1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Bitcode/BitcodeCommon.h" 22 #include "llvm/Bitcode/LLVMBitCodes.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Config/llvm-config.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/AttributeMask.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantRangeList.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GetElementPtrTypeIterator.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsARM.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/ModuleSummaryIndex.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/ProfDataUtils.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/IR/Verifier.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/Error.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/ErrorOr.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/MemoryBuffer.h" 75 #include "llvm/Support/ModRef.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/TargetParser/Triple.h" 78 #include <algorithm> 79 #include <cassert> 80 #include <cstddef> 81 #include <cstdint> 82 #include <deque> 83 #include <map> 84 #include <memory> 85 #include <optional> 86 #include <set> 87 #include <string> 88 #include <system_error> 89 #include <tuple> 90 #include <utility> 91 #include <vector> 92 93 using namespace llvm; 94 95 static cl::opt<bool> PrintSummaryGUIDs( 96 "print-summary-global-ids", cl::init(false), cl::Hidden, 97 cl::desc( 98 "Print the global id for each value when reading the module summary")); 99 100 static cl::opt<bool> ExpandConstantExprs( 101 "expand-constant-exprs", cl::Hidden, 102 cl::desc( 103 "Expand constant expressions to instructions for testing purposes")); 104 105 /// Load bitcode directly into RemoveDIs format (use debug records instead 106 /// of debug intrinsics). UNSET is treated as FALSE, so the default action 107 /// is to do nothing. Individual tools can override this to incrementally add 108 /// support for the RemoveDIs format. 109 cl::opt<cl::boolOrDefault> LoadBitcodeIntoNewDbgInfoFormat( 110 "load-bitcode-into-experimental-debuginfo-iterators", cl::Hidden, 111 cl::desc("Load bitcode directly into the new debug info format (regardless " 112 "of input format)")); 113 extern cl::opt<bool> UseNewDbgInfoFormat; 114 extern cl::opt<cl::boolOrDefault> PreserveInputDbgFormat; 115 extern bool WriteNewDbgInfoFormatToBitcode; 116 extern cl::opt<bool> WriteNewDbgInfoFormat; 117 118 namespace { 119 120 enum { 121 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 122 }; 123 124 } // end anonymous namespace 125 126 static Error error(const Twine &Message) { 127 return make_error<StringError>( 128 Message, make_error_code(BitcodeError::CorruptedBitcode)); 129 } 130 131 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 132 if (!Stream.canSkipToPos(4)) 133 return createStringError(std::errc::illegal_byte_sequence, 134 "file too small to contain bitcode header"); 135 for (unsigned C : {'B', 'C'}) 136 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 137 if (Res.get() != C) 138 return createStringError(std::errc::illegal_byte_sequence, 139 "file doesn't start with bitcode header"); 140 } else 141 return Res.takeError(); 142 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 143 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 144 if (Res.get() != C) 145 return createStringError(std::errc::illegal_byte_sequence, 146 "file doesn't start with bitcode header"); 147 } else 148 return Res.takeError(); 149 return Error::success(); 150 } 151 152 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 153 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 154 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 155 156 if (Buffer.getBufferSize() & 3) 157 return error("Invalid bitcode signature"); 158 159 // If we have a wrapper header, parse it and ignore the non-bc file contents. 160 // The magic number is 0x0B17C0DE stored in little endian. 161 if (isBitcodeWrapper(BufPtr, BufEnd)) 162 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 163 return error("Invalid bitcode wrapper header"); 164 165 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 166 if (Error Err = hasInvalidBitcodeHeader(Stream)) 167 return std::move(Err); 168 169 return std::move(Stream); 170 } 171 172 /// Convert a string from a record into an std::string, return true on failure. 173 template <typename StrTy> 174 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 175 StrTy &Result) { 176 if (Idx > Record.size()) 177 return true; 178 179 Result.append(Record.begin() + Idx, Record.end()); 180 return false; 181 } 182 183 // Strip all the TBAA attachment for the module. 184 static void stripTBAA(Module *M) { 185 for (auto &F : *M) { 186 if (F.isMaterializable()) 187 continue; 188 for (auto &I : instructions(F)) 189 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 190 } 191 } 192 193 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 194 /// "epoch" encoded in the bitcode, and return the producer name if any. 195 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 196 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 197 return std::move(Err); 198 199 // Read all the records. 200 SmallVector<uint64_t, 64> Record; 201 202 std::string ProducerIdentification; 203 204 while (true) { 205 BitstreamEntry Entry; 206 if (Error E = Stream.advance().moveInto(Entry)) 207 return std::move(E); 208 209 switch (Entry.Kind) { 210 default: 211 case BitstreamEntry::Error: 212 return error("Malformed block"); 213 case BitstreamEntry::EndBlock: 214 return ProducerIdentification; 215 case BitstreamEntry::Record: 216 // The interesting case. 217 break; 218 } 219 220 // Read a record. 221 Record.clear(); 222 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 223 if (!MaybeBitCode) 224 return MaybeBitCode.takeError(); 225 switch (MaybeBitCode.get()) { 226 default: // Default behavior: reject 227 return error("Invalid value"); 228 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 229 convertToString(Record, 0, ProducerIdentification); 230 break; 231 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 232 unsigned epoch = (unsigned)Record[0]; 233 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 234 return error( 235 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 236 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 237 } 238 } 239 } 240 } 241 } 242 243 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 244 // We expect a number of well-defined blocks, though we don't necessarily 245 // need to understand them all. 246 while (true) { 247 if (Stream.AtEndOfStream()) 248 return ""; 249 250 BitstreamEntry Entry; 251 if (Error E = Stream.advance().moveInto(Entry)) 252 return std::move(E); 253 254 switch (Entry.Kind) { 255 case BitstreamEntry::EndBlock: 256 case BitstreamEntry::Error: 257 return error("Malformed block"); 258 259 case BitstreamEntry::SubBlock: 260 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 261 return readIdentificationBlock(Stream); 262 263 // Ignore other sub-blocks. 264 if (Error Err = Stream.SkipBlock()) 265 return std::move(Err); 266 continue; 267 case BitstreamEntry::Record: 268 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 269 return std::move(E); 270 continue; 271 } 272 } 273 } 274 275 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 276 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 277 return std::move(Err); 278 279 SmallVector<uint64_t, 64> Record; 280 // Read all the records for this module. 281 282 while (true) { 283 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 284 if (!MaybeEntry) 285 return MaybeEntry.takeError(); 286 BitstreamEntry Entry = MaybeEntry.get(); 287 288 switch (Entry.Kind) { 289 case BitstreamEntry::SubBlock: // Handled for us already. 290 case BitstreamEntry::Error: 291 return error("Malformed block"); 292 case BitstreamEntry::EndBlock: 293 return false; 294 case BitstreamEntry::Record: 295 // The interesting case. 296 break; 297 } 298 299 // Read a record. 300 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 301 if (!MaybeRecord) 302 return MaybeRecord.takeError(); 303 switch (MaybeRecord.get()) { 304 default: 305 break; // Default behavior, ignore unknown content. 306 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 307 std::string S; 308 if (convertToString(Record, 0, S)) 309 return error("Invalid section name record"); 310 // Check for the i386 and other (x86_64, ARM) conventions 311 if (S.find("__DATA,__objc_catlist") != std::string::npos || 312 S.find("__OBJC,__category") != std::string::npos || 313 S.find("__TEXT,__swift") != std::string::npos) 314 return true; 315 break; 316 } 317 } 318 Record.clear(); 319 } 320 llvm_unreachable("Exit infinite loop"); 321 } 322 323 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 324 // We expect a number of well-defined blocks, though we don't necessarily 325 // need to understand them all. 326 while (true) { 327 BitstreamEntry Entry; 328 if (Error E = Stream.advance().moveInto(Entry)) 329 return std::move(E); 330 331 switch (Entry.Kind) { 332 case BitstreamEntry::Error: 333 return error("Malformed block"); 334 case BitstreamEntry::EndBlock: 335 return false; 336 337 case BitstreamEntry::SubBlock: 338 if (Entry.ID == bitc::MODULE_BLOCK_ID) 339 return hasObjCCategoryInModule(Stream); 340 341 // Ignore other sub-blocks. 342 if (Error Err = Stream.SkipBlock()) 343 return std::move(Err); 344 continue; 345 346 case BitstreamEntry::Record: 347 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 348 return std::move(E); 349 continue; 350 } 351 } 352 } 353 354 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 355 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 356 return std::move(Err); 357 358 SmallVector<uint64_t, 64> Record; 359 360 std::string Triple; 361 362 // Read all the records for this module. 363 while (true) { 364 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 365 if (!MaybeEntry) 366 return MaybeEntry.takeError(); 367 BitstreamEntry Entry = MaybeEntry.get(); 368 369 switch (Entry.Kind) { 370 case BitstreamEntry::SubBlock: // Handled for us already. 371 case BitstreamEntry::Error: 372 return error("Malformed block"); 373 case BitstreamEntry::EndBlock: 374 return Triple; 375 case BitstreamEntry::Record: 376 // The interesting case. 377 break; 378 } 379 380 // Read a record. 381 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 382 if (!MaybeRecord) 383 return MaybeRecord.takeError(); 384 switch (MaybeRecord.get()) { 385 default: break; // Default behavior, ignore unknown content. 386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 387 std::string S; 388 if (convertToString(Record, 0, S)) 389 return error("Invalid triple record"); 390 Triple = S; 391 break; 392 } 393 } 394 Record.clear(); 395 } 396 llvm_unreachable("Exit infinite loop"); 397 } 398 399 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 400 // We expect a number of well-defined blocks, though we don't necessarily 401 // need to understand them all. 402 while (true) { 403 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 404 if (!MaybeEntry) 405 return MaybeEntry.takeError(); 406 BitstreamEntry Entry = MaybeEntry.get(); 407 408 switch (Entry.Kind) { 409 case BitstreamEntry::Error: 410 return error("Malformed block"); 411 case BitstreamEntry::EndBlock: 412 return ""; 413 414 case BitstreamEntry::SubBlock: 415 if (Entry.ID == bitc::MODULE_BLOCK_ID) 416 return readModuleTriple(Stream); 417 418 // Ignore other sub-blocks. 419 if (Error Err = Stream.SkipBlock()) 420 return std::move(Err); 421 continue; 422 423 case BitstreamEntry::Record: 424 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 425 continue; 426 else 427 return Skipped.takeError(); 428 } 429 } 430 } 431 432 namespace { 433 434 class BitcodeReaderBase { 435 protected: 436 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 437 : Stream(std::move(Stream)), Strtab(Strtab) { 438 this->Stream.setBlockInfo(&BlockInfo); 439 } 440 441 BitstreamBlockInfo BlockInfo; 442 BitstreamCursor Stream; 443 StringRef Strtab; 444 445 /// In version 2 of the bitcode we store names of global values and comdats in 446 /// a string table rather than in the VST. 447 bool UseStrtab = false; 448 449 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 450 451 /// If this module uses a string table, pop the reference to the string table 452 /// and return the referenced string and the rest of the record. Otherwise 453 /// just return the record itself. 454 std::pair<StringRef, ArrayRef<uint64_t>> 455 readNameFromStrtab(ArrayRef<uint64_t> Record); 456 457 Error readBlockInfo(); 458 459 // Contains an arbitrary and optional string identifying the bitcode producer 460 std::string ProducerIdentification; 461 462 Error error(const Twine &Message); 463 }; 464 465 } // end anonymous namespace 466 467 Error BitcodeReaderBase::error(const Twine &Message) { 468 std::string FullMsg = Message.str(); 469 if (!ProducerIdentification.empty()) 470 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 471 LLVM_VERSION_STRING "')"; 472 return ::error(FullMsg); 473 } 474 475 Expected<unsigned> 476 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 477 if (Record.empty()) 478 return error("Invalid version record"); 479 unsigned ModuleVersion = Record[0]; 480 if (ModuleVersion > 2) 481 return error("Invalid value"); 482 UseStrtab = ModuleVersion >= 2; 483 return ModuleVersion; 484 } 485 486 std::pair<StringRef, ArrayRef<uint64_t>> 487 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 488 if (!UseStrtab) 489 return {"", Record}; 490 // Invalid reference. Let the caller complain about the record being empty. 491 if (Record[0] + Record[1] > Strtab.size()) 492 return {"", {}}; 493 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 494 } 495 496 namespace { 497 498 /// This represents a constant expression or constant aggregate using a custom 499 /// structure internal to the bitcode reader. Later, this structure will be 500 /// expanded by materializeValue() either into a constant expression/aggregate, 501 /// or into an instruction sequence at the point of use. This allows us to 502 /// upgrade bitcode using constant expressions even if this kind of constant 503 /// expression is no longer supported. 504 class BitcodeConstant final : public Value, 505 TrailingObjects<BitcodeConstant, unsigned> { 506 friend TrailingObjects; 507 508 // Value subclass ID: Pick largest possible value to avoid any clashes. 509 static constexpr uint8_t SubclassID = 255; 510 511 public: 512 // Opcodes used for non-expressions. This includes constant aggregates 513 // (struct, array, vector) that might need expansion, as well as non-leaf 514 // constants that don't need expansion (no_cfi, dso_local, blockaddress), 515 // but still go through BitcodeConstant to avoid different uselist orders 516 // between the two cases. 517 static constexpr uint8_t ConstantStructOpcode = 255; 518 static constexpr uint8_t ConstantArrayOpcode = 254; 519 static constexpr uint8_t ConstantVectorOpcode = 253; 520 static constexpr uint8_t NoCFIOpcode = 252; 521 static constexpr uint8_t DSOLocalEquivalentOpcode = 251; 522 static constexpr uint8_t BlockAddressOpcode = 250; 523 static constexpr uint8_t ConstantPtrAuthOpcode = 249; 524 static constexpr uint8_t FirstSpecialOpcode = ConstantPtrAuthOpcode; 525 526 // Separate struct to make passing different number of parameters to 527 // BitcodeConstant::create() more convenient. 528 struct ExtraInfo { 529 uint8_t Opcode; 530 uint8_t Flags; 531 unsigned BlockAddressBB = 0; 532 Type *SrcElemTy = nullptr; 533 std::optional<ConstantRange> InRange; 534 535 ExtraInfo(uint8_t Opcode, uint8_t Flags = 0, Type *SrcElemTy = nullptr, 536 std::optional<ConstantRange> InRange = std::nullopt) 537 : Opcode(Opcode), Flags(Flags), SrcElemTy(SrcElemTy), 538 InRange(std::move(InRange)) {} 539 540 ExtraInfo(uint8_t Opcode, uint8_t Flags, unsigned BlockAddressBB) 541 : Opcode(Opcode), Flags(Flags), BlockAddressBB(BlockAddressBB) {} 542 }; 543 544 uint8_t Opcode; 545 uint8_t Flags; 546 unsigned NumOperands; 547 unsigned BlockAddressBB; 548 Type *SrcElemTy; // GEP source element type. 549 std::optional<ConstantRange> InRange; // GEP inrange attribute. 550 551 private: 552 BitcodeConstant(Type *Ty, const ExtraInfo &Info, ArrayRef<unsigned> OpIDs) 553 : Value(Ty, SubclassID), Opcode(Info.Opcode), Flags(Info.Flags), 554 NumOperands(OpIDs.size()), BlockAddressBB(Info.BlockAddressBB), 555 SrcElemTy(Info.SrcElemTy), InRange(Info.InRange) { 556 std::uninitialized_copy(OpIDs.begin(), OpIDs.end(), 557 getTrailingObjects<unsigned>()); 558 } 559 560 BitcodeConstant &operator=(const BitcodeConstant &) = delete; 561 562 public: 563 static BitcodeConstant *create(BumpPtrAllocator &A, Type *Ty, 564 const ExtraInfo &Info, 565 ArrayRef<unsigned> OpIDs) { 566 void *Mem = A.Allocate(totalSizeToAlloc<unsigned>(OpIDs.size()), 567 alignof(BitcodeConstant)); 568 return new (Mem) BitcodeConstant(Ty, Info, OpIDs); 569 } 570 571 static bool classof(const Value *V) { return V->getValueID() == SubclassID; } 572 573 ArrayRef<unsigned> getOperandIDs() const { 574 return ArrayRef(getTrailingObjects<unsigned>(), NumOperands); 575 } 576 577 std::optional<ConstantRange> getInRange() const { 578 assert(Opcode == Instruction::GetElementPtr); 579 return InRange; 580 } 581 582 const char *getOpcodeName() const { 583 return Instruction::getOpcodeName(Opcode); 584 } 585 }; 586 587 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 588 LLVMContext &Context; 589 Module *TheModule = nullptr; 590 // Next offset to start scanning for lazy parsing of function bodies. 591 uint64_t NextUnreadBit = 0; 592 // Last function offset found in the VST. 593 uint64_t LastFunctionBlockBit = 0; 594 bool SeenValueSymbolTable = false; 595 uint64_t VSTOffset = 0; 596 597 std::vector<std::string> SectionTable; 598 std::vector<std::string> GCTable; 599 600 std::vector<Type *> TypeList; 601 /// Track type IDs of contained types. Order is the same as the contained 602 /// types of a Type*. This is used during upgrades of typed pointer IR in 603 /// opaque pointer mode. 604 DenseMap<unsigned, SmallVector<unsigned, 1>> ContainedTypeIDs; 605 /// In some cases, we need to create a type ID for a type that was not 606 /// explicitly encoded in the bitcode, or we don't know about at the current 607 /// point. For example, a global may explicitly encode the value type ID, but 608 /// not have a type ID for the pointer to value type, for which we create a 609 /// virtual type ID instead. This map stores the new type ID that was created 610 /// for the given pair of Type and contained type ID. 611 DenseMap<std::pair<Type *, unsigned>, unsigned> VirtualTypeIDs; 612 DenseMap<Function *, unsigned> FunctionTypeIDs; 613 /// Allocator for BitcodeConstants. This should come before ValueList, 614 /// because the ValueList might hold ValueHandles to these constants, so 615 /// ValueList must be destroyed before Alloc. 616 BumpPtrAllocator Alloc; 617 BitcodeReaderValueList ValueList; 618 std::optional<MetadataLoader> MDLoader; 619 std::vector<Comdat *> ComdatList; 620 DenseSet<GlobalObject *> ImplicitComdatObjects; 621 SmallVector<Instruction *, 64> InstructionList; 622 623 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 624 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 625 626 struct FunctionOperandInfo { 627 Function *F; 628 unsigned PersonalityFn; 629 unsigned Prefix; 630 unsigned Prologue; 631 }; 632 std::vector<FunctionOperandInfo> FunctionOperands; 633 634 /// The set of attributes by index. Index zero in the file is for null, and 635 /// is thus not represented here. As such all indices are off by one. 636 std::vector<AttributeList> MAttributes; 637 638 /// The set of attribute groups. 639 std::map<unsigned, AttributeList> MAttributeGroups; 640 641 /// While parsing a function body, this is a list of the basic blocks for the 642 /// function. 643 std::vector<BasicBlock*> FunctionBBs; 644 645 // When reading the module header, this list is populated with functions that 646 // have bodies later in the file. 647 std::vector<Function*> FunctionsWithBodies; 648 649 // When intrinsic functions are encountered which require upgrading they are 650 // stored here with their replacement function. 651 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 652 UpdatedIntrinsicMap UpgradedIntrinsics; 653 654 // Several operations happen after the module header has been read, but 655 // before function bodies are processed. This keeps track of whether 656 // we've done this yet. 657 bool SeenFirstFunctionBody = false; 658 659 /// When function bodies are initially scanned, this map contains info about 660 /// where to find deferred function body in the stream. 661 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 662 663 /// When Metadata block is initially scanned when parsing the module, we may 664 /// choose to defer parsing of the metadata. This vector contains info about 665 /// which Metadata blocks are deferred. 666 std::vector<uint64_t> DeferredMetadataInfo; 667 668 /// These are basic blocks forward-referenced by block addresses. They are 669 /// inserted lazily into functions when they're loaded. The basic block ID is 670 /// its index into the vector. 671 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 672 std::deque<Function *> BasicBlockFwdRefQueue; 673 674 /// These are Functions that contain BlockAddresses which refer a different 675 /// Function. When parsing the different Function, queue Functions that refer 676 /// to the different Function. Those Functions must be materialized in order 677 /// to resolve their BlockAddress constants before the different Function 678 /// gets moved into another Module. 679 std::vector<Function *> BackwardRefFunctions; 680 681 /// Indicates that we are using a new encoding for instruction operands where 682 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 683 /// instruction number, for a more compact encoding. Some instruction 684 /// operands are not relative to the instruction ID: basic block numbers, and 685 /// types. Once the old style function blocks have been phased out, we would 686 /// not need this flag. 687 bool UseRelativeIDs = false; 688 689 /// True if all functions will be materialized, negating the need to process 690 /// (e.g.) blockaddress forward references. 691 bool WillMaterializeAllForwardRefs = false; 692 693 /// Tracks whether we have seen debug intrinsics or records in this bitcode; 694 /// seeing both in a single module is currently a fatal error. 695 bool SeenDebugIntrinsic = false; 696 bool SeenDebugRecord = false; 697 698 bool StripDebugInfo = false; 699 TBAAVerifier TBAAVerifyHelper; 700 701 std::vector<std::string> BundleTags; 702 SmallVector<SyncScope::ID, 8> SSIDs; 703 704 std::optional<ValueTypeCallbackTy> ValueTypeCallback; 705 706 public: 707 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 708 StringRef ProducerIdentification, LLVMContext &Context); 709 710 Error materializeForwardReferencedFunctions(); 711 712 Error materialize(GlobalValue *GV) override; 713 Error materializeModule() override; 714 std::vector<StructType *> getIdentifiedStructTypes() const override; 715 716 /// Main interface to parsing a bitcode buffer. 717 /// \returns true if an error occurred. 718 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 719 bool IsImporting, ParserCallbacks Callbacks = {}); 720 721 static uint64_t decodeSignRotatedValue(uint64_t V); 722 723 /// Materialize any deferred Metadata block. 724 Error materializeMetadata() override; 725 726 void setStripDebugInfo() override; 727 728 private: 729 std::vector<StructType *> IdentifiedStructTypes; 730 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 731 StructType *createIdentifiedStructType(LLVMContext &Context); 732 733 static constexpr unsigned InvalidTypeID = ~0u; 734 735 Type *getTypeByID(unsigned ID); 736 Type *getPtrElementTypeByID(unsigned ID); 737 unsigned getContainedTypeID(unsigned ID, unsigned Idx = 0); 738 unsigned getVirtualTypeID(Type *Ty, ArrayRef<unsigned> ContainedTypeIDs = {}); 739 740 void callValueTypeCallback(Value *F, unsigned TypeID); 741 Expected<Value *> materializeValue(unsigned ValID, BasicBlock *InsertBB); 742 Expected<Constant *> getValueForInitializer(unsigned ID); 743 744 Value *getFnValueByID(unsigned ID, Type *Ty, unsigned TyID, 745 BasicBlock *ConstExprInsertBB) { 746 if (Ty && Ty->isMetadataTy()) 747 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 748 return ValueList.getValueFwdRef(ID, Ty, TyID, ConstExprInsertBB); 749 } 750 751 Metadata *getFnMetadataByID(unsigned ID) { 752 return MDLoader->getMetadataFwdRefOrLoad(ID); 753 } 754 755 BasicBlock *getBasicBlock(unsigned ID) const { 756 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 757 return FunctionBBs[ID]; 758 } 759 760 AttributeList getAttributes(unsigned i) const { 761 if (i-1 < MAttributes.size()) 762 return MAttributes[i-1]; 763 return AttributeList(); 764 } 765 766 /// Read a value/type pair out of the specified record from slot 'Slot'. 767 /// Increment Slot past the number of slots used in the record. Return true on 768 /// failure. 769 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 770 unsigned InstNum, Value *&ResVal, unsigned &TypeID, 771 BasicBlock *ConstExprInsertBB) { 772 if (Slot == Record.size()) return true; 773 unsigned ValNo = (unsigned)Record[Slot++]; 774 // Adjust the ValNo, if it was encoded relative to the InstNum. 775 if (UseRelativeIDs) 776 ValNo = InstNum - ValNo; 777 if (ValNo < InstNum) { 778 // If this is not a forward reference, just return the value we already 779 // have. 780 TypeID = ValueList.getTypeID(ValNo); 781 ResVal = getFnValueByID(ValNo, nullptr, TypeID, ConstExprInsertBB); 782 assert((!ResVal || ResVal->getType() == getTypeByID(TypeID)) && 783 "Incorrect type ID stored for value"); 784 return ResVal == nullptr; 785 } 786 if (Slot == Record.size()) 787 return true; 788 789 TypeID = (unsigned)Record[Slot++]; 790 ResVal = getFnValueByID(ValNo, getTypeByID(TypeID), TypeID, 791 ConstExprInsertBB); 792 return ResVal == nullptr; 793 } 794 795 bool getValueOrMetadata(const SmallVectorImpl<uint64_t> &Record, 796 unsigned &Slot, unsigned InstNum, Value *&ResVal, 797 BasicBlock *ConstExprInsertBB) { 798 if (Slot == Record.size()) 799 return true; 800 unsigned ValID = Record[Slot++]; 801 if (ValID != static_cast<unsigned>(bitc::OB_METADATA)) { 802 unsigned TypeId; 803 return getValueTypePair(Record, --Slot, InstNum, ResVal, TypeId, 804 ConstExprInsertBB); 805 } 806 if (Slot == Record.size()) 807 return true; 808 unsigned ValNo = InstNum - (unsigned)Record[Slot++]; 809 ResVal = MetadataAsValue::get(Context, getFnMetadataByID(ValNo)); 810 return false; 811 } 812 813 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 814 /// past the number of slots used by the value in the record. Return true if 815 /// there is an error. 816 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 817 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 818 BasicBlock *ConstExprInsertBB) { 819 if (getValue(Record, Slot, InstNum, Ty, TyID, ResVal, ConstExprInsertBB)) 820 return true; 821 // All values currently take a single record slot. 822 ++Slot; 823 return false; 824 } 825 826 /// Like popValue, but does not increment the Slot number. 827 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 828 unsigned InstNum, Type *Ty, unsigned TyID, Value *&ResVal, 829 BasicBlock *ConstExprInsertBB) { 830 ResVal = getValue(Record, Slot, InstNum, Ty, TyID, ConstExprInsertBB); 831 return ResVal == nullptr; 832 } 833 834 /// Version of getValue that returns ResVal directly, or 0 if there is an 835 /// error. 836 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 837 unsigned InstNum, Type *Ty, unsigned TyID, 838 BasicBlock *ConstExprInsertBB) { 839 if (Slot == Record.size()) return nullptr; 840 unsigned ValNo = (unsigned)Record[Slot]; 841 // Adjust the ValNo, if it was encoded relative to the InstNum. 842 if (UseRelativeIDs) 843 ValNo = InstNum - ValNo; 844 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 845 } 846 847 /// Like getValue, but decodes signed VBRs. 848 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 849 unsigned InstNum, Type *Ty, unsigned TyID, 850 BasicBlock *ConstExprInsertBB) { 851 if (Slot == Record.size()) return nullptr; 852 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 853 // Adjust the ValNo, if it was encoded relative to the InstNum. 854 if (UseRelativeIDs) 855 ValNo = InstNum - ValNo; 856 return getFnValueByID(ValNo, Ty, TyID, ConstExprInsertBB); 857 } 858 859 Expected<ConstantRange> readConstantRange(ArrayRef<uint64_t> Record, 860 unsigned &OpNum, 861 unsigned BitWidth) { 862 if (Record.size() - OpNum < 2) 863 return error("Too few records for range"); 864 if (BitWidth > 64) { 865 unsigned LowerActiveWords = Record[OpNum]; 866 unsigned UpperActiveWords = Record[OpNum++] >> 32; 867 if (Record.size() - OpNum < LowerActiveWords + UpperActiveWords) 868 return error("Too few records for range"); 869 APInt Lower = 870 readWideAPInt(ArrayRef(&Record[OpNum], LowerActiveWords), BitWidth); 871 OpNum += LowerActiveWords; 872 APInt Upper = 873 readWideAPInt(ArrayRef(&Record[OpNum], UpperActiveWords), BitWidth); 874 OpNum += UpperActiveWords; 875 return ConstantRange(Lower, Upper); 876 } else { 877 int64_t Start = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 878 int64_t End = BitcodeReader::decodeSignRotatedValue(Record[OpNum++]); 879 return ConstantRange(APInt(BitWidth, Start, true), 880 APInt(BitWidth, End, true)); 881 } 882 } 883 884 Expected<ConstantRange> 885 readBitWidthAndConstantRange(ArrayRef<uint64_t> Record, unsigned &OpNum) { 886 if (Record.size() - OpNum < 1) 887 return error("Too few records for range"); 888 unsigned BitWidth = Record[OpNum++]; 889 return readConstantRange(Record, OpNum, BitWidth); 890 } 891 892 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 893 /// corresponding argument's pointee type. Also upgrades intrinsics that now 894 /// require an elementtype attribute. 895 Error propagateAttributeTypes(CallBase *CB, ArrayRef<unsigned> ArgsTys); 896 897 /// Converts alignment exponent (i.e. power of two (or zero)) to the 898 /// corresponding alignment to use. If alignment is too large, returns 899 /// a corresponding error code. 900 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 901 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 902 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 903 ParserCallbacks Callbacks = {}); 904 905 Error parseComdatRecord(ArrayRef<uint64_t> Record); 906 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 907 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 908 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 909 ArrayRef<uint64_t> Record); 910 911 Error parseAttributeBlock(); 912 Error parseAttributeGroupBlock(); 913 Error parseTypeTable(); 914 Error parseTypeTableBody(); 915 Error parseOperandBundleTags(); 916 Error parseSyncScopeNames(); 917 918 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 919 unsigned NameIndex, Triple &TT); 920 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 921 ArrayRef<uint64_t> Record); 922 Error parseValueSymbolTable(uint64_t Offset = 0); 923 Error parseGlobalValueSymbolTable(); 924 Error parseConstants(); 925 Error rememberAndSkipFunctionBodies(); 926 Error rememberAndSkipFunctionBody(); 927 /// Save the positions of the Metadata blocks and skip parsing the blocks. 