FunctionSamplesMap::const_iterator> CalleeIterStep(
1813 CallsiteIterStep.getFirstIter()->second.cbegin(),
1814 CallsiteIterStep.getFirstIter()->second.cend(),
1815 CallsiteIterStep.getSecondIter()->second.cbegin(),
1816 CallsiteIterStep.getSecondIter()->second.cend());
1817 CalleeIterStep.updateOneStep();
1818 while (!CalleeIterStep.areBothFinished()) {
1819 MatchStatus CalleeStepStatus = CalleeIterStep.getMatchStatus();
1820 if (CalleeStepStatus != MS_Match) {
1821 auto Callee = (CalleeStepStatus == MS_FirstUnique)
1822 ? CalleeIterStep.getFirstIter()
1823 : CalleeIterStep.getSecondIter();
1824 updateForUnmatchedCallee(Callee->second, FuncOverlap, Difference,
1825 CalleeStepStatus);
1826 } else {
1827 // An inlined function can contain other inlinees inside, so compute
1828 // the Difference recursively.
1829 Difference += 2.0 - 2 * computeSampleFunctionInternalOverlap(
1830 CalleeIterStep.getFirstIter()->second,
1831 CalleeIterStep.getSecondIter()->second,
1832 FuncOverlap);
1833 }
1834 CalleeIterStep.updateOneStep();
1835 }
1836 }
1837 CallsiteIterStep.updateOneStep();
1838 }
1839
1840 // Difference reflects the total differences of line/block samples in this
1841 // function and ranges in [0.0f to 2.0f]. Take (2.0 - Difference) / 2 to
1842 // reflect the similarity between function profiles in [0.0f to 1.0f].
1843 return (2.0 - Difference) / 2;
1844 }
1845
weightForFuncSimilarity(double FuncInternalSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const1846 double SampleOverlapAggregator::weightForFuncSimilarity(
1847 double FuncInternalSimilarity, uint64_t BaseFuncSample,
1848 uint64_t TestFuncSample) const {
1849 // Compute the weight as the distance between the function weights in two
1850 // profiles.
1851 double BaseFrac = 0.0;
1852 double TestFrac = 0.0;
1853 assert(ProfOverlap.BaseSample > 0 &&
1854 "Total samples in base profile should be greater than 0");
1855 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample;
1856 assert(ProfOverlap.TestSample > 0 &&
1857 "Total samples in test profile should be greater than 0");
1858 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample;
1859 double WeightDistance = std::fabs(BaseFrac - TestFrac);
1860
1861 // Take WeightDistance into the similarity.
1862 return FuncInternalSimilarity * (1 - WeightDistance);
1863 }
1864
1865 double
weightByImportance(double FuncSimilarity,uint64_t BaseFuncSample,uint64_t TestFuncSample) const1866 SampleOverlapAggregator::weightByImportance(double FuncSimilarity,
1867 uint64_t BaseFuncSample,
1868 uint64_t TestFuncSample) const {
1869
1870 double BaseFrac = 0.0;
1871 double TestFrac = 0.0;
1872 assert(ProfOverlap.BaseSample > 0 &&
1873 "Total samples in base profile should be greater than 0");
1874 BaseFrac = static_cast<double>(BaseFuncSample) / ProfOverlap.BaseSample / 2.0;
1875 assert(ProfOverlap.TestSample > 0 &&
1876 "Total samples in test profile should be greater than 0");
1877 TestFrac = static_cast<double>(TestFuncSample) / ProfOverlap.TestSample / 2.0;
1878 return FuncSimilarity * (BaseFrac + TestFrac);
1879 }
1880
computeSampleFunctionOverlap(const sampleprof::FunctionSamples * BaseFunc,const sampleprof::FunctionSamples * TestFunc,SampleOverlapStats * FuncOverlap,uint64_t BaseFuncSample,uint64_t TestFuncSample)1881 double SampleOverlapAggregator::computeSampleFunctionOverlap(
1882 const sampleprof::FunctionSamples *BaseFunc,
1883 const sampleprof::FunctionSamples *TestFunc,
1884 SampleOverlapStats *FuncOverlap, uint64_t BaseFuncSample,
1885 uint64_t TestFuncSample) {
1886 // Default function internal similarity before weighted, meaning two functions
1887 // has no overlap.
1888 const double DefaultFuncInternalSimilarity = 0;
1889 double FuncSimilarity;
1890 double FuncInternalSimilarity;
1891
1892 // If BaseFunc or TestFunc is nullptr, it means the functions do not overlap.
1893 // In this case, we use DefaultFuncInternalSimilarity as the function internal
1894 // similarity.
1895 if (!BaseFunc || !TestFunc) {
1896 FuncInternalSimilarity = DefaultFuncInternalSimilarity;
1897 } else {
1898 assert(FuncOverlap != nullptr &&
1899 "FuncOverlap should be provided in this case");
1900 FuncInternalSimilarity = computeSampleFunctionInternalOverlap(
1901 *BaseFunc, *TestFunc, *FuncOverlap);
1902 // Now, FuncInternalSimilarity may be a little less than 0 due to
1903 // imprecision of floating point accumulations. Make it zero if the
1904 // difference is below Epsilon.
1905 FuncInternalSimilarity = (std::fabs(FuncInternalSimilarity - 0) < Epsilon)
1906 ? 0
1907 : FuncInternalSimilarity;
1908 }
1909 FuncSimilarity = weightForFuncSimilarity(FuncInternalSimilarity,
1910 BaseFuncSample, TestFuncSample);
1911 return FuncSimilarity;
1912 }
1913
computeSampleProfileOverlap(raw_fd_ostream & OS)1914 void SampleOverlapAggregator::computeSampleProfileOverlap(raw_fd_ostream &OS) {
1915 using namespace sampleprof;
1916
1917 std::unordered_map<SampleContext, const FunctionSamples *,
1918 SampleContext::Hash>
1919 BaseFuncProf;
1920 const auto &BaseProfiles = BaseReader->getProfiles();
1921 for (const auto &BaseFunc : BaseProfiles) {
1922 BaseFuncProf.emplace(BaseFunc.second.getContext(), &(BaseFunc.second));
1923 }
1924 ProfOverlap.UnionCount = BaseFuncProf.size();
1925
1926 const auto &TestProfiles = TestReader->getProfiles();
1927 for (const auto &TestFunc : TestProfiles) {
1928 SampleOverlapStats FuncOverlap;
1929 FuncOverlap.TestName = TestFunc.second.getContext();
1930 assert(TestStats.count(FuncOverlap.TestName) &&
1931 "TestStats should have records for all functions in test profile "
1932 "except inlinees");
1933 FuncOverlap.TestSample = TestStats[FuncOverlap.TestName].SampleSum;
1934
1935 bool Matched = false;
1936 const auto Match = BaseFuncProf.find(FuncOverlap.TestName);
1937 if (Match == BaseFuncProf.end()) {
1938 const FuncSampleStats &FuncStats = TestStats[FuncOverlap.TestName];
1939 ++ProfOverlap.TestUniqueCount;
1940 ProfOverlap.TestUniqueSample += FuncStats.SampleSum;
1941 FuncOverlap.TestUniqueSample = FuncStats.SampleSum;
1942
1943 updateHotBlockOverlap(0, FuncStats.SampleSum, FuncStats.HotBlockCount);
1944
1945 double FuncSimilarity = computeSampleFunctionOverlap(
1946 nullptr, nullptr, nullptr, 0, FuncStats.SampleSum);
1947 ProfOverlap.Similarity +=
1948 weightByImportance(FuncSimilarity, 0, FuncStats.SampleSum);
1949
1950 ++ProfOverlap.UnionCount;
1951 ProfOverlap.UnionSample += FuncStats.SampleSum;
1952 } else {
1953 ++ProfOverlap.OverlapCount;
1954
1955 // Two functions match with each other. Compute function-level overlap and
1956 // aggregate them into profile-level overlap.
