xref: /llvm-project/llvm/lib/IR/Type.cpp (revision 416f1c465db62d829283f6902ef35e027e127aa7)
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Value.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/TypeSize.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/TargetParser/RISCVTargetParser.h"
30 #include <cassert>
31 #include <utility>
32 
33 using namespace llvm;
34 
35 //===----------------------------------------------------------------------===//
36 //                         Type Class Implementation
37 //===----------------------------------------------------------------------===//
38 
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40   switch (IDNumber) {
41   case VoidTyID      : return getVoidTy(C);
42   case HalfTyID      : return getHalfTy(C);
43   case BFloatTyID    : return getBFloatTy(C);
44   case FloatTyID     : return getFloatTy(C);
45   case DoubleTyID    : return getDoubleTy(C);
46   case X86_FP80TyID  : return getX86_FP80Ty(C);
47   case FP128TyID     : return getFP128Ty(C);
48   case PPC_FP128TyID : return getPPC_FP128Ty(C);
49   case LabelTyID     : return getLabelTy(C);
50   case MetadataTyID  : return getMetadataTy(C);
51   case X86_AMXTyID   : return getX86_AMXTy(C);
52   case TokenTyID     : return getTokenTy(C);
53   default:
54     return nullptr;
55   }
56 }
57 
58 bool Type::isIntegerTy(unsigned Bitwidth) const {
59   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 }
61 
62 bool Type::isScalableTy(SmallPtrSetImpl<const Type *> &Visited) const {
63   if (const auto *ATy = dyn_cast<ArrayType>(this))
64     return ATy->getElementType()->isScalableTy(Visited);
65   if (const auto *STy = dyn_cast<StructType>(this))
66     return STy->isScalableTy(Visited);
67   return getTypeID() == ScalableVectorTyID || isScalableTargetExtTy();
68 }
69 
70 bool Type::isScalableTy() const {
71   SmallPtrSet<const Type *, 4> Visited;
72   return isScalableTy(Visited);
73 }
74 
75 bool Type::containsNonGlobalTargetExtType(
76     SmallPtrSetImpl<const Type *> &Visited) const {
77   if (const auto *ATy = dyn_cast<ArrayType>(this))
78     return ATy->getElementType()->containsNonGlobalTargetExtType(Visited);
79   if (const auto *STy = dyn_cast<StructType>(this))
80     return STy->containsNonGlobalTargetExtType(Visited);
81   if (auto *TT = dyn_cast<TargetExtType>(this))
82     return !TT->hasProperty(TargetExtType::CanBeGlobal);
83   return false;
84 }
85 
86 bool Type::containsNonGlobalTargetExtType() const {
87   SmallPtrSet<const Type *, 4> Visited;
88   return containsNonGlobalTargetExtType(Visited);
89 }
90 
91 bool Type::containsNonLocalTargetExtType(
92     SmallPtrSetImpl<const Type *> &Visited) const {
93   if (const auto *ATy = dyn_cast<ArrayType>(this))
94     return ATy->getElementType()->containsNonLocalTargetExtType(Visited);
95   if (const auto *STy = dyn_cast<StructType>(this))
96     return STy->containsNonLocalTargetExtType(Visited);
97   if (auto *TT = dyn_cast<TargetExtType>(this))
98     return !TT->hasProperty(TargetExtType::CanBeLocal);
99   return false;
100 }
101 
102 bool Type::containsNonLocalTargetExtType() const {
103   SmallPtrSet<const Type *, 4> Visited;
104   return containsNonLocalTargetExtType(Visited);
105 }
106 
107 const fltSemantics &Type::getFltSemantics() const {
108   switch (getTypeID()) {
109   case HalfTyID: return APFloat::IEEEhalf();
110   case BFloatTyID: return APFloat::BFloat();
111   case FloatTyID: return APFloat::IEEEsingle();
112   case DoubleTyID: return APFloat::IEEEdouble();
113   case X86_FP80TyID: return APFloat::x87DoubleExtended();
114   case FP128TyID: return APFloat::IEEEquad();
115   case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
116   default: llvm_unreachable("Invalid floating type");
117   }
118 }
119 
120 bool Type::isIEEE() const {
121   return APFloat::getZero(getFltSemantics()).isIEEE();
122 }
123 
124 bool Type::isScalableTargetExtTy() const {
125   if (auto *TT = dyn_cast<TargetExtType>(this))