928 Error rememberAndSkipMetadata(); 929 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 930 Error parseFunctionBody(Function *F); 931 Error globalCleanup(); 932 Error resolveGlobalAndIndirectSymbolInits(); 933 Error parseUseLists(); 934 Error findFunctionInStream( 935 Function *F, 936 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 937 938 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 939 }; 940 941 /// Class to manage reading and parsing function summary index bitcode 942 /// files/sections. 943 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 944 /// The module index built during parsing. 945 ModuleSummaryIndex &TheIndex; 946 947 /// Indicates whether we have encountered a global value summary section 948 /// yet during parsing. 949 bool SeenGlobalValSummary = false; 950 951 /// Indicates whether we have already parsed the VST, used for error checking. 952 bool SeenValueSymbolTable = false; 953 954 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 955 /// Used to enable on-demand parsing of the VST. 956 uint64_t VSTOffset = 0; 957 958 // Map to save ValueId to ValueInfo association that was recorded in the 959 // ValueSymbolTable. It is used after the VST is parsed to convert 960 // call graph edges read from the function summary from referencing 961 // callees by their ValueId to using the ValueInfo instead, which is how 962 // they are recorded in the summary index being built. 963 // We save a GUID which refers to the same global as the ValueInfo, but 964 // ignoring the linkage, i.e. for values other than local linkage they are 965 // identical (this is the second member). ValueInfo has the real GUID. 966 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 967 ValueIdToValueInfoMap; 968 969 /// Map populated during module path string table parsing, from the 970 /// module ID to a string reference owned by the index's module 971 /// path string table, used to correlate with combined index 972 /// summary records. 973 DenseMap<uint64_t, StringRef> ModuleIdMap; 974 975 /// Original source file name recorded in a bitcode record. 976 std::string SourceFileName; 977 978 /// The string identifier given to this module by the client, normally the 979 /// path to the bitcode file. 980 StringRef ModulePath; 981 982 /// Callback to ask whether a symbol is the prevailing copy when invoked 983 /// during combined index building. 984 std::function<bool(GlobalValue::GUID)> IsPrevailing; 985 986 /// Saves the stack ids from the STACK_IDS record to consult when adding stack 987 /// ids from the lists in the callsite and alloc entries to the index. 988 std::vector<uint64_t> StackIds; 989 990 /// Linearized radix tree of allocation contexts. See the description above 991 /// the CallStackRadixTreeBuilder class in ProfileData/MemProf.h for format. 992 std::vector<uint64_t> RadixArray; 993 994 public: 995 ModuleSummaryIndexBitcodeReader( 996 BitstreamCursor Stream, StringRef Strtab, ModuleSummaryIndex &TheIndex, 997 StringRef ModulePath, 998 std::function<bool(GlobalValue::GUID)> IsPrevailing = nullptr); 999 1000 Error parseModule(); 1001 1002 private: 1003 void setValueGUID(uint64_t ValueID, StringRef ValueName, 1004 GlobalValue::LinkageTypes Linkage, 1005 StringRef SourceFileName); 1006 Error parseValueSymbolTable( 1007 uint64_t Offset, 1008 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 1009 SmallVector<ValueInfo, 0> makeRefList(ArrayRef<uint64_t> Record); 1010 SmallVector<FunctionSummary::EdgeTy, 0> 1011 makeCallList(ArrayRef<uint64_t> Record, bool IsOldProfileFormat, 1012 bool HasProfile, bool HasRelBF); 1013 Error parseEntireSummary(unsigned ID); 1014 Error parseModuleStringTable(); 1015 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 1016 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 1017 TypeIdCompatibleVtableInfo &TypeId); 1018 std::vector<FunctionSummary::ParamAccess> 1019 parseParamAccesses(ArrayRef<uint64_t> Record); 1020 SmallVector<unsigned> parseAllocInfoContext(ArrayRef<uint64_t> Record, 1021 unsigned &I); 1022 1023 template <bool AllowNullValueInfo = false> 1024 std::pair<ValueInfo, GlobalValue::GUID> 1025 getValueInfoFromValueId(unsigned ValueId); 1026 1027 void addThisModule(); 1028 ModuleSummaryIndex::ModuleInfo *getThisModule(); 1029 }; 1030 1031 } // end anonymous namespace 1032 1033 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 1034 Error Err) { 1035 if (Err) { 1036 std::error_code EC; 1037 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 1038 EC = EIB.convertToErrorCode(); 1039 Ctx.emitError(EIB.message()); 1040 }); 1041 return EC; 1042 } 1043 return std::error_code(); 1044 } 1045 1046 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 1047 StringRef ProducerIdentification, 1048 LLVMContext &Context) 1049 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 1050 ValueList(this->Stream.SizeInBytes(), 1051 [this](unsigned ValID, BasicBlock *InsertBB) { 1052 return materializeValue(ValID, InsertBB); 1053 }) { 1054 this->ProducerIdentification = std::string(ProducerIdentification); 1055 } 1056 1057 Error BitcodeReader::materializeForwardReferencedFunctions() { 1058 if (WillMaterializeAllForwardRefs) 1059 return Error::success(); 1060 1061 // Prevent recursion. 1062 WillMaterializeAllForwardRefs = true; 1063 1064 while (!BasicBlockFwdRefQueue.empty()) { 1065 Function *F = BasicBlockFwdRefQueue.front(); 1066 BasicBlockFwdRefQueue.pop_front(); 1067 assert(F && "Expected valid function"); 1068 if (!BasicBlockFwdRefs.count(F)) 1069 // Already materialized. 1070 continue; 1071 1072 // Check for a function that isn't materializable to prevent an infinite 1073 // loop. When parsing a blockaddress stored in a global variable, there 1074 // isn't a trivial way to check if a function will have a body without a 1075 // linear search through FunctionsWithBodies, so just check it here. 1076 if (!F->isMaterializable()) 1077 return error("Never resolved function from blockaddress"); 1078 1079 // Try to materialize F. 1080 if (Error Err = materialize(F)) 1081 return Err; 1082 } 1083 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 1084 1085 for (Function *F : BackwardRefFunctions) 1086 if (Error Err = materialize(F)) 1087 return Err; 1088 BackwardRefFunctions.clear(); 1089 1090 // Reset state. 1091 WillMaterializeAllForwardRefs = false; 1092 return Error::success(); 1093 } 1094 1095 //===----------------------------------------------------------------------===// 1096 // Helper functions to implement forward reference resolution, etc. 1097 //===----------------------------------------------------------------------===// 1098 1099 static bool hasImplicitComdat(size_t Val) { 1100 switch (Val) { 1101 default: 1102 return false; 1103 case 1: // Old WeakAnyLinkage 1104 case 4: // Old LinkOnceAnyLinkage 1105 case 10: // Old WeakODRLinkage 1106 case 11: // Old LinkOnceODRLinkage 1107 return true; 1108 } 1109 } 1110 1111 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 1112 switch (Val) { 1113 default: // Map unknown/new linkages to external 1114 case 0: 1115 return GlobalValue::ExternalLinkage; 1116 case 2: 1117 return GlobalValue::AppendingLinkage; 1118 case 3: 1119 return GlobalValue::InternalLinkage; 1120 case 5: 1121 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 1122 case 6: 1123 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 1124 case 7: 1125 return GlobalValue::ExternalWeakLinkage; 1126 case 8: 1127 return GlobalValue::CommonLinkage; 1128 case 9: 1129 return GlobalValue::PrivateLinkage; 1130 case 12: 1131 return GlobalValue::AvailableExternallyLinkage; 1132 case 13: 1133 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 1134 case 14: 1135 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 1136 case 15: 1137 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 1138 case 1: // Old value with implicit comdat. 1139 case 16: 1140 return GlobalValue::WeakAnyLinkage; 1141 case 10: // Old value with implicit comdat. 1142 case 17: 1143 return GlobalValue::WeakODRLinkage; 1144 case 4: // Old value with implicit comdat. 1145 case 18: 1146 return GlobalValue::LinkOnceAnyLinkage; 1147 case 11: // Old value with implicit comdat. 1148 case 19: 1149 return GlobalValue::LinkOnceODRLinkage; 1150 } 1151 } 1152 1153 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 1154 FunctionSummary::FFlags Flags; 1155 Flags.ReadNone = RawFlags & 0x1; 1156 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 1157 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 1158 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 1159 Flags.NoInline = (RawFlags >> 4) & 0x1; 1160 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 1161 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 1162 Flags.MayThrow = (RawFlags >> 7) & 0x1; 1163 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 1164 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 1165 return Flags; 1166 } 1167 1168 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 1169 // 1170 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 1171 // visibility: [8, 10). 1172 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 1173 uint64_t Version) { 1174 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 1175 // like getDecodedLinkage() above. Any future change to the linkage enum and 1176 // to getDecodedLinkage() will need to be taken into account here as above. 1177 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 1178 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 1179 auto IK = GlobalValueSummary::ImportKind((RawFlags >> 10) & 1); // 1 bit 1180 RawFlags = RawFlags >> 4; 1181 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 1182 // The Live flag wasn't introduced until version 3. For dead stripping 1183 // to work correctly on earlier versions, we must conservatively treat all 1184 // values as live. 1185 bool Live = (RawFlags & 0x2) || Version < 3; 1186 bool Local = (RawFlags & 0x4); 1187 bool AutoHide = (RawFlags & 0x8); 1188 1189 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 1190 Live, Local, AutoHide, IK); 1191 } 1192 1193 // Decode the flags for GlobalVariable in the summary 1194 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 1195 return GlobalVarSummary::GVarFlags( 1196 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 1197 (RawFlags & 0x4) ? true : false, 1198 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1199 } 1200 1201 static std::pair<CalleeInfo::HotnessType, bool> 1202 getDecodedHotnessCallEdgeInfo(uint64_t RawFlags) { 1203 CalleeInfo::HotnessType Hotness = 1204 static_cast<CalleeInfo::HotnessType>(RawFlags & 0x7); // 3 bits 1205 bool HasTailCall = (RawFlags & 0x8); // 1 bit 1206 return {Hotness, HasTailCall}; 1207 } 1208 1209 static void getDecodedRelBFCallEdgeInfo(uint64_t RawFlags, uint64_t &RelBF, 1210 bool &HasTailCall) { 1211 static constexpr uint64_t RelBlockFreqMask = 1212 (1 << CalleeInfo::RelBlockFreqBits) - 1; 1213 RelBF = RawFlags & RelBlockFreqMask; // RelBlockFreqBits bits 1214 HasTailCall = (RawFlags & (1 << CalleeInfo::RelBlockFreqBits)); // 1 bit 1215 } 1216 1217 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1218 switch (Val) { 1219 default: // Map unknown visibilities to default. 1220 case 0: return GlobalValue::DefaultVisibility; 1221 case 1: return GlobalValue::HiddenVisibility; 1222 case 2: return GlobalValue::ProtectedVisibility; 1223 } 1224 } 1225 1226 static GlobalValue::DLLStorageClassTypes 1227 getDecodedDLLStorageClass(unsigned Val) { 1228 switch (Val) { 1229 default: // Map unknown values to default. 1230 case 0: return GlobalValue::DefaultStorageClass; 1231 case 1: return GlobalValue::DLLImportStorageClass; 1232 case 2: return GlobalValue::DLLExportStorageClass; 1233 } 1234 } 1235 1236 static bool getDecodedDSOLocal(unsigned Val) { 1237 switch(Val) { 1238 default: // Map unknown values to preemptable. 1239 case 0: return false; 1240 case 1: return true; 1241 } 1242 } 1243 1244 static std::optional<CodeModel::Model> getDecodedCodeModel(unsigned Val) { 1245 switch (Val) { 1246 case 1: 1247 return CodeModel::Tiny; 1248 case 2: 1249 return CodeModel::Small; 1250 case 3: 1251 return CodeModel::Kernel; 1252 case 4: 1253 return CodeModel::Medium; 1254 case 5: 1255 return CodeModel::Large; 1256 } 1257 1258 return {}; 1259 } 1260 1261 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1262 switch (Val) { 1263 case 0: return GlobalVariable::NotThreadLocal; 1264 default: // Map unknown non-zero value to general dynamic. 1265 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1266 case 2: return GlobalVariable::LocalDynamicTLSModel; 1267 case 3: return GlobalVariable::InitialExecTLSModel; 1268 case 4: return GlobalVariable::LocalExecTLSModel; 1269 } 1270 } 1271 1272 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1273 switch (Val) { 1274 default: // Map unknown to UnnamedAddr::None. 1275 case 0: return GlobalVariable::UnnamedAddr::None; 1276 case 1: return GlobalVariable::UnnamedAddr::Global; 1277 case 2: return GlobalVariable::UnnamedAddr::Local; 1278 } 1279 } 1280 1281 static int getDecodedCastOpcode(unsigned Val) { 1282 switch (Val) { 1283 default: return -1; 1284 case bitc::CAST_TRUNC : return Instruction::Trunc; 1285 case bitc::CAST_ZEXT : return Instruction::ZExt; 1286 case bitc::CAST_SEXT : return Instruction::SExt; 1287 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1288 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1289 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1290 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1291 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1292 case bitc::CAST_FPEXT : return Instruction::FPExt; 1293 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1294 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1295 case bitc::CAST_BITCAST : return Instruction::BitCast; 1296 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1297 } 1298 } 1299 1300 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1301 bool IsFP = Ty->isFPOrFPVectorTy(); 1302 // UnOps are only valid for int/fp or vector of int/fp types 1303 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1304 return -1; 1305 1306 switch (Val) { 1307 default: 1308 return -1; 1309 case bitc::UNOP_FNEG: 1310 return IsFP ? Instruction::FNeg : -1; 1311 } 1312 } 1313 1314 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1315 bool IsFP = Ty->isFPOrFPVectorTy(); 1316 // BinOps are only valid for int/fp or vector of int/fp types 1317 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1318 return -1; 1319 1320 switch (Val) { 1321 default: 1322 return -1; 1323 case bitc::BINOP_ADD: 1324 return IsFP ? Instruction::FAdd : Instruction::Add; 1325 case bitc::BINOP_SUB: 1326 return IsFP ? Instruction::FSub : Instruction::Sub; 1327 case bitc::BINOP_MUL: 1328 return IsFP ? Instruction::FMul : Instruction::Mul; 1329 case bitc::BINOP_UDIV: 1330 return IsFP ? -1 : Instruction::UDiv; 1331 case bitc::BINOP_SDIV: 1332 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1333 case bitc::BINOP_UREM: 1334 return IsFP ? -1 : Instruction::URem; 1335 case bitc::BINOP_SREM: 1336 return IsFP ? Instruction::FRem : Instruction::SRem; 1337 case bitc::BINOP_SHL: 1338 return IsFP ? -1 : Instruction::Shl; 1339 case bitc::BINOP_LSHR: 1340 return IsFP ? -1 : Instruction::LShr; 1341 case bitc::BINOP_ASHR: 1342 return IsFP ? -1 : Instruction::AShr; 1343 case bitc::BINOP_AND: 1344 return IsFP ? -1 : Instruction::And; 1345 case bitc::BINOP_OR: 1346 return IsFP ? -1 : Instruction::Or; 1347 case bitc::BINOP_XOR: 1348 return IsFP ? -1 : Instruction::Xor; 1349 } 1350 } 1351 1352 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1353 switch (Val) { 1354 default: return AtomicRMWInst::BAD_BINOP; 1355 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1356 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1357 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1358 case bitc::RMW_AND: return AtomicRMWInst::And; 1359 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1360 case bitc::RMW_OR: return AtomicRMWInst::Or; 1361 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1362 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1363 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1364 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1365 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1366 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1367 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1368 case bitc::RMW_FMAX: return AtomicRMWInst::FMax; 1369 case bitc::RMW_FMIN: return AtomicRMWInst::FMin; 1370 case bitc::RMW_UINC_WRAP: 1371 return AtomicRMWInst::UIncWrap; 1372 case bitc::RMW_UDEC_WRAP: 1373 return AtomicRMWInst::UDecWrap; 1374 case bitc::RMW_USUB_COND: 1375 return AtomicRMWInst::USubCond; 1376 case bitc::RMW_USUB_SAT: 1377 return AtomicRMWInst::USubSat; 1378 } 1379 } 1380 1381 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1382 switch (Val) { 1383 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1384 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1385 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1386 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1387 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1388 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1389 default: // Map unknown orderings to sequentially-consistent. 1390 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1391 } 1392 } 1393 1394 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1395 switch (Val) { 1396 default: // Map unknown selection kinds to any. 1397 case bitc::COMDAT_SELECTION_KIND_ANY: 1398 return Comdat::Any; 1399 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1400 return Comdat::ExactMatch; 1401 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1402 return Comdat::Largest; 1403 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1404 return Comdat::NoDeduplicate; 1405 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1406 return Comdat::SameSize; 1407 } 1408 } 1409 1410 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1411 FastMathFlags FMF; 1412 if (0 != (Val & bitc::UnsafeAlgebra)) 1413 FMF.setFast(); 1414 if (0 != (Val & bitc::AllowReassoc)) 1415 FMF.setAllowReassoc(); 1416 if (0 != (Val & bitc::NoNaNs)) 1417 FMF.setNoNaNs(); 1418 if (0 != (Val & bitc::NoInfs)) 1419 FMF.setNoInfs(); 1420 if (0 != (Val & bitc::NoSignedZeros)) 1421 FMF.setNoSignedZeros(); 1422 if (0 != (Val & bitc::AllowReciprocal)) 1423 FMF.setAllowReciprocal(); 1424 if (0 != (Val & bitc::AllowContract)) 1425 FMF.setAllowContract(true); 1426 if (0 != (Val & bitc::ApproxFunc)) 1427 FMF.setApproxFunc(); 1428 return FMF; 1429 } 1430 1431 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1432 // A GlobalValue with local linkage cannot have a DLL storage class. 1433 if (GV->hasLocalLinkage()) 1434 return; 1435 switch (Val) { 1436 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1437 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1438 } 1439 } 1440 1441 Type *BitcodeReader::getTypeByID(unsigned ID) { 1442 // The type table size is always specified correctly. 1443 if (ID >= TypeList.size()) 1444 return nullptr; 1445 1446 if (Type *Ty = TypeList[ID]) 1447 return Ty; 1448 1449 // If we have a forward reference, the only possible case is when it is to a 1450 // named struct. Just create a placeholder for now. 1451 return TypeList[ID] = createIdentifiedStructType(Context); 1452 } 1453 1454 unsigned BitcodeReader::getContainedTypeID(unsigned ID, unsigned Idx) { 1455 auto It = ContainedTypeIDs.find(ID); 1456 if (It == ContainedTypeIDs.end()) 1457 return InvalidTypeID; 1458 1459 if (Idx >= It->second.size()) 1460 return InvalidTypeID; 1461 1462 return It->second[Idx]; 1463 } 1464 1465 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1466 if (ID >= TypeList.size()) 1467 return nullptr; 1468 1469 Type *Ty = TypeList[ID]; 1470 if (!Ty->isPointerTy()) 1471 return nullptr; 1472 1473 return getTypeByID(getContainedTypeID(ID, 0)); 1474 } 1475 1476 unsigned BitcodeReader::getVirtualTypeID(Type *Ty, 1477 ArrayRef<unsigned> ChildTypeIDs) { 1478 unsigned ChildTypeID = ChildTypeIDs.empty() ? InvalidTypeID : ChildTypeIDs[0]; 1479 auto CacheKey = std::make_pair(Ty, ChildTypeID); 1480 auto It = VirtualTypeIDs.find(CacheKey); 1481 if (It != VirtualTypeIDs.end()) { 1482 // The cmpxchg return value is the only place we need more than one 1483 // contained type ID, however the second one will always be the same (i1), 1484 // so we don't need to include it in the cache key. This asserts that the 1485 // contained types are indeed as expected and there are no collisions. 1486 assert((ChildTypeIDs.empty() || 1487 ContainedTypeIDs[It->second] == ChildTypeIDs) && 1488 "Incorrect cached contained type IDs"); 1489 return It->second; 1490 } 1491 1492 unsigned TypeID = TypeList.size(); 1493 TypeList.push_back(Ty); 1494 if (!ChildTypeIDs.empty()) 1495 append_range(ContainedTypeIDs[TypeID], ChildTypeIDs); 1496 VirtualTypeIDs.insert({CacheKey, TypeID}); 1497 return TypeID; 1498 } 1499 1500 static GEPNoWrapFlags toGEPNoWrapFlags(uint64_t Flags) { 1501 GEPNoWrapFlags NW; 1502 if (Flags & (1 << bitc::GEP_INBOUNDS)) 1503 NW |= GEPNoWrapFlags::inBounds(); 1504 if (Flags & (1 << bitc::GEP_NUSW)) 1505 NW |= GEPNoWrapFlags::noUnsignedSignedWrap(); 1506 if (Flags & (1 << bitc::GEP_NUW)) 1507 NW |= GEPNoWrapFlags::noUnsignedWrap(); 1508 return NW; 1509 } 1510 1511 static bool isConstExprSupported(const BitcodeConstant *BC) { 1512 uint8_t Opcode = BC->Opcode; 1513 1514 // These are not real constant expressions, always consider them supported. 1515 if (Opcode >= BitcodeConstant::FirstSpecialOpcode) 1516 return true; 1517 1518 // If -expand-constant-exprs is set, we want to consider all expressions 1519 // as unsupported. 1520 if (ExpandConstantExprs) 1521 return false; 1522 1523 if (Instruction::isBinaryOp(Opcode)) 1524 return ConstantExpr::isSupportedBinOp(Opcode); 1525 1526 if (Instruction::isCast(Opcode)) 1527 return ConstantExpr::isSupportedCastOp(Opcode); 1528 1529 if (Opcode == Instruction::GetElementPtr) 1530 return ConstantExpr::isSupportedGetElementPtr(BC->SrcElemTy); 1531 1532 switch (Opcode) { 1533 case Instruction::FNeg: 1534 case Instruction::Select: 1535 case Instruction::ICmp: 1536 case Instruction::FCmp: 1537 return false; 1538 default: 1539 return true; 1540 } 1541 } 1542 1543 Expected<Value *> BitcodeReader::materializeValue(unsigned StartValID, 1544 BasicBlock *InsertBB) { 1545 // Quickly handle the case where there is no BitcodeConstant to resolve. 1546 if (StartValID < ValueList.size() && ValueList[StartValID] && 1547 !isa<BitcodeConstant>(ValueList[StartValID])) 1548 return ValueList[StartValID]; 1549 1550 SmallDenseMap<unsigned, Value *> MaterializedValues; 1551 SmallVector<unsigned> Worklist; 1552 Worklist.push_back(StartValID); 1553 while (!Worklist.empty()) { 1554 unsigned ValID = Worklist.back(); 1555 if (MaterializedValues.count(ValID)) { 1556 // Duplicate expression that was already handled. 1557 Worklist.pop_back(); 1558 continue; 1559 } 1560 1561 if (ValID >= ValueList.size() || !ValueList[ValID]) 1562 return error("Invalid value ID"); 1563 1564 Value *V = ValueList[ValID]; 1565 auto *BC = dyn_cast<BitcodeConstant>(V); 1566 if (!BC) { 1567 MaterializedValues.insert({ValID, V}); 1568 Worklist.pop_back(); 1569 continue; 1570 } 1571 1572 // Iterate in reverse, so values will get popped from the worklist in 1573 // expected order. 1574 SmallVector<Value *> Ops; 1575 for (unsigned OpID : reverse(BC->getOperandIDs())) { 1576 auto It = MaterializedValues.find(OpID); 1577 if (It != MaterializedValues.end()) 1578 Ops.push_back(It->second); 1579 else 1580 Worklist.push_back(OpID); 1581 } 1582 1583 // Some expressions have not been resolved yet, handle them first and then 1584 // revisit this one. 1585 if (Ops.size() != BC->getOperandIDs().size()) 1586 continue; 1587 std::reverse(Ops.begin(), Ops.end()); 1588 1589 SmallVector<Constant *> ConstOps; 1590 for (Value *Op : Ops) 1591 if (auto *C = dyn_cast<Constant>(Op)) 1592 ConstOps.push_back(C); 1593 1594 // Materialize as constant expression if possible. 1595 if (isConstExprSupported(BC) && ConstOps.size() == Ops.size()) { 1596 Constant *C; 1597 if (Instruction::isCast(BC->Opcode)) { 1598 C = UpgradeBitCastExpr(BC->Opcode, ConstOps[0], BC->getType()); 1599 if (!C) 1600 C = ConstantExpr::getCast(BC->Opcode, ConstOps[0], BC->getType()); 1601 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1602 C = ConstantExpr::get(BC->Opcode, ConstOps[0], ConstOps[1], BC->Flags); 1603 } else { 1604 switch (BC->Opcode) { 1605 case BitcodeConstant::ConstantPtrAuthOpcode: { 1606 auto *Key = dyn_cast<ConstantInt>(ConstOps[1]); 1607 if (!Key) 1608 return error("ptrauth key operand must be ConstantInt"); 1609 1610 auto *Disc = dyn_cast<ConstantInt>(ConstOps[2]); 1611 if (!Disc) 1612 return error("ptrauth disc operand must be ConstantInt"); 1613 1614 C = ConstantPtrAuth::get(ConstOps[0], Key, Disc, ConstOps[3]); 1615 break; 1616 } 1617 case BitcodeConstant::NoCFIOpcode: { 1618 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1619 if (!GV) 1620 return error("no_cfi operand must be GlobalValue"); 1621 C = NoCFIValue::get(GV); 1622 break; 1623 } 1624 case BitcodeConstant::DSOLocalEquivalentOpcode: { 1625 auto *GV = dyn_cast<GlobalValue>(ConstOps[0]); 1626 if (!GV) 1627 return error("dso_local operand must be GlobalValue"); 1628 C = DSOLocalEquivalent::get(GV); 1629 break; 1630 } 1631 case BitcodeConstant::BlockAddressOpcode: { 1632 Function *Fn = dyn_cast<Function>(ConstOps[0]); 1633 if (!Fn) 1634 return error("blockaddress operand must be a function"); 1635 1636 // If the function is already parsed we can insert the block address 1637 // right away. 1638 BasicBlock *BB; 1639 unsigned BBID = BC->BlockAddressBB; 1640 if (!BBID) 1641 // Invalid reference to entry block. 1642 return error("Invalid ID"); 1643 if (!Fn->empty()) { 1644 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1645 for (size_t I = 0, E = BBID; I != E; ++I) { 1646 if (BBI == BBE) 1647 return error("Invalid ID"); 1648 ++BBI; 1649 } 1650 BB = &*BBI; 1651 } else { 1652 // Otherwise insert a placeholder and remember it so it can be 1653 // inserted when the function is parsed. 1654 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1655 if (FwdBBs.empty()) 1656 BasicBlockFwdRefQueue.push_back(Fn); 1657 if (FwdBBs.size() < BBID + 1) 1658 FwdBBs.resize(BBID + 1); 1659 if (!FwdBBs[BBID]) 1660 FwdBBs[BBID] = BasicBlock::Create(Context); 1661 BB = FwdBBs[BBID]; 1662 } 1663 C = BlockAddress::get(Fn, BB); 1664 break; 1665 } 1666 case BitcodeConstant::ConstantStructOpcode: { 1667 auto *ST = cast<StructType>(BC->getType()); 1668 if (ST->getNumElements() != ConstOps.size()) 1669 return error("Invalid number of elements in struct initializer"); 1670 1671 for (const auto [Ty, Op] : zip(ST->elements(), ConstOps)) 1672 if (Op->getType() != Ty) 1673 return error("Incorrect type in struct initializer"); 1674 1675 C = ConstantStruct::get(ST, ConstOps); 1676 break; 1677 } 1678 case BitcodeConstant::ConstantArrayOpcode: { 1679 auto *AT = cast<ArrayType>(BC->getType()); 1680 if (AT->getNumElements() != ConstOps.size()) 1681 return error("Invalid number of elements in array initializer"); 1682 1683 for (Constant *Op : ConstOps) 1684 if (Op->getType() != AT->getElementType()) 1685 return error("Incorrect type in array initializer"); 1686 1687 C = ConstantArray::get(AT, ConstOps); 1688 break; 1689 } 1690 case BitcodeConstant::ConstantVectorOpcode: { 1691 auto *VT = cast<FixedVectorType>(BC->getType()); 1692 if (VT->getNumElements() != ConstOps.size()) 1693 return error("Invalid number of elements in vector initializer"); 1694 1695 for (Constant *Op : ConstOps) 1696 if (Op->getType() != VT->getElementType()) 1697 return error("Incorrect type in vector initializer"); 1698 1699 C = ConstantVector::get(ConstOps); 1700 break; 1701 } 1702 case Instruction::GetElementPtr: 1703 C = ConstantExpr::getGetElementPtr( 1704 BC->SrcElemTy, ConstOps[0], ArrayRef(ConstOps).drop_front(), 1705 toGEPNoWrapFlags(BC->Flags), BC->getInRange()); 1706 break; 1707 case Instruction::ExtractElement: 1708 C = ConstantExpr::getExtractElement(ConstOps[0], ConstOps[1]); 1709 break; 1710 case Instruction::InsertElement: 1711 C = ConstantExpr::getInsertElement(ConstOps[0], ConstOps[1], 1712 ConstOps[2]); 1713 break; 1714 case Instruction::ShuffleVector: { 1715 SmallVector<int, 16> Mask; 1716 ShuffleVectorInst::getShuffleMask(ConstOps[2], Mask); 1717 C = ConstantExpr::getShuffleVector(ConstOps[0], ConstOps[1], Mask); 1718 break; 1719 } 1720 default: 1721 llvm_unreachable("Unhandled bitcode constant"); 1722 } 1723 } 1724 1725 // Cache resolved constant. 1726 ValueList.replaceValueWithoutRAUW(ValID, C); 1727 MaterializedValues.insert({ValID, C}); 1728 Worklist.pop_back(); 1729 continue; 1730 } 1731 1732 if (!InsertBB) 1733 return error(Twine("Value referenced by initializer is an unsupported " 1734 "constant expression of type ") + 1735 BC->getOpcodeName()); 1736 1737 // Materialize as instructions if necessary. 