1957 FuncOverlap.BaseName = Match->second->getContext();
1958 assert(BaseStats.count(FuncOverlap.BaseName) &&
1959 "BaseStats should have records for all functions in base profile "
1960 "except inlinees");
1961 FuncOverlap.BaseSample = BaseStats[FuncOverlap.BaseName].SampleSum;
1962
1963 FuncOverlap.Similarity = computeSampleFunctionOverlap(
1964 Match->second, &TestFunc.second, &FuncOverlap, FuncOverlap.BaseSample,
1965 FuncOverlap.TestSample);
1966 ProfOverlap.Similarity +=
1967 weightByImportance(FuncOverlap.Similarity, FuncOverlap.BaseSample,
1968 FuncOverlap.TestSample);
1969 ProfOverlap.OverlapSample += FuncOverlap.OverlapSample;
1970 ProfOverlap.UnionSample += FuncOverlap.UnionSample;
1971
1972 // Accumulate the percentage of base unique and test unique samples into
1973 // ProfOverlap.
1974 ProfOverlap.BaseUniqueSample += FuncOverlap.BaseUniqueSample;
1975 ProfOverlap.TestUniqueSample += FuncOverlap.TestUniqueSample;
1976
1977 // Remove matched base functions for later reporting functions not found
1978 // in test profile.
1979 BaseFuncProf.erase(Match);
1980 Matched = true;
1981 }
1982
1983 // Print function-level similarity information if specified by options.
1984 assert(TestStats.count(FuncOverlap.TestName) &&
1985 "TestStats should have records for all functions in test profile "
1986 "except inlinees");
1987 if (TestStats[FuncOverlap.TestName].MaxSample >= FuncFilter.ValueCutoff ||
1988 (Matched && FuncOverlap.Similarity < LowSimilarityThreshold) ||
1989 (Matched && !FuncFilter.NameFilter.empty() &&
1990 FuncOverlap.BaseName.toString().find(FuncFilter.NameFilter) !=
1991 std::string::npos)) {
1992 assert(ProfOverlap.BaseSample > 0 &&
1993 "Total samples in base profile should be greater than 0");
1994 FuncOverlap.BaseWeight =
1995 static_cast<double>(FuncOverlap.BaseSample) / ProfOverlap.BaseSample;
1996 assert(ProfOverlap.TestSample > 0 &&
1997 "Total samples in test profile should be greater than 0");
1998 FuncOverlap.TestWeight =
1999 static_cast<double>(FuncOverlap.TestSample) / ProfOverlap.TestSample;
2000 FuncSimilarityDump.emplace(FuncOverlap.BaseWeight, FuncOverlap);
2001 }
2002 }
2003
2004 // Traverse through functions in base profile but not in test profile.
2005 for (const auto &F : BaseFuncProf) {
2006 assert(BaseStats.count(F.second->getContext()) &&
2007 "BaseStats should have records for all functions in base profile "
2008 "except inlinees");
2009 const FuncSampleStats &FuncStats = BaseStats[F.second->getContext()];
2010 ++ProfOverlap.BaseUniqueCount;
2011 ProfOverlap.BaseUniqueSample += FuncStats.SampleSum;
2012
2013 updateHotBlockOverlap(FuncStats.SampleSum, 0, FuncStats.HotBlockCount);
2014
2015 double FuncSimilarity = computeSampleFunctionOverlap(
2016 nullptr, nullptr, nullptr, FuncStats.SampleSum, 0);
2017 ProfOverlap.Similarity +=
2018 weightByImportance(FuncSimilarity, FuncStats.SampleSum, 0);
2019
2020 ProfOverlap.UnionSample += FuncStats.SampleSum;
2021 }
2022
2023 // Now, ProfSimilarity may be a little greater than 1 due to imprecision
2024 // of floating point accumulations. Make it 1.0 if the difference is below
2025 // Epsilon.
2026 ProfOverlap.Similarity = (std::fabs(ProfOverlap.Similarity - 1) < Epsilon)
2027 ? 1
2028 : ProfOverlap.Similarity;
2029
2030 computeHotFuncOverlap();
2031 }
2032
initializeSampleProfileOverlap()2033 void SampleOverlapAggregator::initializeSampleProfileOverlap() {
2034 const auto &BaseProf = BaseReader->getProfiles();
2035 for (const auto &I : BaseProf) {
2036 ++ProfOverlap.BaseCount;
2037 FuncSampleStats FuncStats;
2038 getFuncSampleStats(I.second, FuncStats, BaseHotThreshold);
2039 ProfOverlap.BaseSample += FuncStats.SampleSum;
2040 BaseStats.emplace(I.second.getContext(), FuncStats);
2041 }
2042
2043 const auto &TestProf = TestReader->getProfiles();
2044 for (const auto &I : TestProf) {
2045 ++ProfOverlap.TestCount;
2046 FuncSampleStats FuncStats;
2047 getFuncSampleStats(I.second, FuncStats, TestHotThreshold);
2048 ProfOverlap.TestSample += FuncStats.SampleSum;
2049 TestStats.emplace(I.second.getContext(), FuncStats);
2050 }
2051
2052 ProfOverlap.BaseName = StringRef(BaseFilename);
2053 ProfOverlap.TestName = StringRef(TestFilename);
2054 }
2055
dumpFuncSimilarity(raw_fd_ostream & OS) const2056 void SampleOverlapAggregator::dumpFuncSimilarity(raw_fd_ostream &OS) const {
2057 using namespace sampleprof;
2058
2059 if (FuncSimilarityDump.empty())
2060 return;
2061
2062 formatted_raw_ostream FOS(OS);
2063 FOS << "Function-level details:\n";
2064 FOS << "Base weight";
2065 FOS.PadToColumn(TestWeightCol);
2066 FOS << "Test weight";
2067 FOS.PadToColumn(SimilarityCol);
2068 FOS << "Similarity";
2069 FOS.PadToColumn(OverlapCol);
2070 FOS << "Overlap";
2071 FOS.PadToColumn(BaseUniqueCol);
2072 FOS << "Base unique";
2073 FOS.PadToColumn(TestUniqueCol);
2074 FOS << "Test unique";
2075 FOS.PadToColumn(BaseSampleCol);
2076 FOS << "Base samples";
2077 FOS.PadToColumn(TestSampleCol);
2078 FOS << "Test samples";
2079 FOS.PadToColumn(FuncNameCol);
2080 FOS << "Function name\n";
2081 for (const auto &F : FuncSimilarityDump) {
2082 double OverlapPercent =
2083 F.second.UnionSample > 0
2084 ? static_cast<double>(F.second.OverlapSample) / F.second.UnionSample
2085 : 0;
2086 double BaseUniquePercent =
2087 F.second.BaseSample > 0
2088 ? static_cast<double>(F.second.BaseUniqueSample) /
2089 F.second.BaseSample
2090 : 0;
2091 double TestUniquePercent =
2092 F.second.TestSample > 0
2093 ? static_cast<double>(F.second.TestUniqueSample) /
2094 F.second.TestSample
2095 : 0;
2096
2097 FOS << format("%.2f%%", F.second.BaseWeight * 100);
2098 FOS.PadToColumn(TestWeightCol);
2099 FOS << format("%.2f%%", F.second.TestWeight * 100);
2100 FOS.PadToColumn(SimilarityCol);
2101 FOS << format("%.2f%%", F.second.Similarity * 100);
2102 FOS.PadToColumn(OverlapCol);
2103 FOS << format("%.2f%%", OverlapPercent * 100);
2104 FOS.PadToColumn(BaseUniqueCol);
2105 FOS << format("%.2f%%", BaseUniquePercent * 100);
2106 FOS.PadToColumn(TestUniqueCol);
2107 FOS << format("%.2f%%", TestUniquePercent * 100);