126     return isa<ScalableVectorType>(TT->getLayoutType());
127   return false;
128 }
129 
130 Type *Type::getFloatingPointTy(LLVMContext &C, const fltSemantics &S) {
131   Type *Ty;
132   if (&S == &APFloat::IEEEhalf())
133     Ty = Type::getHalfTy(C);
134   else if (&S == &APFloat::BFloat())
135     Ty = Type::getBFloatTy(C);
136   else if (&S == &APFloat::IEEEsingle())
137     Ty = Type::getFloatTy(C);
138   else if (&S == &APFloat::IEEEdouble())
139     Ty = Type::getDoubleTy(C);
140   else if (&S == &APFloat::x87DoubleExtended())
141     Ty = Type::getX86_FP80Ty(C);
142   else if (&S == &APFloat::IEEEquad())
143     Ty = Type::getFP128Ty(C);
144   else {
145     assert(&S == &APFloat::PPCDoubleDouble() && "Unknown FP format");
146     Ty = Type::getPPC_FP128Ty(C);
147   }
148   return Ty;
149 }
150 
151 bool Type::isRISCVVectorTupleTy() const {
152   if (!isTargetExtTy())
153     return false;
154 
155   return cast<TargetExtType>(this)->getName() == "riscv.vector.tuple";
156 }
157 
158 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
159   // Identity cast means no change so return true
160   if (this == Ty)
161     return true;
162 
163   // They are not convertible unless they are at least first class types
164   if (!this->isFirstClassType() || !Ty->isFirstClassType())
165     return false;
166 
167   // Vector -> Vector conversions are always lossless if the two vector types
168   // have the same size, otherwise not.
169   if (isa<VectorType>(this) && isa<VectorType>(Ty))
170     return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
171 
172   //  8192-bit fixed width vector types can be losslessly converted to x86amx.
173   if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) &&
174       getPrimitiveSizeInBits().getFixedValue() == 8192)
175     return true;
176   if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) &&
177       Ty->getPrimitiveSizeInBits().getFixedValue() == 8192)
178     return true;
179 
180   // Conservatively assume we can't losslessly convert between pointers with
181   // different address spaces.
182   return false;
183 }
184 
185 bool Type::isEmptyTy() const {
186   if (auto *ATy = dyn_cast<ArrayType>(this)) {
187     unsigned NumElements = ATy->getNumElements();
188     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
189   }
190 
191   if (auto *STy = dyn_cast<StructType>(this)) {
192     unsigned NumElements = STy->getNumElements();
193     for (unsigned i = 0; i < NumElements; ++i)
194       if (!STy->getElementType(i)->isEmptyTy())
195         return false;
196     return true;
197   }
198 
199   return false;
200 }
201 
202 TypeSize Type::getPrimitiveSizeInBits() const {
203   switch (getTypeID()) {
204   case Type::HalfTyID:
205     return TypeSize::getFixed(16);
206   case Type::BFloatTyID:
207     return TypeSize::getFixed(16);
208   case Type::FloatTyID:
209     return TypeSize::getFixed(32);
210   case Type::DoubleTyID:
211     return TypeSize::getFixed(64);
212   case Type::X86_FP80TyID:
213     return TypeSize::getFixed(80);
214   case Type::FP128TyID:
215     return TypeSize::getFixed(128);
216   case Type::PPC_FP128TyID:
217     return TypeSize::getFixed(128);
218   case Type::X86_AMXTyID:
219     return TypeSize::getFixed(8192);
220   case Type::IntegerTyID:
221     return TypeSize::getFixed(cast<IntegerType>(this)->getBitWidth());
222   case Type::FixedVectorTyID:
223   case Type::ScalableVectorTyID: {
224     const VectorType *VTy = cast<VectorType>(this);
225     ElementCount EC = VTy->getElementCount();
226     TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
227     assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
228     return {ETS.getFixedValue() * EC.getKnownMinValue(), EC.isScalable()};
229   }
230   default:
231     return TypeSize::getFixed(0);
232   }
233 }
234 
235 unsigned Type::getScalarSizeInBits() const {
236   // It is safe to assume that the scalar types have a fixed size.