1738 Instruction *I; 1739 if (Instruction::isCast(BC->Opcode)) { 1740 I = CastInst::Create((Instruction::CastOps)BC->Opcode, Ops[0], 1741 BC->getType(), "constexpr", InsertBB); 1742 } else if (Instruction::isUnaryOp(BC->Opcode)) { 1743 I = UnaryOperator::Create((Instruction::UnaryOps)BC->Opcode, Ops[0], 1744 "constexpr", InsertBB); 1745 } else if (Instruction::isBinaryOp(BC->Opcode)) { 1746 I = BinaryOperator::Create((Instruction::BinaryOps)BC->Opcode, Ops[0], 1747 Ops[1], "constexpr", InsertBB); 1748 if (isa<OverflowingBinaryOperator>(I)) { 1749 if (BC->Flags & OverflowingBinaryOperator::NoSignedWrap) 1750 I->setHasNoSignedWrap(); 1751 if (BC->Flags & OverflowingBinaryOperator::NoUnsignedWrap) 1752 I->setHasNoUnsignedWrap(); 1753 } 1754 if (isa<PossiblyExactOperator>(I) && 1755 (BC->Flags & PossiblyExactOperator::IsExact)) 1756 I->setIsExact(); 1757 } else { 1758 switch (BC->Opcode) { 1759 case BitcodeConstant::ConstantVectorOpcode: { 1760 Type *IdxTy = Type::getInt32Ty(BC->getContext()); 1761 Value *V = PoisonValue::get(BC->getType()); 1762 for (auto Pair : enumerate(Ops)) { 1763 Value *Idx = ConstantInt::get(IdxTy, Pair.index()); 1764 V = InsertElementInst::Create(V, Pair.value(), Idx, "constexpr.ins", 1765 InsertBB); 1766 } 1767 I = cast<Instruction>(V); 1768 break; 1769 } 1770 case BitcodeConstant::ConstantStructOpcode: 1771 case BitcodeConstant::ConstantArrayOpcode: { 1772 Value *V = PoisonValue::get(BC->getType()); 1773 for (auto Pair : enumerate(Ops)) 1774 V = InsertValueInst::Create(V, Pair.value(), Pair.index(), 1775 "constexpr.ins", InsertBB); 1776 I = cast<Instruction>(V); 1777 break; 1778 } 1779 case Instruction::ICmp: 1780 case Instruction::FCmp: 1781 I = CmpInst::Create((Instruction::OtherOps)BC->Opcode, 1782 (CmpInst::Predicate)BC->Flags, Ops[0], Ops[1], 1783 "constexpr", InsertBB); 1784 break; 1785 case Instruction::GetElementPtr: 1786 I = GetElementPtrInst::Create(BC->SrcElemTy, Ops[0], 1787 ArrayRef(Ops).drop_front(), "constexpr", 1788 InsertBB); 1789 cast<GetElementPtrInst>(I)->setNoWrapFlags(toGEPNoWrapFlags(BC->Flags)); 1790 break; 1791 case Instruction::Select: 1792 I = SelectInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", InsertBB); 1793 break; 1794 case Instruction::ExtractElement: 1795 I = ExtractElementInst::Create(Ops[0], Ops[1], "constexpr", InsertBB); 1796 break; 1797 case Instruction::InsertElement: 1798 I = InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "constexpr", 1799 InsertBB); 1800 break; 1801 case Instruction::ShuffleVector: 1802 I = new ShuffleVectorInst(Ops[0], Ops[1], Ops[2], "constexpr", 1803 InsertBB); 1804 break; 1805 default: 1806 llvm_unreachable("Unhandled bitcode constant"); 1807 } 1808 } 1809 1810 MaterializedValues.insert({ValID, I}); 1811 Worklist.pop_back(); 1812 } 1813 1814 return MaterializedValues[StartValID]; 1815 } 1816 1817 Expected<Constant *> BitcodeReader::getValueForInitializer(unsigned ID) { 1818 Expected<Value *> MaybeV = materializeValue(ID, /* InsertBB */ nullptr); 1819 if (!MaybeV) 1820 return MaybeV.takeError(); 1821 1822 // Result must be Constant if InsertBB is nullptr. 1823 return cast<Constant>(MaybeV.get()); 1824 } 1825 1826 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1827 StringRef Name) { 1828 auto *Ret = StructType::create(Context, Name); 1829 IdentifiedStructTypes.push_back(Ret); 1830 return Ret; 1831 } 1832 1833 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1834 auto *Ret = StructType::create(Context); 1835 IdentifiedStructTypes.push_back(Ret); 1836 return Ret; 1837 } 1838 1839 //===----------------------------------------------------------------------===// 1840 // Functions for parsing blocks from the bitcode file 1841 //===----------------------------------------------------------------------===// 1842 1843 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1844 switch (Val) { 1845 case Attribute::EndAttrKinds: 1846 case Attribute::EmptyKey: 1847 case Attribute::TombstoneKey: 1848 llvm_unreachable("Synthetic enumerators which should never get here"); 1849 1850 case Attribute::None: return 0; 1851 case Attribute::ZExt: return 1 << 0; 1852 case Attribute::SExt: return 1 << 1; 1853 case Attribute::NoReturn: return 1 << 2; 1854 case Attribute::InReg: return 1 << 3; 1855 case Attribute::StructRet: return 1 << 4; 1856 case Attribute::NoUnwind: return 1 << 5; 1857 case Attribute::NoAlias: return 1 << 6; 1858 case Attribute::ByVal: return 1 << 7; 1859 case Attribute::Nest: return 1 << 8; 1860 case Attribute::ReadNone: return 1 << 9; 1861 case Attribute::ReadOnly: return 1 << 10; 1862 case Attribute::NoInline: return 1 << 11; 1863 case Attribute::AlwaysInline: return 1 << 12; 1864 case Attribute::OptimizeForSize: return 1 << 13; 1865 case Attribute::StackProtect: return 1 << 14; 1866 case Attribute::StackProtectReq: return 1 << 15; 1867 case Attribute::Alignment: return 31 << 16; 1868 // 1ULL << 21 is NoCapture, which is upgraded separately. 1869 case Attribute::NoRedZone: return 1 << 22; 1870 case Attribute::NoImplicitFloat: return 1 << 23; 1871 case Attribute::Naked: return 1 << 24; 1872 case Attribute::InlineHint: return 1 << 25; 1873 case Attribute::StackAlignment: return 7 << 26; 1874 case Attribute::ReturnsTwice: return 1 << 29; 1875 case Attribute::UWTable: return 1 << 30; 1876 case Attribute::NonLazyBind: return 1U << 31; 1877 case Attribute::SanitizeAddress: return 1ULL << 32; 1878 case Attribute::MinSize: return 1ULL << 33; 1879 case Attribute::NoDuplicate: return 1ULL << 34; 1880 case Attribute::StackProtectStrong: return 1ULL << 35; 1881 case Attribute::SanitizeThread: return 1ULL << 36; 1882 case Attribute::SanitizeMemory: return 1ULL << 37; 1883 case Attribute::NoBuiltin: return 1ULL << 38; 1884 case Attribute::Returned: return 1ULL << 39; 1885 case Attribute::Cold: return 1ULL << 40; 1886 case Attribute::Builtin: return 1ULL << 41; 1887 case Attribute::OptimizeNone: return 1ULL << 42; 1888 case Attribute::InAlloca: return 1ULL << 43; 1889 case Attribute::NonNull: return 1ULL << 44; 1890 case Attribute::JumpTable: return 1ULL << 45; 1891 case Attribute::Convergent: return 1ULL << 46; 1892 case Attribute::SafeStack: return 1ULL << 47; 1893 case Attribute::NoRecurse: return 1ULL << 48; 1894 // 1ULL << 49 is InaccessibleMemOnly, which is upgraded separately. 1895 // 1ULL << 50 is InaccessibleMemOrArgMemOnly, which is upgraded separately. 1896 case Attribute::SwiftSelf: return 1ULL << 51; 1897 case Attribute::SwiftError: return 1ULL << 52; 1898 case Attribute::WriteOnly: return 1ULL << 53; 1899 case Attribute::Speculatable: return 1ULL << 54; 1900 case Attribute::StrictFP: return 1ULL << 55; 1901 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1902 case Attribute::NoCfCheck: return 1ULL << 57; 1903 case Attribute::OptForFuzzing: return 1ULL << 58; 1904 case Attribute::ShadowCallStack: return 1ULL << 59; 1905 case Attribute::SpeculativeLoadHardening: 1906 return 1ULL << 60; 1907 case Attribute::ImmArg: 1908 return 1ULL << 61; 1909 case Attribute::WillReturn: 1910 return 1ULL << 62; 1911 case Attribute::NoFree: 1912 return 1ULL << 63; 1913 default: 1914 // Other attributes are not supported in the raw format, 1915 // as we ran out of space. 1916 return 0; 1917 } 1918 llvm_unreachable("Unsupported attribute type"); 1919 } 1920 1921 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1922 if (!Val) return; 1923 1924 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1925 I = Attribute::AttrKind(I + 1)) { 1926 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1927 if (I == Attribute::Alignment) 1928 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1929 else if (I == Attribute::StackAlignment) 1930 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1931 else if (Attribute::isTypeAttrKind(I)) 1932 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1933 else 1934 B.addAttribute(I); 1935 } 1936 } 1937 } 1938 1939 /// This fills an AttrBuilder object with the LLVM attributes that have 1940 /// been decoded from the given integer. This function must stay in sync with 1941 /// 'encodeLLVMAttributesForBitcode'. 1942 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1943 uint64_t EncodedAttrs, 1944 uint64_t AttrIdx) { 1945 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1946 // the bits above 31 down by 11 bits. 1947 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1948 assert((!Alignment || isPowerOf2_32(Alignment)) && 1949 "Alignment must be a power of two."); 1950 1951 if (Alignment) 1952 B.addAlignmentAttr(Alignment); 1953 1954 uint64_t Attrs = ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1955 (EncodedAttrs & 0xffff); 1956 1957 if (AttrIdx == AttributeList::FunctionIndex) { 1958 // Upgrade old memory attributes. 1959 MemoryEffects ME = MemoryEffects::unknown(); 1960 if (Attrs & (1ULL << 9)) { 1961 // ReadNone 1962 Attrs &= ~(1ULL << 9); 1963 ME &= MemoryEffects::none(); 1964 } 1965 if (Attrs & (1ULL << 10)) { 1966 // ReadOnly 1967 Attrs &= ~(1ULL << 10); 1968 ME &= MemoryEffects::readOnly(); 1969 } 1970 if (Attrs & (1ULL << 49)) { 1971 // InaccessibleMemOnly 1972 Attrs &= ~(1ULL << 49); 1973 ME &= MemoryEffects::inaccessibleMemOnly(); 1974 } 1975 if (Attrs & (1ULL << 50)) { 1976 // InaccessibleMemOrArgMemOnly 1977 Attrs &= ~(1ULL << 50); 1978 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 1979 } 1980 if (Attrs & (1ULL << 53)) { 1981 // WriteOnly 1982 Attrs &= ~(1ULL << 53); 1983 ME &= MemoryEffects::writeOnly(); 1984 } 1985 if (ME != MemoryEffects::unknown()) 1986 B.addMemoryAttr(ME); 1987 } 1988 1989 // Upgrade nocapture to captures(none). 1990 if (Attrs & (1ULL << 21)) { 1991 Attrs &= ~(1ULL << 21); 1992 B.addCapturesAttr(CaptureInfo::none()); 1993 } 1994 1995 addRawAttributeValue(B, Attrs); 1996 } 1997 1998 Error BitcodeReader::parseAttributeBlock() { 1999 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 2000 return Err; 2001 2002 if (!MAttributes.empty()) 2003 return error("Invalid multiple blocks"); 2004 2005 SmallVector<uint64_t, 64> Record; 2006 2007 SmallVector<AttributeList, 8> Attrs; 2008 2009 // Read all the records. 2010 while (true) { 2011 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2012 if (!MaybeEntry) 2013 return MaybeEntry.takeError(); 2014 BitstreamEntry Entry = MaybeEntry.get(); 2015 2016 switch (Entry.Kind) { 2017 case BitstreamEntry::SubBlock: // Handled for us already. 2018 case BitstreamEntry::Error: 2019 return error("Malformed block"); 2020 case BitstreamEntry::EndBlock: 2021 return Error::success(); 2022 case BitstreamEntry::Record: 2023 // The interesting case. 2024 break; 2025 } 2026 2027 // Read a record. 2028 Record.clear(); 2029 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2030 if (!MaybeRecord) 2031 return MaybeRecord.takeError(); 2032 switch (MaybeRecord.get()) { 2033 default: // Default behavior: ignore. 2034 break; 2035 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 2036 // Deprecated, but still needed to read old bitcode files. 2037 if (Record.size() & 1) 2038 return error("Invalid parameter attribute record"); 2039 2040 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 2041 AttrBuilder B(Context); 2042 decodeLLVMAttributesForBitcode(B, Record[i+1], Record[i]); 2043 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 2044 } 2045 2046 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2047 Attrs.clear(); 2048 break; 2049 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 2050 for (uint64_t Val : Record) 2051 Attrs.push_back(MAttributeGroups[Val]); 2052 2053 MAttributes.push_back(AttributeList::get(Context, Attrs)); 2054 Attrs.clear(); 2055 break; 2056 } 2057 } 2058 } 2059 2060 // Returns Attribute::None on unrecognized codes. 2061 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 2062 switch (Code) { 2063 default: 2064 return Attribute::None; 2065 case bitc::ATTR_KIND_ALIGNMENT: 2066 return Attribute::Alignment; 2067 case bitc::ATTR_KIND_ALWAYS_INLINE: 2068 return Attribute::AlwaysInline; 2069 case bitc::ATTR_KIND_BUILTIN: 2070 return Attribute::Builtin; 2071 case bitc::ATTR_KIND_BY_VAL: 2072 return Attribute::ByVal; 2073 case bitc::ATTR_KIND_IN_ALLOCA: 2074 return Attribute::InAlloca; 2075 case bitc::ATTR_KIND_COLD: 2076 return Attribute::Cold; 2077 case bitc::ATTR_KIND_CONVERGENT: 2078 return Attribute::Convergent; 2079 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 2080 return Attribute::DisableSanitizerInstrumentation; 2081 case bitc::ATTR_KIND_ELEMENTTYPE: 2082 return Attribute::ElementType; 2083 case bitc::ATTR_KIND_FNRETTHUNK_EXTERN: 2084 return Attribute::FnRetThunkExtern; 2085 case bitc::ATTR_KIND_INLINE_HINT: 2086 return Attribute::InlineHint; 2087 case bitc::ATTR_KIND_IN_REG: 2088 return Attribute::InReg; 2089 case bitc::ATTR_KIND_JUMP_TABLE: 2090 return Attribute::JumpTable; 2091 case bitc::ATTR_KIND_MEMORY: 2092 return Attribute::Memory; 2093 case bitc::ATTR_KIND_NOFPCLASS: 2094 return Attribute::NoFPClass; 2095 case bitc::ATTR_KIND_MIN_SIZE: 2096 return Attribute::MinSize; 2097 case bitc::ATTR_KIND_NAKED: 2098 return Attribute::Naked; 2099 case bitc::ATTR_KIND_NEST: 2100 return Attribute::Nest; 2101 case bitc::ATTR_KIND_NO_ALIAS: 2102 return Attribute::NoAlias; 2103 case bitc::ATTR_KIND_NO_BUILTIN: 2104 return Attribute::NoBuiltin; 2105 case bitc::ATTR_KIND_NO_CALLBACK: 2106 return Attribute::NoCallback; 2107 case bitc::ATTR_KIND_NO_DIVERGENCE_SOURCE: 2108 return Attribute::NoDivergenceSource; 2109 case bitc::ATTR_KIND_NO_DUPLICATE: 2110 return Attribute::NoDuplicate; 2111 case bitc::ATTR_KIND_NOFREE: 2112 return Attribute::NoFree; 2113 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 2114 return Attribute::NoImplicitFloat; 2115 case bitc::ATTR_KIND_NO_INLINE: 2116 return Attribute::NoInline; 2117 case bitc::ATTR_KIND_NO_RECURSE: 2118 return Attribute::NoRecurse; 2119 case bitc::ATTR_KIND_NO_MERGE: 2120 return Attribute::NoMerge; 2121 case bitc::ATTR_KIND_NON_LAZY_BIND: 2122 return Attribute::NonLazyBind; 2123 case bitc::ATTR_KIND_NON_NULL: 2124 return Attribute::NonNull; 2125 case bitc::ATTR_KIND_DEREFERENCEABLE: 2126 return Attribute::Dereferenceable; 2127 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 2128 return Attribute::DereferenceableOrNull; 2129 case bitc::ATTR_KIND_ALLOC_ALIGN: 2130 return Attribute::AllocAlign; 2131 case bitc::ATTR_KIND_ALLOC_KIND: 2132 return Attribute::AllocKind; 2133 case bitc::ATTR_KIND_ALLOC_SIZE: 2134 return Attribute::AllocSize; 2135 case bitc::ATTR_KIND_ALLOCATED_POINTER: 2136 return Attribute::AllocatedPointer; 2137 case bitc::ATTR_KIND_NO_RED_ZONE: 2138 return Attribute::NoRedZone; 2139 case bitc::ATTR_KIND_NO_RETURN: 2140 return Attribute::NoReturn; 2141 case bitc::ATTR_KIND_NOSYNC: 2142 return Attribute::NoSync; 2143 case bitc::ATTR_KIND_NOCF_CHECK: 2144 return Attribute::NoCfCheck; 2145 case bitc::ATTR_KIND_NO_PROFILE: 2146 return Attribute::NoProfile; 2147 case bitc::ATTR_KIND_SKIP_PROFILE: 2148 return Attribute::SkipProfile; 2149 case bitc::ATTR_KIND_NO_UNWIND: 2150 return Attribute::NoUnwind; 2151 case bitc::ATTR_KIND_NO_SANITIZE_BOUNDS: 2152 return Attribute::NoSanitizeBounds; 2153 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 2154 return Attribute::NoSanitizeCoverage; 2155 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 2156 return Attribute::NullPointerIsValid; 2157 case bitc::ATTR_KIND_OPTIMIZE_FOR_DEBUGGING: 2158 return Attribute::OptimizeForDebugging; 2159 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 2160 return Attribute::OptForFuzzing; 2161 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 2162 return Attribute::OptimizeForSize; 2163 case bitc::ATTR_KIND_OPTIMIZE_NONE: 2164 return Attribute::OptimizeNone; 2165 case bitc::ATTR_KIND_READ_NONE: 2166 return Attribute::ReadNone; 2167 case bitc::ATTR_KIND_READ_ONLY: 2168 return Attribute::ReadOnly; 2169 case bitc::ATTR_KIND_RETURNED: 2170 return Attribute::Returned; 2171 case bitc::ATTR_KIND_RETURNS_TWICE: 2172 return Attribute::ReturnsTwice; 2173 case bitc::ATTR_KIND_S_EXT: 2174 return Attribute::SExt; 2175 case bitc::ATTR_KIND_SPECULATABLE: 2176 return Attribute::Speculatable; 2177 case bitc::ATTR_KIND_STACK_ALIGNMENT: 2178 return Attribute::StackAlignment; 2179 case bitc::ATTR_KIND_STACK_PROTECT: 2180 return Attribute::StackProtect; 2181 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 2182 return Attribute::StackProtectReq; 2183 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 2184 return Attribute::StackProtectStrong; 2185 case bitc::ATTR_KIND_SAFESTACK: 2186 return Attribute::SafeStack; 2187 case bitc::ATTR_KIND_SHADOWCALLSTACK: 2188 return Attribute::ShadowCallStack; 2189 case bitc::ATTR_KIND_STRICT_FP: 2190 return Attribute::StrictFP; 2191 case bitc::ATTR_KIND_STRUCT_RET: 2192 return Attribute::StructRet; 2193 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 2194 return Attribute::SanitizeAddress; 2195 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 2196 return Attribute::SanitizeHWAddress; 2197 case bitc::ATTR_KIND_SANITIZE_THREAD: 2198 return Attribute::SanitizeThread; 2199 case bitc::ATTR_KIND_SANITIZE_TYPE: 2200 return Attribute::SanitizeType; 2201 case bitc::ATTR_KIND_SANITIZE_MEMORY: 2202 return Attribute::SanitizeMemory; 2203 case bitc::ATTR_KIND_SANITIZE_NUMERICAL_STABILITY: 2204 return Attribute::SanitizeNumericalStability; 2205 case bitc::ATTR_KIND_SANITIZE_REALTIME: 2206 return Attribute::SanitizeRealtime; 2207 case bitc::ATTR_KIND_SANITIZE_REALTIME_BLOCKING: 2208 return Attribute::SanitizeRealtimeBlocking; 2209 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 2210 return Attribute::SpeculativeLoadHardening; 2211 case bitc::ATTR_KIND_SWIFT_ERROR: 2212 return Attribute::SwiftError; 2213 case bitc::ATTR_KIND_SWIFT_SELF: 2214 return Attribute::SwiftSelf; 2215 case bitc::ATTR_KIND_SWIFT_ASYNC: 2216 return Attribute::SwiftAsync; 2217 case bitc::ATTR_KIND_UW_TABLE: 2218 return Attribute::UWTable; 2219 case bitc::ATTR_KIND_VSCALE_RANGE: 2220 return Attribute::VScaleRange; 2221 case bitc::ATTR_KIND_WILLRETURN: 2222 return Attribute::WillReturn; 2223 case bitc::ATTR_KIND_WRITEONLY: 2224 return Attribute::WriteOnly; 2225 case bitc::ATTR_KIND_Z_EXT: 2226 return Attribute::ZExt; 2227 case bitc::ATTR_KIND_IMMARG: 2228 return Attribute::ImmArg; 2229 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 2230 return Attribute::SanitizeMemTag; 2231 case bitc::ATTR_KIND_PREALLOCATED: 2232 return Attribute::Preallocated; 2233 case bitc::ATTR_KIND_NOUNDEF: 2234 return Attribute::NoUndef; 2235 case bitc::ATTR_KIND_BYREF: 2236 return Attribute::ByRef; 2237 case bitc::ATTR_KIND_MUSTPROGRESS: 2238 return Attribute::MustProgress; 2239 case bitc::ATTR_KIND_HOT: 2240 return Attribute::Hot; 2241 case bitc::ATTR_KIND_PRESPLIT_COROUTINE: 2242 return Attribute::PresplitCoroutine; 2243 case bitc::ATTR_KIND_WRITABLE: 2244 return Attribute::Writable; 2245 case bitc::ATTR_KIND_CORO_ONLY_DESTROY_WHEN_COMPLETE: 2246 return Attribute::CoroDestroyOnlyWhenComplete; 2247 case bitc::ATTR_KIND_DEAD_ON_UNWIND: 2248 return Attribute::DeadOnUnwind; 2249 case bitc::ATTR_KIND_RANGE: 2250 return Attribute::Range; 2251 case bitc::ATTR_KIND_INITIALIZES: 2252 return Attribute::Initializes; 2253 case bitc::ATTR_KIND_CORO_ELIDE_SAFE: 2254 return Attribute::CoroElideSafe; 2255 case bitc::ATTR_KIND_NO_EXT: 2256 return Attribute::NoExt; 2257 case bitc::ATTR_KIND_CAPTURES: 2258 return Attribute::Captures; 2259 } 2260 } 2261 2262 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 2263 MaybeAlign &Alignment) { 2264 // Note: Alignment in bitcode files is incremented by 1, so that zero 2265 // can be used for default alignment. 2266 if (Exponent > Value::MaxAlignmentExponent + 1) 2267 return error("Invalid alignment value"); 2268 Alignment = decodeMaybeAlign(Exponent); 2269 return Error::success(); 2270 } 2271 2272 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 2273 *Kind = getAttrFromCode(Code); 2274 if (*Kind == Attribute::None) 2275 return error("Unknown attribute kind (" + Twine(Code) + ")"); 2276 return Error::success(); 2277 } 2278 2279 static bool upgradeOldMemoryAttribute(MemoryEffects &ME, uint64_t EncodedKind) { 2280 switch (EncodedKind) { 2281 case bitc::ATTR_KIND_READ_NONE: 2282 ME &= MemoryEffects::none(); 2283 return true; 2284 case bitc::ATTR_KIND_READ_ONLY: 2285 ME &= MemoryEffects::readOnly(); 2286 return true; 2287 case bitc::ATTR_KIND_WRITEONLY: 2288 ME &= MemoryEffects::writeOnly(); 2289 return true; 2290 case bitc::ATTR_KIND_ARGMEMONLY: 2291 ME &= MemoryEffects::argMemOnly(); 2292 return true; 2293 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 2294 ME &= MemoryEffects::inaccessibleMemOnly(); 2295 return true; 2296 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 2297 ME &= MemoryEffects::inaccessibleOrArgMemOnly(); 2298 return true; 2299 default: 2300 return false; 2301 } 2302 } 2303 2304 Error BitcodeReader::parseAttributeGroupBlock() { 2305 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 2306 return Err; 2307 2308 if (!MAttributeGroups.empty()) 2309 return error("Invalid multiple blocks"); 2310 2311 SmallVector<uint64_t, 64> Record; 2312 2313 // Read all the records. 2314 while (true) { 2315 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2316 if (!MaybeEntry) 2317 return MaybeEntry.takeError(); 2318 BitstreamEntry Entry = MaybeEntry.get(); 2319 2320 switch (Entry.Kind) { 2321 case BitstreamEntry::SubBlock: // Handled for us already. 2322 case BitstreamEntry::Error: 2323 return error("Malformed block"); 2324 case BitstreamEntry::EndBlock: 2325 return Error::success(); 2326 case BitstreamEntry::Record: 2327 // The interesting case. 2328 break; 2329 } 2330 2331 // Read a record. 2332 Record.clear(); 2333 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2334 if (!MaybeRecord) 2335 return MaybeRecord.takeError(); 2336 switch (MaybeRecord.get()) { 2337 default: // Default behavior: ignore. 2338 break; 2339 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 2340 if (Record.size() < 3) 2341 return error("Invalid grp record"); 2342 2343 uint64_t GrpID = Record[0]; 2344 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 2345 2346 AttrBuilder B(Context); 2347 MemoryEffects ME = MemoryEffects::unknown(); 2348 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2349 if (Record[i] == 0) { // Enum attribute 2350 Attribute::AttrKind Kind; 2351 uint64_t EncodedKind = Record[++i]; 2352 if (Idx == AttributeList::FunctionIndex && 2353 upgradeOldMemoryAttribute(ME, EncodedKind)) 2354 continue; 2355 2356 if (EncodedKind == bitc::ATTR_KIND_NO_CAPTURE) { 2357 B.addCapturesAttr(CaptureInfo::none()); 2358 continue; 2359 } 2360 2361 if (Error Err = parseAttrKind(EncodedKind, &Kind)) 2362 return Err; 2363 2364 // Upgrade old-style byval attribute to one with a type, even if it's 2365 // nullptr. We will have to insert the real type when we associate 2366 // this AttributeList with a function. 2367 if (Kind == Attribute::ByVal) 2368 B.addByValAttr(nullptr); 2369 else if (Kind == Attribute::StructRet) 2370 B.addStructRetAttr(nullptr); 2371 else if (Kind == Attribute::InAlloca) 2372 B.addInAllocaAttr(nullptr); 2373 else if (Kind == Attribute::UWTable) 2374 B.addUWTableAttr(UWTableKind::Default); 2375 else if (Attribute::isEnumAttrKind(Kind)) 2376 B.addAttribute(Kind); 2377 else 2378 return error("Not an enum attribute"); 2379 } else if (Record[i] == 1) { // Integer attribute 2380 Attribute::AttrKind Kind; 2381 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2382 return Err; 2383 if (!Attribute::isIntAttrKind(Kind)) 2384 return error("Not an int attribute"); 2385 if (Kind == Attribute::Alignment) 2386 B.addAlignmentAttr(Record[++i]); 2387 else if (Kind == Attribute::StackAlignment) 2388 B.addStackAlignmentAttr(Record[++i]); 2389 else if (Kind == Attribute::Dereferenceable) 2390 B.addDereferenceableAttr(Record[++i]); 2391 else if (Kind == Attribute::DereferenceableOrNull) 2392 B.addDereferenceableOrNullAttr(Record[++i]); 2393 else if (Kind == Attribute::AllocSize) 2394 B.addAllocSizeAttrFromRawRepr(Record[++i]); 2395 else if (Kind == Attribute::VScaleRange) 2396 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 2397 else if (Kind == Attribute::UWTable) 2398 B.addUWTableAttr(UWTableKind(Record[++i])); 2399 else if (Kind == Attribute::AllocKind) 2400 B.addAllocKindAttr(static_cast<AllocFnKind>(Record[++i])); 2401 else if (Kind == Attribute::Memory) 2402 B.addMemoryAttr(MemoryEffects::createFromIntValue(Record[++i])); 2403 else if (Kind == Attribute::Captures) 2404 B.addCapturesAttr(CaptureInfo::createFromIntValue(Record[++i])); 2405 else if (Kind == Attribute::NoFPClass) 2406 B.addNoFPClassAttr( 2407 static_cast<FPClassTest>(Record[++i] & fcAllFlags)); 2408 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 2409 bool HasValue = (Record[i++] == 4); 2410 SmallString<64> KindStr; 2411 SmallString<64> ValStr; 2412 2413 while (Record[i] != 0 && i != e) 2414 KindStr += Record[i++]; 2415 assert(Record[i] == 0 && "Kind string not null terminated"); 2416 2417 if (HasValue) { 2418 // Has a value associated with it. 2419 ++i; // Skip the '0' that terminates the "kind" string. 2420 while (Record[i] != 0 && i != e) 2421 ValStr += Record[i++]; 2422 assert(Record[i] == 0 && "Value string not null terminated"); 2423 } 2424 2425 B.addAttribute(KindStr.str(), ValStr.str()); 2426 } else if (Record[i] == 5 || Record[i] == 6) { 2427 bool HasType = Record[i] == 6; 2428 Attribute::AttrKind Kind; 2429 if (Error Err = parseAttrKind(Record[++i], &Kind)) 2430 return Err; 2431 if (!Attribute::isTypeAttrKind(Kind)) 2432 return error("Not a type attribute"); 2433 2434 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 2435 } else if (Record[i] == 7) { 2436 Attribute::AttrKind Kind; 2437 2438 i++; 2439 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2440 return Err; 2441 if (!Attribute::isConstantRangeAttrKind(Kind)) 2442 return error("Not a ConstantRange attribute"); 2443 2444 Expected<ConstantRange> MaybeCR = 2445 readBitWidthAndConstantRange(Record, i); 2446 if (!MaybeCR) 2447 return MaybeCR.takeError(); 2448 i--; 2449 2450 B.addConstantRangeAttr(Kind, MaybeCR.get()); 2451 } else if (Record[i] == 8) { 2452 Attribute::AttrKind Kind; 2453 2454 i++; 2455 if (Error Err = parseAttrKind(Record[i++], &Kind)) 2456 return Err; 2457 if (!Attribute::isConstantRangeListAttrKind(Kind)) 2458 return error("Not a constant range list attribute"); 2459 2460 SmallVector<ConstantRange, 2> Val; 2461 if (i + 2 > e) 2462 return error("Too few records for constant range list"); 2463 unsigned RangeSize = Record[i++]; 2464 unsigned BitWidth = Record[i++]; 2465 for (unsigned Idx = 0; Idx < RangeSize; ++Idx) { 2466 Expected<ConstantRange> MaybeCR = 2467 readConstantRange(Record, i, BitWidth); 2468 if (!MaybeCR) 2469 return MaybeCR.takeError(); 2470 Val.push_back(MaybeCR.get()); 2471 } 2472 i--; 2473 2474 if (!ConstantRangeList::isOrderedRanges(Val)) 2475 return error("Invalid (unordered or overlapping) range list"); 2476 B.addConstantRangeListAttr(Kind, Val); 2477 } else { 2478 return error("Invalid attribute group entry"); 2479 } 2480 } 2481 2482 if (ME != MemoryEffects::unknown()) 2483 B.addMemoryAttr(ME); 2484 2485 UpgradeAttributes(B); 2486 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 2487 break; 2488 } 2489 } 2490 } 2491 } 2492 2493 Error BitcodeReader::parseTypeTable() { 2494 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 2495 return Err; 2496 2497 return parseTypeTableBody(); 2498 } 2499 2500 Error BitcodeReader::parseTypeTableBody() { 2501 if (!TypeList.empty()) 2502 return error("Invalid multiple blocks"); 2503 2504 SmallVector<uint64_t, 64> Record; 2505 unsigned NumRecords = 0; 2506 2507 SmallString<64> TypeName; 2508 2509 // Read all the records for this type table. 2510 while (true) { 2511 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2512 if (!MaybeEntry) 2513 return MaybeEntry.takeError(); 2514 BitstreamEntry Entry = MaybeEntry.get(); 2515 2516 switch (Entry.Kind) { 2517 case BitstreamEntry::SubBlock: // Handled for us already. 2518 case BitstreamEntry::Error: 2519 return error("Malformed block"); 2520 case BitstreamEntry::EndBlock: 2521 if (NumRecords != TypeList.size()) 2522 return error("Malformed block"); 2523 return Error::success(); 2524 case BitstreamEntry::Record: 2525 // The interesting case. 2526 break; 2527 } 2528 2529 // Read a record. 2530 Record.clear(); 2531 Type *ResultTy = nullptr; 2532 SmallVector<unsigned> ContainedIDs; 2533 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2534 if (!MaybeRecord) 2535 return MaybeRecord.takeError(); 2536 switch (MaybeRecord.get()) { 2537 default: 2538 return error("Invalid value"); 2539 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 2540 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 2541 // type list. This allows us to reserve space. 2542 if (Record.empty()) 2543 return error("Invalid numentry record"); 2544 TypeList.resize(Record[0]); 2545 continue; 2546 case bitc::TYPE_CODE_VOID: // VOID 2547 ResultTy = Type::getVoidTy(Context); 2548 break; 2549 case bitc::TYPE_CODE_HALF: // HALF 2550 ResultTy = Type::getHalfTy(Context); 2551 break; 2552 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 2553 ResultTy = Type::getBFloatTy(Context); 2554 break; 2555 case bitc::TYPE_CODE_FLOAT: // FLOAT 2556 ResultTy = Type::getFloatTy(Context); 2557 break; 2558 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 2559 ResultTy = Type::getDoubleTy(Context); 2560 break; 2561 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 2562 ResultTy = Type::getX86_FP80Ty(Context); 2563 break; 2564 case bitc::TYPE_CODE_FP128: // FP128 2565 ResultTy = Type::getFP128Ty(Context); 2566 break; 2567 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 2568 ResultTy = Type::getPPC_FP128Ty(Context); 2569 break; 2570 case bitc::TYPE_CODE_LABEL: // LABEL 2571 ResultTy = Type::getLabelTy(Context); 2572 break; 2573 case bitc::TYPE_CODE_METADATA: // METADATA 2574 ResultTy = Type::getMetadataTy(Context); 2575 break; 2576 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 2577 // Deprecated: decodes as <1 x i64> 2578 ResultTy = 2579 llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1); 2580 break; 2581 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 2582 ResultTy = Type::getX86_AMXTy(Context); 2583 break; 2584 case bitc::TYPE_CODE_TOKEN: // TOKEN 2585 ResultTy = Type::getTokenTy(Context); 2586 break; 2587 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 2588 if (Record.empty()) 2589 return error("Invalid integer record"); 2590 2591 uint64_t NumBits = Record[0]; 2592 if (NumBits < IntegerType::MIN_INT_BITS || 2593 NumBits > IntegerType::MAX_INT_BITS) 2594 return error("Bitwidth for integer type out of range"); 2595 ResultTy = IntegerType::get(Context, NumBits); 2596 break; 2597 } 2598 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 2599 // [pointee type, address space] 2600 if (Record.empty()) 2601 return error("Invalid pointer record"); 2602 unsigned AddressSpace = 0; 2603 if (Record.size() == 2) 2604 AddressSpace = Record[1]; 2605 ResultTy = getTypeByID(Record[0]); 2606 if (!ResultTy || 2607 !PointerType::isValidElementType(ResultTy)) 2608 return error("Invalid type"); 2609 ContainedIDs.push_back(Record[0]); 2610 ResultTy = PointerType::get(ResultTy->getContext(), AddressSpace); 2611 break; 2612 } 2613 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 2614 if (Record.size() != 1) 2615 return error("Invalid opaque pointer record"); 2616 unsigned AddressSpace = Record[0]; 2617 ResultTy = PointerType::get(Context, AddressSpace); 2618 break; 2619 } 2620 case bitc::TYPE_CODE_FUNCTION_OLD: { 2621 // Deprecated, but still needed to read old bitcode files. 