2108 FOS.PadToColumn(BaseSampleCol);
2109 FOS << F.second.BaseSample;
2110 FOS.PadToColumn(TestSampleCol);
2111 FOS << F.second.TestSample;
2112 FOS.PadToColumn(FuncNameCol);
2113 FOS << F.second.TestName.toString() << "\n";
2114 }
2115 }
2116
dumpProgramSummary(raw_fd_ostream & OS) const2117 void SampleOverlapAggregator::dumpProgramSummary(raw_fd_ostream &OS) const {
2118 OS << "Profile overlap infomation for base_profile: "
2119 << ProfOverlap.BaseName.toString()
2120 << " and test_profile: " << ProfOverlap.TestName.toString()
2121 << "\nProgram level:\n";
2122
2123 OS << " Whole program profile similarity: "
2124 << format("%.3f%%", ProfOverlap.Similarity * 100) << "\n";
2125
2126 assert(ProfOverlap.UnionSample > 0 &&
2127 "Total samples in two profile should be greater than 0");
2128 double OverlapPercent =
2129 static_cast<double>(ProfOverlap.OverlapSample) / ProfOverlap.UnionSample;
2130 assert(ProfOverlap.BaseSample > 0 &&
2131 "Total samples in base profile should be greater than 0");
2132 double BaseUniquePercent = static_cast<double>(ProfOverlap.BaseUniqueSample) /
2133 ProfOverlap.BaseSample;
2134 assert(ProfOverlap.TestSample > 0 &&
2135 "Total samples in test profile should be greater than 0");
2136 double TestUniquePercent = static_cast<double>(ProfOverlap.TestUniqueSample) /
2137 ProfOverlap.TestSample;
2138
2139 OS << " Whole program sample overlap: "
2140 << format("%.3f%%", OverlapPercent * 100) << "\n";
2141 OS << " percentage of samples unique in base profile: "
2142 << format("%.3f%%", BaseUniquePercent * 100) << "\n";
2143 OS << " percentage of samples unique in test profile: "
2144 << format("%.3f%%", TestUniquePercent * 100) << "\n";
2145 OS << " total samples in base profile: " << ProfOverlap.BaseSample << "\n"
2146 << " total samples in test profile: " << ProfOverlap.TestSample << "\n";
2147
2148 assert(ProfOverlap.UnionCount > 0 &&
2149 "There should be at least one function in two input profiles");
2150 double FuncOverlapPercent =
2151 static_cast<double>(ProfOverlap.OverlapCount) / ProfOverlap.UnionCount;
2152 OS << " Function overlap: " << format("%.3f%%", FuncOverlapPercent * 100)
2153 << "\n";
2154 OS << " overlap functions: " << ProfOverlap.OverlapCount << "\n";
2155 OS << " functions unique in base profile: " << ProfOverlap.BaseUniqueCount
2156 << "\n";
2157 OS << " functions unique in test profile: " << ProfOverlap.TestUniqueCount
2158 << "\n";
2159 }
2160
dumpHotFuncAndBlockOverlap(raw_fd_ostream & OS) const2161 void SampleOverlapAggregator::dumpHotFuncAndBlockOverlap(
2162 raw_fd_ostream &OS) const {
2163 assert(HotFuncOverlap.UnionCount > 0 &&
2164 "There should be at least one hot function in two input profiles");
2165 OS << " Hot-function overlap: "
2166 << format("%.3f%%", static_cast<double>(HotFuncOverlap.OverlapCount) /
2167 HotFuncOverlap.UnionCount * 100)
2168 << "\n";
2169 OS << " overlap hot functions: " << HotFuncOverlap.OverlapCount << "\n";
2170 OS << " hot functions unique in base profile: "
2171 << HotFuncOverlap.BaseCount - HotFuncOverlap.OverlapCount << "\n";
2172 OS << " hot functions unique in test profile: "
2173 << HotFuncOverlap.TestCount - HotFuncOverlap.OverlapCount << "\n";
2174
2175 assert(HotBlockOverlap.UnionCount > 0 &&
2176 "There should be at least one hot block in two input profiles");
2177 OS << " Hot-block overlap: "
2178 << format("%.3f%%", static_cast<double>(HotBlockOverlap.OverlapCount) /
2179 HotBlockOverlap.UnionCount * 100)
2180 << "\n";
2181 OS << " overlap hot blocks: " << HotBlockOverlap.OverlapCount << "\n";
2182 OS << " hot blocks unique in base profile: "
2183 << HotBlockOverlap.BaseCount - HotBlockOverlap.OverlapCount << "\n";
2184 OS << " hot blocks unique in test profile: "
2185 << HotBlockOverlap.TestCount - HotBlockOverlap.OverlapCount << "\n";
2186 }
2187
loadProfiles()2188 std::error_code SampleOverlapAggregator::loadProfiles() {
2189 using namespace sampleprof;
2190
2191 LLVMContext Context;
2192 auto BaseReaderOrErr = SampleProfileReader::create(BaseFilename, Context,
2193 FSDiscriminatorPassOption);
2194 if (std::error_code EC = BaseReaderOrErr.getError())
2195 exitWithErrorCode(EC, BaseFilename);
2196
2197 auto TestReaderOrErr = SampleProfileReader::create(TestFilename, Context,
2198 FSDiscriminatorPassOption);
2199 if (std::error_code EC = TestReaderOrErr.getError())
2200 exitWithErrorCode(EC, TestFilename);
2201
2202 BaseReader = std::move(BaseReaderOrErr.get());
2203 TestReader = std::move(TestReaderOrErr.get());
2204
2205 if (std::error_code EC = BaseReader->read())
2206 exitWithErrorCode(EC, BaseFilename);
2207 if (std::error_code EC = TestReader->read())
2208 exitWithErrorCode(EC, TestFilename);
2209 if (BaseReader->profileIsProbeBased() != TestReader->profileIsProbeBased())
2210 exitWithError(
2211 "cannot compare probe-based profile with non-probe-based profile");
2212 if (BaseReader->profileIsCS() != TestReader->profileIsCS())
2213 exitWithError("cannot compare CS profile with non-CS profile");
2214
2215 // Load BaseHotThreshold and TestHotThreshold as 99-percentile threshold in
2216 // profile summary.
2217 ProfileSummary &BasePS = BaseReader->getSummary();
2218 ProfileSummary &TestPS = TestReader->getSummary();
2219 BaseHotThreshold =
2220 ProfileSummaryBuilder::getHotCountThreshold(BasePS.getDetailedSummary());
2221 TestHotThreshold =
2222 ProfileSummaryBuilder::getHotCountThreshold(TestPS.getDetailedSummary());
2223
2224 return std::error_code();
2225 }
2226
overlapSampleProfile(const std::string & BaseFilename,const std::string & TestFilename,const OverlapFuncFilters & FuncFilter,uint64_t SimilarityCutoff,raw_fd_ostream & OS)2227 void overlapSampleProfile(const std::string &BaseFilename,
2228 const std::string &TestFilename,
2229 const OverlapFuncFilters &FuncFilter,
2230 uint64_t SimilarityCutoff, raw_fd_ostream &OS) {
2231 using namespace sampleprof;
2232
2233 // We use 0.000005 to initialize OverlapAggr.Epsilon because the final metrics
2234 // report 2--3 places after decimal point in percentage numbers.