237   return getScalarType()->getPrimitiveSizeInBits().getFixedValue();
238 }
239 
240 int Type::getFPMantissaWidth() const {
241   if (auto *VTy = dyn_cast<VectorType>(this))
242     return VTy->getElementType()->getFPMantissaWidth();
243   assert(isFloatingPointTy() && "Not a floating point type!");
244   if (getTypeID() == HalfTyID) return 11;
245   if (getTypeID() == BFloatTyID) return 8;
246   if (getTypeID() == FloatTyID) return 24;
247   if (getTypeID() == DoubleTyID) return 53;
248   if (getTypeID() == X86_FP80TyID) return 64;
249   if (getTypeID() == FP128TyID) return 113;
250   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
251   return -1;
252 }
253 
254 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
255   if (auto *ATy = dyn_cast<ArrayType>(this))
256     return ATy->getElementType()->isSized(Visited);
257 
258   if (auto *VTy = dyn_cast<VectorType>(this))
259     return VTy->getElementType()->isSized(Visited);
260 
261   if (auto *TTy = dyn_cast<TargetExtType>(this))
262     return TTy->getLayoutType()->isSized(Visited);
263 
264   return cast<StructType>(this)->isSized(Visited);
265 }
266 
267 //===----------------------------------------------------------------------===//
268 //                          Primitive 'Type' data
269 //===----------------------------------------------------------------------===//
270 
271 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
272 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
273 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
274 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
275 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
276 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
277 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
278 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
279 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
280 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
281 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
282 Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
283 
284 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
285 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
286 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
287 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
288 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
289 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
290 
291 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
292   return IntegerType::get(C, N);
293 }
294 
295 Type *Type::getWasm_ExternrefTy(LLVMContext &C) {
296   // opaque pointer in addrspace(10)
297   static PointerType *Ty = PointerType::get(C, 10);
298   return Ty;
299 }
300 
301 Type *Type::getWasm_FuncrefTy(LLVMContext &C) {
302   // opaque pointer in addrspace(20)
303   static PointerType *Ty = PointerType::get(C, 20);
304   return Ty;
305 }
306 
307 //===----------------------------------------------------------------------===//
308 //                       IntegerType Implementation
309 //===----------------------------------------------------------------------===//
310 
311 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
312   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
313   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
314 
315   // Check for the built-in integer types
316   switch (NumBits) {
317   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
318   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
319   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
320   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
321   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
322   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
323   default:
324     break;
325   }
326 
327   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
328 
329   if (!Entry)
330     Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
331 
332   return Entry;
333 }
334 
335 APInt IntegerType::getMask() const { return APInt::getAllOnes(getBitWidth()); }
336 
337 //===----------------------------------------------------------------------===//
338 //                       FunctionType Implementation
339 //===----------------------------------------------------------------------===//
340 
341 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
342                            bool IsVarArgs)
343   : Type(Result->getContext(), FunctionTyID) {
344   Type **SubTys = reinterpret_cast<Type**>(this+1);
345   assert(isValidReturnType(Result) && "invalid return type for function");
346   setSubclassData(IsVarArgs);
347 
348   SubTys[0] = Result;
349 
350   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
351     assert(isValidArgumentType(Params[i]) &&
352            "Not a valid type for function argument!");
353     SubTys[i+1] = Params[i];
354   }
355 
356   ContainedTys = SubTys;
357   NumContainedTys = Params.size() + 1; // + 1 for result type
358 }
359 
360 // This is the factory function for the FunctionType class.
361 FunctionType *FunctionType::get(Type *ReturnType,
362                                 ArrayRef<Type*> Params, bool isVarArg) {
363   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
364   const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
365   FunctionType *FT;
366   // Since we only want to allocate a fresh function type in case none is found
367   // and we don't want to perform two lookups (one for checking if existent and
368   // one for inserting the newly allocated one), here we instead lookup based on
369   // Key and update the reference to the function type in-place to a newly
370   // allocated one if not found.
371   auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
372   if (Insertion.second) {
373     // The function type was not found. Allocate one and update FunctionTypes
374     // in-place.
375     FT = (FunctionType *)pImpl->Alloc.Allocate(
376         sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
377         alignof(FunctionType));
378     new (FT) FunctionType(ReturnType, Params, isVarArg);
379     *Insertion.first = FT;
380   } else {
381     // The function type was found. Just return it.