2622 // FUNCTION: [vararg, attrid, retty, paramty x N] 2623 if (Record.size() < 3) 2624 return error("Invalid function record"); 2625 SmallVector<Type*, 8> ArgTys; 2626 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 2627 if (Type *T = getTypeByID(Record[i])) 2628 ArgTys.push_back(T); 2629 else 2630 break; 2631 } 2632 2633 ResultTy = getTypeByID(Record[2]); 2634 if (!ResultTy || ArgTys.size() < Record.size()-3) 2635 return error("Invalid type"); 2636 2637 ContainedIDs.append(Record.begin() + 2, Record.end()); 2638 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2639 break; 2640 } 2641 case bitc::TYPE_CODE_FUNCTION: { 2642 // FUNCTION: [vararg, retty, paramty x N] 2643 if (Record.size() < 2) 2644 return error("Invalid function record"); 2645 SmallVector<Type*, 8> ArgTys; 2646 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 2647 if (Type *T = getTypeByID(Record[i])) { 2648 if (!FunctionType::isValidArgumentType(T)) 2649 return error("Invalid function argument type"); 2650 ArgTys.push_back(T); 2651 } 2652 else 2653 break; 2654 } 2655 2656 ResultTy = getTypeByID(Record[1]); 2657 if (!ResultTy || ArgTys.size() < Record.size()-2) 2658 return error("Invalid type"); 2659 2660 ContainedIDs.append(Record.begin() + 1, Record.end()); 2661 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 2662 break; 2663 } 2664 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 2665 if (Record.empty()) 2666 return error("Invalid anon struct record"); 2667 SmallVector<Type*, 8> EltTys; 2668 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2669 if (Type *T = getTypeByID(Record[i])) 2670 EltTys.push_back(T); 2671 else 2672 break; 2673 } 2674 if (EltTys.size() != Record.size()-1) 2675 return error("Invalid type"); 2676 ContainedIDs.append(Record.begin() + 1, Record.end()); 2677 ResultTy = StructType::get(Context, EltTys, Record[0]); 2678 break; 2679 } 2680 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 2681 if (convertToString(Record, 0, TypeName)) 2682 return error("Invalid struct name record"); 2683 continue; 2684 2685 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 2686 if (Record.empty()) 2687 return error("Invalid named struct record"); 2688 2689 if (NumRecords >= TypeList.size()) 2690 return error("Invalid TYPE table"); 2691 2692 // Check to see if this was forward referenced, if so fill in the temp. 2693 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2694 if (Res) { 2695 Res->setName(TypeName); 2696 TypeList[NumRecords] = nullptr; 2697 } else // Otherwise, create a new struct. 2698 Res = createIdentifiedStructType(Context, TypeName); 2699 TypeName.clear(); 2700 2701 SmallVector<Type*, 8> EltTys; 2702 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 2703 if (Type *T = getTypeByID(Record[i])) 2704 EltTys.push_back(T); 2705 else 2706 break; 2707 } 2708 if (EltTys.size() != Record.size()-1) 2709 return error("Invalid named struct record"); 2710 if (auto E = Res->setBodyOrError(EltTys, Record[0])) 2711 return E; 2712 ContainedIDs.append(Record.begin() + 1, Record.end()); 2713 ResultTy = Res; 2714 break; 2715 } 2716 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 2717 if (Record.size() != 1) 2718 return error("Invalid opaque type record"); 2719 2720 if (NumRecords >= TypeList.size()) 2721 return error("Invalid TYPE table"); 2722 2723 // Check to see if this was forward referenced, if so fill in the temp. 2724 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 2725 if (Res) { 2726 Res->setName(TypeName); 2727 TypeList[NumRecords] = nullptr; 2728 } else // Otherwise, create a new struct with no body. 2729 Res = createIdentifiedStructType(Context, TypeName); 2730 TypeName.clear(); 2731 ResultTy = Res; 2732 break; 2733 } 2734 case bitc::TYPE_CODE_TARGET_TYPE: { // TARGET_TYPE: [NumTy, Tys..., Ints...] 2735 if (Record.size() < 1) 2736 return error("Invalid target extension type record"); 2737 2738 if (NumRecords >= TypeList.size()) 2739 return error("Invalid TYPE table"); 2740 2741 if (Record[0] >= Record.size()) 2742 return error("Too many type parameters"); 2743 2744 unsigned NumTys = Record[0]; 2745 SmallVector<Type *, 4> TypeParams; 2746 SmallVector<unsigned, 8> IntParams; 2747 for (unsigned i = 0; i < NumTys; i++) { 2748 if (Type *T = getTypeByID(Record[i + 1])) 2749 TypeParams.push_back(T); 2750 else 2751 return error("Invalid type"); 2752 } 2753 2754 for (unsigned i = NumTys + 1, e = Record.size(); i < e; i++) { 2755 if (Record[i] > UINT_MAX) 2756 return error("Integer parameter too large"); 2757 IntParams.push_back(Record[i]); 2758 } 2759 auto TTy = 2760 TargetExtType::getOrError(Context, TypeName, TypeParams, IntParams); 2761 if (auto E = TTy.takeError()) 2762 return E; 2763 ResultTy = *TTy; 2764 TypeName.clear(); 2765 break; 2766 } 2767 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 2768 if (Record.size() < 2) 2769 return error("Invalid array type record"); 2770 ResultTy = getTypeByID(Record[1]); 2771 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 2772 return error("Invalid type"); 2773 ContainedIDs.push_back(Record[1]); 2774 ResultTy = ArrayType::get(ResultTy, Record[0]); 2775 break; 2776 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 2777 // [numelts, eltty, scalable] 2778 if (Record.size() < 2) 2779 return error("Invalid vector type record"); 2780 if (Record[0] == 0) 2781 return error("Invalid vector length"); 2782 ResultTy = getTypeByID(Record[1]); 2783 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 2784 return error("Invalid type"); 2785 bool Scalable = Record.size() > 2 ? Record[2] : false; 2786 ContainedIDs.push_back(Record[1]); 2787 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 2788 break; 2789 } 2790 2791 if (NumRecords >= TypeList.size()) 2792 return error("Invalid TYPE table"); 2793 if (TypeList[NumRecords]) 2794 return error( 2795 "Invalid TYPE table: Only named structs can be forward referenced"); 2796 assert(ResultTy && "Didn't read a type?"); 2797 TypeList[NumRecords] = ResultTy; 2798 if (!ContainedIDs.empty()) 2799 ContainedTypeIDs[NumRecords] = std::move(ContainedIDs); 2800 ++NumRecords; 2801 } 2802 } 2803 2804 Error BitcodeReader::parseOperandBundleTags() { 2805 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 2806 return Err; 2807 2808 if (!BundleTags.empty()) 2809 return error("Invalid multiple blocks"); 2810 2811 SmallVector<uint64_t, 64> Record; 2812 2813 while (true) { 2814 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2815 if (!MaybeEntry) 2816 return MaybeEntry.takeError(); 2817 BitstreamEntry Entry = MaybeEntry.get(); 2818 2819 switch (Entry.Kind) { 2820 case BitstreamEntry::SubBlock: // Handled for us already. 2821 case BitstreamEntry::Error: 2822 return error("Malformed block"); 2823 case BitstreamEntry::EndBlock: 2824 return Error::success(); 2825 case BitstreamEntry::Record: 2826 // The interesting case. 2827 break; 2828 } 2829 2830 // Tags are implicitly mapped to integers by their order. 2831 2832 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2833 if (!MaybeRecord) 2834 return MaybeRecord.takeError(); 2835 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 2836 return error("Invalid operand bundle record"); 2837 2838 // OPERAND_BUNDLE_TAG: [strchr x N] 2839 BundleTags.emplace_back(); 2840 if (convertToString(Record, 0, BundleTags.back())) 2841 return error("Invalid operand bundle record"); 2842 Record.clear(); 2843 } 2844 } 2845 2846 Error BitcodeReader::parseSyncScopeNames() { 2847 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2848 return Err; 2849 2850 if (!SSIDs.empty()) 2851 return error("Invalid multiple synchronization scope names blocks"); 2852 2853 SmallVector<uint64_t, 64> Record; 2854 while (true) { 2855 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2856 if (!MaybeEntry) 2857 return MaybeEntry.takeError(); 2858 BitstreamEntry Entry = MaybeEntry.get(); 2859 2860 switch (Entry.Kind) { 2861 case BitstreamEntry::SubBlock: // Handled for us already. 2862 case BitstreamEntry::Error: 2863 return error("Malformed block"); 2864 case BitstreamEntry::EndBlock: 2865 if (SSIDs.empty()) 2866 return error("Invalid empty synchronization scope names block"); 2867 return Error::success(); 2868 case BitstreamEntry::Record: 2869 // The interesting case. 2870 break; 2871 } 2872 2873 // Synchronization scope names are implicitly mapped to synchronization 2874 // scope IDs by their order. 2875 2876 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2877 if (!MaybeRecord) 2878 return MaybeRecord.takeError(); 2879 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2880 return error("Invalid sync scope record"); 2881 2882 SmallString<16> SSN; 2883 if (convertToString(Record, 0, SSN)) 2884 return error("Invalid sync scope record"); 2885 2886 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2887 Record.clear(); 2888 } 2889 } 2890 2891 /// Associate a value with its name from the given index in the provided record. 2892 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2893 unsigned NameIndex, Triple &TT) { 2894 SmallString<128> ValueName; 2895 if (convertToString(Record, NameIndex, ValueName)) 2896 return error("Invalid record"); 2897 unsigned ValueID = Record[0]; 2898 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2899 return error("Invalid record"); 2900 Value *V = ValueList[ValueID]; 2901 2902 StringRef NameStr(ValueName.data(), ValueName.size()); 2903 if (NameStr.contains(0)) 2904 return error("Invalid value name"); 2905 V->setName(NameStr); 2906 auto *GO = dyn_cast<GlobalObject>(V); 2907 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2908 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2909 return V; 2910 } 2911 2912 /// Helper to note and return the current location, and jump to the given 2913 /// offset. 2914 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2915 BitstreamCursor &Stream) { 2916 // Save the current parsing location so we can jump back at the end 2917 // of the VST read. 2918 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2919 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2920 return std::move(JumpFailed); 2921 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2922 if (!MaybeEntry) 2923 return MaybeEntry.takeError(); 2924 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2925 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2926 return error("Expected value symbol table subblock"); 2927 return CurrentBit; 2928 } 2929 2930 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2931 Function *F, 2932 ArrayRef<uint64_t> Record) { 2933 // Note that we subtract 1 here because the offset is relative to one word 2934 // before the start of the identification or module block, which was 2935 // historically always the start of the regular bitcode header. 2936 uint64_t FuncWordOffset = Record[1] - 1; 2937 uint64_t FuncBitOffset = FuncWordOffset * 32; 2938 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2939 // Set the LastFunctionBlockBit to point to the last function block. 2940 // Later when parsing is resumed after function materialization, 2941 // we can simply skip that last function block. 2942 if (FuncBitOffset > LastFunctionBlockBit) 2943 LastFunctionBlockBit = FuncBitOffset; 2944 } 2945 2946 /// Read a new-style GlobalValue symbol table. 2947 Error BitcodeReader::parseGlobalValueSymbolTable() { 2948 unsigned FuncBitcodeOffsetDelta = 2949 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2950 2951 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2952 return Err; 2953 2954 SmallVector<uint64_t, 64> Record; 2955 while (true) { 2956 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2957 if (!MaybeEntry) 2958 return MaybeEntry.takeError(); 2959 BitstreamEntry Entry = MaybeEntry.get(); 2960 2961 switch (Entry.Kind) { 2962 case BitstreamEntry::SubBlock: 2963 case BitstreamEntry::Error: 2964 return error("Malformed block"); 2965 case BitstreamEntry::EndBlock: 2966 return Error::success(); 2967 case BitstreamEntry::Record: 2968 break; 2969 } 2970 2971 Record.clear(); 2972 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2973 if (!MaybeRecord) 2974 return MaybeRecord.takeError(); 2975 switch (MaybeRecord.get()) { 2976 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2977 unsigned ValueID = Record[0]; 2978 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2979 return error("Invalid value reference in symbol table"); 2980 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2981 cast<Function>(ValueList[ValueID]), Record); 2982 break; 2983 } 2984 } 2985 } 2986 } 2987 2988 /// Parse the value symbol table at either the current parsing location or 2989 /// at the given bit offset if provided. 2990 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2991 uint64_t CurrentBit; 2992 // Pass in the Offset to distinguish between calling for the module-level 2993 // VST (where we want to jump to the VST offset) and the function-level 2994 // VST (where we don't). 2995 if (Offset > 0) { 2996 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2997 if (!MaybeCurrentBit) 2998 return MaybeCurrentBit.takeError(); 2999 CurrentBit = MaybeCurrentBit.get(); 3000 // If this module uses a string table, read this as a module-level VST. 3001 if (UseStrtab) { 3002 if (Error Err = parseGlobalValueSymbolTable()) 3003 return Err; 3004 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 3005 return JumpFailed; 3006 return Error::success(); 3007 } 3008 // Otherwise, the VST will be in a similar format to a function-level VST, 3009 // and will contain symbol names. 3010 } 3011 3012 // Compute the delta between the bitcode indices in the VST (the word offset 3013 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 3014 // expected by the lazy reader. The reader's EnterSubBlock expects to have 3015 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 3016 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 3017 // just before entering the VST subblock because: 1) the EnterSubBlock 3018 // changes the AbbrevID width; 2) the VST block is nested within the same 3019 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 3020 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 3021 // jump to the FUNCTION_BLOCK using this offset later, we don't want 3022 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 3023 unsigned FuncBitcodeOffsetDelta = 3024 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 3025 3026 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 3027 return Err; 3028 3029 SmallVector<uint64_t, 64> Record; 3030 3031 Triple TT(TheModule->getTargetTriple()); 3032 3033 // Read all the records for this value table. 3034 SmallString<128> ValueName; 3035 3036 while (true) { 3037 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3038 if (!MaybeEntry) 3039 return MaybeEntry.takeError(); 3040 BitstreamEntry Entry = MaybeEntry.get(); 3041 3042 switch (Entry.Kind) { 3043 case BitstreamEntry::SubBlock: // Handled for us already. 3044 case BitstreamEntry::Error: 3045 return error("Malformed block"); 3046 case BitstreamEntry::EndBlock: 3047 if (Offset > 0) 3048 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 3049 return JumpFailed; 3050 return Error::success(); 3051 case BitstreamEntry::Record: 3052 // The interesting case. 3053 break; 3054 } 3055 3056 // Read a record. 3057 Record.clear(); 3058 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3059 if (!MaybeRecord) 3060 return MaybeRecord.takeError(); 3061 switch (MaybeRecord.get()) { 3062 default: // Default behavior: unknown type. 3063 break; 3064 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 3065 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 3066 if (Error Err = ValOrErr.takeError()) 3067 return Err; 3068 ValOrErr.get(); 3069 break; 3070 } 3071 case bitc::VST_CODE_FNENTRY: { 3072 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 3073 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 3074 if (Error Err = ValOrErr.takeError()) 3075 return Err; 3076 Value *V = ValOrErr.get(); 3077 3078 // Ignore function offsets emitted for aliases of functions in older 3079 // versions of LLVM. 3080 if (auto *F = dyn_cast<Function>(V)) 3081 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 3082 break; 3083 } 3084 case bitc::VST_CODE_BBENTRY: { 3085 if (convertToString(Record, 1, ValueName)) 3086 return error("Invalid bbentry record"); 3087 BasicBlock *BB = getBasicBlock(Record[0]); 3088 if (!BB) 3089 return error("Invalid bbentry record"); 3090 3091 BB->setName(ValueName.str()); 3092 ValueName.clear(); 3093 break; 3094 } 3095 } 3096 } 3097 } 3098 3099 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 3100 /// encoding. 3101 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 3102 if ((V & 1) == 0) 3103 return V >> 1; 3104 if (V != 1) 3105 return -(V >> 1); 3106 // There is no such thing as -0 with integers. "-0" really means MININT. 3107 return 1ULL << 63; 3108 } 3109 3110 /// Resolve all of the initializers for global values and aliases that we can. 3111 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 3112 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 3113 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 3114 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 3115 3116 GlobalInitWorklist.swap(GlobalInits); 3117 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 3118 FunctionOperandWorklist.swap(FunctionOperands); 3119 3120 while (!GlobalInitWorklist.empty()) { 3121 unsigned ValID = GlobalInitWorklist.back().second; 3122 if (ValID >= ValueList.size()) { 3123 // Not ready to resolve this yet, it requires something later in the file. 3124 GlobalInits.push_back(GlobalInitWorklist.back()); 3125 } else { 3126 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3127 if (!MaybeC) 3128 return MaybeC.takeError(); 3129 GlobalInitWorklist.back().first->setInitializer(MaybeC.get()); 3130 } 3131 GlobalInitWorklist.pop_back(); 3132 } 3133 3134 while (!IndirectSymbolInitWorklist.empty()) { 3135 unsigned ValID = IndirectSymbolInitWorklist.back().second; 3136 if (ValID >= ValueList.size()) { 3137 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 3138 } else { 3139 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3140 if (!MaybeC) 3141 return MaybeC.takeError(); 3142 Constant *C = MaybeC.get(); 3143 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 3144 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 3145 if (C->getType() != GV->getType()) 3146 return error("Alias and aliasee types don't match"); 3147 GA->setAliasee(C); 3148 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 3149 GI->setResolver(C); 3150 } else { 3151 return error("Expected an alias or an ifunc"); 3152 } 3153 } 3154 IndirectSymbolInitWorklist.pop_back(); 3155 } 3156 3157 while (!FunctionOperandWorklist.empty()) { 3158 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 3159 if (Info.PersonalityFn) { 3160 unsigned ValID = Info.PersonalityFn - 1; 3161 if (ValID < ValueList.size()) { 3162 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3163 if (!MaybeC) 3164 return MaybeC.takeError(); 3165 Info.F->setPersonalityFn(MaybeC.get()); 3166 Info.PersonalityFn = 0; 3167 } 3168 } 3169 if (Info.Prefix) { 3170 unsigned ValID = Info.Prefix - 1; 3171 if (ValID < ValueList.size()) { 3172 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3173 if (!MaybeC) 3174 return MaybeC.takeError(); 3175 Info.F->setPrefixData(MaybeC.get()); 3176 Info.Prefix = 0; 3177 } 3178 } 3179 if (Info.Prologue) { 3180 unsigned ValID = Info.Prologue - 1; 3181 if (ValID < ValueList.size()) { 3182 Expected<Constant *> MaybeC = getValueForInitializer(ValID); 3183 if (!MaybeC) 3184 return MaybeC.takeError(); 3185 Info.F->setPrologueData(MaybeC.get()); 3186 Info.Prologue = 0; 3187 } 3188 } 3189 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 3190 FunctionOperands.push_back(Info); 3191 FunctionOperandWorklist.pop_back(); 3192 } 3193 3194 return Error::success(); 3195 } 3196 3197 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 3198 SmallVector<uint64_t, 8> Words(Vals.size()); 3199 transform(Vals, Words.begin(), 3200 BitcodeReader::decodeSignRotatedValue); 3201 3202 return APInt(TypeBits, Words); 3203 } 3204 3205 Error BitcodeReader::parseConstants() { 3206 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 3207 return Err; 3208 3209 SmallVector<uint64_t, 64> Record; 3210 3211 // Read all the records for this value table. 3212 Type *CurTy = Type::getInt32Ty(Context); 3213 unsigned Int32TyID = getVirtualTypeID(CurTy); 3214 unsigned CurTyID = Int32TyID; 3215 Type *CurElemTy = nullptr; 3216 unsigned NextCstNo = ValueList.size(); 3217 3218 while (true) { 3219 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3220 if (!MaybeEntry) 3221 return MaybeEntry.takeError(); 3222 BitstreamEntry Entry = MaybeEntry.get(); 3223 3224 switch (Entry.Kind) { 3225 case BitstreamEntry::SubBlock: // Handled for us already. 3226 case BitstreamEntry::Error: 3227 return error("Malformed block"); 3228 case BitstreamEntry::EndBlock: 3229 if (NextCstNo != ValueList.size()) 3230 return error("Invalid constant reference"); 3231 return Error::success(); 3232 case BitstreamEntry::Record: 3233 // The interesting case. 3234 break; 3235 } 3236 3237 // Read a record. 3238 Record.clear(); 3239 Type *VoidType = Type::getVoidTy(Context); 3240 Value *V = nullptr; 3241 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3242 if (!MaybeBitCode) 3243 return MaybeBitCode.takeError(); 3244 switch (unsigned BitCode = MaybeBitCode.get()) { 3245 default: // Default behavior: unknown constant 3246 case bitc::CST_CODE_UNDEF: // UNDEF 3247 V = UndefValue::get(CurTy); 3248 break; 3249 case bitc::CST_CODE_POISON: // POISON 3250 V = PoisonValue::get(CurTy); 3251 break; 3252 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 3253 if (Record.empty()) 3254 return error("Invalid settype record"); 3255 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 3256 return error("Invalid settype record"); 3257 if (TypeList[Record[0]] == VoidType) 3258 return error("Invalid constant type"); 3259 CurTyID = Record[0]; 3260 CurTy = TypeList[CurTyID]; 3261 CurElemTy = getPtrElementTypeByID(CurTyID); 3262 continue; // Skip the ValueList manipulation. 3263 case bitc::CST_CODE_NULL: // NULL 3264 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 3265 return error("Invalid type for a constant null value"); 3266 if (auto *TETy = dyn_cast<TargetExtType>(CurTy)) 3267 if (!TETy->hasProperty(TargetExtType::HasZeroInit)) 3268 return error("Invalid type for a constant null value"); 3269 V = Constant::getNullValue(CurTy); 3270 break; 3271 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 3272 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3273 return error("Invalid integer const record"); 3274 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 3275 break; 3276 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 3277 if (!CurTy->isIntOrIntVectorTy() || Record.empty()) 3278 return error("Invalid wide integer const record"); 3279 3280 auto *ScalarTy = cast<IntegerType>(CurTy->getScalarType()); 3281 APInt VInt = readWideAPInt(Record, ScalarTy->getBitWidth()); 3282 V = ConstantInt::get(CurTy, VInt); 3283 break; 3284 } 3285 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 3286 if (Record.empty()) 3287 return error("Invalid float const record"); 3288 3289 auto *ScalarTy = CurTy->getScalarType(); 3290 if (ScalarTy->isHalfTy()) 3291 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEhalf(), 3292 APInt(16, (uint16_t)Record[0]))); 3293 else if (ScalarTy->isBFloatTy()) 3294 V = ConstantFP::get( 3295 CurTy, APFloat(APFloat::BFloat(), APInt(16, (uint32_t)Record[0]))); 3296 else if (ScalarTy->isFloatTy()) 3297 V = ConstantFP::get(CurTy, APFloat(APFloat::IEEEsingle(), 3298 APInt(32, (uint32_t)Record[0]))); 3299 else if (ScalarTy->isDoubleTy()) 3300 V = ConstantFP::get( 3301 CurTy, APFloat(APFloat::IEEEdouble(), APInt(64, Record[0]))); 3302 else if (ScalarTy->isX86_FP80Ty()) { 3303 // Bits are not stored the same way as a normal i80 APInt, compensate. 3304 uint64_t Rearrange[2]; 3305 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 3306 Rearrange[1] = Record[0] >> 48; 3307 V = ConstantFP::get( 3308 CurTy, APFloat(APFloat::x87DoubleExtended(), APInt(80, Rearrange))); 3309 } else if (ScalarTy->isFP128Ty()) 3310 V = ConstantFP::get(CurTy, 3311 APFloat(APFloat::IEEEquad(), APInt(128, Record))); 3312 else if (ScalarTy->isPPC_FP128Ty()) 3313 V = ConstantFP::get( 3314 CurTy, APFloat(APFloat::PPCDoubleDouble(), APInt(128, Record))); 3315 else 3316 V = PoisonValue::get(CurTy); 3317 break; 3318 } 3319 3320 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 3321 if (Record.empty()) 3322 return error("Invalid aggregate record"); 3323 3324 unsigned Size = Record.size(); 3325 SmallVector<unsigned, 16> Elts; 3326 for (unsigned i = 0; i != Size; ++i) 3327 Elts.push_back(Record[i]); 3328 3329 if (isa<StructType>(CurTy)) { 3330 V = BitcodeConstant::create( 3331 Alloc, CurTy, BitcodeConstant::ConstantStructOpcode, Elts); 3332 } else if (isa<ArrayType>(CurTy)) { 3333 V = BitcodeConstant::create(Alloc, CurTy, 3334 BitcodeConstant::ConstantArrayOpcode, Elts); 3335 } else if (isa<VectorType>(CurTy)) { 3336 V = BitcodeConstant::create( 3337 Alloc, CurTy, BitcodeConstant::ConstantVectorOpcode, Elts); 3338 } else { 3339 V = PoisonValue::get(CurTy); 3340 } 3341 break; 3342 } 3343 case bitc::CST_CODE_STRING: // STRING: [values] 3344 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 3345 if (Record.empty()) 3346 return error("Invalid string record"); 3347 3348 SmallString<16> Elts(Record.begin(), Record.end()); 3349 V = ConstantDataArray::getString(Context, Elts, 3350 BitCode == bitc::CST_CODE_CSTRING); 3351 break; 3352 } 3353 case bitc::CST_CODE_DATA: {// DATA: [n x value] 3354 if (Record.empty()) 3355 return error("Invalid data record"); 3356 3357 Type *EltTy; 3358 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 3359 EltTy = Array->getElementType(); 3360 else 3361 EltTy = cast<VectorType>(CurTy)->getElementType(); 3362 if (EltTy->isIntegerTy(8)) { 3363 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 3364 if (isa<VectorType>(CurTy)) 3365 V = ConstantDataVector::get(Context, Elts); 3366 else 3367 V = ConstantDataArray::get(Context, Elts); 3368 } else if (EltTy->isIntegerTy(16)) { 3369 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3370 if (isa<VectorType>(CurTy)) 3371 V = ConstantDataVector::get(Context, Elts); 3372 else 3373 V = ConstantDataArray::get(Context, Elts); 3374 } else if (EltTy->isIntegerTy(32)) { 3375 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3376 if (isa<VectorType>(CurTy)) 3377 V = ConstantDataVector::get(Context, Elts); 3378 else 3379 V = ConstantDataArray::get(Context, Elts); 3380 } else if (EltTy->isIntegerTy(64)) { 3381 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3382 if (isa<VectorType>(CurTy)) 3383 V = ConstantDataVector::get(Context, Elts); 3384 else 3385 V = ConstantDataArray::get(Context, Elts); 3386 } else if (EltTy->isHalfTy()) { 3387 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3388 if (isa<VectorType>(CurTy)) 3389 V = ConstantDataVector::getFP(EltTy, Elts); 3390 else 3391 V = ConstantDataArray::getFP(EltTy, Elts); 3392 } else if (EltTy->isBFloatTy()) { 3393 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3394 if (isa<VectorType>(CurTy)) 3395 V = ConstantDataVector::getFP(EltTy, Elts); 3396 else 3397 V = ConstantDataArray::getFP(EltTy, Elts); 3398 } else if (EltTy->isFloatTy()) { 3399 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3400 if (isa<VectorType>(CurTy)) 3401 V = ConstantDataVector::getFP(EltTy, Elts); 3402 else 3403 V = ConstantDataArray::getFP(EltTy, Elts); 3404 } else if (EltTy->isDoubleTy()) { 3405 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3406 if (isa<VectorType>(CurTy)) 3407 V = ConstantDataVector::getFP(EltTy, Elts); 3408 else 3409 V = ConstantDataArray::getFP(EltTy, Elts); 3410 } else { 3411 return error("Invalid type for value"); 3412 } 3413 break; 3414 } 3415 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 3416 if (Record.size() < 2) 3417 return error("Invalid unary op constexpr record"); 3418 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 3419 if (Opc < 0) { 3420 V = PoisonValue::get(CurTy); // Unknown unop. 3421 } else { 3422 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[1]); 3423 } 3424 break; 3425 } 3426 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3427 if (Record.size() < 3) 3428 return error("Invalid binary op constexpr record"); 3429 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3430 if (Opc < 0) { 3431 V = PoisonValue::get(CurTy); // Unknown binop. 3432 } else { 3433 uint8_t Flags = 0; 3434 if (Record.size() >= 4) { 3435 if (Opc == Instruction::Add || 3436 Opc == Instruction::Sub || 3437 Opc == Instruction::Mul || 3438 Opc == Instruction::Shl) { 3439 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3440 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3441 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3442 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3443 } else if (Opc == Instruction::SDiv || 3444 Opc == Instruction::UDiv || 3445 Opc == Instruction::LShr || 3446 Opc == Instruction::AShr) { 3447 if (Record[3] & (1 << bitc::PEO_EXACT)) 3448 Flags |= PossiblyExactOperator::IsExact; 3449 } 3450 } 3451 V = BitcodeConstant::create(Alloc, CurTy, {(uint8_t)Opc, Flags}, 3452 {(unsigned)Record[1], (unsigned)Record[2]}); 3453 } 3454 break; 3455 } 3456 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3457 if (Record.size() < 3) 3458 return error("Invalid cast constexpr record"); 3459 int Opc = getDecodedCastOpcode(Record[0]); 3460 if (Opc < 0) { 3461 V = PoisonValue::get(CurTy); // Unknown cast. 3462 } else { 3463 unsigned OpTyID = Record[1]; 3464 Type *OpTy = getTypeByID(OpTyID); 3465 if (!OpTy) 3466 return error("Invalid cast constexpr record"); 3467 V = BitcodeConstant::create(Alloc, CurTy, Opc, (unsigned)Record[2]); 3468 } 3469 break; 3470 } 3471 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 3472 case bitc::CST_CODE_CE_GEP_OLD: // [ty, n x operands] 3473 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD: // [ty, flags, n x 3474 // operands] 3475 case bitc::CST_CODE_CE_GEP: // [ty, flags, n x operands] 3476 case bitc::CST_CODE_CE_GEP_WITH_INRANGE: { // [ty, flags, start, end, n x 3477 // operands] 3478 if (Record.size() < 2) 3479 return error("Constant GEP record must have at least two elements"); 3480 unsigned OpNum = 0; 3481 Type *PointeeType = nullptr; 3482 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD || 3483 BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE || 3484 BitCode == bitc::CST_CODE_CE_GEP || Record.size() % 2) 3485 PointeeType = getTypeByID(Record[OpNum++]); 3486 3487 uint64_t Flags = 0; 3488 std::optional<ConstantRange> InRange; 3489 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX_OLD) { 3490 uint64_t Op = Record[OpNum++]; 3491 Flags = Op & 1; // inbounds 3492 unsigned InRangeIndex = Op >> 1; 3493 // "Upgrade" inrange by dropping it. The feature is too niche to 3494 // bother. 