2235 SampleOverlapAggregator OverlapAggr(
2236 BaseFilename, TestFilename,
2237 static_cast<double>(SimilarityCutoff) / 1000000, 0.000005, FuncFilter);
2238 if (std::error_code EC = OverlapAggr.loadProfiles())
2239 exitWithErrorCode(EC);
2240
2241 OverlapAggr.initializeSampleProfileOverlap();
2242 if (OverlapAggr.detectZeroSampleProfile(OS))
2243 return;
2244
2245 OverlapAggr.computeSampleProfileOverlap(OS);
2246
2247 OverlapAggr.dumpProgramSummary(OS);
2248 OverlapAggr.dumpHotFuncAndBlockOverlap(OS);
2249 OverlapAggr.dumpFuncSimilarity(OS);
2250 }
2251
overlap_main(int argc,const char * argv[])2252 static int overlap_main(int argc, const char *argv[]) {
2253 cl::opt<std::string> BaseFilename(cl::Positional, cl::Required,
2254 cl::desc("<base profile file>"));
2255 cl::opt<std::string> TestFilename(cl::Positional, cl::Required,
2256 cl::desc("<test profile file>"));
2257 cl::opt<std::string> Output("output", cl::value_desc("output"), cl::init("-"),
2258 cl::desc("Output file"));
2259 cl::alias OutputA("o", cl::desc("Alias for --output"), cl::aliasopt(Output));
2260 cl::opt<bool> IsCS(
2261 "cs", cl::init(false),
2262 cl::desc("For context sensitive PGO counts. Does not work with CSSPGO."));
2263 cl::opt<unsigned long long> ValueCutoff(
2264 "value-cutoff", cl::init(-1),
2265 cl::desc(
2266 "Function level overlap information for every function (with calling "
2267 "context for csspgo) in test "
2268 "profile with max count value greater then the parameter value"));
2269 cl::opt<std::string> FuncNameFilter(
2270 "function",
2271 cl::desc("Function level overlap information for matching functions. For "
2272 "CSSPGO this takes a a function name with calling context"));
2273 cl::opt<unsigned long long> SimilarityCutoff(
2274 "similarity-cutoff", cl::init(0),
2275 cl::desc("For sample profiles, list function names (with calling context "
2276 "for csspgo) for overlapped functions "
2277 "with similarities below the cutoff (percentage times 10000)."));
2278 cl::opt<ProfileKinds> ProfileKind(
2279 cl::desc("Profile kind:"), cl::init(instr),
2280 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2281 clEnumVal(sample, "Sample profile")));
2282 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data overlap tool\n");
2283
2284 std::error_code EC;
2285 raw_fd_ostream OS(Output.data(), EC, sys::fs::OF_TextWithCRLF);
2286 if (EC)
2287 exitWithErrorCode(EC, Output);
2288
2289 if (ProfileKind == instr)
2290 overlapInstrProfile(BaseFilename, TestFilename,
2291 OverlapFuncFilters{ValueCutoff, FuncNameFilter}, OS,
2292 IsCS);
2293 else
2294 overlapSampleProfile(BaseFilename, TestFilename,
2295 OverlapFuncFilters{ValueCutoff, FuncNameFilter},
2296 SimilarityCutoff, OS);
2297
2298 return 0;
2299 }
2300
2301 namespace {
2302 struct ValueSitesStats {
ValueSitesStats__anona85dd3c21211::ValueSitesStats2303 ValueSitesStats()
2304 : TotalNumValueSites(0), TotalNumValueSitesWithValueProfile(0),
2305 TotalNumValues(0) {}
2306 uint64_t TotalNumValueSites;
2307 uint64_t TotalNumValueSitesWithValueProfile;
2308 uint64_t TotalNumValues;
2309 std::vector<unsigned> ValueSitesHistogram;
2310 };
2311 } // namespace
2312
traverseAllValueSites(const InstrProfRecord & Func,uint32_t VK,ValueSitesStats & Stats,raw_fd_ostream & OS,InstrProfSymtab * Symtab)2313 static void traverseAllValueSites(const InstrProfRecord &Func, uint32_t VK,
2314 ValueSitesStats &Stats, raw_fd_ostream &OS,
2315 InstrProfSymtab *Symtab) {
2316 uint32_t NS = Func.getNumValueSites(VK);
2317 Stats.TotalNumValueSites += NS;
2318 for (size_t I = 0; I < NS; ++I) {
2319 uint32_t NV = Func.getNumValueDataForSite(VK, I);
2320 std::unique_ptr<InstrProfValueData[]> VD = Func.getValueForSite(VK, I);
2321 Stats.TotalNumValues += NV;
2322 if (NV) {
2323 Stats.TotalNumValueSitesWithValueProfile++;
2324 if (NV > Stats.ValueSitesHistogram.size())
2325 Stats.ValueSitesHistogram.resize(NV, 0);
2326 Stats.ValueSitesHistogram[NV - 1]++;
2327 }
2328
2329 uint64_t SiteSum = 0;
2330 for (uint32_t V = 0; V < NV; V++)
2331 SiteSum += VD[V].Count;
2332 if (SiteSum == 0)
2333 SiteSum = 1;
2334
2335 for (uint32_t V = 0; V < NV; V++) {
2336 OS << "\t[ " << format("%2u", I) << ", ";
2337 if (Symtab == nullptr)
2338 OS << format("%4" PRIu64, VD[V].Value);
2339 else
2340 OS << Symtab->getFuncName(VD[V].Value);
2341 OS << ", " << format("%10" PRId64, VD[V].Count) << " ] ("
2342 << format("%.2f%%", (VD[V].Count * 100.0 / SiteSum)) << ")\n";
2343 }
2344 }
2345 }
2346
showValueSitesStats(raw_fd_ostream & OS,uint32_t VK,ValueSitesStats & Stats)2347 static void showValueSitesStats(raw_fd_ostream &OS, uint32_t VK,
2348 ValueSitesStats &Stats) {
2349 OS << " Total number of sites: " << Stats.TotalNumValueSites << "\n";
2350 OS << " Total number of sites with values: "
2351 << Stats.TotalNumValueSitesWithValueProfile << "\n";
2352 OS << " Total number of profiled values: " << Stats.TotalNumValues << "\n";
2353
2354 OS << " Value sites histogram:\n\tNumTargets, SiteCount\n";
2355 for (unsigned I = 0; I < Stats.ValueSitesHistogram.size(); I++) {
2356 if (Stats.ValueSitesHistogram[I] > 0)
2357 OS << "\t" << I + 1 << ", " << Stats.ValueSitesHistogram[I] << "\n";
2358 }
2359 }
2360
showInstrProfile(const std::string & Filename,bool ShowCounts,uint32_t TopN,bool ShowIndirectCallTargets,bool ShowMemOPSizes,bool ShowDetailedSummary,std::vector<uint32_t> DetailedSummaryCutoffs,bool ShowAllFunctions,bool ShowCS,uint64_t ValueCutoff,bool OnlyListBelow,const std::string & ShowFunction,bool TextFormat,bool ShowBinaryIds,bool ShowCovered,bool ShowProfileVersion,ShowFormat SFormat,raw_fd_ostream & OS)2361 static int showInstrProfile(const std::string &Filename, bool ShowCounts,
2362 uint32_t TopN, bool ShowIndirectCallTargets,
2363 bool ShowMemOPSizes, bool ShowDetailedSummary,
2364 std::vector<uint32_t> DetailedSummaryCutoffs,
2365 bool ShowAllFunctions, bool ShowCS,
2366 uint64_t ValueCutoff, bool OnlyListBelow,
2367 const std::string &ShowFunction, bool TextFormat,
2368 bool ShowBinaryIds, bool ShowCovered,
2369 bool ShowProfileVersion, ShowFormat SFormat,
2370 raw_fd_ostream &OS) {
2371 if (SFormat == ShowFormat::Json)
2372 exitWithError("JSON output is not supported for instr profiles");
2373 if (SFormat == ShowFormat::Yaml)
2374 exitWithError("YAML output is not supported for instr profiles");
2375 auto ReaderOrErr = InstrProfReader::create(Filename);
2376 std::vector<uint32_t> Cutoffs = std::move(DetailedSummaryCutoffs);
2377 if (ShowDetailedSummary && Cutoffs.empty()) {
2378 Cutoffs = ProfileSummaryBuilder::DefaultCutoffs;
2379 }
2380 InstrProfSummaryBuilder Builder(std::move(Cutoffs));
2381 if (Error E = ReaderOrErr.takeError())
2382 exitWithError(std::move(E), Filename);
2383
2384 auto Reader = std::move(ReaderOrErr.get());
2385 bool IsIRInstr = Reader->isIRLevelProfile();
2386 size_t ShownFunctions = 0;
2387 size_t BelowCutoffFunctions = 0;
2388 int NumVPKind = IPVK_Last - IPVK_First + 1;
2389 std::vector<ValueSitesStats> VPStats(NumVPKind);
2390
2391 auto MinCmp = [](const std::pair<std::string, uint64_t> &v1,
2392 const std::pair<std::string, uint64_t> &v2) {
2393 return v1.second > v2.second;
2394 };
2395
2396 std::priority_queue<std::pair<std::string, uint64_t>,
2397 std::vector<std::pair<std::string, uint64_t>>,
2398 decltype(MinCmp)>
2399 HottestFuncs(MinCmp);
2400
2401 if (!TextFormat && OnlyListBelow) {
2402 OS << "The list of functions with the maximum counter less than "
2403 << ValueCutoff << ":\n";
2404 }
2405
2406 // Add marker so that IR-level instrumentation round-trips properly.