382     FT = *Insertion.first;
383   }
384   return FT;
385 }
386 
387 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
388   return get(Result, {}, isVarArg);
389 }
390 
391 bool FunctionType::isValidReturnType(Type *RetTy) {
392   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
393   !RetTy->isMetadataTy();
394 }
395 
396 bool FunctionType::isValidArgumentType(Type *ArgTy) {
397   return ArgTy->isFirstClassType();
398 }
399 
400 //===----------------------------------------------------------------------===//
401 //                       StructType Implementation
402 //===----------------------------------------------------------------------===//
403 
404 // Primitive Constructors.
405 
406 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
407                             bool isPacked) {
408   LLVMContextImpl *pImpl = Context.pImpl;
409   const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
410 
411   StructType *ST;
412   // Since we only want to allocate a fresh struct type in case none is found
413   // and we don't want to perform two lookups (one for checking if existent and
414   // one for inserting the newly allocated one), here we instead lookup based on
415   // Key and update the reference to the struct type in-place to a newly
416   // allocated one if not found.
417   auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
418   if (Insertion.second) {
419     // The struct type was not found. Allocate one and update AnonStructTypes
420     // in-place.
421     ST = new (Context.pImpl->Alloc) StructType(Context);
422     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
423     ST->setBody(ETypes, isPacked);
424     *Insertion.first = ST;
425   } else {
426     // The struct type was found. Just return it.
427     ST = *Insertion.first;
428   }
429 
430   return ST;
431 }
432 
433 bool StructType::isScalableTy(SmallPtrSetImpl<const Type *> &Visited) const {
434   if ((getSubclassData() & SCDB_ContainsScalableVector) != 0)
435     return true;
436 
437   if ((getSubclassData() & SCDB_NotContainsScalableVector) != 0)
438     return false;
439 
440   if (!Visited.insert(this).second)
441     return false;
442 
443   for (Type *Ty : elements()) {
444     if (Ty->isScalableTy(Visited)) {
445       const_cast<StructType *>(this)->setSubclassData(
446           getSubclassData() | SCDB_ContainsScalableVector);
447       return true;
448     }
449   }
450 
451   // For structures that are opaque, return false but do not set the
452   // SCDB_NotContainsScalableVector flag since it may gain scalable vector type
453   // when it becomes non-opaque.
454   if (!isOpaque())
455     const_cast<StructType *>(this)->setSubclassData(
456         getSubclassData() | SCDB_NotContainsScalableVector);
457   return false;
458 }
459 
460 bool StructType::containsNonGlobalTargetExtType(
461     SmallPtrSetImpl<const Type *> &Visited) const {
462   if ((getSubclassData() & SCDB_ContainsNonGlobalTargetExtType) != 0)
463     return true;
464 
465   if ((getSubclassData() & SCDB_NotContainsNonGlobalTargetExtType) != 0)
466     return false;
467 
468   if (!Visited.insert(this).second)
469     return false;
470 
471   for (Type *Ty : elements()) {
472     if (Ty->containsNonGlobalTargetExtType(Visited)) {
473       const_cast<StructType *>(this)->setSubclassData(
474           getSubclassData() | SCDB_ContainsNonGlobalTargetExtType);
475       return true;
476     }
477   }
478 
479   // For structures that are opaque, return false but do not set the
480   // SCDB_NotContainsNonGlobalTargetExtType flag since it may gain non-global
481   // target extension types when it becomes non-opaque.
482   if (!isOpaque())
483     const_cast<StructType *>(this)->setSubclassData(
484         getSubclassData() | SCDB_NotContainsNonGlobalTargetExtType);
485   return false;
486 }
487 
488 bool StructType::containsNonLocalTargetExtType(
489     SmallPtrSetImpl<const Type *> &Visited) const {
490   if ((getSubclassData() & SCDB_ContainsNonLocalTargetExtType) != 0)
491     return true;
492 
493   if ((getSubclassData() & SCDB_NotContainsNonLocalTargetExtType) != 0)
494     return false;
495 
496   if (!Visited.insert(this).second)
497     return false;
498 
499   for (Type *Ty : elements()) {
500     if (Ty->containsNonLocalTargetExtType(Visited)) {
501       const_cast<StructType *>(this)->setSubclassData(
502           getSubclassData() | SCDB_ContainsNonLocalTargetExtType);
503       return true;
504     }
505   }
506 
507   // For structures that are opaque, return false but do not set the
508   // SCDB_NotContainsNonLocalTargetExtType flag since it may gain non-local
509   // target extension types when it becomes non-opaque.