3495 (void)InRangeIndex; 3496 } else if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE) { 3497 Flags = Record[OpNum++]; 3498 Expected<ConstantRange> MaybeInRange = 3499 readBitWidthAndConstantRange(Record, OpNum); 3500 if (!MaybeInRange) 3501 return MaybeInRange.takeError(); 3502 InRange = MaybeInRange.get(); 3503 } else if (BitCode == bitc::CST_CODE_CE_GEP) { 3504 Flags = Record[OpNum++]; 3505 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 3506 Flags = (1 << bitc::GEP_INBOUNDS); 3507 3508 SmallVector<unsigned, 16> Elts; 3509 unsigned BaseTypeID = Record[OpNum]; 3510 while (OpNum != Record.size()) { 3511 unsigned ElTyID = Record[OpNum++]; 3512 Type *ElTy = getTypeByID(ElTyID); 3513 if (!ElTy) 3514 return error("Invalid getelementptr constexpr record"); 3515 Elts.push_back(Record[OpNum++]); 3516 } 3517 3518 if (Elts.size() < 1) 3519 return error("Invalid gep with no operands"); 3520 3521 Type *BaseType = getTypeByID(BaseTypeID); 3522 if (isa<VectorType>(BaseType)) { 3523 BaseTypeID = getContainedTypeID(BaseTypeID, 0); 3524 BaseType = getTypeByID(BaseTypeID); 3525 } 3526 3527 PointerType *OrigPtrTy = dyn_cast_or_null<PointerType>(BaseType); 3528 if (!OrigPtrTy) 3529 return error("GEP base operand must be pointer or vector of pointer"); 3530 3531 if (!PointeeType) { 3532 PointeeType = getPtrElementTypeByID(BaseTypeID); 3533 if (!PointeeType) 3534 return error("Missing element type for old-style constant GEP"); 3535 } 3536 3537 V = BitcodeConstant::create( 3538 Alloc, CurTy, 3539 {Instruction::GetElementPtr, uint8_t(Flags), PointeeType, InRange}, 3540 Elts); 3541 break; 3542 } 3543 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3544 if (Record.size() < 3) 3545 return error("Invalid select constexpr record"); 3546 3547 V = BitcodeConstant::create( 3548 Alloc, CurTy, Instruction::Select, 3549 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3550 break; 3551 } 3552 case bitc::CST_CODE_CE_EXTRACTELT 3553 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3554 if (Record.size() < 3) 3555 return error("Invalid extractelement constexpr record"); 3556 unsigned OpTyID = Record[0]; 3557 VectorType *OpTy = 3558 dyn_cast_or_null<VectorType>(getTypeByID(OpTyID)); 3559 if (!OpTy) 3560 return error("Invalid extractelement constexpr record"); 3561 unsigned IdxRecord; 3562 if (Record.size() == 4) { 3563 unsigned IdxTyID = Record[2]; 3564 Type *IdxTy = getTypeByID(IdxTyID); 3565 if (!IdxTy) 3566 return error("Invalid extractelement constexpr record"); 3567 IdxRecord = Record[3]; 3568 } else { 3569 // Deprecated, but still needed to read old bitcode files. 3570 IdxRecord = Record[2]; 3571 } 3572 V = BitcodeConstant::create(Alloc, CurTy, Instruction::ExtractElement, 3573 {(unsigned)Record[1], IdxRecord}); 3574 break; 3575 } 3576 case bitc::CST_CODE_CE_INSERTELT 3577 : { // CE_INSERTELT: [opval, opval, opty, opval] 3578 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3579 if (Record.size() < 3 || !OpTy) 3580 return error("Invalid insertelement constexpr record"); 3581 unsigned IdxRecord; 3582 if (Record.size() == 4) { 3583 unsigned IdxTyID = Record[2]; 3584 Type *IdxTy = getTypeByID(IdxTyID); 3585 if (!IdxTy) 3586 return error("Invalid insertelement constexpr record"); 3587 IdxRecord = Record[3]; 3588 } else { 3589 // Deprecated, but still needed to read old bitcode files. 3590 IdxRecord = Record[2]; 3591 } 3592 V = BitcodeConstant::create( 3593 Alloc, CurTy, Instruction::InsertElement, 3594 {(unsigned)Record[0], (unsigned)Record[1], IdxRecord}); 3595 break; 3596 } 3597 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3598 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3599 if (Record.size() < 3 || !OpTy) 3600 return error("Invalid shufflevector constexpr record"); 3601 V = BitcodeConstant::create( 3602 Alloc, CurTy, Instruction::ShuffleVector, 3603 {(unsigned)Record[0], (unsigned)Record[1], (unsigned)Record[2]}); 3604 break; 3605 } 3606 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3607 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3608 VectorType *OpTy = 3609 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3610 if (Record.size() < 4 || !RTy || !OpTy) 3611 return error("Invalid shufflevector constexpr record"); 3612 V = BitcodeConstant::create( 3613 Alloc, CurTy, Instruction::ShuffleVector, 3614 {(unsigned)Record[1], (unsigned)Record[2], (unsigned)Record[3]}); 3615 break; 3616 } 3617 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3618 if (Record.size() < 4) 3619 return error("Invalid cmp constexpt record"); 3620 unsigned OpTyID = Record[0]; 3621 Type *OpTy = getTypeByID(OpTyID); 3622 if (!OpTy) 3623 return error("Invalid cmp constexpr record"); 3624 V = BitcodeConstant::create( 3625 Alloc, CurTy, 3626 {(uint8_t)(OpTy->isFPOrFPVectorTy() ? Instruction::FCmp 3627 : Instruction::ICmp), 3628 (uint8_t)Record[3]}, 3629 {(unsigned)Record[1], (unsigned)Record[2]}); 3630 break; 3631 } 3632 // This maintains backward compatibility, pre-asm dialect keywords. 3633 // Deprecated, but still needed to read old bitcode files. 3634 case bitc::CST_CODE_INLINEASM_OLD: { 3635 if (Record.size() < 2) 3636 return error("Invalid inlineasm record"); 3637 std::string AsmStr, ConstrStr; 3638 bool HasSideEffects = Record[0] & 1; 3639 bool IsAlignStack = Record[0] >> 1; 3640 unsigned AsmStrSize = Record[1]; 3641 if (2+AsmStrSize >= Record.size()) 3642 return error("Invalid inlineasm record"); 3643 unsigned ConstStrSize = Record[2+AsmStrSize]; 3644 if (3+AsmStrSize+ConstStrSize > Record.size()) 3645 return error("Invalid inlineasm record"); 3646 3647 for (unsigned i = 0; i != AsmStrSize; ++i) 3648 AsmStr += (char)Record[2+i]; 3649 for (unsigned i = 0; i != ConstStrSize; ++i) 3650 ConstrStr += (char)Record[3+AsmStrSize+i]; 3651 UpgradeInlineAsmString(&AsmStr); 3652 if (!CurElemTy) 3653 return error("Missing element type for old-style inlineasm"); 3654 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3655 HasSideEffects, IsAlignStack); 3656 break; 3657 } 3658 // This version adds support for the asm dialect keywords (e.g., 3659 // inteldialect). 3660 case bitc::CST_CODE_INLINEASM_OLD2: { 3661 if (Record.size() < 2) 3662 return error("Invalid inlineasm record"); 3663 std::string AsmStr, ConstrStr; 3664 bool HasSideEffects = Record[0] & 1; 3665 bool IsAlignStack = (Record[0] >> 1) & 1; 3666 unsigned AsmDialect = Record[0] >> 2; 3667 unsigned AsmStrSize = Record[1]; 3668 if (2+AsmStrSize >= Record.size()) 3669 return error("Invalid inlineasm record"); 3670 unsigned ConstStrSize = Record[2+AsmStrSize]; 3671 if (3+AsmStrSize+ConstStrSize > Record.size()) 3672 return error("Invalid inlineasm record"); 3673 3674 for (unsigned i = 0; i != AsmStrSize; ++i) 3675 AsmStr += (char)Record[2+i]; 3676 for (unsigned i = 0; i != ConstStrSize; ++i) 3677 ConstrStr += (char)Record[3+AsmStrSize+i]; 3678 UpgradeInlineAsmString(&AsmStr); 3679 if (!CurElemTy) 3680 return error("Missing element type for old-style inlineasm"); 3681 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3682 HasSideEffects, IsAlignStack, 3683 InlineAsm::AsmDialect(AsmDialect)); 3684 break; 3685 } 3686 // This version adds support for the unwind keyword. 3687 case bitc::CST_CODE_INLINEASM_OLD3: { 3688 if (Record.size() < 2) 3689 return error("Invalid inlineasm record"); 3690 unsigned OpNum = 0; 3691 std::string AsmStr, ConstrStr; 3692 bool HasSideEffects = Record[OpNum] & 1; 3693 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3694 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3695 bool CanThrow = (Record[OpNum] >> 3) & 1; 3696 ++OpNum; 3697 unsigned AsmStrSize = Record[OpNum]; 3698 ++OpNum; 3699 if (OpNum + AsmStrSize >= Record.size()) 3700 return error("Invalid inlineasm record"); 3701 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3702 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3703 return error("Invalid inlineasm record"); 3704 3705 for (unsigned i = 0; i != AsmStrSize; ++i) 3706 AsmStr += (char)Record[OpNum + i]; 3707 ++OpNum; 3708 for (unsigned i = 0; i != ConstStrSize; ++i) 3709 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3710 UpgradeInlineAsmString(&AsmStr); 3711 if (!CurElemTy) 3712 return error("Missing element type for old-style inlineasm"); 3713 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 3714 HasSideEffects, IsAlignStack, 3715 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3716 break; 3717 } 3718 // This version adds explicit function type. 3719 case bitc::CST_CODE_INLINEASM: { 3720 if (Record.size() < 3) 3721 return error("Invalid inlineasm record"); 3722 unsigned OpNum = 0; 3723 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 3724 ++OpNum; 3725 if (!FnTy) 3726 return error("Invalid inlineasm record"); 3727 std::string AsmStr, ConstrStr; 3728 bool HasSideEffects = Record[OpNum] & 1; 3729 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 3730 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 3731 bool CanThrow = (Record[OpNum] >> 3) & 1; 3732 ++OpNum; 3733 unsigned AsmStrSize = Record[OpNum]; 3734 ++OpNum; 3735 if (OpNum + AsmStrSize >= Record.size()) 3736 return error("Invalid inlineasm record"); 3737 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 3738 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 3739 return error("Invalid inlineasm record"); 3740 3741 for (unsigned i = 0; i != AsmStrSize; ++i) 3742 AsmStr += (char)Record[OpNum + i]; 3743 ++OpNum; 3744 for (unsigned i = 0; i != ConstStrSize; ++i) 3745 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 3746 UpgradeInlineAsmString(&AsmStr); 3747 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3748 InlineAsm::AsmDialect(AsmDialect), CanThrow); 3749 break; 3750 } 3751 case bitc::CST_CODE_BLOCKADDRESS:{ 3752 if (Record.size() < 3) 3753 return error("Invalid blockaddress record"); 3754 unsigned FnTyID = Record[0]; 3755 Type *FnTy = getTypeByID(FnTyID); 3756 if (!FnTy) 3757 return error("Invalid blockaddress record"); 3758 V = BitcodeConstant::create( 3759 Alloc, CurTy, 3760 {BitcodeConstant::BlockAddressOpcode, 0, (unsigned)Record[2]}, 3761 Record[1]); 3762 break; 3763 } 3764 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3765 if (Record.size() < 2) 3766 return error("Invalid dso_local record"); 3767 unsigned GVTyID = Record[0]; 3768 Type *GVTy = getTypeByID(GVTyID); 3769 if (!GVTy) 3770 return error("Invalid dso_local record"); 3771 V = BitcodeConstant::create( 3772 Alloc, CurTy, BitcodeConstant::DSOLocalEquivalentOpcode, Record[1]); 3773 break; 3774 } 3775 case bitc::CST_CODE_NO_CFI_VALUE: { 3776 if (Record.size() < 2) 3777 return error("Invalid no_cfi record"); 3778 unsigned GVTyID = Record[0]; 3779 Type *GVTy = getTypeByID(GVTyID); 3780 if (!GVTy) 3781 return error("Invalid no_cfi record"); 3782 V = BitcodeConstant::create(Alloc, CurTy, BitcodeConstant::NoCFIOpcode, 3783 Record[1]); 3784 break; 3785 } 3786 case bitc::CST_CODE_PTRAUTH: { 3787 if (Record.size() < 4) 3788 return error("Invalid ptrauth record"); 3789 // Ptr, Key, Disc, AddrDisc 3790 V = BitcodeConstant::create(Alloc, CurTy, 3791 BitcodeConstant::ConstantPtrAuthOpcode, 3792 {(unsigned)Record[0], (unsigned)Record[1], 3793 (unsigned)Record[2], (unsigned)Record[3]}); 3794 break; 3795 } 3796 } 3797 3798 assert(V->getType() == getTypeByID(CurTyID) && "Incorrect result type ID"); 3799 if (Error Err = ValueList.assignValue(NextCstNo, V, CurTyID)) 3800 return Err; 3801 ++NextCstNo; 3802 } 3803 } 3804 3805 Error BitcodeReader::parseUseLists() { 3806 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3807 return Err; 3808 3809 // Read all the records. 3810 SmallVector<uint64_t, 64> Record; 3811 3812 while (true) { 3813 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3814 if (!MaybeEntry) 3815 return MaybeEntry.takeError(); 3816 BitstreamEntry Entry = MaybeEntry.get(); 3817 3818 switch (Entry.Kind) { 3819 case BitstreamEntry::SubBlock: // Handled for us already. 3820 case BitstreamEntry::Error: 3821 return error("Malformed block"); 3822 case BitstreamEntry::EndBlock: 3823 return Error::success(); 3824 case BitstreamEntry::Record: 3825 // The interesting case. 3826 break; 3827 } 3828 3829 // Read a use list record. 3830 Record.clear(); 3831 bool IsBB = false; 3832 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3833 if (!MaybeRecord) 3834 return MaybeRecord.takeError(); 3835 switch (MaybeRecord.get()) { 3836 default: // Default behavior: unknown type. 3837 break; 3838 case bitc::USELIST_CODE_BB: 3839 IsBB = true; 3840 [[fallthrough]]; 3841 case bitc::USELIST_CODE_DEFAULT: { 3842 unsigned RecordLength = Record.size(); 3843 if (RecordLength < 3) 3844 // Records should have at least an ID and two indexes. 3845 return error("Invalid record"); 3846 unsigned ID = Record.pop_back_val(); 3847 3848 Value *V; 3849 if (IsBB) { 3850 assert(ID < FunctionBBs.size() && "Basic block not found"); 3851 V = FunctionBBs[ID]; 3852 } else 3853 V = ValueList[ID]; 3854 unsigned NumUses = 0; 3855 SmallDenseMap<const Use *, unsigned, 16> Order; 3856 for (const Use &U : V->materialized_uses()) { 3857 if (++NumUses > Record.size()) 3858 break; 3859 Order[&U] = Record[NumUses - 1]; 3860 } 3861 if (Order.size() != Record.size() || NumUses > Record.size()) 3862 // Mismatches can happen if the functions are being materialized lazily 3863 // (out-of-order), or a value has been upgraded. 3864 break; 3865 3866 V->sortUseList([&](const Use &L, const Use &R) { 3867 return Order.lookup(&L) < Order.lookup(&R); 3868 }); 3869 break; 3870 } 3871 } 3872 } 3873 } 3874 3875 /// When we see the block for metadata, remember where it is and then skip it. 3876 /// This lets us lazily deserialize the metadata. 3877 Error BitcodeReader::rememberAndSkipMetadata() { 3878 // Save the current stream state. 3879 uint64_t CurBit = Stream.GetCurrentBitNo(); 3880 DeferredMetadataInfo.push_back(CurBit); 3881 3882 // Skip over the block for now. 3883 if (Error Err = Stream.SkipBlock()) 3884 return Err; 3885 return Error::success(); 3886 } 3887 3888 Error BitcodeReader::materializeMetadata() { 3889 for (uint64_t BitPos : DeferredMetadataInfo) { 3890 // Move the bit stream to the saved position. 3891 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3892 return JumpFailed; 3893 if (Error Err = MDLoader->parseModuleMetadata()) 3894 return Err; 3895 } 3896 3897 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3898 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3899 // multiple times. 3900 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3901 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3902 NamedMDNode *LinkerOpts = 3903 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3904 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3905 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3906 } 3907 } 3908 3909 DeferredMetadataInfo.clear(); 3910 return Error::success(); 3911 } 3912 3913 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3914 3915 /// When we see the block for a function body, remember where it is and then 3916 /// skip it. This lets us lazily deserialize the functions. 3917 Error BitcodeReader::rememberAndSkipFunctionBody() { 3918 // Get the function we are talking about. 3919 if (FunctionsWithBodies.empty()) 3920 return error("Insufficient function protos"); 3921 3922 Function *Fn = FunctionsWithBodies.back(); 3923 FunctionsWithBodies.pop_back(); 3924 3925 // Save the current stream state. 3926 uint64_t CurBit = Stream.GetCurrentBitNo(); 3927 assert( 3928 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3929 "Mismatch between VST and scanned function offsets"); 3930 DeferredFunctionInfo[Fn] = CurBit; 3931 3932 // Skip over the function block for now. 3933 if (Error Err = Stream.SkipBlock()) 3934 return Err; 3935 return Error::success(); 3936 } 3937 3938 Error BitcodeReader::globalCleanup() { 3939 // Patch the initializers for globals and aliases up. 3940 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3941 return Err; 3942 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3943 return error("Malformed global initializer set"); 3944 3945 // Look for intrinsic functions which need to be upgraded at some point 3946 // and functions that need to have their function attributes upgraded. 3947 for (Function &F : *TheModule) { 3948 MDLoader->upgradeDebugIntrinsics(F); 3949 Function *NewFn; 3950 // If PreserveInputDbgFormat=true, then we don't know whether we want 3951 // intrinsics or records, and we won't perform any conversions in either 3952 // case, so don't upgrade intrinsics to records. 3953 if (UpgradeIntrinsicFunction( 3954 &F, NewFn, PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE)) 3955 UpgradedIntrinsics[&F] = NewFn; 3956 // Look for functions that rely on old function attribute behavior. 3957 UpgradeFunctionAttributes(F); 3958 } 3959 3960 // Look for global variables which need to be renamed. 3961 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3962 for (GlobalVariable &GV : TheModule->globals()) 3963 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3964 UpgradedVariables.emplace_back(&GV, Upgraded); 3965 for (auto &Pair : UpgradedVariables) { 3966 Pair.first->eraseFromParent(); 3967 TheModule->insertGlobalVariable(Pair.second); 3968 } 3969 3970 // Force deallocation of memory for these vectors to favor the client that 3971 // want lazy deserialization. 3972 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3973 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3974 return Error::success(); 3975 } 3976 3977 /// Support for lazy parsing of function bodies. This is required if we 3978 /// either have an old bitcode file without a VST forward declaration record, 3979 /// or if we have an anonymous function being materialized, since anonymous 3980 /// functions do not have a name and are therefore not in the VST. 3981 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3982 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3983 return JumpFailed; 3984 3985 if (Stream.AtEndOfStream()) 3986 return error("Could not find function in stream"); 3987 3988 if (!SeenFirstFunctionBody) 3989 return error("Trying to materialize functions before seeing function blocks"); 3990 3991 // An old bitcode file with the symbol table at the end would have 3992 // finished the parse greedily. 3993 assert(SeenValueSymbolTable); 3994 3995 SmallVector<uint64_t, 64> Record; 3996 3997 while (true) { 3998 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3999 if (!MaybeEntry) 4000 return MaybeEntry.takeError(); 4001 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4002 4003 switch (Entry.Kind) { 4004 default: 4005 return error("Expect SubBlock"); 4006 case BitstreamEntry::SubBlock: 4007 switch (Entry.ID) { 4008 default: 4009 return error("Expect function block"); 4010 case bitc::FUNCTION_BLOCK_ID: 4011 if (Error Err = rememberAndSkipFunctionBody()) 4012 return Err; 4013 NextUnreadBit = Stream.GetCurrentBitNo(); 4014 return Error::success(); 4015 } 4016 } 4017 } 4018 } 4019 4020 Error BitcodeReaderBase::readBlockInfo() { 4021 Expected<std::optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 4022 Stream.ReadBlockInfoBlock(); 4023 if (!MaybeNewBlockInfo) 4024 return MaybeNewBlockInfo.takeError(); 4025 std::optional<BitstreamBlockInfo> NewBlockInfo = 4026 std::move(MaybeNewBlockInfo.get()); 4027 if (!NewBlockInfo) 4028 return error("Malformed block"); 4029 BlockInfo = std::move(*NewBlockInfo); 4030 return Error::success(); 4031 } 4032 4033 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 4034 // v1: [selection_kind, name] 4035 // v2: [strtab_offset, strtab_size, selection_kind] 4036 StringRef Name; 4037 std::tie(Name, Record) = readNameFromStrtab(Record); 4038 4039 if (Record.empty()) 4040 return error("Invalid record"); 4041 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 4042 std::string OldFormatName; 4043 if (!UseStrtab) { 4044 if (Record.size() < 2) 4045 return error("Invalid record"); 4046 unsigned ComdatNameSize = Record[1]; 4047 if (ComdatNameSize > Record.size() - 2) 4048 return error("Comdat name size too large"); 4049 OldFormatName.reserve(ComdatNameSize); 4050 for (unsigned i = 0; i != ComdatNameSize; ++i) 4051 OldFormatName += (char)Record[2 + i]; 4052 Name = OldFormatName; 4053 } 4054 Comdat *C = TheModule->getOrInsertComdat(Name); 4055 C->setSelectionKind(SK); 4056 ComdatList.push_back(C); 4057 return Error::success(); 4058 } 4059 4060 static void inferDSOLocal(GlobalValue *GV) { 4061 // infer dso_local from linkage and visibility if it is not encoded. 4062 if (GV->hasLocalLinkage() || 4063 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 4064 GV->setDSOLocal(true); 4065 } 4066 4067 GlobalValue::SanitizerMetadata deserializeSanitizerMetadata(unsigned V) { 4068 GlobalValue::SanitizerMetadata Meta; 4069 if (V & (1 << 0)) 4070 Meta.NoAddress = true; 4071 if (V & (1 << 1)) 4072 Meta.NoHWAddress = true; 4073 if (V & (1 << 2)) 4074 Meta.Memtag = true; 4075 if (V & (1 << 3)) 4076 Meta.IsDynInit = true; 4077 return Meta; 4078 } 4079 4080 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 4081 // v1: [pointer type, isconst, initid, linkage, alignment, section, 4082 // visibility, threadlocal, unnamed_addr, externally_initialized, 4083 // dllstorageclass, comdat, attributes, preemption specifier, 4084 // partition strtab offset, partition strtab size] (name in VST) 4085 // v2: [strtab_offset, strtab_size, v1] 4086 // v3: [v2, code_model] 4087 StringRef Name; 4088 std::tie(Name, Record) = readNameFromStrtab(Record); 4089 4090 if (Record.size() < 6) 4091 return error("Invalid record"); 4092 unsigned TyID = Record[0]; 4093 Type *Ty = getTypeByID(TyID); 4094 if (!Ty) 4095 return error("Invalid record"); 4096 bool isConstant = Record[1] & 1; 4097 bool explicitType = Record[1] & 2; 4098 unsigned AddressSpace; 4099 if (explicitType) { 4100 AddressSpace = Record[1] >> 2; 4101 } else { 4102 if (!Ty->isPointerTy()) 4103 return error("Invalid type for value"); 4104 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 4105 TyID = getContainedTypeID(TyID); 4106 Ty = getTypeByID(TyID); 4107 if (!Ty) 4108 return error("Missing element type for old-style global"); 4109 } 4110 4111 uint64_t RawLinkage = Record[3]; 4112 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4113 MaybeAlign Alignment; 4114 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 4115 return Err; 4116 std::string Section; 4117 if (Record[5]) { 4118 if (Record[5] - 1 >= SectionTable.size()) 4119 return error("Invalid ID"); 4120 Section = SectionTable[Record[5] - 1]; 4121 } 4122 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 4123 // Local linkage must have default visibility. 4124 // auto-upgrade `hidden` and `protected` for old bitcode. 4125 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 4126 Visibility = getDecodedVisibility(Record[6]); 4127 4128 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 4129 if (Record.size() > 7) 4130 TLM = getDecodedThreadLocalMode(Record[7]); 4131 4132 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4133 if (Record.size() > 8) 4134 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 4135 4136 bool ExternallyInitialized = false; 4137 if (Record.size() > 9) 4138 ExternallyInitialized = Record[9]; 4139 4140 GlobalVariable *NewGV = 4141 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 4142 nullptr, TLM, AddressSpace, ExternallyInitialized); 4143 if (Alignment) 4144 NewGV->setAlignment(*Alignment); 4145 if (!Section.empty()) 4146 NewGV->setSection(Section); 4147 NewGV->setVisibility(Visibility); 4148 NewGV->setUnnamedAddr(UnnamedAddr); 4149 4150 if (Record.size() > 10) { 4151 // A GlobalValue with local linkage cannot have a DLL storage class. 4152 if (!NewGV->hasLocalLinkage()) { 4153 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 4154 } 4155 } else { 4156 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 4157 } 4158 4159 ValueList.push_back(NewGV, getVirtualTypeID(NewGV->getType(), TyID)); 4160 4161 // Remember which value to use for the global initializer. 4162 if (unsigned InitID = Record[2]) 4163 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 4164 4165 if (Record.size() > 11) { 4166 if (unsigned ComdatID = Record[11]) { 4167 if (ComdatID > ComdatList.size()) 4168 return error("Invalid global variable comdat ID"); 4169 NewGV->setComdat(ComdatList[ComdatID - 1]); 4170 } 4171 } else if (hasImplicitComdat(RawLinkage)) { 4172 ImplicitComdatObjects.insert(NewGV); 4173 } 4174 4175 if (Record.size() > 12) { 4176 auto AS = getAttributes(Record[12]).getFnAttrs(); 4177 NewGV->setAttributes(AS); 4178 } 4179 4180 if (Record.size() > 13) { 4181 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 4182 } 4183 inferDSOLocal(NewGV); 4184 4185 // Check whether we have enough values to read a partition name. 4186 if (Record.size() > 15) 4187 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 4188 4189 if (Record.size() > 16 && Record[16]) { 4190 llvm::GlobalValue::SanitizerMetadata Meta = 4191 deserializeSanitizerMetadata(Record[16]); 4192 NewGV->setSanitizerMetadata(Meta); 4193 } 4194 4195 if (Record.size() > 17 && Record[17]) { 4196 if (auto CM = getDecodedCodeModel(Record[17])) 4197 NewGV->setCodeModel(*CM); 4198 else 4199 return error("Invalid global variable code model"); 4200 } 4201 4202 return Error::success(); 4203 } 4204 4205 void BitcodeReader::callValueTypeCallback(Value *F, unsigned TypeID) { 4206 if (ValueTypeCallback) { 4207 (*ValueTypeCallback)( 4208 F, TypeID, [this](unsigned I) { return getTypeByID(I); }, 4209 [this](unsigned I, unsigned J) { return getContainedTypeID(I, J); }); 4210 } 4211 } 4212 4213 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 4214 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 4215 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 4216 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 4217 // v2: [strtab_offset, strtab_size, v1] 4218 StringRef Name; 4219 std::tie(Name, Record) = readNameFromStrtab(Record); 4220 4221 if (Record.size() < 8) 4222 return error("Invalid record"); 4223 unsigned FTyID = Record[0]; 4224 Type *FTy = getTypeByID(FTyID); 4225 if (!FTy) 4226 return error("Invalid record"); 4227 if (isa<PointerType>(FTy)) { 4228 FTyID = getContainedTypeID(FTyID, 0); 4229 FTy = getTypeByID(FTyID); 4230 if (!FTy) 4231 return error("Missing element type for old-style function"); 4232 } 4233 4234 if (!isa<FunctionType>(FTy)) 4235 return error("Invalid type for value"); 4236 auto CC = static_cast<CallingConv::ID>(Record[1]); 4237 if (CC & ~CallingConv::MaxID) 4238 return error("Invalid calling convention ID"); 4239 4240 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 4241 if (Record.size() > 16) 4242 AddrSpace = Record[16]; 4243 4244 Function *Func = 4245 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 4246 AddrSpace, Name, TheModule); 4247 4248 assert(Func->getFunctionType() == FTy && 4249 "Incorrect fully specified type provided for function"); 4250 FunctionTypeIDs[Func] = FTyID; 4251 4252 Func->setCallingConv(CC); 4253 bool isProto = Record[2]; 4254 uint64_t RawLinkage = Record[3]; 4255 Func->setLinkage(getDecodedLinkage(RawLinkage)); 4256 Func->setAttributes(getAttributes(Record[4])); 4257 callValueTypeCallback(Func, FTyID); 4258 4259 // Upgrade any old-style byval or sret without a type by propagating the 4260 // argument's pointee type. There should be no opaque pointers where the byval 4261 // type is implicit. 4262 for (unsigned i = 0; i != Func->arg_size(); ++i) { 4263 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4264 Attribute::InAlloca}) { 4265 if (!Func->hasParamAttribute(i, Kind)) 4266 continue; 4267 4268 if (Func->getParamAttribute(i, Kind).getValueAsType()) 4269 continue; 4270 4271 Func->removeParamAttr(i, Kind); 4272 4273 unsigned ParamTypeID = getContainedTypeID(FTyID, i + 1); 4274 Type *PtrEltTy = getPtrElementTypeByID(ParamTypeID); 4275 if (!PtrEltTy) 4276 return error("Missing param element type for attribute upgrade"); 4277 4278 Attribute NewAttr; 4279 switch (Kind) { 4280 case Attribute::ByVal: 4281 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4282 break; 4283 case Attribute::StructRet: 4284 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4285 break; 4286 case Attribute::InAlloca: 4287 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4288 break; 4289 default: 4290 llvm_unreachable("not an upgraded type attribute"); 4291 } 4292 4293 Func->addParamAttr(i, NewAttr); 4294 } 4295 } 4296 4297 if (Func->getCallingConv() == CallingConv::X86_INTR && 4298 !Func->arg_empty() && !Func->hasParamAttribute(0, Attribute::ByVal)) { 4299 unsigned ParamTypeID = getContainedTypeID(FTyID, 1); 4300 Type *ByValTy = getPtrElementTypeByID(ParamTypeID); 4301 if (!ByValTy) 4302 return error("Missing param element type for x86_intrcc upgrade"); 4303 Attribute NewAttr = Attribute::getWithByValType(Context, ByValTy); 4304 Func->addParamAttr(0, NewAttr); 4305 } 4306 4307 MaybeAlign Alignment; 4308 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 4309 return Err; 4310 if (Alignment) 4311 Func->setAlignment(*Alignment); 4312 if (Record[6]) { 4313 if (Record[6] - 1 >= SectionTable.size()) 4314 return error("Invalid ID"); 4315 Func->setSection(SectionTable[Record[6] - 1]); 4316 } 4317 // Local linkage must have default visibility. 4318 // auto-upgrade `hidden` and `protected` for old bitcode. 4319 if (!Func->hasLocalLinkage()) 4320 Func->setVisibility(getDecodedVisibility(Record[7])); 4321 if (Record.size() > 8 && Record[8]) { 4322 if (Record[8] - 1 >= GCTable.size()) 4323 return error("Invalid ID"); 4324 Func->setGC(GCTable[Record[8] - 1]); 4325 } 4326 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4327 if (Record.size() > 9) 4328 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 4329 Func->setUnnamedAddr(UnnamedAddr); 4330 4331 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 4332 if (Record.size() > 10) 4333 OperandInfo.Prologue = Record[10]; 4334 4335 if (Record.size() > 11) { 4336 // A GlobalValue with local linkage cannot have a DLL storage class. 4337 if (!Func->hasLocalLinkage()) { 4338 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 4339 } 4340 } else { 4341 upgradeDLLImportExportLinkage(Func, RawLinkage); 4342 } 4343 4344 if (Record.size() > 12) { 4345 if (unsigned ComdatID = Record[12]) { 4346 if (ComdatID > ComdatList.size()) 4347 return error("Invalid function comdat ID"); 4348 Func->setComdat(ComdatList[ComdatID - 1]); 4349 } 4350 } else if (hasImplicitComdat(RawLinkage)) { 4351 ImplicitComdatObjects.insert(Func); 4352 } 4353 4354 if (Record.size() > 13) 4355 OperandInfo.Prefix = Record[13]; 4356 4357 if (Record.size() > 14) 4358 OperandInfo.PersonalityFn = Record[14]; 4359 4360 if (Record.size() > 15) { 4361 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 4362 } 4363 inferDSOLocal(Func); 4364 4365 // Record[16] is the address space number. 4366 4367 // Check whether we have enough values to read a partition name. Also make 4368 // sure Strtab has enough values. 4369 if (Record.size() > 18 && Strtab.data() && 4370 Record[17] + Record[18] <= Strtab.size()) { 4371 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 4372 } 4373 4374 ValueList.push_back(Func, getVirtualTypeID(Func->getType(), FTyID)); 4375 4376 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 4377 FunctionOperands.push_back(OperandInfo); 4378 4379 // If this is a function with a body, remember the prototype we are 4380 // creating now, so that we can match up the body with them later. 