2407 if (TextFormat && IsIRInstr)
2408 OS << ":ir\n";
2409
2410 for (const auto &Func : *Reader) {
2411 if (Reader->isIRLevelProfile()) {
2412 bool FuncIsCS = NamedInstrProfRecord::hasCSFlagInHash(Func.Hash);
2413 if (FuncIsCS != ShowCS)
2414 continue;
2415 }
2416 bool Show = ShowAllFunctions ||
2417 (!ShowFunction.empty() && Func.Name.contains(ShowFunction));
2418
2419 bool doTextFormatDump = (Show && TextFormat);
2420
2421 if (doTextFormatDump) {
2422 InstrProfSymtab &Symtab = Reader->getSymtab();
2423 InstrProfWriter::writeRecordInText(Func.Name, Func.Hash, Func, Symtab,
2424 OS);
2425 continue;
2426 }
2427
2428 assert(Func.Counts.size() > 0 && "function missing entry counter");
2429 Builder.addRecord(Func);
2430
2431 if (ShowCovered) {
2432 if (llvm::any_of(Func.Counts, [](uint64_t C) { return C; }))
2433 OS << Func.Name << "\n";
2434 continue;
2435 }
2436
2437 uint64_t FuncMax = 0;
2438 uint64_t FuncSum = 0;
2439
2440 auto PseudoKind = Func.getCountPseudoKind();
2441 if (PseudoKind != InstrProfRecord::NotPseudo) {
2442 if (Show) {
2443 if (!ShownFunctions)
2444 OS << "Counters:\n";
2445 ++ShownFunctions;
2446 OS << " " << Func.Name << ":\n"
2447 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2448 << " Counters: " << Func.Counts.size();
2449 if (PseudoKind == InstrProfRecord::PseudoHot)
2450 OS << " <PseudoHot>\n";
2451 else if (PseudoKind == InstrProfRecord::PseudoWarm)
2452 OS << " <PseudoWarm>\n";
2453 else
2454 llvm_unreachable("Unknown PseudoKind");
2455 }
2456 continue;
2457 }
2458
2459 for (size_t I = 0, E = Func.Counts.size(); I < E; ++I) {
2460 FuncMax = std::max(FuncMax, Func.Counts[I]);
2461 FuncSum += Func.Counts[I];
2462 }
2463
2464 if (FuncMax < ValueCutoff) {
2465 ++BelowCutoffFunctions;
2466 if (OnlyListBelow) {
2467 OS << " " << Func.Name << ": (Max = " << FuncMax
2468 << " Sum = " << FuncSum << ")\n";
2469 }
2470 continue;
2471 } else if (OnlyListBelow)
2472 continue;
2473
2474 if (TopN) {
2475 if (HottestFuncs.size() == TopN) {
2476 if (HottestFuncs.top().second < FuncMax) {
2477 HottestFuncs.pop();
2478 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2479 }
2480 } else
2481 HottestFuncs.emplace(std::make_pair(std::string(Func.Name), FuncMax));
2482 }
2483
2484 if (Show) {
2485 if (!ShownFunctions)
2486 OS << "Counters:\n";
2487
2488 ++ShownFunctions;
2489
2490 OS << " " << Func.Name << ":\n"
2491 << " Hash: " << format("0x%016" PRIx64, Func.Hash) << "\n"
2492 << " Counters: " << Func.Counts.size() << "\n";
2493 if (!IsIRInstr)
2494 OS << " Function count: " << Func.Counts[0] << "\n";
2495
2496 if (ShowIndirectCallTargets)
2497 OS << " Indirect Call Site Count: "
2498 << Func.getNumValueSites(IPVK_IndirectCallTarget) << "\n";
2499
2500 uint32_t NumMemOPCalls = Func.getNumValueSites(IPVK_MemOPSize);
2501 if (ShowMemOPSizes && NumMemOPCalls > 0)
2502 OS << " Number of Memory Intrinsics Calls: " << NumMemOPCalls
2503 << "\n";
2504
2505 if (ShowCounts) {
2506 OS << " Block counts: [";
2507 size_t Start = (IsIRInstr ? 0 : 1);
2508 for (size_t I = Start, E = Func.Counts.size(); I < E; ++I) {
2509 OS << (I == Start ? "" : ", ") << Func.Counts[I];
2510 }
2511 OS << "]\n";
2512 }
2513
2514 if (ShowIndirectCallTargets) {
2515 OS << " Indirect Target Results:\n";
2516 traverseAllValueSites(Func, IPVK_IndirectCallTarget,
2517 VPStats[IPVK_IndirectCallTarget], OS,
2518 &(Reader->getSymtab()));
2519 }
2520
2521 if (ShowMemOPSizes && NumMemOPCalls > 0) {
2522 OS << " Memory Intrinsic Size Results:\n";
2523 traverseAllValueSites(Func, IPVK_MemOPSize, VPStats[IPVK_MemOPSize], OS,
2524 nullptr);
2525 }
2526 }
2527 }
2528 if (Reader->hasError())
2529 exitWithError(Reader->getError(), Filename);
2530
2531 if (TextFormat || ShowCovered)
2532 return 0;
2533 std::unique_ptr<ProfileSummary> PS(Builder.getSummary());
2534 bool IsIR = Reader->isIRLevelProfile();
2535 OS << "Instrumentation level: " << (IsIR ? "IR" : "Front-end");
2536 if (IsIR)
2537 OS << " entry_first = " << Reader->instrEntryBBEnabled();
2538 OS << "\n";
2539 if (ShowAllFunctions || !ShowFunction.empty())
2540 OS << "Functions shown: " << ShownFunctions << "\n";
2541 OS << "Total functions: " << PS->getNumFunctions() << "\n";
2542 if (ValueCutoff > 0) {
2543 OS << "Number of functions with maximum count (< " << ValueCutoff
2544 << "): " << BelowCutoffFunctions << "\n";
2545 OS << "Number of functions with maximum count (>= " << ValueCutoff
2546 << "): " << PS->getNumFunctions() - BelowCutoffFunctions << "\n";
2547 }
2548 OS << "Maximum function count: " << PS->getMaxFunctionCount() << "\n";
2549 OS << "Maximum internal block count: " << PS->getMaxInternalCount() << "\n";
2550
2551 if (TopN) {
2552 std::vector<std::pair<std::string, uint64_t>> SortedHottestFuncs;
2553 while (!HottestFuncs.empty()) {
2554 SortedHottestFuncs.emplace_back(HottestFuncs.top());
2555 HottestFuncs.pop();
2556 }
2557 OS << "Top " << TopN
2558 << " functions with the largest internal block counts: \n";
2559 for (auto &hotfunc : llvm::reverse(SortedHottestFuncs))
2560 OS << " " << hotfunc.first << ", max count = " << hotfunc.second << "\n";
2561 }
2562
2563 if (ShownFunctions && ShowIndirectCallTargets) {
2564 OS << "Statistics for indirect call sites profile:\n";