510   if (!isOpaque())
511     const_cast<StructType *>(this)->setSubclassData(
512         getSubclassData() | SCDB_NotContainsNonLocalTargetExtType);
513   return false;
514 }
515 
516 bool StructType::containsHomogeneousScalableVectorTypes() const {
517   if (getNumElements() <= 0 || !isa<ScalableVectorType>(elements().front()))
518     return false;
519   return containsHomogeneousTypes();
520 }
521 
522 bool StructType::containsHomogeneousTypes() const {
523   ArrayRef<Type *> ElementTys = elements();
524   return !ElementTys.empty() && all_equal(ElementTys);
525 }
526 
527 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
528   cantFail(setBodyOrError(Elements, isPacked));
529 }
530 
531 Error StructType::setBodyOrError(ArrayRef<Type *> Elements, bool isPacked) {
532   assert(isOpaque() && "Struct body already set!");
533 
534   if (auto E = checkBody(Elements))
535     return E;
536 
537   setSubclassData(getSubclassData() | SCDB_HasBody);
538   if (isPacked)
539     setSubclassData(getSubclassData() | SCDB_Packed);
540 
541   NumContainedTys = Elements.size();
542   ContainedTys = Elements.empty()
543                      ? nullptr
544                      : Elements.copy(getContext().pImpl->Alloc).data();
545 
546   return Error::success();
547 }
548 
549 Error StructType::checkBody(ArrayRef<Type *> Elements) {
550   SmallSetVector<Type *, 4> Worklist(Elements.begin(), Elements.end());
551   for (unsigned I = 0; I < Worklist.size(); ++I) {
552     Type *Ty = Worklist[I];
553     if (Ty == this)
554       return createStringError(Twine("identified structure type '") +
555                                getName() + "' is recursive");
556     Worklist.insert(Ty->subtype_begin(), Ty->subtype_end());
557   }
558   return Error::success();
559 }
560 
561 void StructType::setName(StringRef Name) {
562   if (Name == getName()) return;
563 
564   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
565 
566   using EntryTy = StringMap<StructType *>::MapEntryTy;
567 
568   // If this struct already had a name, remove its symbol table entry. Don't
569   // delete the data yet because it may be part of the new name.
570   if (SymbolTableEntry)
571     SymbolTable.remove((EntryTy *)SymbolTableEntry);
572 
573   // If this is just removing the name, we're done.
574   if (Name.empty()) {
575     if (SymbolTableEntry) {
576       // Delete the old string data.
577       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
578       SymbolTableEntry = nullptr;
579     }
580     return;
581   }
582 
583   // Look up the entry for the name.
584   auto IterBool =
585       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
586 
587   // While we have a name collision, try a random rename.
588   if (!IterBool.second) {
589     SmallString<64> TempStr(Name);
590     TempStr.push_back('.');
591     raw_svector_ostream TmpStream(TempStr);
592     unsigned NameSize = Name.size();
593 
594     do {
595       TempStr.resize(NameSize + 1);
596       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
597 
598       IterBool = getContext().pImpl->NamedStructTypes.insert(
599           std::make_pair(TmpStream.str(), this));
600     } while (!IterBool.second);
601   }
602 
603   // Delete the old string data.
604   if (SymbolTableEntry)
605     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
606   SymbolTableEntry = &*IterBool.first;
607 }
608 
609 //===----------------------------------------------------------------------===//
610 // StructType Helper functions.
611 
612 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
613   StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
614   if (!Name.empty())
615     ST->setName(Name);
616   return ST;
617 }
618 
619 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
620   return get(Context, {}, isPacked);
621 }
622 
623 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
624                                StringRef Name, bool isPacked) {
625   StructType *ST = create(Context, Name);
626   ST->setBody(Elements, isPacked);
627   return ST;
628 }
629 
630 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
631   return create(Context, Elements, StringRef());
632 }
633 
634 StructType *StructType::create(LLVMContext &Context) {
635   return create(Context, StringRef());
636 }
637 
638 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
639                                bool isPacked) {
640   assert(!Elements.empty() &&
641          "This method may not be invoked with an empty list");
642   return create(Elements[0]->getContext(), Elements, Name, isPacked);
643 }
644 
645 StructType *StructType::create(ArrayRef<Type*> Elements) {
646   assert(!Elements.empty() &&
647          "This method may not be invoked with an empty list");
648   return create(Elements[0]->getContext(), Elements, StringRef());
649 }
650 
651 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
652   if ((getSubclassData() & SCDB_IsSized) != 0)
653     return true;
654   if (isOpaque())
655     return false;
656 
657   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
658     return false;
659 
660   // Okay, our struct is sized if all of the elements are, but if one of the
661   // elements is opaque, the struct isn't sized *yet*, but may become sized in
662   // the future, so just bail out without caching.