4381 if (!isProto) { 4382 Func->setIsMaterializable(true); 4383 FunctionsWithBodies.push_back(Func); 4384 DeferredFunctionInfo[Func] = 0; 4385 } 4386 return Error::success(); 4387 } 4388 4389 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 4390 unsigned BitCode, ArrayRef<uint64_t> Record) { 4391 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 4392 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4393 // dllstorageclass, threadlocal, unnamed_addr, 4394 // preemption specifier] (name in VST) 4395 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 4396 // visibility, dllstorageclass, threadlocal, unnamed_addr, 4397 // preemption specifier] (name in VST) 4398 // v2: [strtab_offset, strtab_size, v1] 4399 StringRef Name; 4400 std::tie(Name, Record) = readNameFromStrtab(Record); 4401 4402 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 4403 if (Record.size() < (3 + (unsigned)NewRecord)) 4404 return error("Invalid record"); 4405 unsigned OpNum = 0; 4406 unsigned TypeID = Record[OpNum++]; 4407 Type *Ty = getTypeByID(TypeID); 4408 if (!Ty) 4409 return error("Invalid record"); 4410 4411 unsigned AddrSpace; 4412 if (!NewRecord) { 4413 auto *PTy = dyn_cast<PointerType>(Ty); 4414 if (!PTy) 4415 return error("Invalid type for value"); 4416 AddrSpace = PTy->getAddressSpace(); 4417 TypeID = getContainedTypeID(TypeID); 4418 Ty = getTypeByID(TypeID); 4419 if (!Ty) 4420 return error("Missing element type for old-style indirect symbol"); 4421 } else { 4422 AddrSpace = Record[OpNum++]; 4423 } 4424 4425 auto Val = Record[OpNum++]; 4426 auto Linkage = Record[OpNum++]; 4427 GlobalValue *NewGA; 4428 if (BitCode == bitc::MODULE_CODE_ALIAS || 4429 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 4430 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4431 TheModule); 4432 else 4433 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 4434 nullptr, TheModule); 4435 4436 // Local linkage must have default visibility. 4437 // auto-upgrade `hidden` and `protected` for old bitcode. 4438 if (OpNum != Record.size()) { 4439 auto VisInd = OpNum++; 4440 if (!NewGA->hasLocalLinkage()) 4441 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 4442 } 4443 if (BitCode == bitc::MODULE_CODE_ALIAS || 4444 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 4445 if (OpNum != Record.size()) { 4446 auto S = Record[OpNum++]; 4447 // A GlobalValue with local linkage cannot have a DLL storage class. 4448 if (!NewGA->hasLocalLinkage()) 4449 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(S)); 4450 } 4451 else 4452 upgradeDLLImportExportLinkage(NewGA, Linkage); 4453 if (OpNum != Record.size()) 4454 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 4455 if (OpNum != Record.size()) 4456 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 4457 } 4458 if (OpNum != Record.size()) 4459 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 4460 inferDSOLocal(NewGA); 4461 4462 // Check whether we have enough values to read a partition name. 4463 if (OpNum + 1 < Record.size()) { 4464 // Check Strtab has enough values for the partition. 4465 if (Record[OpNum] + Record[OpNum + 1] > Strtab.size()) 4466 return error("Malformed partition, too large."); 4467 NewGA->setPartition( 4468 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 4469 } 4470 4471 ValueList.push_back(NewGA, getVirtualTypeID(NewGA->getType(), TypeID)); 4472 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 4473 return Error::success(); 4474 } 4475 4476 Error BitcodeReader::parseModule(uint64_t ResumeBit, 4477 bool ShouldLazyLoadMetadata, 4478 ParserCallbacks Callbacks) { 4479 // Load directly into RemoveDIs format if LoadBitcodeIntoNewDbgInfoFormat 4480 // has been set to true and we aren't attempting to preserve the existing 4481 // format in the bitcode (default action: load into the old debug format). 4482 if (PreserveInputDbgFormat != cl::boolOrDefault::BOU_TRUE) { 4483 TheModule->IsNewDbgInfoFormat = 4484 UseNewDbgInfoFormat && 4485 LoadBitcodeIntoNewDbgInfoFormat != cl::boolOrDefault::BOU_FALSE; 4486 } 4487 4488 this->ValueTypeCallback = std::move(Callbacks.ValueType); 4489 if (ResumeBit) { 4490 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 4491 return JumpFailed; 4492 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4493 return Err; 4494 4495 SmallVector<uint64_t, 64> Record; 4496 4497 // Parts of bitcode parsing depend on the datalayout. Make sure we 4498 // finalize the datalayout before we run any of that code. 4499 bool ResolvedDataLayout = false; 4500 // In order to support importing modules with illegal data layout strings, 4501 // delay parsing the data layout string until after upgrades and overrides 4502 // have been applied, allowing to fix illegal data layout strings. 4503 // Initialize to the current module's layout string in case none is specified. 4504 std::string TentativeDataLayoutStr = TheModule->getDataLayoutStr(); 4505 4506 auto ResolveDataLayout = [&]() -> Error { 4507 if (ResolvedDataLayout) 4508 return Error::success(); 4509 4510 // Datalayout and triple can't be parsed after this point. 4511 ResolvedDataLayout = true; 4512 4513 // Auto-upgrade the layout string 4514 TentativeDataLayoutStr = llvm::UpgradeDataLayoutString( 4515 TentativeDataLayoutStr, TheModule->getTargetTriple()); 4516 4517 // Apply override 4518 if (Callbacks.DataLayout) { 4519 if (auto LayoutOverride = (*Callbacks.DataLayout)( 4520 TheModule->getTargetTriple(), TentativeDataLayoutStr)) 4521 TentativeDataLayoutStr = *LayoutOverride; 4522 } 4523 4524 // Now the layout string is finalized in TentativeDataLayoutStr. Parse it. 4525 Expected<DataLayout> MaybeDL = DataLayout::parse(TentativeDataLayoutStr); 4526 if (!MaybeDL) 4527 return MaybeDL.takeError(); 4528 4529 TheModule->setDataLayout(MaybeDL.get()); 4530 return Error::success(); 4531 }; 4532 4533 // Read all the records for this module. 4534 while (true) { 4535 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4536 if (!MaybeEntry) 4537 return MaybeEntry.takeError(); 4538 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4539 4540 switch (Entry.Kind) { 4541 case BitstreamEntry::Error: 4542 return error("Malformed block"); 4543 case BitstreamEntry::EndBlock: 4544 if (Error Err = ResolveDataLayout()) 4545 return Err; 4546 return globalCleanup(); 4547 4548 case BitstreamEntry::SubBlock: 4549 switch (Entry.ID) { 4550 default: // Skip unknown content. 4551 if (Error Err = Stream.SkipBlock()) 4552 return Err; 4553 break; 4554 case bitc::BLOCKINFO_BLOCK_ID: 4555 if (Error Err = readBlockInfo()) 4556 return Err; 4557 break; 4558 case bitc::PARAMATTR_BLOCK_ID: 4559 if (Error Err = parseAttributeBlock()) 4560 return Err; 4561 break; 4562 case bitc::PARAMATTR_GROUP_BLOCK_ID: 4563 if (Error Err = parseAttributeGroupBlock()) 4564 return Err; 4565 break; 4566 case bitc::TYPE_BLOCK_ID_NEW: 4567 if (Error Err = parseTypeTable()) 4568 return Err; 4569 break; 4570 case bitc::VALUE_SYMTAB_BLOCK_ID: 4571 if (!SeenValueSymbolTable) { 4572 // Either this is an old form VST without function index and an 4573 // associated VST forward declaration record (which would have caused 4574 // the VST to be jumped to and parsed before it was encountered 4575 // normally in the stream), or there were no function blocks to 4576 // trigger an earlier parsing of the VST. 4577 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 4578 if (Error Err = parseValueSymbolTable()) 4579 return Err; 4580 SeenValueSymbolTable = true; 4581 } else { 4582 // We must have had a VST forward declaration record, which caused 4583 // the parser to jump to and parse the VST earlier. 4584 assert(VSTOffset > 0); 4585 if (Error Err = Stream.SkipBlock()) 4586 return Err; 4587 } 4588 break; 4589 case bitc::CONSTANTS_BLOCK_ID: 4590 if (Error Err = parseConstants()) 4591 return Err; 4592 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 4593 return Err; 4594 break; 4595 case bitc::METADATA_BLOCK_ID: 4596 if (ShouldLazyLoadMetadata) { 4597 if (Error Err = rememberAndSkipMetadata()) 4598 return Err; 4599 break; 4600 } 4601 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 4602 if (Error Err = MDLoader->parseModuleMetadata()) 4603 return Err; 4604 break; 4605 case bitc::METADATA_KIND_BLOCK_ID: 4606 if (Error Err = MDLoader->parseMetadataKinds()) 4607 return Err; 4608 break; 4609 case bitc::FUNCTION_BLOCK_ID: 4610 if (Error Err = ResolveDataLayout()) 4611 return Err; 4612 4613 // If this is the first function body we've seen, reverse the 4614 // FunctionsWithBodies list. 4615 if (!SeenFirstFunctionBody) { 4616 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 4617 if (Error Err = globalCleanup()) 4618 return Err; 4619 SeenFirstFunctionBody = true; 4620 } 4621 4622 if (VSTOffset > 0) { 4623 // If we have a VST forward declaration record, make sure we 4624 // parse the VST now if we haven't already. It is needed to 4625 // set up the DeferredFunctionInfo vector for lazy reading. 4626 if (!SeenValueSymbolTable) { 4627 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 4628 return Err; 4629 SeenValueSymbolTable = true; 4630 // Fall through so that we record the NextUnreadBit below. 4631 // This is necessary in case we have an anonymous function that 4632 // is later materialized. Since it will not have a VST entry we 4633 // need to fall back to the lazy parse to find its offset. 4634 } else { 4635 // If we have a VST forward declaration record, but have already 4636 // parsed the VST (just above, when the first function body was 4637 // encountered here), then we are resuming the parse after 4638 // materializing functions. The ResumeBit points to the 4639 // start of the last function block recorded in the 4640 // DeferredFunctionInfo map. Skip it. 4641 if (Error Err = Stream.SkipBlock()) 4642 return Err; 4643 continue; 4644 } 4645 } 4646 4647 // Support older bitcode files that did not have the function 4648 // index in the VST, nor a VST forward declaration record, as 4649 // well as anonymous functions that do not have VST entries. 4650 // Build the DeferredFunctionInfo vector on the fly. 4651 if (Error Err = rememberAndSkipFunctionBody()) 4652 return Err; 4653 4654 // Suspend parsing when we reach the function bodies. Subsequent 4655 // materialization calls will resume it when necessary. If the bitcode 4656 // file is old, the symbol table will be at the end instead and will not 4657 // have been seen yet. In this case, just finish the parse now. 4658 if (SeenValueSymbolTable) { 4659 NextUnreadBit = Stream.GetCurrentBitNo(); 4660 // After the VST has been parsed, we need to make sure intrinsic name 4661 // are auto-upgraded. 4662 return globalCleanup(); 4663 } 4664 break; 4665 case bitc::USELIST_BLOCK_ID: 4666 if (Error Err = parseUseLists()) 4667 return Err; 4668 break; 4669 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 4670 if (Error Err = parseOperandBundleTags()) 4671 return Err; 4672 break; 4673 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 4674 if (Error Err = parseSyncScopeNames()) 4675 return Err; 4676 break; 4677 } 4678 continue; 4679 4680 case BitstreamEntry::Record: 4681 // The interesting case. 4682 break; 4683 } 4684 4685 // Read a record. 4686 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4687 if (!MaybeBitCode) 4688 return MaybeBitCode.takeError(); 4689 switch (unsigned BitCode = MaybeBitCode.get()) { 4690 default: break; // Default behavior, ignore unknown content. 4691 case bitc::MODULE_CODE_VERSION: { 4692 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 4693 if (!VersionOrErr) 4694 return VersionOrErr.takeError(); 4695 UseRelativeIDs = *VersionOrErr >= 1; 4696 break; 4697 } 4698 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4699 if (ResolvedDataLayout) 4700 return error("target triple too late in module"); 4701 std::string S; 4702 if (convertToString(Record, 0, S)) 4703 return error("Invalid record"); 4704 TheModule->setTargetTriple(S); 4705 break; 4706 } 4707 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 4708 if (ResolvedDataLayout) 4709 return error("datalayout too late in module"); 4710 if (convertToString(Record, 0, TentativeDataLayoutStr)) 4711 return error("Invalid record"); 4712 break; 4713 } 4714 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 4715 std::string S; 4716 if (convertToString(Record, 0, S)) 4717 return error("Invalid record"); 4718 TheModule->setModuleInlineAsm(S); 4719 break; 4720 } 4721 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 4722 // Deprecated, but still needed to read old bitcode files. 4723 std::string S; 4724 if (convertToString(Record, 0, S)) 4725 return error("Invalid record"); 4726 // Ignore value. 4727 break; 4728 } 4729 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 4730 std::string S; 4731 if (convertToString(Record, 0, S)) 4732 return error("Invalid record"); 4733 SectionTable.push_back(S); 4734 break; 4735 } 4736 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 4737 std::string S; 4738 if (convertToString(Record, 0, S)) 4739 return error("Invalid record"); 4740 GCTable.push_back(S); 4741 break; 4742 } 4743 case bitc::MODULE_CODE_COMDAT: 4744 if (Error Err = parseComdatRecord(Record)) 4745 return Err; 4746 break; 4747 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 4748 // written by ThinLinkBitcodeWriter. See 4749 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 4750 // record 4751 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 4752 case bitc::MODULE_CODE_GLOBALVAR: 4753 if (Error Err = parseGlobalVarRecord(Record)) 4754 return Err; 4755 break; 4756 case bitc::MODULE_CODE_FUNCTION: 4757 if (Error Err = ResolveDataLayout()) 4758 return Err; 4759 if (Error Err = parseFunctionRecord(Record)) 4760 return Err; 4761 break; 4762 case bitc::MODULE_CODE_IFUNC: 4763 case bitc::MODULE_CODE_ALIAS: 4764 case bitc::MODULE_CODE_ALIAS_OLD: 4765 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 4766 return Err; 4767 break; 4768 /// MODULE_CODE_VSTOFFSET: [offset] 4769 case bitc::MODULE_CODE_VSTOFFSET: 4770 if (Record.empty()) 4771 return error("Invalid record"); 4772 // Note that we subtract 1 here because the offset is relative to one word 4773 // before the start of the identification or module block, which was 4774 // historically always the start of the regular bitcode header. 4775 VSTOffset = Record[0] - 1; 4776 break; 4777 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4778 case bitc::MODULE_CODE_SOURCE_FILENAME: 4779 SmallString<128> ValueName; 4780 if (convertToString(Record, 0, ValueName)) 4781 return error("Invalid record"); 4782 TheModule->setSourceFileName(ValueName); 4783 break; 4784 } 4785 Record.clear(); 4786 } 4787 this->ValueTypeCallback = std::nullopt; 4788 return Error::success(); 4789 } 4790 4791 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 4792 bool IsImporting, 4793 ParserCallbacks Callbacks) { 4794 TheModule = M; 4795 MetadataLoaderCallbacks MDCallbacks; 4796 MDCallbacks.GetTypeByID = [&](unsigned ID) { return getTypeByID(ID); }; 4797 MDCallbacks.GetContainedTypeID = [&](unsigned I, unsigned J) { 4798 return getContainedTypeID(I, J); 4799 }; 4800 MDCallbacks.MDType = Callbacks.MDType; 4801 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, MDCallbacks); 4802 return parseModule(0, ShouldLazyLoadMetadata, Callbacks); 4803 } 4804 4805 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4806 if (!isa<PointerType>(PtrType)) 4807 return error("Load/Store operand is not a pointer type"); 4808 if (!PointerType::isLoadableOrStorableType(ValType)) 4809 return error("Cannot load/store from pointer"); 4810 return Error::success(); 4811 } 4812 4813 Error BitcodeReader::propagateAttributeTypes(CallBase *CB, 4814 ArrayRef<unsigned> ArgTyIDs) { 4815 AttributeList Attrs = CB->getAttributes(); 4816 for (unsigned i = 0; i != CB->arg_size(); ++i) { 4817 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 4818 Attribute::InAlloca}) { 4819 if (!Attrs.hasParamAttr(i, Kind) || 4820 Attrs.getParamAttr(i, Kind).getValueAsType()) 4821 continue; 4822 4823 Type *PtrEltTy = getPtrElementTypeByID(ArgTyIDs[i]); 4824 if (!PtrEltTy) 4825 return error("Missing element type for typed attribute upgrade"); 4826 4827 Attribute NewAttr; 4828 switch (Kind) { 4829 case Attribute::ByVal: 4830 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 4831 break; 4832 case Attribute::StructRet: 4833 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 4834 break; 4835 case Attribute::InAlloca: 4836 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 4837 break; 4838 default: 4839 llvm_unreachable("not an upgraded type attribute"); 4840 } 4841 4842 Attrs = Attrs.addParamAttribute(Context, i, NewAttr); 4843 } 4844 } 4845 4846 if (CB->isInlineAsm()) { 4847 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 4848 unsigned ArgNo = 0; 4849 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 4850 if (!CI.hasArg()) 4851 continue; 4852 4853 if (CI.isIndirect && !Attrs.getParamElementType(ArgNo)) { 4854 Type *ElemTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4855 if (!ElemTy) 4856 return error("Missing element type for inline asm upgrade"); 4857 Attrs = Attrs.addParamAttribute( 4858 Context, ArgNo, 4859 Attribute::get(Context, Attribute::ElementType, ElemTy)); 4860 } 4861 4862 ArgNo++; 4863 } 4864 } 4865 4866 switch (CB->getIntrinsicID()) { 4867 case Intrinsic::preserve_array_access_index: 4868 case Intrinsic::preserve_struct_access_index: 4869 case Intrinsic::aarch64_ldaxr: 4870 case Intrinsic::aarch64_ldxr: 4871 case Intrinsic::aarch64_stlxr: 4872 case Intrinsic::aarch64_stxr: 4873 case Intrinsic::arm_ldaex: 4874 case Intrinsic::arm_ldrex: 4875 case Intrinsic::arm_stlex: 4876 case Intrinsic::arm_strex: { 4877 unsigned ArgNo; 4878 switch (CB->getIntrinsicID()) { 4879 case Intrinsic::aarch64_stlxr: 4880 case Intrinsic::aarch64_stxr: 4881 case Intrinsic::arm_stlex: 4882 case Intrinsic::arm_strex: 4883 ArgNo = 1; 4884 break; 4885 default: 4886 ArgNo = 0; 4887 break; 4888 } 4889 if (!Attrs.getParamElementType(ArgNo)) { 4890 Type *ElTy = getPtrElementTypeByID(ArgTyIDs[ArgNo]); 4891 if (!ElTy) 4892 return error("Missing element type for elementtype upgrade"); 4893 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4894 Attrs = Attrs.addParamAttribute(Context, ArgNo, NewAttr); 4895 } 4896 break; 4897 } 4898 default: 4899 break; 4900 } 4901 4902 CB->setAttributes(Attrs); 4903 return Error::success(); 4904 } 4905 4906 /// Lazily parse the specified function body block. 4907 Error BitcodeReader::parseFunctionBody(Function *F) { 4908 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4909 return Err; 4910 4911 // Unexpected unresolved metadata when parsing function. 4912 if (MDLoader->hasFwdRefs()) 4913 return error("Invalid function metadata: incoming forward references"); 4914 4915 InstructionList.clear(); 4916 unsigned ModuleValueListSize = ValueList.size(); 4917 unsigned ModuleMDLoaderSize = MDLoader->size(); 4918 4919 // Add all the function arguments to the value table. 4920 unsigned ArgNo = 0; 4921 unsigned FTyID = FunctionTypeIDs[F]; 4922 for (Argument &I : F->args()) { 4923 unsigned ArgTyID = getContainedTypeID(FTyID, ArgNo + 1); 4924 assert(I.getType() == getTypeByID(ArgTyID) && 4925 "Incorrect fully specified type for Function Argument"); 4926 ValueList.push_back(&I, ArgTyID); 4927 ++ArgNo; 4928 } 4929 unsigned NextValueNo = ValueList.size(); 4930 BasicBlock *CurBB = nullptr; 4931 unsigned CurBBNo = 0; 4932 // Block into which constant expressions from phi nodes are materialized. 4933 BasicBlock *PhiConstExprBB = nullptr; 4934 // Edge blocks for phi nodes into which constant expressions have been 4935 // expanded. 4936 SmallMapVector<std::pair<BasicBlock *, BasicBlock *>, BasicBlock *, 4> 4937 ConstExprEdgeBBs; 4938 4939 DebugLoc LastLoc; 4940 auto getLastInstruction = [&]() -> Instruction * { 4941 if (CurBB && !CurBB->empty()) 4942 return &CurBB->back(); 4943 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4944 !FunctionBBs[CurBBNo - 1]->empty()) 4945 return &FunctionBBs[CurBBNo - 1]->back(); 4946 return nullptr; 4947 }; 4948 4949 std::vector<OperandBundleDef> OperandBundles; 4950 4951 // Read all the records. 4952 SmallVector<uint64_t, 64> Record; 4953 4954 while (true) { 4955 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4956 if (!MaybeEntry) 4957 return MaybeEntry.takeError(); 4958 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4959 4960 switch (Entry.Kind) { 4961 case BitstreamEntry::Error: 4962 return error("Malformed block"); 4963 case BitstreamEntry::EndBlock: 4964 goto OutOfRecordLoop; 4965 4966 case BitstreamEntry::SubBlock: 4967 switch (Entry.ID) { 4968 default: // Skip unknown content. 4969 if (Error Err = Stream.SkipBlock()) 4970 return Err; 4971 break; 4972 case bitc::CONSTANTS_BLOCK_ID: 4973 if (Error Err = parseConstants()) 4974 return Err; 4975 NextValueNo = ValueList.size(); 4976 break; 4977 case bitc::VALUE_SYMTAB_BLOCK_ID: 4978 if (Error Err = parseValueSymbolTable()) 4979 return Err; 4980 break; 4981 case bitc::METADATA_ATTACHMENT_ID: 4982 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4983 return Err; 4984 break; 4985 case bitc::METADATA_BLOCK_ID: 4986 assert(DeferredMetadataInfo.empty() && 4987 "Must read all module-level metadata before function-level"); 4988 if (Error Err = MDLoader->parseFunctionMetadata()) 4989 return Err; 4990 break; 4991 case bitc::USELIST_BLOCK_ID: 4992 if (Error Err = parseUseLists()) 4993 return Err; 4994 break; 4995 } 4996 continue; 4997 4998 case BitstreamEntry::Record: 4999 // The interesting case. 5000 break; 5001 } 5002 5003 // Read a record. 5004 Record.clear(); 5005 Instruction *I = nullptr; 5006 unsigned ResTypeID = InvalidTypeID; 5007 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5008 if (!MaybeBitCode) 5009 return MaybeBitCode.takeError(); 5010 switch (unsigned BitCode = MaybeBitCode.get()) { 5011 default: // Default behavior: reject 5012 return error("Invalid value"); 5013 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 5014 if (Record.empty() || Record[0] == 0) 5015 return error("Invalid record"); 5016 // Create all the basic blocks for the function. 5017 FunctionBBs.resize(Record[0]); 5018 5019 // See if anything took the address of blocks in this function. 5020 auto BBFRI = BasicBlockFwdRefs.find(F); 5021 if (BBFRI == BasicBlockFwdRefs.end()) { 5022 for (BasicBlock *&BB : FunctionBBs) 5023 BB = BasicBlock::Create(Context, "", F); 5024 } else { 5025 auto &BBRefs = BBFRI->second; 5026 // Check for invalid basic block references. 5027 if (BBRefs.size() > FunctionBBs.size()) 5028 return error("Invalid ID"); 5029 assert(!BBRefs.empty() && "Unexpected empty array"); 5030 assert(!BBRefs.front() && "Invalid reference to entry block"); 5031 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 5032 ++I) 5033 if (I < RE && BBRefs[I]) { 5034 BBRefs[I]->insertInto(F); 5035 FunctionBBs[I] = BBRefs[I]; 5036 } else { 5037 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 5038 } 5039 5040 // Erase from the table. 5041 BasicBlockFwdRefs.erase(BBFRI); 5042 } 5043 5044 CurBB = FunctionBBs[0]; 5045 continue; 5046 } 5047 5048 case bitc::FUNC_CODE_BLOCKADDR_USERS: // BLOCKADDR_USERS: [vals...] 5049 // The record should not be emitted if it's an empty list. 5050 if (Record.empty()) 5051 return error("Invalid record"); 5052 // When we have the RARE case of a BlockAddress Constant that is not 5053 // scoped to the Function it refers to, we need to conservatively 5054 // materialize the referred to Function, regardless of whether or not 5055 // that Function will ultimately be linked, otherwise users of 5056 // BitcodeReader might start splicing out Function bodies such that we 5057 // might no longer be able to materialize the BlockAddress since the 5058 // BasicBlock (and entire body of the Function) the BlockAddress refers 5059 // to may have been moved. In the case that the user of BitcodeReader 5060 // decides ultimately not to link the Function body, materializing here 5061 // could be considered wasteful, but it's better than a deserialization 5062 // failure as described. This keeps BitcodeReader unaware of complex 5063 // linkage policy decisions such as those use by LTO, leaving those 5064 // decisions "one layer up." 5065 for (uint64_t ValID : Record) 5066 if (auto *F = dyn_cast<Function>(ValueList[ValID])) 5067 BackwardRefFunctions.push_back(F); 5068 else 5069 return error("Invalid record"); 5070 5071 continue; 5072 5073 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 5074 // This record indicates that the last instruction is at the same 5075 // location as the previous instruction with a location. 5076 I = getLastInstruction(); 5077 5078 if (!I) 5079 return error("Invalid record"); 5080 I->setDebugLoc(LastLoc); 5081 I = nullptr; 5082 continue; 5083 5084 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 5085 I = getLastInstruction(); 5086 if (!I || Record.size() < 4) 5087 return error("Invalid record"); 5088 5089 unsigned Line = Record[0], Col = Record[1]; 5090 unsigned ScopeID = Record[2], IAID = Record[3]; 5091 bool isImplicitCode = Record.size() == 5 && Record[4]; 5092 5093 MDNode *Scope = nullptr, *IA = nullptr; 5094 if (ScopeID) { 5095 Scope = dyn_cast_or_null<MDNode>( 5096 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 5097 if (!Scope) 5098 return error("Invalid record"); 5099 } 5100 if (IAID) { 5101 IA = dyn_cast_or_null<MDNode>( 5102 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 5103 if (!IA) 5104 return error("Invalid record"); 5105 } 5106 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 5107 isImplicitCode); 5108 I->setDebugLoc(LastLoc); 5109 I = nullptr; 5110 continue; 5111 } 5112 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 5113 unsigned OpNum = 0; 5114 Value *LHS; 5115 unsigned TypeID; 5116 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5117 OpNum+1 > Record.size()) 5118 return error("Invalid record"); 5119 5120 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 5121 if (Opc == -1) 5122 return error("Invalid record"); 5123 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 5124 ResTypeID = TypeID; 5125 InstructionList.push_back(I); 5126 if (OpNum < Record.size()) { 5127 if (isa<FPMathOperator>(I)) { 5128 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5129 if (FMF.any()) 5130 I->setFastMathFlags(FMF); 5131 } 5132 } 5133 break; 5134 } 5135 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 5136 unsigned OpNum = 0; 5137 Value *LHS, *RHS; 5138 unsigned TypeID; 5139 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, TypeID, CurBB) || 5140 popValue(Record, OpNum, NextValueNo, LHS->getType(), TypeID, RHS, 5141 CurBB) || 5142 OpNum+1 > Record.size()) 5143 return error("Invalid record"); 5144 5145 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 5146 if (Opc == -1) 5147 return error("Invalid record"); 5148 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5149 ResTypeID = TypeID; 5150 InstructionList.push_back(I); 5151 if (OpNum < Record.size()) { 5152 if (Opc == Instruction::Add || 5153 Opc == Instruction::Sub || 5154 Opc == Instruction::Mul || 5155 Opc == Instruction::Shl) { 5156 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 5157 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 5158 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 5159 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 5160 } else if (Opc == Instruction::SDiv || 5161 Opc == Instruction::UDiv || 5162 Opc == Instruction::LShr || 5163 Opc == Instruction::AShr) { 5164 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 5165 cast<BinaryOperator>(I)->setIsExact(true); 5166 } else if (Opc == Instruction::Or) { 5167 if (Record[OpNum] & (1 << bitc::PDI_DISJOINT)) 5168 cast<PossiblyDisjointInst>(I)->setIsDisjoint(true); 5169 } else if (isa<FPMathOperator>(I)) { 5170 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5171 if (FMF.any()) 5172 I->setFastMathFlags(FMF); 5173 } 5174 } 5175 break; 5176 } 5177 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 5178 unsigned OpNum = 0; 5179 Value *Op; 5180 unsigned OpTypeID; 5181 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 5182 OpNum + 1 > Record.size()) 5183 return error("Invalid record"); 5184 5185 ResTypeID = Record[OpNum++]; 5186 Type *ResTy = getTypeByID(ResTypeID); 5187 int Opc = getDecodedCastOpcode(Record[OpNum++]); 5188 5189 if (Opc == -1 || !ResTy) 5190 return error("Invalid record"); 5191 Instruction *Temp = nullptr; 5192 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 5193 if (Temp) { 5194 InstructionList.push_back(Temp); 5195 assert(CurBB && "No current BB?"); 5196 Temp->insertInto(CurBB, CurBB->end()); 5197 } 5198 } else { 5199 auto CastOp = (Instruction::CastOps)Opc; 5200 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 5201 return error("Invalid cast"); 5202 I = CastInst::Create(CastOp, Op, ResTy); 5203 } 5204 5205 if (OpNum < Record.size()) { 5206 if (Opc == Instruction::ZExt || Opc == Instruction::UIToFP) { 5207 if (Record[OpNum] & (1 << bitc::PNNI_NON_NEG)) 5208 cast<PossiblyNonNegInst>(I)->setNonNeg(true); 5209 } else if (Opc == Instruction::Trunc) { 5210 if (Record[OpNum] & (1 << bitc::TIO_NO_UNSIGNED_WRAP)) 5211 cast<TruncInst>(I)->setHasNoUnsignedWrap(true); 5212 if (Record[OpNum] & (1 << bitc::TIO_NO_SIGNED_WRAP)) 5213 cast<TruncInst>(I)->setHasNoSignedWrap(true); 5214 } 5215 if (isa<FPMathOperator>(I)) { 5216 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5217 if (FMF.any()) 5218 I->setFastMathFlags(FMF); 5219 } 5220 } 5221 5222 InstructionList.push_back(I); 5223 break; 5224 } 5225 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 5226 case bitc::FUNC_CODE_INST_GEP_OLD: 5227 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 5228 unsigned OpNum = 0; 5229 5230 unsigned TyID; 5231 Type *Ty; 5232 GEPNoWrapFlags NW; 5233 5234 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 5235 NW = toGEPNoWrapFlags(Record[OpNum++]); 5236 TyID = Record[OpNum++]; 5237 Ty = getTypeByID(TyID); 5238 } else { 5239 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD) 5240 NW = GEPNoWrapFlags::inBounds(); 5241 TyID = InvalidTypeID; 5242 Ty = nullptr; 5243 } 5244 5245 Value *BasePtr; 5246 unsigned BasePtrTypeID; 5247 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, BasePtrTypeID, 5248 CurBB)) 5249 return error("Invalid record"); 5250 5251 if (!Ty) { 5252 TyID = getContainedTypeID(BasePtrTypeID); 5253 if (BasePtr->getType()->isVectorTy()) 5254 TyID = getContainedTypeID(TyID); 5255 Ty = getTypeByID(TyID); 5256 } 5257 5258 SmallVector<Value*, 16> GEPIdx; 5259 while (OpNum != Record.size()) { 5260 Value *Op; 5261 unsigned OpTypeID; 5262 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5263 return error("Invalid record"); 5264 GEPIdx.push_back(Op); 5265 } 5266 5267 auto *GEP = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 5268 I = GEP; 5269 5270 ResTypeID = TyID; 5271 if (cast<GEPOperator>(I)->getNumIndices() != 0) { 5272 auto GTI = std::next(gep_type_begin(I)); 5273 for (Value *Idx : drop_begin(cast<GEPOperator>(I)->indices())) { 