2565 showValueSitesStats(OS, IPVK_IndirectCallTarget,
2566 VPStats[IPVK_IndirectCallTarget]);
2567 }
2568
2569 if (ShownFunctions && ShowMemOPSizes) {
2570 OS << "Statistics for memory intrinsic calls sizes profile:\n";
2571 showValueSitesStats(OS, IPVK_MemOPSize, VPStats[IPVK_MemOPSize]);
2572 }
2573
2574 if (ShowDetailedSummary) {
2575 OS << "Total number of blocks: " << PS->getNumCounts() << "\n";
2576 OS << "Total count: " << PS->getTotalCount() << "\n";
2577 PS->printDetailedSummary(OS);
2578 }
2579
2580 if (ShowBinaryIds)
2581 if (Error E = Reader->printBinaryIds(OS))
2582 exitWithError(std::move(E), Filename);
2583
2584 if (ShowProfileVersion)
2585 OS << "Profile version: " << Reader->getVersion() << "\n";
2586 return 0;
2587 }
2588
showSectionInfo(sampleprof::SampleProfileReader * Reader,raw_fd_ostream & OS)2589 static void showSectionInfo(sampleprof::SampleProfileReader *Reader,
2590 raw_fd_ostream &OS) {
2591 if (!Reader->dumpSectionInfo(OS)) {
2592 WithColor::warning() << "-show-sec-info-only is only supported for "
2593 << "sample profile in extbinary format and is "
2594 << "ignored for other formats.\n";
2595 return;
2596 }
2597 }
2598
2599 namespace {
2600 struct HotFuncInfo {
2601 std::string FuncName;
2602 uint64_t TotalCount;
2603 double TotalCountPercent;
2604 uint64_t MaxCount;
2605 uint64_t EntryCount;
2606
HotFuncInfo__anona85dd3c21511::HotFuncInfo2607 HotFuncInfo()
2608 : TotalCount(0), TotalCountPercent(0.0f), MaxCount(0), EntryCount(0) {}
2609
HotFuncInfo__anona85dd3c21511::HotFuncInfo2610 HotFuncInfo(StringRef FN, uint64_t TS, double TSP, uint64_t MS, uint64_t ES)
2611 : FuncName(FN.begin(), FN.end()), TotalCount(TS), TotalCountPercent(TSP),
2612 MaxCount(MS), EntryCount(ES) {}
2613 };
2614 } // namespace
2615
2616 // Print out detailed information about hot functions in PrintValues vector.
2617 // Users specify titles and offset of every columns through ColumnTitle and
2618 // ColumnOffset. The size of ColumnTitle and ColumnOffset need to be the same
2619 // and at least 4. Besides, users can optionally give a HotFuncMetric string to
2620 // print out or let it be an empty string.
dumpHotFunctionList(const std::vector<std::string> & ColumnTitle,const std::vector<int> & ColumnOffset,const std::vector<HotFuncInfo> & PrintValues,uint64_t HotFuncCount,uint64_t TotalFuncCount,uint64_t HotProfCount,uint64_t TotalProfCount,const std::string & HotFuncMetric,uint32_t TopNFunctions,raw_fd_ostream & OS)2621 static void dumpHotFunctionList(const std::vector<std::string> &ColumnTitle,
2622 const std::vector<int> &ColumnOffset,
2623 const std::vector<HotFuncInfo> &PrintValues,
2624 uint64_t HotFuncCount, uint64_t TotalFuncCount,
2625 uint64_t HotProfCount, uint64_t TotalProfCount,
2626 const std::string &HotFuncMetric,
2627 uint32_t TopNFunctions, raw_fd_ostream &OS) {
2628 assert(ColumnOffset.size() == ColumnTitle.size() &&
2629 "ColumnOffset and ColumnTitle should have the same size");
2630 assert(ColumnTitle.size() >= 4 &&
2631 "ColumnTitle should have at least 4 elements");
2632 assert(TotalFuncCount > 0 &&
2633 "There should be at least one function in the profile");
2634 double TotalProfPercent = 0;
2635 if (TotalProfCount > 0)
2636 TotalProfPercent = static_cast<double>(HotProfCount) / TotalProfCount * 100;
2637
2638 formatted_raw_ostream FOS(OS);
2639 FOS << HotFuncCount << " out of " << TotalFuncCount
2640 << " functions with profile ("
2641 << format("%.2f%%",
2642 (static_cast<double>(HotFuncCount) / TotalFuncCount * 100))
2643 << ") are considered hot functions";
2644 if (!HotFuncMetric.empty())
2645 FOS << " (" << HotFuncMetric << ")";
2646 FOS << ".\n";
2647 FOS << HotProfCount << " out of " << TotalProfCount << " profile counts ("
2648 << format("%.2f%%", TotalProfPercent) << ") are from hot functions.\n";
2649
2650 for (size_t I = 0; I < ColumnTitle.size(); ++I) {
2651 FOS.PadToColumn(ColumnOffset[I]);
2652 FOS << ColumnTitle[I];
2653 }
2654 FOS << "\n";
2655
2656 uint32_t Count = 0;
2657 for (const auto &R : PrintValues) {
2658 if (TopNFunctions && (Count++ == TopNFunctions))
2659 break;
2660 FOS.PadToColumn(ColumnOffset[0]);
2661 FOS << R.TotalCount << " (" << format("%.2f%%", R.TotalCountPercent) << ")";
2662 FOS.PadToColumn(ColumnOffset[1]);
2663 FOS << R.MaxCount;
2664 FOS.PadToColumn(ColumnOffset[2]);
2665 FOS << R.EntryCount;
2666 FOS.PadToColumn(ColumnOffset[3]);
2667 FOS << R.FuncName << "\n";
2668 }
2669 }
2670
showHotFunctionList(const sampleprof::SampleProfileMap & Profiles,ProfileSummary & PS,uint32_t TopN,raw_fd_ostream & OS)2671 static int showHotFunctionList(const sampleprof::SampleProfileMap &Profiles,
2672 ProfileSummary &PS, uint32_t TopN,
2673 raw_fd_ostream &OS) {
2674 using namespace sampleprof;
2675
2676 const uint32_t HotFuncCutoff = 990000;
2677 auto &SummaryVector = PS.getDetailedSummary();
2678 uint64_t MinCountThreshold = 0;
2679 for (const ProfileSummaryEntry &SummaryEntry : SummaryVector) {
2680 if (SummaryEntry.Cutoff == HotFuncCutoff) {
2681 MinCountThreshold = SummaryEntry.MinCount;
2682 break;
2683 }
2684 }
2685
2686 // Traverse all functions in the profile and keep only hot functions.
2687 // The following loop also calculates the sum of total samples of all
2688 // functions.