663   // The ONLY special case inside a struct that is considered sized is when the
664   // elements are homogeneous of a scalable vector type.
665   if (containsHomogeneousScalableVectorTypes()) {
666     const_cast<StructType *>(this)->setSubclassData(getSubclassData() |
667                                                     SCDB_IsSized);
668     return true;
669   }
670   for (Type *Ty : elements()) {
671     // If the struct contains a scalable vector type, don't consider it sized.
672     // This prevents it from being used in loads/stores/allocas/GEPs. The ONLY
673     // special case right now is a structure of homogenous scalable vector
674     // types and is handled by the if-statement before this for-loop.
675     if (Ty->isScalableTy())
676       return false;
677     if (!Ty->isSized(Visited))
678       return false;
679   }
680 
681   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
682   // we find a sized type, as types can only move from opaque to sized, not the
683   // other way.
684   const_cast<StructType*>(this)->setSubclassData(
685     getSubclassData() | SCDB_IsSized);
686   return true;
687 }
688 
689 StringRef StructType::getName() const {
690   assert(!isLiteral() && "Literal structs never have names");
691   if (!SymbolTableEntry) return StringRef();
692 
693   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
694 }
695 
696 bool StructType::isValidElementType(Type *ElemTy) {
697   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
698          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
699          !ElemTy->isTokenTy();
700 }
701 
702 bool StructType::isLayoutIdentical(StructType *Other) const {
703   if (this == Other) return true;
704 
705   if (isPacked() != Other->isPacked())
706     return false;
707 
708   return elements() == Other->elements();
709 }
710 
711 Type *StructType::getTypeAtIndex(const Value *V) const {
712   unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
713   assert(indexValid(Idx) && "Invalid structure index!");
714   return getElementType(Idx);
715 }
716 
717 bool StructType::indexValid(const Value *V) const {
718   // Structure indexes require (vectors of) 32-bit integer constants.  In the
719   // vector case all of the indices must be equal.
720   if (!V->getType()->isIntOrIntVectorTy(32))
721     return false;
722   if (isa<ScalableVectorType>(V->getType()))
723     return false;
724   const Constant *C = dyn_cast<Constant>(V);
725   if (C && V->getType()->isVectorTy())
726     C = C->getSplatValue();
727   const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
728   return CU && CU->getZExtValue() < getNumElements();
729 }
730 
731 StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
732   return C.pImpl->NamedStructTypes.lookup(Name);
733 }
734 
735 //===----------------------------------------------------------------------===//
736 //                           ArrayType Implementation
737 //===----------------------------------------------------------------------===//
738 
739 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
740     : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
741       NumElements(NumEl) {
742   ContainedTys = &ContainedType;
743   NumContainedTys = 1;
744 }
745 
746 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
747   assert(isValidElementType(ElementType) && "Invalid type for array element!");
748 
749   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
750   ArrayType *&Entry =
751     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
752 
753   if (!Entry)
754     Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
755   return Entry;
756 }
757 
758 bool ArrayType::isValidElementType(Type *ElemTy) {
759   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
760          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
761          !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy();
762 }
763 
764 //===----------------------------------------------------------------------===//
765 //                          VectorType Implementation
766 //===----------------------------------------------------------------------===//
767 
768 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
769     : Type(ElType->getContext(), TID), ContainedType(ElType),
770       ElementQuantity(EQ) {
771   ContainedTys = &ContainedType;
772   NumContainedTys = 1;
773 }
774 
775 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
776   if (EC.isScalable())
777     return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
778   else
779     return FixedVectorType::get(ElementType, EC.getKnownMinValue());
780 }
781 
782 bool VectorType::isValidElementType(Type *ElemTy) {
783   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
784          ElemTy->isPointerTy() || ElemTy->getTypeID() == TypedPointerTyID;
785 }
786 
787 //===----------------------------------------------------------------------===//
788 //                        FixedVectorType Implementation
789 //===----------------------------------------------------------------------===//
790 
791 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
792   assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
793   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
794                                             "be an integer, floating point, or "
795                                             "pointer type.");
796 
797   auto EC = ElementCount::getFixed(NumElts);
798 
799   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
800   VectorType *&Entry = ElementType->getContext()
801                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
802 
803   if (!Entry)
804     Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
805   return cast<FixedVectorType>(Entry);
806 }
807 
808 //===----------------------------------------------------------------------===//
809 //                       ScalableVectorType Implementation
810 //===----------------------------------------------------------------------===//
811 
812 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
813                                             unsigned MinNumElts) {
814   assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
815   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
816                                             "be an integer, floating point, or "
817                                             "pointer type.");
818 
819   auto EC = ElementCount::getScalable(MinNumElts);
820 
821   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
822   VectorType *&Entry = ElementType->getContext()
823                            .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
824 
825   if (!Entry)
826     Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
827   return cast<ScalableVectorType>(Entry);
828 }
829 
830 //===----------------------------------------------------------------------===//
831 //                         PointerType Implementation
832 //===----------------------------------------------------------------------===//
833 
834 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
835   assert(EltTy && "Can't get a pointer to <null> type!");
836   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
837 
838   // Automatically convert typed pointers to opaque pointers.