5274 unsigned SubType = 0; 5275 if (GTI.isStruct()) { 5276 ConstantInt *IdxC = 5277 Idx->getType()->isVectorTy() 5278 ? cast<ConstantInt>(cast<Constant>(Idx)->getSplatValue()) 5279 : cast<ConstantInt>(Idx); 5280 SubType = IdxC->getZExtValue(); 5281 } 5282 ResTypeID = getContainedTypeID(ResTypeID, SubType); 5283 ++GTI; 5284 } 5285 } 5286 5287 // At this point ResTypeID is the result element type. We need a pointer 5288 // or vector of pointer to it. 5289 ResTypeID = getVirtualTypeID(I->getType()->getScalarType(), ResTypeID); 5290 if (I->getType()->isVectorTy()) 5291 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5292 5293 InstructionList.push_back(I); 5294 GEP->setNoWrapFlags(NW); 5295 break; 5296 } 5297 5298 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 5299 // EXTRACTVAL: [opty, opval, n x indices] 5300 unsigned OpNum = 0; 5301 Value *Agg; 5302 unsigned AggTypeID; 5303 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5304 return error("Invalid record"); 5305 Type *Ty = Agg->getType(); 5306 5307 unsigned RecSize = Record.size(); 5308 if (OpNum == RecSize) 5309 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 5310 5311 SmallVector<unsigned, 4> EXTRACTVALIdx; 5312 ResTypeID = AggTypeID; 5313 for (; OpNum != RecSize; ++OpNum) { 5314 bool IsArray = Ty->isArrayTy(); 5315 bool IsStruct = Ty->isStructTy(); 5316 uint64_t Index = Record[OpNum]; 5317 5318 if (!IsStruct && !IsArray) 5319 return error("EXTRACTVAL: Invalid type"); 5320 if ((unsigned)Index != Index) 5321 return error("Invalid value"); 5322 if (IsStruct && Index >= Ty->getStructNumElements()) 5323 return error("EXTRACTVAL: Invalid struct index"); 5324 if (IsArray && Index >= Ty->getArrayNumElements()) 5325 return error("EXTRACTVAL: Invalid array index"); 5326 EXTRACTVALIdx.push_back((unsigned)Index); 5327 5328 if (IsStruct) { 5329 Ty = Ty->getStructElementType(Index); 5330 ResTypeID = getContainedTypeID(ResTypeID, Index); 5331 } else { 5332 Ty = Ty->getArrayElementType(); 5333 ResTypeID = getContainedTypeID(ResTypeID); 5334 } 5335 } 5336 5337 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 5338 InstructionList.push_back(I); 5339 break; 5340 } 5341 5342 case bitc::FUNC_CODE_INST_INSERTVAL: { 5343 // INSERTVAL: [opty, opval, opty, opval, n x indices] 5344 unsigned OpNum = 0; 5345 Value *Agg; 5346 unsigned AggTypeID; 5347 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, AggTypeID, CurBB)) 5348 return error("Invalid record"); 5349 Value *Val; 5350 unsigned ValTypeID; 5351 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 5352 return error("Invalid record"); 5353 5354 unsigned RecSize = Record.size(); 5355 if (OpNum == RecSize) 5356 return error("INSERTVAL: Invalid instruction with 0 indices"); 5357 5358 SmallVector<unsigned, 4> INSERTVALIdx; 5359 Type *CurTy = Agg->getType(); 5360 for (; OpNum != RecSize; ++OpNum) { 5361 bool IsArray = CurTy->isArrayTy(); 5362 bool IsStruct = CurTy->isStructTy(); 5363 uint64_t Index = Record[OpNum]; 5364 5365 if (!IsStruct && !IsArray) 5366 return error("INSERTVAL: Invalid type"); 5367 if ((unsigned)Index != Index) 5368 return error("Invalid value"); 5369 if (IsStruct && Index >= CurTy->getStructNumElements()) 5370 return error("INSERTVAL: Invalid struct index"); 5371 if (IsArray && Index >= CurTy->getArrayNumElements()) 5372 return error("INSERTVAL: Invalid array index"); 5373 5374 INSERTVALIdx.push_back((unsigned)Index); 5375 if (IsStruct) 5376 CurTy = CurTy->getStructElementType(Index); 5377 else 5378 CurTy = CurTy->getArrayElementType(); 5379 } 5380 5381 if (CurTy != Val->getType()) 5382 return error("Inserted value type doesn't match aggregate type"); 5383 5384 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 5385 ResTypeID = AggTypeID; 5386 InstructionList.push_back(I); 5387 break; 5388 } 5389 5390 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 5391 // obsolete form of select 5392 // handles select i1 ... in old bitcode 5393 unsigned OpNum = 0; 5394 Value *TrueVal, *FalseVal, *Cond; 5395 unsigned TypeID; 5396 Type *CondType = Type::getInt1Ty(Context); 5397 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, TypeID, 5398 CurBB) || 5399 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), TypeID, 5400 FalseVal, CurBB) || 5401 popValue(Record, OpNum, NextValueNo, CondType, 5402 getVirtualTypeID(CondType), Cond, CurBB)) 5403 return error("Invalid record"); 5404 5405 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5406 ResTypeID = TypeID; 5407 InstructionList.push_back(I); 5408 break; 5409 } 5410 5411 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 5412 // new form of select 5413 // handles select i1 or select [N x i1] 5414 unsigned OpNum = 0; 5415 Value *TrueVal, *FalseVal, *Cond; 5416 unsigned ValTypeID, CondTypeID; 5417 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, ValTypeID, 5418 CurBB) || 5419 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), ValTypeID, 5420 FalseVal, CurBB) || 5421 getValueTypePair(Record, OpNum, NextValueNo, Cond, CondTypeID, CurBB)) 5422 return error("Invalid record"); 5423 5424 // select condition can be either i1 or [N x i1] 5425 if (VectorType* vector_type = 5426 dyn_cast<VectorType>(Cond->getType())) { 5427 // expect <n x i1> 5428 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 5429 return error("Invalid type for value"); 5430 } else { 5431 // expect i1 5432 if (Cond->getType() != Type::getInt1Ty(Context)) 5433 return error("Invalid type for value"); 5434 } 5435 5436 I = SelectInst::Create(Cond, TrueVal, FalseVal); 5437 ResTypeID = ValTypeID; 5438 InstructionList.push_back(I); 5439 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 5440 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 5441 if (FMF.any()) 5442 I->setFastMathFlags(FMF); 5443 } 5444 break; 5445 } 5446 5447 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 5448 unsigned OpNum = 0; 5449 Value *Vec, *Idx; 5450 unsigned VecTypeID, IdxTypeID; 5451 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB) || 5452 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5453 return error("Invalid record"); 5454 if (!Vec->getType()->isVectorTy()) 5455 return error("Invalid type for value"); 5456 I = ExtractElementInst::Create(Vec, Idx); 5457 ResTypeID = getContainedTypeID(VecTypeID); 5458 InstructionList.push_back(I); 5459 break; 5460 } 5461 5462 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 5463 unsigned OpNum = 0; 5464 Value *Vec, *Elt, *Idx; 5465 unsigned VecTypeID, IdxTypeID; 5466 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, VecTypeID, CurBB)) 5467 return error("Invalid record"); 5468 if (!Vec->getType()->isVectorTy()) 5469 return error("Invalid type for value"); 5470 if (popValue(Record, OpNum, NextValueNo, 5471 cast<VectorType>(Vec->getType())->getElementType(), 5472 getContainedTypeID(VecTypeID), Elt, CurBB) || 5473 getValueTypePair(Record, OpNum, NextValueNo, Idx, IdxTypeID, CurBB)) 5474 return error("Invalid record"); 5475 I = InsertElementInst::Create(Vec, Elt, Idx); 5476 ResTypeID = VecTypeID; 5477 InstructionList.push_back(I); 5478 break; 5479 } 5480 5481 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 5482 unsigned OpNum = 0; 5483 Value *Vec1, *Vec2, *Mask; 5484 unsigned Vec1TypeID; 5485 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, Vec1TypeID, 5486 CurBB) || 5487 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec1TypeID, 5488 Vec2, CurBB)) 5489 return error("Invalid record"); 5490 5491 unsigned MaskTypeID; 5492 if (getValueTypePair(Record, OpNum, NextValueNo, Mask, MaskTypeID, CurBB)) 5493 return error("Invalid record"); 5494 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 5495 return error("Invalid type for value"); 5496 5497 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 5498 ResTypeID = 5499 getVirtualTypeID(I->getType(), getContainedTypeID(Vec1TypeID)); 5500 InstructionList.push_back(I); 5501 break; 5502 } 5503 5504 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 5505 // Old form of ICmp/FCmp returning bool 5506 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 5507 // both legal on vectors but had different behaviour. 5508 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 5509 // FCmp/ICmp returning bool or vector of bool 5510 5511 unsigned OpNum = 0; 5512 Value *LHS, *RHS; 5513 unsigned LHSTypeID; 5514 if (getValueTypePair(Record, OpNum, NextValueNo, LHS, LHSTypeID, CurBB) || 5515 popValue(Record, OpNum, NextValueNo, LHS->getType(), LHSTypeID, RHS, 5516 CurBB)) 5517 return error("Invalid record"); 5518 5519 if (OpNum >= Record.size()) 5520 return error( 5521 "Invalid record: operand number exceeded available operands"); 5522 5523 CmpInst::Predicate PredVal = CmpInst::Predicate(Record[OpNum]); 5524 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 5525 FastMathFlags FMF; 5526 if (IsFP && Record.size() > OpNum+1) 5527 FMF = getDecodedFastMathFlags(Record[++OpNum]); 5528 5529 if (IsFP) { 5530 if (!CmpInst::isFPPredicate(PredVal)) 5531 return error("Invalid fcmp predicate"); 5532 I = new FCmpInst(PredVal, LHS, RHS); 5533 } else { 5534 if (!CmpInst::isIntPredicate(PredVal)) 5535 return error("Invalid icmp predicate"); 5536 I = new ICmpInst(PredVal, LHS, RHS); 5537 if (Record.size() > OpNum + 1 && 5538 (Record[++OpNum] & (1 << bitc::ICMP_SAME_SIGN))) 5539 cast<ICmpInst>(I)->setSameSign(); 5540 } 5541 5542 if (OpNum + 1 != Record.size()) 5543 return error("Invalid record"); 5544 5545 ResTypeID = getVirtualTypeID(I->getType()->getScalarType()); 5546 if (LHS->getType()->isVectorTy()) 5547 ResTypeID = getVirtualTypeID(I->getType(), ResTypeID); 5548 5549 if (FMF.any()) 5550 I->setFastMathFlags(FMF); 5551 InstructionList.push_back(I); 5552 break; 5553 } 5554 5555 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 5556 { 5557 unsigned Size = Record.size(); 5558 if (Size == 0) { 5559 I = ReturnInst::Create(Context); 5560 InstructionList.push_back(I); 5561 break; 5562 } 5563 5564 unsigned OpNum = 0; 5565 Value *Op = nullptr; 5566 unsigned OpTypeID; 5567 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5568 return error("Invalid record"); 5569 if (OpNum != Record.size()) 5570 return error("Invalid record"); 5571 5572 I = ReturnInst::Create(Context, Op); 5573 InstructionList.push_back(I); 5574 break; 5575 } 5576 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 5577 if (Record.size() != 1 && Record.size() != 3) 5578 return error("Invalid record"); 5579 BasicBlock *TrueDest = getBasicBlock(Record[0]); 5580 if (!TrueDest) 5581 return error("Invalid record"); 5582 5583 if (Record.size() == 1) { 5584 I = BranchInst::Create(TrueDest); 5585 InstructionList.push_back(I); 5586 } 5587 else { 5588 BasicBlock *FalseDest = getBasicBlock(Record[1]); 5589 Type *CondType = Type::getInt1Ty(Context); 5590 Value *Cond = getValue(Record, 2, NextValueNo, CondType, 5591 getVirtualTypeID(CondType), CurBB); 5592 if (!FalseDest || !Cond) 5593 return error("Invalid record"); 5594 I = BranchInst::Create(TrueDest, FalseDest, Cond); 5595 InstructionList.push_back(I); 5596 } 5597 break; 5598 } 5599 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 5600 if (Record.size() != 1 && Record.size() != 2) 5601 return error("Invalid record"); 5602 unsigned Idx = 0; 5603 Type *TokenTy = Type::getTokenTy(Context); 5604 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5605 getVirtualTypeID(TokenTy), CurBB); 5606 if (!CleanupPad) 5607 return error("Invalid record"); 5608 BasicBlock *UnwindDest = nullptr; 5609 if (Record.size() == 2) { 5610 UnwindDest = getBasicBlock(Record[Idx++]); 5611 if (!UnwindDest) 5612 return error("Invalid record"); 5613 } 5614 5615 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 5616 InstructionList.push_back(I); 5617 break; 5618 } 5619 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 5620 if (Record.size() != 2) 5621 return error("Invalid record"); 5622 unsigned Idx = 0; 5623 Type *TokenTy = Type::getTokenTy(Context); 5624 Value *CatchPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5625 getVirtualTypeID(TokenTy), CurBB); 5626 if (!CatchPad) 5627 return error("Invalid record"); 5628 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5629 if (!BB) 5630 return error("Invalid record"); 5631 5632 I = CatchReturnInst::Create(CatchPad, BB); 5633 InstructionList.push_back(I); 5634 break; 5635 } 5636 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 5637 // We must have, at minimum, the outer scope and the number of arguments. 5638 if (Record.size() < 2) 5639 return error("Invalid record"); 5640 5641 unsigned Idx = 0; 5642 5643 Type *TokenTy = Type::getTokenTy(Context); 5644 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5645 getVirtualTypeID(TokenTy), CurBB); 5646 if (!ParentPad) 5647 return error("Invalid record"); 5648 5649 unsigned NumHandlers = Record[Idx++]; 5650 5651 SmallVector<BasicBlock *, 2> Handlers; 5652 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 5653 BasicBlock *BB = getBasicBlock(Record[Idx++]); 5654 if (!BB) 5655 return error("Invalid record"); 5656 Handlers.push_back(BB); 5657 } 5658 5659 BasicBlock *UnwindDest = nullptr; 5660 if (Idx + 1 == Record.size()) { 5661 UnwindDest = getBasicBlock(Record[Idx++]); 5662 if (!UnwindDest) 5663 return error("Invalid record"); 5664 } 5665 5666 if (Record.size() != Idx) 5667 return error("Invalid record"); 5668 5669 auto *CatchSwitch = 5670 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 5671 for (BasicBlock *Handler : Handlers) 5672 CatchSwitch->addHandler(Handler); 5673 I = CatchSwitch; 5674 ResTypeID = getVirtualTypeID(I->getType()); 5675 InstructionList.push_back(I); 5676 break; 5677 } 5678 case bitc::FUNC_CODE_INST_CATCHPAD: 5679 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 5680 // We must have, at minimum, the outer scope and the number of arguments. 5681 if (Record.size() < 2) 5682 return error("Invalid record"); 5683 5684 unsigned Idx = 0; 5685 5686 Type *TokenTy = Type::getTokenTy(Context); 5687 Value *ParentPad = getValue(Record, Idx++, NextValueNo, TokenTy, 5688 getVirtualTypeID(TokenTy), CurBB); 5689 if (!ParentPad) 5690 return error("Invald record"); 5691 5692 unsigned NumArgOperands = Record[Idx++]; 5693 5694 SmallVector<Value *, 2> Args; 5695 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 5696 Value *Val; 5697 unsigned ValTypeID; 5698 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, nullptr)) 5699 return error("Invalid record"); 5700 Args.push_back(Val); 5701 } 5702 5703 if (Record.size() != Idx) 5704 return error("Invalid record"); 5705 5706 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 5707 I = CleanupPadInst::Create(ParentPad, Args); 5708 else 5709 I = CatchPadInst::Create(ParentPad, Args); 5710 ResTypeID = getVirtualTypeID(I->getType()); 5711 InstructionList.push_back(I); 5712 break; 5713 } 5714 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 5715 // Check magic 5716 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 5717 // "New" SwitchInst format with case ranges. The changes to write this 5718 // format were reverted but we still recognize bitcode that uses it. 5719 // Hopefully someday we will have support for case ranges and can use 5720 // this format again. 5721 5722 unsigned OpTyID = Record[1]; 5723 Type *OpTy = getTypeByID(OpTyID); 5724 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 5725 5726 Value *Cond = getValue(Record, 2, NextValueNo, OpTy, OpTyID, CurBB); 5727 BasicBlock *Default = getBasicBlock(Record[3]); 5728 if (!OpTy || !Cond || !Default) 5729 return error("Invalid record"); 5730 5731 unsigned NumCases = Record[4]; 5732 5733 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5734 InstructionList.push_back(SI); 5735 5736 unsigned CurIdx = 5; 5737 for (unsigned i = 0; i != NumCases; ++i) { 5738 SmallVector<ConstantInt*, 1> CaseVals; 5739 unsigned NumItems = Record[CurIdx++]; 5740 for (unsigned ci = 0; ci != NumItems; ++ci) { 5741 bool isSingleNumber = Record[CurIdx++]; 5742 5743 APInt Low; 5744 unsigned ActiveWords = 1; 5745 if (ValueBitWidth > 64) 5746 ActiveWords = Record[CurIdx++]; 5747 Low = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5748 ValueBitWidth); 5749 CurIdx += ActiveWords; 5750 5751 if (!isSingleNumber) { 5752 ActiveWords = 1; 5753 if (ValueBitWidth > 64) 5754 ActiveWords = Record[CurIdx++]; 5755 APInt High = readWideAPInt(ArrayRef(&Record[CurIdx], ActiveWords), 5756 ValueBitWidth); 5757 CurIdx += ActiveWords; 5758 5759 // FIXME: It is not clear whether values in the range should be 5760 // compared as signed or unsigned values. The partially 5761 // implemented changes that used this format in the past used 5762 // unsigned comparisons. 5763 for ( ; Low.ule(High); ++Low) 5764 CaseVals.push_back(ConstantInt::get(Context, Low)); 5765 } else 5766 CaseVals.push_back(ConstantInt::get(Context, Low)); 5767 } 5768 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 5769 for (ConstantInt *Cst : CaseVals) 5770 SI->addCase(Cst, DestBB); 5771 } 5772 I = SI; 5773 break; 5774 } 5775 5776 // Old SwitchInst format without case ranges. 5777 5778 if (Record.size() < 3 || (Record.size() & 1) == 0) 5779 return error("Invalid record"); 5780 unsigned OpTyID = Record[0]; 5781 Type *OpTy = getTypeByID(OpTyID); 5782 Value *Cond = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5783 BasicBlock *Default = getBasicBlock(Record[2]); 5784 if (!OpTy || !Cond || !Default) 5785 return error("Invalid record"); 5786 unsigned NumCases = (Record.size()-3)/2; 5787 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 5788 InstructionList.push_back(SI); 5789 for (unsigned i = 0, e = NumCases; i != e; ++i) { 5790 ConstantInt *CaseVal = dyn_cast_or_null<ConstantInt>( 5791 getFnValueByID(Record[3+i*2], OpTy, OpTyID, nullptr)); 5792 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 5793 if (!CaseVal || !DestBB) { 5794 delete SI; 5795 return error("Invalid record"); 5796 } 5797 SI->addCase(CaseVal, DestBB); 5798 } 5799 I = SI; 5800 break; 5801 } 5802 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 5803 if (Record.size() < 2) 5804 return error("Invalid record"); 5805 unsigned OpTyID = Record[0]; 5806 Type *OpTy = getTypeByID(OpTyID); 5807 Value *Address = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 5808 if (!OpTy || !Address) 5809 return error("Invalid record"); 5810 unsigned NumDests = Record.size()-2; 5811 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 5812 InstructionList.push_back(IBI); 5813 for (unsigned i = 0, e = NumDests; i != e; ++i) { 5814 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 5815 IBI->addDestination(DestBB); 5816 } else { 5817 delete IBI; 5818 return error("Invalid record"); 5819 } 5820 } 5821 I = IBI; 5822 break; 5823 } 5824 5825 case bitc::FUNC_CODE_INST_INVOKE: { 5826 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 5827 if (Record.size() < 4) 5828 return error("Invalid record"); 5829 unsigned OpNum = 0; 5830 AttributeList PAL = getAttributes(Record[OpNum++]); 5831 unsigned CCInfo = Record[OpNum++]; 5832 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 5833 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 5834 5835 unsigned FTyID = InvalidTypeID; 5836 FunctionType *FTy = nullptr; 5837 if ((CCInfo >> 13) & 1) { 5838 FTyID = Record[OpNum++]; 5839 FTy = dyn_cast<FunctionType>(getTypeByID(FTyID)); 5840 if (!FTy) 5841 return error("Explicit invoke type is not a function type"); 5842 } 5843 5844 Value *Callee; 5845 unsigned CalleeTypeID; 5846 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5847 CurBB)) 5848 return error("Invalid record"); 5849 5850 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5851 if (!CalleeTy) 5852 return error("Callee is not a pointer"); 5853 if (!FTy) { 5854 FTyID = getContainedTypeID(CalleeTypeID); 5855 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5856 if (!FTy) 5857 return error("Callee is not of pointer to function type"); 5858 } 5859 if (Record.size() < FTy->getNumParams() + OpNum) 5860 return error("Insufficient operands to call"); 5861 5862 SmallVector<Value*, 16> Ops; 5863 SmallVector<unsigned, 16> ArgTyIDs; 5864 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5865 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5866 Ops.push_back(getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5867 ArgTyID, CurBB)); 5868 ArgTyIDs.push_back(ArgTyID); 5869 if (!Ops.back()) 5870 return error("Invalid record"); 5871 } 5872 5873 if (!FTy->isVarArg()) { 5874 if (Record.size() != OpNum) 5875 return error("Invalid record"); 5876 } else { 5877 // Read type/value pairs for varargs params. 5878 while (OpNum != Record.size()) { 5879 Value *Op; 5880 unsigned OpTypeID; 5881 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5882 return error("Invalid record"); 5883 Ops.push_back(Op); 5884 ArgTyIDs.push_back(OpTypeID); 5885 } 5886 } 5887 5888 // Upgrade the bundles if needed. 5889 if (!OperandBundles.empty()) 5890 UpgradeOperandBundles(OperandBundles); 5891 5892 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 5893 OperandBundles); 5894 ResTypeID = getContainedTypeID(FTyID); 5895 OperandBundles.clear(); 5896 InstructionList.push_back(I); 5897 cast<InvokeInst>(I)->setCallingConv( 5898 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5899 cast<InvokeInst>(I)->setAttributes(PAL); 5900 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 5901 I->deleteValue(); 5902 return Err; 5903 } 5904 5905 break; 5906 } 5907 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5908 unsigned Idx = 0; 5909 Value *Val = nullptr; 5910 unsigned ValTypeID; 5911 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, CurBB)) 5912 return error("Invalid record"); 5913 I = ResumeInst::Create(Val); 5914 InstructionList.push_back(I); 5915 break; 5916 } 5917 case bitc::FUNC_CODE_INST_CALLBR: { 5918 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 5919 unsigned OpNum = 0; 5920 AttributeList PAL = getAttributes(Record[OpNum++]); 5921 unsigned CCInfo = Record[OpNum++]; 5922 5923 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 5924 unsigned NumIndirectDests = Record[OpNum++]; 5925 SmallVector<BasicBlock *, 16> IndirectDests; 5926 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 5927 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 5928 5929 unsigned FTyID = InvalidTypeID; 5930 FunctionType *FTy = nullptr; 5931 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5932 FTyID = Record[OpNum++]; 5933 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5934 if (!FTy) 5935 return error("Explicit call type is not a function type"); 5936 } 5937 5938 Value *Callee; 5939 unsigned CalleeTypeID; 5940 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 5941 CurBB)) 5942 return error("Invalid record"); 5943 5944 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5945 if (!OpTy) 5946 return error("Callee is not a pointer type"); 5947 if (!FTy) { 5948 FTyID = getContainedTypeID(CalleeTypeID); 5949 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 5950 if (!FTy) 5951 return error("Callee is not of pointer to function type"); 5952 } 5953 if (Record.size() < FTy->getNumParams() + OpNum) 5954 return error("Insufficient operands to call"); 5955 5956 SmallVector<Value*, 16> Args; 5957 SmallVector<unsigned, 16> ArgTyIDs; 5958 // Read the fixed params. 5959 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5960 Value *Arg; 5961 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 5962 if (FTy->getParamType(i)->isLabelTy()) 5963 Arg = getBasicBlock(Record[OpNum]); 5964 else 5965 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i), 5966 ArgTyID, CurBB); 5967 if (!Arg) 5968 return error("Invalid record"); 5969 Args.push_back(Arg); 5970 ArgTyIDs.push_back(ArgTyID); 5971 } 5972 5973 // Read type/value pairs for varargs params. 5974 if (!FTy->isVarArg()) { 5975 if (OpNum != Record.size()) 5976 return error("Invalid record"); 5977 } else { 5978 while (OpNum != Record.size()) { 5979 Value *Op; 5980 unsigned OpTypeID; 5981 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 5982 return error("Invalid record"); 5983 Args.push_back(Op); 5984 ArgTyIDs.push_back(OpTypeID); 5985 } 5986 } 5987 5988 // Upgrade the bundles if needed. 5989 if (!OperandBundles.empty()) 5990 UpgradeOperandBundles(OperandBundles); 5991 5992 if (auto *IA = dyn_cast<InlineAsm>(Callee)) { 5993 InlineAsm::ConstraintInfoVector ConstraintInfo = IA->ParseConstraints(); 5994 auto IsLabelConstraint = [](const InlineAsm::ConstraintInfo &CI) { 5995 return CI.Type == InlineAsm::isLabel; 5996 }; 5997 if (none_of(ConstraintInfo, IsLabelConstraint)) { 5998 // Upgrade explicit blockaddress arguments to label constraints. 5999 // Verify that the last arguments are blockaddress arguments that 6000 // match the indirect destinations. Clang always generates callbr 6001 // in this form. We could support reordering with more effort. 6002 unsigned FirstBlockArg = Args.size() - IndirectDests.size(); 6003 for (unsigned ArgNo = FirstBlockArg; ArgNo < Args.size(); ++ArgNo) { 6004 unsigned LabelNo = ArgNo - FirstBlockArg; 6005 auto *BA = dyn_cast<BlockAddress>(Args[ArgNo]); 6006 if (!BA || BA->getFunction() != F || 6007 LabelNo > IndirectDests.size() || 6008 BA->getBasicBlock() != IndirectDests[LabelNo]) 6009 return error("callbr argument does not match indirect dest"); 6010 } 6011 6012 // Remove blockaddress arguments. 6013 Args.erase(Args.begin() + FirstBlockArg, Args.end()); 6014 ArgTyIDs.erase(ArgTyIDs.begin() + FirstBlockArg, ArgTyIDs.end()); 6015 6016 // Recreate the function type with less arguments. 6017 SmallVector<Type *> ArgTys; 6018 for (Value *Arg : Args) 6019 ArgTys.push_back(Arg->getType()); 6020 FTy = 6021 FunctionType::get(FTy->getReturnType(), ArgTys, FTy->isVarArg()); 6022 6023 // Update constraint string to use label constraints. 6024 std::string Constraints = IA->getConstraintString(); 6025 unsigned ArgNo = 0; 6026 size_t Pos = 0; 6027 for (const auto &CI : ConstraintInfo) { 6028 if (CI.hasArg()) { 6029 if (ArgNo >= FirstBlockArg) 6030 Constraints.insert(Pos, "!"); 6031 ++ArgNo; 6032 } 6033 6034 // Go to next constraint in string. 6035 Pos = Constraints.find(',', Pos); 6036 if (Pos == std::string::npos) 6037 break; 6038 ++Pos; 6039 } 6040 6041 Callee = InlineAsm::get(FTy, IA->getAsmString(), Constraints, 6042 IA->hasSideEffects(), IA->isAlignStack(), 6043 IA->getDialect(), IA->canThrow()); 6044 } 6045 } 6046 6047 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 6048 OperandBundles); 6049 ResTypeID = getContainedTypeID(FTyID); 6050 OperandBundles.clear(); 6051 InstructionList.push_back(I); 6052 cast<CallBrInst>(I)->setCallingConv( 6053 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6054 cast<CallBrInst>(I)->setAttributes(PAL); 6055 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6056 I->deleteValue(); 6057 return Err; 6058 } 6059 break; 6060 } 6061 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 6062 I = new UnreachableInst(Context); 6063 InstructionList.push_back(I); 6064 break; 6065 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 6066 if (Record.empty()) 6067 return error("Invalid phi record"); 6068 // The first record specifies the type. 6069 unsigned TyID = Record[0]; 6070 Type *Ty = getTypeByID(TyID); 6071 if (!Ty) 6072 return error("Invalid phi record"); 6073 6074 // Phi arguments are pairs of records of [value, basic block]. 6075 // There is an optional final record for fast-math-flags if this phi has a 6076 // floating-point type. 6077 size_t NumArgs = (Record.size() - 1) / 2; 6078 PHINode *PN = PHINode::Create(Ty, NumArgs); 6079 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) { 6080 PN->deleteValue(); 6081 return error("Invalid phi record"); 6082 } 6083 InstructionList.push_back(PN); 6084 6085 SmallDenseMap<BasicBlock *, Value *> Args; 6086 for (unsigned i = 0; i != NumArgs; i++) { 6087 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 6088 if (!BB) { 6089 PN->deleteValue(); 6090 return error("Invalid phi BB"); 6091 } 6092 6093 // Phi nodes may contain the same predecessor multiple times, in which 6094 // case the incoming value must be identical. Directly reuse the already 6095 // seen value here, to avoid expanding a constant expression multiple 6096 // times. 6097 auto It = Args.find(BB); 6098 if (It != Args.end()) { 6099 PN->addIncoming(It->second, BB); 6100 continue; 6101 } 6102 6103 // If there already is a block for this edge (from a different phi), 6104 // use it. 6105 BasicBlock *EdgeBB = ConstExprEdgeBBs.lookup({BB, CurBB}); 6106 if (!EdgeBB) { 6107 // Otherwise, use a temporary block (that we will discard if it 6108 // turns out to be unnecessary). 6109 if (!PhiConstExprBB) 6110 PhiConstExprBB = BasicBlock::Create(Context, "phi.constexpr", F); 6111 EdgeBB = PhiConstExprBB; 6112 } 6113 6114 // With the new function encoding, it is possible that operands have 6115 // negative IDs (for forward references). Use a signed VBR 6116 // representation to keep the encoding small. 