2689 std::multimap<uint64_t, std::pair<const FunctionSamples *, const uint64_t>,
2690 std::greater<uint64_t>>
2691 HotFunc;
2692 uint64_t ProfileTotalSample = 0;
2693 uint64_t HotFuncSample = 0;
2694 uint64_t HotFuncCount = 0;
2695
2696 for (const auto &I : Profiles) {
2697 FuncSampleStats FuncStats;
2698 const FunctionSamples &FuncProf = I.second;
2699 ProfileTotalSample += FuncProf.getTotalSamples();
2700 getFuncSampleStats(FuncProf, FuncStats, MinCountThreshold);
2701
2702 if (isFunctionHot(FuncStats, MinCountThreshold)) {
2703 HotFunc.emplace(FuncProf.getTotalSamples(),
2704 std::make_pair(&(I.second), FuncStats.MaxSample));
2705 HotFuncSample += FuncProf.getTotalSamples();
2706 ++HotFuncCount;
2707 }
2708 }
2709
2710 std::vector<std::string> ColumnTitle{"Total sample (%)", "Max sample",
2711 "Entry sample", "Function name"};
2712 std::vector<int> ColumnOffset{0, 24, 42, 58};
2713 std::string Metric =
2714 std::string("max sample >= ") + std::to_string(MinCountThreshold);
2715 std::vector<HotFuncInfo> PrintValues;
2716 for (const auto &FuncPair : HotFunc) {
2717 const FunctionSamples &Func = *FuncPair.second.first;
2718 double TotalSamplePercent =
2719 (ProfileTotalSample > 0)
2720 ? (Func.getTotalSamples() * 100.0) / ProfileTotalSample
2721 : 0;
2722 PrintValues.emplace_back(
2723 HotFuncInfo(Func.getContext().toString(), Func.getTotalSamples(),
2724 TotalSamplePercent, FuncPair.second.second,
2725 Func.getHeadSamplesEstimate()));
2726 }
2727 dumpHotFunctionList(ColumnTitle, ColumnOffset, PrintValues, HotFuncCount,
2728 Profiles.size(), HotFuncSample, ProfileTotalSample,
2729 Metric, TopN, OS);
2730
2731 return 0;
2732 }
2733
showSampleProfile(const std::string & Filename,bool ShowCounts,uint32_t TopN,bool ShowAllFunctions,bool ShowDetailedSummary,const std::string & ShowFunction,bool ShowProfileSymbolList,bool ShowSectionInfoOnly,bool ShowHotFuncList,ShowFormat SFormat,raw_fd_ostream & OS)2734 static int showSampleProfile(const std::string &Filename, bool ShowCounts,
2735 uint32_t TopN, bool ShowAllFunctions,
2736 bool ShowDetailedSummary,
2737 const std::string &ShowFunction,
2738 bool ShowProfileSymbolList,
2739 bool ShowSectionInfoOnly, bool ShowHotFuncList,
2740 ShowFormat SFormat, raw_fd_ostream &OS) {
2741 if (SFormat == ShowFormat::Yaml)
2742 exitWithError("YAML output is not supported for sample profiles");
2743 using namespace sampleprof;
2744 LLVMContext Context;
2745 auto ReaderOrErr =
2746 SampleProfileReader::create(Filename, Context, FSDiscriminatorPassOption);
2747 if (std::error_code EC = ReaderOrErr.getError())
2748 exitWithErrorCode(EC, Filename);
2749
2750 auto Reader = std::move(ReaderOrErr.get());
2751 if (ShowSectionInfoOnly) {
2752 showSectionInfo(Reader.get(), OS);
2753 return 0;
2754 }
2755
2756 if (std::error_code EC = Reader->read())
2757 exitWithErrorCode(EC, Filename);
2758
2759 if (ShowAllFunctions || ShowFunction.empty()) {
2760 if (SFormat == ShowFormat::Json)
2761 Reader->dumpJson(OS);
2762 else
2763 Reader->dump(OS);
2764 } else {
2765 if (SFormat == ShowFormat::Json)
2766 exitWithError(
2767 "the JSON format is supported only when all functions are to "
2768 "be printed");
2769
2770 // TODO: parse context string to support filtering by contexts.
2771 Reader->dumpFunctionProfile(StringRef(ShowFunction), OS);
2772 }
2773
2774 if (ShowProfileSymbolList) {
2775 std::unique_ptr<sampleprof::ProfileSymbolList> ReaderList =
2776 Reader->getProfileSymbolList();
2777 ReaderList->dump(OS);
2778 }
2779
2780 if (ShowDetailedSummary) {
2781 auto &PS = Reader->getSummary();
2782 PS.printSummary(OS);
2783 PS.printDetailedSummary(OS);
2784 }
2785
2786 if (ShowHotFuncList || TopN)
2787 showHotFunctionList(Reader->getProfiles(), Reader->getSummary(), TopN, OS);
2788
2789 return 0;
2790 }
2791
showMemProfProfile(const std::string & Filename,const std::string & ProfiledBinary,ShowFormat SFormat,raw_fd_ostream & OS)2792 static int showMemProfProfile(const std::string &Filename,
2793 const std::string &ProfiledBinary,
2794 ShowFormat SFormat, raw_fd_ostream &OS) {
2795 if (SFormat == ShowFormat::Json)
2796 exitWithError("JSON output is not supported for MemProf");
2797 auto ReaderOr = llvm::memprof::RawMemProfReader::create(
2798 Filename, ProfiledBinary, /*KeepNames=*/true);
2799 if (Error E = ReaderOr.takeError())
2800 // Since the error can be related to the profile or the binary we do not
2801 // pass whence. Instead additional context is provided where necessary in
2802 // the error message.
2803 exitWithError(std::move(E), /*Whence*/ "");
2804
2805 std::unique_ptr<llvm::memprof::RawMemProfReader> Reader(
2806 ReaderOr.get().release());
2807
2808 Reader->printYAML(OS);
2809 return 0;
2810 }
2811
showDebugInfoCorrelation(const std::string & Filename,bool ShowDetailedSummary,bool ShowProfileSymbolList,ShowFormat SFormat,raw_fd_ostream & OS)2812 static int showDebugInfoCorrelation(const std::string &Filename,
2813 bool ShowDetailedSummary,
2814 bool ShowProfileSymbolList,
2815 ShowFormat SFormat, raw_fd_ostream &OS) {
2816 if (SFormat == ShowFormat::Json)
2817 exitWithError("JSON output is not supported for debug info correlation");
2818 std::unique_ptr<InstrProfCorrelator> Correlator;
2819 if (auto Err = InstrProfCorrelator::get(Filename).moveInto(Correlator))
2820 exitWithError(std::move(Err), Filename);
2821 if (SFormat == ShowFormat::Yaml) {
2822 if (auto Err = Correlator->dumpYaml(OS))
2823 exitWithError(std::move(Err), Filename);
2824 return 0;
2825 }
2826
2827 if (auto Err = Correlator->correlateProfileData())
2828 exitWithError(std::move(Err), Filename);
2829
2830 InstrProfSymtab Symtab;
2831 if (auto Err = Symtab.create(
2832 StringRef(Correlator->getNamesPointer(), Correlator->getNamesSize())))
2833 exitWithError(std::move(Err), Filename);
2834
2835 if (ShowProfileSymbolList)
2836 Symtab.dumpNames(OS);
2837 // TODO: Read "Profile Data Type" from debug info to compute and show how many
2838 // counters the section holds.
2839 if (ShowDetailedSummary)
2840 OS << "Counters section size: 0x"
2841 << Twine::utohexstr(Correlator->getCountersSectionSize()) << " bytes\n";
2842 OS << "Found " << Correlator->getDataSize() << " functions\n";
2843
2844 return 0;
2845 }
2846
show_main(int argc,const char * argv[])2847 static int show_main(int argc, const char *argv[]) {
2848 cl::opt<std::string> Filename(cl::Positional, cl::desc("<profdata-file>"));
2849
2850 cl::opt<bool> ShowCounts("counts", cl::init(false),
2851 cl::desc("Show counter values for shown functions"));
2852 cl::opt<ShowFormat> SFormat(
2853 "show-format", cl::init(ShowFormat::Text),
2854 cl::desc("Emit output in the selected format if supported"),
2855 cl::values(clEnumValN(ShowFormat::Text, "text",
2856 "emit normal text output (default)"),
2857 clEnumValN(ShowFormat::Json, "json", "emit JSON"),
2858 clEnumValN(ShowFormat::Yaml, "yaml", "emit YAML")));
2859 // TODO: Consider replacing this with `--show-format=text-encoding`.