839   return get(EltTy->getContext(), AddressSpace);
840 }
841 
842 PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
843   LLVMContextImpl *CImpl = C.pImpl;
844 
845   // Since AddressSpace #0 is the common case, we special case it.
846   PointerType *&Entry = AddressSpace == 0 ? CImpl->AS0PointerType
847                                           : CImpl->PointerTypes[AddressSpace];
848 
849   if (!Entry)
850     Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
851   return Entry;
852 }
853 
854 PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
855     : Type(C, PointerTyID) {
856   setSubclassData(AddrSpace);
857 }
858 
859 PointerType *Type::getPointerTo(unsigned AddrSpace) const {
860   return PointerType::get(getContext(), AddrSpace);
861 }
862 
863 bool PointerType::isValidElementType(Type *ElemTy) {
864   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
865          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
866          !ElemTy->isX86_AMXTy();
867 }
868 
869 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
870   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
871 }
872 
873 //===----------------------------------------------------------------------===//
874 //                       TargetExtType Implementation
875 //===----------------------------------------------------------------------===//
876 
877 TargetExtType::TargetExtType(LLVMContext &C, StringRef Name,
878                              ArrayRef<Type *> Types, ArrayRef<unsigned> Ints)
879     : Type(C, TargetExtTyID), Name(C.pImpl->Saver.save(Name)) {
880   NumContainedTys = Types.size();
881 
882   // Parameter storage immediately follows the class in allocation.
883   Type **Params = reinterpret_cast<Type **>(this + 1);
884   ContainedTys = Params;
885   for (Type *T : Types)
886     *Params++ = T;
887 
888   setSubclassData(Ints.size());
889   unsigned *IntParamSpace = reinterpret_cast<unsigned *>(Params);
890   IntParams = IntParamSpace;
891   for (unsigned IntParam : Ints)
892     *IntParamSpace++ = IntParam;
893 }
894 
895 TargetExtType *TargetExtType::get(LLVMContext &C, StringRef Name,
896                                   ArrayRef<Type *> Types,
897                                   ArrayRef<unsigned> Ints) {
898   return cantFail(getOrError(C, Name, Types, Ints));
899 }
900 
901 Expected<TargetExtType *> TargetExtType::getOrError(LLVMContext &C,
902                                                     StringRef Name,
903                                                     ArrayRef<Type *> Types,
904                                                     ArrayRef<unsigned> Ints) {
905   const TargetExtTypeKeyInfo::KeyTy Key(Name, Types, Ints);
906   TargetExtType *TT;
907   // Since we only want to allocate a fresh target type in case none is found
908   // and we don't want to perform two lookups (one for checking if existent and
909   // one for inserting the newly allocated one), here we instead lookup based on
910   // Key and update the reference to the target type in-place to a newly
911   // allocated one if not found.
912   auto [Iter, Inserted] = C.pImpl->TargetExtTypes.insert_as(nullptr, Key);
913   if (Inserted) {
914     // The target type was not found. Allocate one and update TargetExtTypes
915     // in-place.