2860 cl::opt<bool> TextFormat(
2861 "text", cl::init(false),
2862 cl::desc("Show instr profile data in text dump format"));
2863 cl::opt<bool> JsonFormat(
2864 "json", cl::desc("Show sample profile data in the JSON format "
2865 "(deprecated, please use --show-format=json)"));
2866 cl::opt<bool> ShowIndirectCallTargets(
2867 "ic-targets", cl::init(false),
2868 cl::desc("Show indirect call site target values for shown functions"));
2869 cl::opt<bool> ShowMemOPSizes(
2870 "memop-sizes", cl::init(false),
2871 cl::desc("Show the profiled sizes of the memory intrinsic calls "
2872 "for shown functions"));
2873 cl::opt<bool> ShowDetailedSummary("detailed-summary", cl::init(false),
2874 cl::desc("Show detailed profile summary"));
2875 cl::list<uint32_t> DetailedSummaryCutoffs(
2876 cl::CommaSeparated, "detailed-summary-cutoffs",
2877 cl::desc(
2878 "Cutoff percentages (times 10000) for generating detailed summary"),
2879 cl::value_desc("800000,901000,999999"));
2880 cl::opt<bool> ShowHotFuncList(
2881 "hot-func-list", cl::init(false),
2882 cl::desc("Show profile summary of a list of hot functions"));
2883 cl::opt<bool> ShowAllFunctions("all-functions", cl::init(false),
2884 cl::desc("Details for every function"));
2885 cl::opt<bool> ShowCS("showcs", cl::init(false),
2886 cl::desc("Show context sensitive counts"));
2887 cl::opt<std::string> ShowFunction("function",
2888 cl::desc("Details for matching functions"));
2889
2890 cl::opt<std::string> OutputFilename("output", cl::value_desc("output"),
2891 cl::init("-"), cl::desc("Output file"));
2892 cl::alias OutputFilenameA("o", cl::desc("Alias for --output"),
2893 cl::aliasopt(OutputFilename));
2894 cl::opt<ProfileKinds> ProfileKind(
2895 cl::desc("Profile kind:"), cl::init(instr),
2896 cl::values(clEnumVal(instr, "Instrumentation profile (default)"),
2897 clEnumVal(sample, "Sample profile"),
2898 clEnumVal(memory, "MemProf memory access profile")));
2899 cl::opt<uint32_t> TopNFunctions(
2900 "topn", cl::init(0),
2901 cl::desc("Show the list of functions with the largest internal counts"));
2902 cl::opt<uint32_t> ValueCutoff(
2903 "value-cutoff", cl::init(0),
2904 cl::desc("Set the count value cutoff. Functions with the maximum count "
2905 "less than this value will not be printed out. (Default is 0)"));
2906 cl::opt<bool> OnlyListBelow(
2907 "list-below-cutoff", cl::init(false),
2908 cl::desc("Only output names of functions whose max count values are "
2909 "below the cutoff value"));
2910 cl::opt<bool> ShowProfileSymbolList(
2911 "show-prof-sym-list", cl::init(false),
2912 cl::desc("Show profile symbol list if it exists in the profile. "));
2913 cl::opt<bool> ShowSectionInfoOnly(
2914 "show-sec-info-only", cl::init(false),
2915 cl::desc("Show the information of each section in the sample profile. "
2916 "The flag is only usable when the sample profile is in "
2917 "extbinary format"));
2918 cl::opt<bool> ShowBinaryIds("binary-ids", cl::init(false),
2919 cl::desc("Show binary ids in the profile. "));
2920 cl::opt<std::string> DebugInfoFilename(
2921 "debug-info", cl::init(""),
2922 cl::desc("Read and extract profile metadata from debug info and show "
2923 "the functions it found."));
2924 cl::opt<bool> ShowCovered(
2925 "covered", cl::init(false),
2926 cl::desc("Show only the functions that have been executed."));
2927 cl::opt<std::string> ProfiledBinary(
2928 "profiled-binary", cl::init(""),
2929 cl::desc("Path to binary from which the profile was collected."));
2930 cl::opt<bool> ShowProfileVersion("profile-version", cl::init(false),
2931 cl::desc("Show profile version. "));
2932 cl::ParseCommandLineOptions(argc, argv, "LLVM profile data summary\n");
2933
2934 if (Filename.empty() && DebugInfoFilename.empty())
2935 exitWithError(
2936 "the positional argument '<profdata-file>' is required unless '--" +
2937 DebugInfoFilename.ArgStr + "' is provided");
2938
2939 if (Filename == OutputFilename) {
2940 errs() << sys::path::filename(argv[0])
2941 << ": Input file name cannot be the same as the output file name!\n";
2942 return 1;
2943 }
2944 if (JsonFormat)
2945 SFormat = ShowFormat::Json;
2946
2947 std::error_code EC;
2948 raw_fd_ostream OS(OutputFilename.data(), EC, sys::fs::OF_TextWithCRLF);
2949 if (EC)
2950 exitWithErrorCode(EC, OutputFilename);
2951
2952 if (ShowAllFunctions && !ShowFunction.empty())
2953 WithColor::warning() << "-function argument ignored: showing all functions\n";
2954
2955 if (!DebugInfoFilename.empty())
2956 return showDebugInfoCorrelation(DebugInfoFilename, ShowDetailedSummary,
2957 ShowProfileSymbolList, SFormat, OS);
2958
2959 if (ProfileKind == instr)
2960 return showInstrProfile(
2961 Filename, ShowCounts, TopNFunctions, ShowIndirectCallTargets,
2962 ShowMemOPSizes, ShowDetailedSummary, DetailedSummaryCutoffs,
2963 ShowAllFunctions, ShowCS, ValueCutoff, OnlyListBelow, ShowFunction,
2964 TextFormat, ShowBinaryIds, ShowCovered, ShowProfileVersion, SFormat,
2965 OS);
2966 if (ProfileKind == sample)
2967 return showSampleProfile(Filename, ShowCounts, TopNFunctions,
2968 ShowAllFunctions, ShowDetailedSummary,
2969 ShowFunction, ShowProfileSymbolList,
2970 ShowSectionInfoOnly, ShowHotFuncList, SFormat, OS);
2971 return showMemProfProfile(Filename, ProfiledBinary, SFormat, OS);
2972 }
2973
llvm_profdata_main(int argc,char ** argvNonConst)2974 int llvm_profdata_main(int argc, char **argvNonConst) {
2975 const char **argv = const_cast<const char **>(argvNonConst);
2976 InitLLVM X(argc, argv);
2977
2978 StringRef ProgName(sys::path::filename(argv[0]));
2979 if (argc > 1) {
2980 int (*func)(int, const char *[]) = nullptr;
2981
2982 if (strcmp(argv[1], "merge") == 0)
2983 func = merge_main;
2984 else if (strcmp(argv[1], "show") == 0)
2985 func = show_main;
2986 else if (strcmp(argv[1], "overlap") == 0)
2987 func = overlap_main;
2988
2989 if (func) {
2990 std::string Invocation(ProgName.str() + " " + argv[1]);
2991 argv[1] = Invocation.c_str();
2992 return func(argc - 1, argv + 1);
2993 }
2994
2995 if (strcmp(argv[1], "-h") == 0 || strcmp(argv[1], "-help") == 0 ||
2996 strcmp(argv[1], "--help") == 0) {
2997
2998 errs() << "OVERVIEW: LLVM profile data tools\n\n"
2999 << "USAGE: " << ProgName << " <command> [args...]\n"
3000 << "USAGE: " << ProgName << " <command> -help\n\n"
3001 << "See each individual command --help for more details.\n"
3002 << "Available commands: merge, show, overlap\n";
3003 return 0;
3004 }
3005 }
3006
3007 if (argc < 2)
3008 errs() << ProgName << ": No command specified!\n";
3009 else
3010 errs() << ProgName << ": Unknown command!\n";
3011
3012 errs() << "USAGE: " << ProgName << " <merge|show|overlap> [args...]\n";
3013 return 1;
3014 }
3015