916     TT = (TargetExtType *)C.pImpl->Alloc.Allocate(
917         sizeof(TargetExtType) + sizeof(Type *) * Types.size() +
918             sizeof(unsigned) * Ints.size(),
919         alignof(TargetExtType));
920     new (TT) TargetExtType(C, Name, Types, Ints);
921     *Iter = TT;
922     return checkParams(TT);
923   }
924 
925   // The target type was found. Just return it.
926   return *Iter;
927 }
928 
929 Expected<TargetExtType *> TargetExtType::checkParams(TargetExtType *TTy) {
930   // Opaque types in the AArch64 name space.
931   if (TTy->Name == "aarch64.svcount" &&
932       (TTy->getNumTypeParameters() != 0 || TTy->getNumIntParameters() != 0))
933     return createStringError(
934         "target extension type aarch64.svcount should have no parameters");
935 
936   // Opaque types in the RISC-V name space.
937   if (TTy->Name == "riscv.vector.tuple" &&
938       (TTy->getNumTypeParameters() != 1 || TTy->getNumIntParameters() != 1))
939     return createStringError(
940         "target extension type riscv.vector.tuple should have one "
941         "type parameter and one integer parameter");
942 
943   // Opaque types in the AMDGPU name space.
944   if (TTy->Name == "amdgcn.named.barrier" &&
945       (TTy->getNumTypeParameters() != 0 || TTy->getNumIntParameters() != 1)) {
946     return createStringError("target extension type amdgcn.named.barrier "
947                              "should have no type parameters "
948                              "and one integer parameter");
949   }
950 
951   return TTy;
952 }
953 
954 namespace {
955 struct TargetTypeInfo {
956   Type *LayoutType;
957   uint64_t Properties;
958 
959   template <typename... ArgTys>
960   TargetTypeInfo(Type *LayoutType, ArgTys... Properties)
961       : LayoutType(LayoutType), Properties((0 | ... | Properties)) {}
962 };
963 } // anonymous namespace
964 
965 static TargetTypeInfo getTargetTypeInfo(const TargetExtType *Ty) {
966   LLVMContext &C = Ty->getContext();
967   StringRef Name = Ty->getName();
968   if (Name == "spirv.Image")
969     return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::CanBeGlobal,
970                           TargetExtType::CanBeLocal);
971   if (Name.starts_with("spirv."))
972     return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::HasZeroInit,
973                           TargetExtType::CanBeGlobal,
974                           TargetExtType::CanBeLocal);
975 
976   // Opaque types in the AArch64 name space.
977   if (Name == "aarch64.svcount")
978     return TargetTypeInfo(ScalableVectorType::get(Type::getInt1Ty(C), 16),
979                           TargetExtType::HasZeroInit,
980                           TargetExtType::CanBeLocal);
981 
982   // RISC-V vector tuple type. The layout is represented as the type that needs
983   // the same number of vector registers(VREGS) as this tuple type, represented
984   // as <vscale x (RVVBitsPerBlock * VREGS / 8) x i8>.
985   if (Name == "riscv.vector.tuple") {
986     unsigned TotalNumElts =
987         std::max(cast<ScalableVectorType>(Ty->getTypeParameter(0))
988                      ->getMinNumElements(),
989                  RISCV::RVVBitsPerBlock / 8) *
990         Ty->getIntParameter(0);
991     return TargetTypeInfo(
992         ScalableVectorType::get(Type::getInt8Ty(C), TotalNumElts),
993         TargetExtType::CanBeLocal, TargetExtType::HasZeroInit);
994   }
995 
996   // DirectX resources
997   if (Name.starts_with("dx."))
998     return TargetTypeInfo(PointerType::get(C, 0), TargetExtType::CanBeGlobal,
999                           TargetExtType::CanBeLocal);
1000 
1001   // Opaque types in the AMDGPU name space.
1002   if (Name == "amdgcn.named.barrier") {
1003     return TargetTypeInfo(FixedVectorType::get(Type::getInt32Ty(C), 4),
1004                           TargetExtType::CanBeGlobal);
1005   }
1006 
1007   return TargetTypeInfo(Type::getVoidTy(C));
1008 }
1009 
1010 Type *TargetExtType::getLayoutType() const {
1011   return getTargetTypeInfo(this).LayoutType;
1012 }
1013 
1014 bool TargetExtType::hasProperty(Property Prop) const {
1015   uint64_t Properties = getTargetTypeInfo(this).Properties;
1016   return (Properties & Prop) == Prop;
1017 }
1018