6117 Value *V; 6118 if (UseRelativeIDs) 6119 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6120 else 6121 V = getValue(Record, i * 2 + 1, NextValueNo, Ty, TyID, EdgeBB); 6122 if (!V) { 6123 PN->deleteValue(); 6124 PhiConstExprBB->eraseFromParent(); 6125 return error("Invalid phi record"); 6126 } 6127 6128 if (EdgeBB == PhiConstExprBB && !EdgeBB->empty()) { 6129 ConstExprEdgeBBs.insert({{BB, CurBB}, EdgeBB}); 6130 PhiConstExprBB = nullptr; 6131 } 6132 PN->addIncoming(V, BB); 6133 Args.insert({BB, V}); 6134 } 6135 I = PN; 6136 ResTypeID = TyID; 6137 6138 // If there are an even number of records, the final record must be FMF. 6139 if (Record.size() % 2 == 0) { 6140 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 6141 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 6142 if (FMF.any()) 6143 I->setFastMathFlags(FMF); 6144 } 6145 6146 break; 6147 } 6148 6149 case bitc::FUNC_CODE_INST_LANDINGPAD: 6150 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 6151 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 6152 unsigned Idx = 0; 6153 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 6154 if (Record.size() < 3) 6155 return error("Invalid record"); 6156 } else { 6157 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 6158 if (Record.size() < 4) 6159 return error("Invalid record"); 6160 } 6161 ResTypeID = Record[Idx++]; 6162 Type *Ty = getTypeByID(ResTypeID); 6163 if (!Ty) 6164 return error("Invalid record"); 6165 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 6166 Value *PersFn = nullptr; 6167 unsigned PersFnTypeID; 6168 if (getValueTypePair(Record, Idx, NextValueNo, PersFn, PersFnTypeID, 6169 nullptr)) 6170 return error("Invalid record"); 6171 6172 if (!F->hasPersonalityFn()) 6173 F->setPersonalityFn(cast<Constant>(PersFn)); 6174 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 6175 return error("Personality function mismatch"); 6176 } 6177 6178 bool IsCleanup = !!Record[Idx++]; 6179 unsigned NumClauses = Record[Idx++]; 6180 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 6181 LP->setCleanup(IsCleanup); 6182 for (unsigned J = 0; J != NumClauses; ++J) { 6183 LandingPadInst::ClauseType CT = 6184 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 6185 Value *Val; 6186 unsigned ValTypeID; 6187 6188 if (getValueTypePair(Record, Idx, NextValueNo, Val, ValTypeID, 6189 nullptr)) { 6190 delete LP; 6191 return error("Invalid record"); 6192 } 6193 6194 assert((CT != LandingPadInst::Catch || 6195 !isa<ArrayType>(Val->getType())) && 6196 "Catch clause has a invalid type!"); 6197 assert((CT != LandingPadInst::Filter || 6198 isa<ArrayType>(Val->getType())) && 6199 "Filter clause has invalid type!"); 6200 LP->addClause(cast<Constant>(Val)); 6201 } 6202 6203 I = LP; 6204 InstructionList.push_back(I); 6205 break; 6206 } 6207 6208 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 6209 if (Record.size() != 4 && Record.size() != 5) 6210 return error("Invalid record"); 6211 using APV = AllocaPackedValues; 6212 const uint64_t Rec = Record[3]; 6213 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 6214 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 6215 unsigned TyID = Record[0]; 6216 Type *Ty = getTypeByID(TyID); 6217 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 6218 TyID = getContainedTypeID(TyID); 6219 Ty = getTypeByID(TyID); 6220 if (!Ty) 6221 return error("Missing element type for old-style alloca"); 6222 } 6223 unsigned OpTyID = Record[1]; 6224 Type *OpTy = getTypeByID(OpTyID); 6225 Value *Size = getFnValueByID(Record[2], OpTy, OpTyID, CurBB); 6226 MaybeAlign Align; 6227 uint64_t AlignExp = 6228 Bitfield::get<APV::AlignLower>(Rec) | 6229 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 6230 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 6231 return Err; 6232 } 6233 if (!Ty || !Size) 6234 return error("Invalid record"); 6235 6236 const DataLayout &DL = TheModule->getDataLayout(); 6237 unsigned AS = Record.size() == 5 ? Record[4] : DL.getAllocaAddrSpace(); 6238 6239 SmallPtrSet<Type *, 4> Visited; 6240 if (!Align && !Ty->isSized(&Visited)) 6241 return error("alloca of unsized type"); 6242 if (!Align) 6243 Align = DL.getPrefTypeAlign(Ty); 6244 6245 if (!Size->getType()->isIntegerTy()) 6246 return error("alloca element count must have integer type"); 6247 6248 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 6249 AI->setUsedWithInAlloca(InAlloca); 6250 AI->setSwiftError(SwiftError); 6251 I = AI; 6252 ResTypeID = getVirtualTypeID(AI->getType(), TyID); 6253 InstructionList.push_back(I); 6254 break; 6255 } 6256 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 6257 unsigned OpNum = 0; 6258 Value *Op; 6259 unsigned OpTypeID; 6260 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6261 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 6262 return error("Invalid record"); 6263 6264 if (!isa<PointerType>(Op->getType())) 6265 return error("Load operand is not a pointer type"); 6266 6267 Type *Ty = nullptr; 6268 if (OpNum + 3 == Record.size()) { 6269 ResTypeID = Record[OpNum++]; 6270 Ty = getTypeByID(ResTypeID); 6271 } else { 6272 ResTypeID = getContainedTypeID(OpTypeID); 6273 Ty = getTypeByID(ResTypeID); 6274 } 6275 6276 if (!Ty) 6277 return error("Missing load type"); 6278 6279 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6280 return Err; 6281 6282 MaybeAlign Align; 6283 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6284 return Err; 6285 SmallPtrSet<Type *, 4> Visited; 6286 if (!Align && !Ty->isSized(&Visited)) 6287 return error("load of unsized type"); 6288 if (!Align) 6289 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 6290 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 6291 InstructionList.push_back(I); 6292 break; 6293 } 6294 case bitc::FUNC_CODE_INST_LOADATOMIC: { 6295 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 6296 unsigned OpNum = 0; 6297 Value *Op; 6298 unsigned OpTypeID; 6299 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB) || 6300 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 6301 return error("Invalid record"); 6302 6303 if (!isa<PointerType>(Op->getType())) 6304 return error("Load operand is not a pointer type"); 6305 6306 Type *Ty = nullptr; 6307 if (OpNum + 5 == Record.size()) { 6308 ResTypeID = Record[OpNum++]; 6309 Ty = getTypeByID(ResTypeID); 6310 } else { 6311 ResTypeID = getContainedTypeID(OpTypeID); 6312 Ty = getTypeByID(ResTypeID); 6313 } 6314 6315 if (!Ty) 6316 return error("Missing atomic load type"); 6317 6318 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 6319 return Err; 6320 6321 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6322 if (Ordering == AtomicOrdering::NotAtomic || 6323 Ordering == AtomicOrdering::Release || 6324 Ordering == AtomicOrdering::AcquireRelease) 6325 return error("Invalid record"); 6326 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6327 return error("Invalid record"); 6328 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6329 6330 MaybeAlign Align; 6331 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6332 return Err; 6333 if (!Align) 6334 return error("Alignment missing from atomic load"); 6335 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 6336 InstructionList.push_back(I); 6337 break; 6338 } 6339 case bitc::FUNC_CODE_INST_STORE: 6340 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 6341 unsigned OpNum = 0; 6342 Value *Val, *Ptr; 6343 unsigned PtrTypeID, ValTypeID; 6344 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6345 return error("Invalid record"); 6346 6347 if (BitCode == bitc::FUNC_CODE_INST_STORE) { 6348 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6349 return error("Invalid record"); 6350 } else { 6351 ValTypeID = getContainedTypeID(PtrTypeID); 6352 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6353 ValTypeID, Val, CurBB)) 6354 return error("Invalid record"); 6355 } 6356 6357 if (OpNum + 2 != Record.size()) 6358 return error("Invalid record"); 6359 6360 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6361 return Err; 6362 MaybeAlign Align; 6363 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6364 return Err; 6365 SmallPtrSet<Type *, 4> Visited; 6366 if (!Align && !Val->getType()->isSized(&Visited)) 6367 return error("store of unsized type"); 6368 if (!Align) 6369 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 6370 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 6371 InstructionList.push_back(I); 6372 break; 6373 } 6374 case bitc::FUNC_CODE_INST_STOREATOMIC: 6375 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 6376 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 6377 unsigned OpNum = 0; 6378 Value *Val, *Ptr; 6379 unsigned PtrTypeID, ValTypeID; 6380 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB) || 6381 !isa<PointerType>(Ptr->getType())) 6382 return error("Invalid record"); 6383 if (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC) { 6384 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6385 return error("Invalid record"); 6386 } else { 6387 ValTypeID = getContainedTypeID(PtrTypeID); 6388 if (popValue(Record, OpNum, NextValueNo, getTypeByID(ValTypeID), 6389 ValTypeID, Val, CurBB)) 6390 return error("Invalid record"); 6391 } 6392 6393 if (OpNum + 4 != Record.size()) 6394 return error("Invalid record"); 6395 6396 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 6397 return Err; 6398 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6399 if (Ordering == AtomicOrdering::NotAtomic || 6400 Ordering == AtomicOrdering::Acquire || 6401 Ordering == AtomicOrdering::AcquireRelease) 6402 return error("Invalid record"); 6403 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6404 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 6405 return error("Invalid record"); 6406 6407 MaybeAlign Align; 6408 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 6409 return Err; 6410 if (!Align) 6411 return error("Alignment missing from atomic store"); 6412 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 6413 InstructionList.push_back(I); 6414 break; 6415 } 6416 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 6417 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 6418 // failure_ordering?, weak?] 6419 const size_t NumRecords = Record.size(); 6420 unsigned OpNum = 0; 6421 Value *Ptr = nullptr; 6422 unsigned PtrTypeID; 6423 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6424 return error("Invalid record"); 6425 6426 if (!isa<PointerType>(Ptr->getType())) 6427 return error("Cmpxchg operand is not a pointer type"); 6428 6429 Value *Cmp = nullptr; 6430 unsigned CmpTypeID = getContainedTypeID(PtrTypeID); 6431 if (popValue(Record, OpNum, NextValueNo, getTypeByID(CmpTypeID), 6432 CmpTypeID, Cmp, CurBB)) 6433 return error("Invalid record"); 6434 6435 Value *New = nullptr; 6436 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, 6437 New, CurBB) || 6438 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 6439 return error("Invalid record"); 6440 6441 const AtomicOrdering SuccessOrdering = 6442 getDecodedOrdering(Record[OpNum + 1]); 6443 if (SuccessOrdering == AtomicOrdering::NotAtomic || 6444 SuccessOrdering == AtomicOrdering::Unordered) 6445 return error("Invalid record"); 6446 6447 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6448 6449 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6450 return Err; 6451 6452 const AtomicOrdering FailureOrdering = 6453 NumRecords < 7 6454 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 6455 : getDecodedOrdering(Record[OpNum + 3]); 6456 6457 if (FailureOrdering == AtomicOrdering::NotAtomic || 6458 FailureOrdering == AtomicOrdering::Unordered) 6459 return error("Invalid record"); 6460 6461 const Align Alignment( 6462 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6463 6464 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 6465 FailureOrdering, SSID); 6466 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 6467 6468 if (NumRecords < 8) { 6469 // Before weak cmpxchgs existed, the instruction simply returned the 6470 // value loaded from memory, so bitcode files from that era will be 6471 // expecting the first component of a modern cmpxchg. 6472 I->insertInto(CurBB, CurBB->end()); 6473 I = ExtractValueInst::Create(I, 0); 6474 ResTypeID = CmpTypeID; 6475 } else { 6476 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 6477 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6478 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6479 } 6480 6481 InstructionList.push_back(I); 6482 break; 6483 } 6484 case bitc::FUNC_CODE_INST_CMPXCHG: { 6485 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 6486 // failure_ordering, weak, align?] 6487 const size_t NumRecords = Record.size(); 6488 unsigned OpNum = 0; 6489 Value *Ptr = nullptr; 6490 unsigned PtrTypeID; 6491 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6492 return error("Invalid record"); 6493 6494 if (!isa<PointerType>(Ptr->getType())) 6495 return error("Cmpxchg operand is not a pointer type"); 6496 6497 Value *Cmp = nullptr; 6498 unsigned CmpTypeID; 6499 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, CmpTypeID, CurBB)) 6500 return error("Invalid record"); 6501 6502 Value *Val = nullptr; 6503 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), CmpTypeID, Val, 6504 CurBB)) 6505 return error("Invalid record"); 6506 6507 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 6508 return error("Invalid record"); 6509 6510 const bool IsVol = Record[OpNum]; 6511 6512 const AtomicOrdering SuccessOrdering = 6513 getDecodedOrdering(Record[OpNum + 1]); 6514 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 6515 return error("Invalid cmpxchg success ordering"); 6516 6517 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 6518 6519 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 6520 return Err; 6521 6522 const AtomicOrdering FailureOrdering = 6523 getDecodedOrdering(Record[OpNum + 3]); 6524 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 6525 return error("Invalid cmpxchg failure ordering"); 6526 6527 const bool IsWeak = Record[OpNum + 4]; 6528 6529 MaybeAlign Alignment; 6530 6531 if (NumRecords == (OpNum + 6)) { 6532 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 6533 return Err; 6534 } 6535 if (!Alignment) 6536 Alignment = 6537 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 6538 6539 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 6540 FailureOrdering, SSID); 6541 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 6542 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 6543 6544 unsigned I1TypeID = getVirtualTypeID(Type::getInt1Ty(Context)); 6545 ResTypeID = getVirtualTypeID(I->getType(), {CmpTypeID, I1TypeID}); 6546 6547 InstructionList.push_back(I); 6548 break; 6549 } 6550 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 6551 case bitc::FUNC_CODE_INST_ATOMICRMW: { 6552 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 6553 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 6554 const size_t NumRecords = Record.size(); 6555 unsigned OpNum = 0; 6556 6557 Value *Ptr = nullptr; 6558 unsigned PtrTypeID; 6559 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, PtrTypeID, CurBB)) 6560 return error("Invalid record"); 6561 6562 if (!isa<PointerType>(Ptr->getType())) 6563 return error("Invalid record"); 6564 6565 Value *Val = nullptr; 6566 unsigned ValTypeID = InvalidTypeID; 6567 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 6568 ValTypeID = getContainedTypeID(PtrTypeID); 6569 if (popValue(Record, OpNum, NextValueNo, 6570 getTypeByID(ValTypeID), ValTypeID, Val, CurBB)) 6571 return error("Invalid record"); 6572 } else { 6573 if (getValueTypePair(Record, OpNum, NextValueNo, Val, ValTypeID, CurBB)) 6574 return error("Invalid record"); 6575 } 6576 6577 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 6578 return error("Invalid record"); 6579 6580 const AtomicRMWInst::BinOp Operation = 6581 getDecodedRMWOperation(Record[OpNum]); 6582 if (Operation < AtomicRMWInst::FIRST_BINOP || 6583 Operation > AtomicRMWInst::LAST_BINOP) 6584 return error("Invalid record"); 6585 6586 const bool IsVol = Record[OpNum + 1]; 6587 6588 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 6589 if (Ordering == AtomicOrdering::NotAtomic || 6590 Ordering == AtomicOrdering::Unordered) 6591 return error("Invalid record"); 6592 6593 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 6594 6595 MaybeAlign Alignment; 6596 6597 if (NumRecords == (OpNum + 5)) { 6598 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 6599 return Err; 6600 } 6601 6602 if (!Alignment) 6603 Alignment = 6604 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 6605 6606 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 6607 ResTypeID = ValTypeID; 6608 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 6609 6610 InstructionList.push_back(I); 6611 break; 6612 } 6613 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 6614 if (2 != Record.size()) 6615 return error("Invalid record"); 6616 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 6617 if (Ordering == AtomicOrdering::NotAtomic || 6618 Ordering == AtomicOrdering::Unordered || 6619 Ordering == AtomicOrdering::Monotonic) 6620 return error("Invalid record"); 6621 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 6622 I = new FenceInst(Context, Ordering, SSID); 6623 InstructionList.push_back(I); 6624 break; 6625 } 6626 case bitc::FUNC_CODE_DEBUG_RECORD_LABEL: { 6627 // DbgLabelRecords are placed after the Instructions that they are 6628 // attached to. 6629 SeenDebugRecord = true; 6630 Instruction *Inst = getLastInstruction(); 6631 if (!Inst) 6632 return error("Invalid dbg record: missing instruction"); 6633 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[0])); 6634 DILabel *Label = cast<DILabel>(getFnMetadataByID(Record[1])); 6635 Inst->getParent()->insertDbgRecordBefore( 6636 new DbgLabelRecord(Label, DebugLoc(DIL)), Inst->getIterator()); 6637 continue; // This isn't an instruction. 6638 } 6639 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6640 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6641 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6642 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6643 // DbgVariableRecords are placed after the Instructions that they are 6644 // attached to. 6645 SeenDebugRecord = true; 6646 Instruction *Inst = getLastInstruction(); 6647 if (!Inst) 6648 return error("Invalid dbg record: missing instruction"); 6649 6650 // First 3 fields are common to all kinds: 6651 // DILocation, DILocalVariable, DIExpression 6652 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE) 6653 // ..., LocationMetadata 6654 // dbg_value (FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE - abbrev'd) 6655 // ..., Value 6656 // dbg_declare (FUNC_CODE_DEBUG_RECORD_DECLARE) 6657 // ..., LocationMetadata 6658 // dbg_assign (FUNC_CODE_DEBUG_RECORD_ASSIGN) 6659 // ..., LocationMetadata, DIAssignID, DIExpression, LocationMetadata 6660 unsigned Slot = 0; 6661 // Common fields (0-2). 6662 DILocation *DIL = cast<DILocation>(getFnMetadataByID(Record[Slot++])); 6663 DILocalVariable *Var = 6664 cast<DILocalVariable>(getFnMetadataByID(Record[Slot++])); 6665 DIExpression *Expr = 6666 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6667 6668 // Union field (3: LocationMetadata | Value). 6669 Metadata *RawLocation = nullptr; 6670 if (BitCode == bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE) { 6671 Value *V = nullptr; 6672 unsigned TyID = 0; 6673 // We never expect to see a fwd reference value here because 6674 // use-before-defs are encoded with the standard non-abbrev record 6675 // type (they'd require encoding the type too, and they're rare). As a 6676 // result, getValueTypePair only ever increments Slot by one here (once 6677 // for the value, never twice for value and type). 6678 unsigned SlotBefore = Slot; 6679 if (getValueTypePair(Record, Slot, NextValueNo, V, TyID, CurBB)) 6680 return error("Invalid dbg record: invalid value"); 6681 (void)SlotBefore; 6682 assert((SlotBefore == Slot - 1) && "unexpected fwd ref"); 6683 RawLocation = ValueAsMetadata::get(V); 6684 } else { 6685 RawLocation = getFnMetadataByID(Record[Slot++]); 6686 } 6687 6688 DbgVariableRecord *DVR = nullptr; 6689 switch (BitCode) { 6690 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE: 6691 case bitc::FUNC_CODE_DEBUG_RECORD_VALUE_SIMPLE: 6692 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6693 DbgVariableRecord::LocationType::Value); 6694 break; 6695 case bitc::FUNC_CODE_DEBUG_RECORD_DECLARE: 6696 DVR = new DbgVariableRecord(RawLocation, Var, Expr, DIL, 6697 DbgVariableRecord::LocationType::Declare); 6698 break; 6699 case bitc::FUNC_CODE_DEBUG_RECORD_ASSIGN: { 6700 DIAssignID *ID = cast<DIAssignID>(getFnMetadataByID(Record[Slot++])); 6701 DIExpression *AddrExpr = 6702 cast<DIExpression>(getFnMetadataByID(Record[Slot++])); 6703 Metadata *Addr = getFnMetadataByID(Record[Slot++]); 6704 DVR = new DbgVariableRecord(RawLocation, Var, Expr, ID, Addr, AddrExpr, 6705 DIL); 6706 break; 6707 } 6708 default: 6709 llvm_unreachable("Unknown DbgVariableRecord bitcode"); 6710 } 6711 Inst->getParent()->insertDbgRecordBefore(DVR, Inst->getIterator()); 6712 continue; // This isn't an instruction. 6713 } 6714 case bitc::FUNC_CODE_INST_CALL: { 6715 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 6716 if (Record.size() < 3) 6717 return error("Invalid record"); 6718 6719 unsigned OpNum = 0; 6720 AttributeList PAL = getAttributes(Record[OpNum++]); 6721 unsigned CCInfo = Record[OpNum++]; 6722 6723 FastMathFlags FMF; 6724 if ((CCInfo >> bitc::CALL_FMF) & 1) { 6725 FMF = getDecodedFastMathFlags(Record[OpNum++]); 6726 if (!FMF.any()) 6727 return error("Fast math flags indicator set for call with no FMF"); 6728 } 6729 6730 unsigned FTyID = InvalidTypeID; 6731 FunctionType *FTy = nullptr; 6732 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 6733 FTyID = Record[OpNum++]; 6734 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6735 if (!FTy) 6736 return error("Explicit call type is not a function type"); 6737 } 6738 6739 Value *Callee; 6740 unsigned CalleeTypeID; 6741 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, CalleeTypeID, 6742 CurBB)) 6743 return error("Invalid record"); 6744 6745 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 6746 if (!OpTy) 6747 return error("Callee is not a pointer type"); 6748 if (!FTy) { 6749 FTyID = getContainedTypeID(CalleeTypeID); 6750 FTy = dyn_cast_or_null<FunctionType>(getTypeByID(FTyID)); 6751 if (!FTy) 6752 return error("Callee is not of pointer to function type"); 6753 } 6754 if (Record.size() < FTy->getNumParams() + OpNum) 6755 return error("Insufficient operands to call"); 6756 6757 SmallVector<Value*, 16> Args; 6758 SmallVector<unsigned, 16> ArgTyIDs; 6759 // Read the fixed params. 6760 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 6761 unsigned ArgTyID = getContainedTypeID(FTyID, i + 1); 6762 if (FTy->getParamType(i)->isLabelTy()) 6763 Args.push_back(getBasicBlock(Record[OpNum])); 6764 else 6765 Args.push_back(getValue(Record, OpNum, NextValueNo, 6766 FTy->getParamType(i), ArgTyID, CurBB)); 6767 ArgTyIDs.push_back(ArgTyID); 6768 if (!Args.back()) 6769 return error("Invalid record"); 6770 } 6771 6772 // Read type/value pairs for varargs params. 6773 if (!FTy->isVarArg()) { 6774 if (OpNum != Record.size()) 6775 return error("Invalid record"); 6776 } else { 6777 while (OpNum != Record.size()) { 6778 Value *Op; 6779 unsigned OpTypeID; 6780 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6781 return error("Invalid record"); 6782 Args.push_back(Op); 6783 ArgTyIDs.push_back(OpTypeID); 6784 } 6785 } 6786 6787 // Upgrade the bundles if needed. 6788 if (!OperandBundles.empty()) 6789 UpgradeOperandBundles(OperandBundles); 6790 6791 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 6792 ResTypeID = getContainedTypeID(FTyID); 6793 OperandBundles.clear(); 6794 InstructionList.push_back(I); 6795 cast<CallInst>(I)->setCallingConv( 6796 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 6797 CallInst::TailCallKind TCK = CallInst::TCK_None; 6798 if (CCInfo & (1 << bitc::CALL_TAIL)) 6799 TCK = CallInst::TCK_Tail; 6800 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 6801 TCK = CallInst::TCK_MustTail; 6802 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 6803 TCK = CallInst::TCK_NoTail; 6804 cast<CallInst>(I)->setTailCallKind(TCK); 6805 cast<CallInst>(I)->setAttributes(PAL); 6806 if (isa<DbgInfoIntrinsic>(I)) 6807 SeenDebugIntrinsic = true; 6808 if (Error Err = propagateAttributeTypes(cast<CallBase>(I), ArgTyIDs)) { 6809 I->deleteValue(); 6810 return Err; 6811 } 6812 if (FMF.any()) { 6813 if (!isa<FPMathOperator>(I)) 6814 return error("Fast-math-flags specified for call without " 6815 "floating-point scalar or vector return type"); 6816 I->setFastMathFlags(FMF); 6817 } 6818 break; 6819 } 6820 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 6821 if (Record.size() < 3) 6822 return error("Invalid record"); 6823 unsigned OpTyID = Record[0]; 6824 Type *OpTy = getTypeByID(OpTyID); 6825 Value *Op = getValue(Record, 1, NextValueNo, OpTy, OpTyID, CurBB); 6826 ResTypeID = Record[2]; 6827 Type *ResTy = getTypeByID(ResTypeID); 6828 if (!OpTy || !Op || !ResTy) 6829 return error("Invalid record"); 6830 I = new VAArgInst(Op, ResTy); 6831 InstructionList.push_back(I); 6832 break; 6833 } 6834 6835 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 6836 // A call or an invoke can be optionally prefixed with some variable 6837 // number of operand bundle blocks. These blocks are read into 6838 // OperandBundles and consumed at the next call or invoke instruction. 6839 6840 if (Record.empty() || Record[0] >= BundleTags.size()) 6841 return error("Invalid record"); 6842 6843 std::vector<Value *> Inputs; 6844 6845 unsigned OpNum = 1; 6846 while (OpNum != Record.size()) { 6847 Value *Op; 6848 if (getValueOrMetadata(Record, OpNum, NextValueNo, Op, CurBB)) 6849 return error("Invalid record"); 6850 Inputs.push_back(Op); 6851 } 6852 6853 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 6854 continue; 6855 } 6856 6857 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 6858 unsigned OpNum = 0; 6859 Value *Op = nullptr; 6860 unsigned OpTypeID; 6861 if (getValueTypePair(Record, OpNum, NextValueNo, Op, OpTypeID, CurBB)) 6862 return error("Invalid record"); 6863 if (OpNum != Record.size()) 6864 return error("Invalid record"); 6865 6866 I = new FreezeInst(Op); 6867 ResTypeID = OpTypeID; 6868 InstructionList.push_back(I); 6869 break; 6870 } 6871 } 6872 6873 // Add instruction to end of current BB. If there is no current BB, reject 6874 // this file. 6875 if (!CurBB) { 6876 I->deleteValue(); 6877 return error("Invalid instruction with no BB"); 6878 } 6879 if (!OperandBundles.empty()) { 6880 I->deleteValue(); 6881 return error("Operand bundles found with no consumer"); 6882 } 6883 I->insertInto(CurBB, CurBB->end()); 6884 6885 // If this was a terminator instruction, move to the next block. 6886 if (I->isTerminator()) { 6887 ++CurBBNo; 6888 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 6889 } 6890 6891 // Non-void values get registered in the value table for future use. 6892 if (!I->getType()->isVoidTy()) { 6893 assert(I->getType() == getTypeByID(ResTypeID) && 6894 "Incorrect result type ID"); 6895 if (Error Err = ValueList.assignValue(NextValueNo++, I, ResTypeID)) 6896 return Err; 6897 } 6898 } 6899 6900 OutOfRecordLoop: 6901 6902 if (!OperandBundles.empty()) 6903 return error("Operand bundles found with no consumer"); 6904 6905 // Check the function list for unresolved values. 6906 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 6907 if (!A->getParent()) { 6908 // We found at least one unresolved value. Nuke them all to avoid leaks. 6909 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 6910 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 6911 A->replaceAllUsesWith(PoisonValue::get(A->getType())); 6912 delete A; 6913 } 6914 } 6915 return error("Never resolved value found in function"); 6916 } 6917 } 6918 6919 // Unexpected unresolved metadata about to be dropped. 6920 if (MDLoader->hasFwdRefs()) 6921 return error("Invalid function metadata: outgoing forward refs"); 6922 6923 if (PhiConstExprBB) 6924 PhiConstExprBB->eraseFromParent(); 6925 6926 for (const auto &Pair : ConstExprEdgeBBs) { 6927 BasicBlock *From = Pair.first.first; 6928 BasicBlock *To = Pair.first.second; 6929 BasicBlock *EdgeBB = Pair.second; 6930 BranchInst::Create(To, EdgeBB); 6931 From->getTerminator()->replaceSuccessorWith(To, EdgeBB); 6932 To->replacePhiUsesWith(From, EdgeBB); 6933 EdgeBB->moveBefore(To); 6934 } 6935 6936 // Trim the value list down to the size it was before we parsed this function. 6937 ValueList.shrinkTo(ModuleValueListSize); 6938 MDLoader->shrinkTo(ModuleMDLoaderSize); 6939 std::vector<BasicBlock*>().swap(FunctionBBs); 6940 return Error::success(); 6941 } 6942 6943 /// Find the function body in the bitcode stream 6944 Error BitcodeReader::findFunctionInStream( 6945 Function *F, 6946 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 6947 while (DeferredFunctionInfoIterator->second == 0) { 6948 // This is the fallback handling for the old format bitcode that 6949 // didn't contain the function index in the VST, or when we have 6950 // an anonymous function which would not have a VST entry. 6951 // Assert that we have one of those two cases. 6952 assert(VSTOffset == 0 || !F->hasName()); 6953 // Parse the next body in the stream and set its position in the 6954 // DeferredFunctionInfo map. 6955 if (Error Err = rememberAndSkipFunctionBodies()) 6956 return Err; 6957 } 6958 return Error::success(); 6959 } 6960 6961 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 6962 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 6963 return SyncScope::ID(Val); 6964 if (Val >= SSIDs.size()) 6965 return SyncScope::System; // Map unknown synchronization scopes to system. 6966 return SSIDs[Val]; 6967 } 6968 6969 //===----------------------------------------------------------------------===// 6970 // GVMaterializer implementation 6971 //===----------------------------------------------------------------------===// 6972 6973 Error BitcodeReader::materialize(GlobalValue *GV) { 6974 Function *F = dyn_cast<Function>(GV); 6975 // If it's not a function or is already material, ignore the request. 6976 if (!F || !F->isMaterializable()) 6977 return Error::success(); 6978 6979 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 6980 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 6981 // If its position is recorded as 0, its body is somewhere in the stream 6982 // but we haven't seen it yet. 6983 if (DFII->second == 0) 6984 if (Error Err = findFunctionInStream(F, DFII)) 6985 return Err; 6986 6987 // Materialize metadata before parsing any function bodies. 6988 if (Error Err = materializeMetadata()) 6989 return Err; 6990 6991 // Move the bit stream to the saved position of the deferred function body. 6992 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 6993 return JumpFailed; 6994 6995 // Regardless of the debug info format we want to end up in, we need 6996 // IsNewDbgInfoFormat=true to construct any debug records seen in the bitcode. 6997 F->IsNewDbgInfoFormat = true; 6998 6999 if (Error Err = parseFunctionBody(F)) 7000 return Err; 7001 F->setIsMaterializable(false); 7002 7003 // All parsed Functions should load into the debug info format dictated by the 7004 // Module, unless we're attempting to preserve the input debug info format. 7005 if (SeenDebugIntrinsic && SeenDebugRecord) 7006 return error("Mixed debug intrinsics and debug records in bitcode module!"); 7007 if (PreserveInputDbgFormat == cl::boolOrDefault::BOU_TRUE) { 7008 bool SeenAnyDebugInfo = SeenDebugIntrinsic || SeenDebugRecord; 7009 bool NewDbgInfoFormatDesired = 7010 SeenAnyDebugInfo ? SeenDebugRecord : F->getParent()->IsNewDbgInfoFormat; 7011 if (SeenAnyDebugInfo) { 7012 UseNewDbgInfoFormat = SeenDebugRecord; 7013 WriteNewDbgInfoFormatToBitcode = SeenDebugRecord; 7014 WriteNewDbgInfoFormat = SeenDebugRecord; 7015 } 7016 // If the module's debug info format doesn't match the observed input 7017 // format, then set its format now; we don't need to call the conversion 7018 // function because there must be no existing intrinsics to convert. 7019 // Otherwise, just set the format on this function now. 7020 if (NewDbgInfoFormatDesired != F->getParent()->IsNewDbgInfoFormat) 7021 F->getParent()->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 7022 else 7023 F->setNewDbgInfoFormatFlag(NewDbgInfoFormatDesired); 7024 } else { 7025 // If we aren't preserving formats, we use the Module flag to get our 7026 // desired format instead of reading flags, in case we are lazy-loading and 7027 // the format of the module has been changed since it was set by the flags. 7028 // We only need to convert debug info here if we have debug records but 7029 // desire the intrinsic format; everything else is a no-op or handled by the 7030 // autoupgrader. 7031 bool ModuleIsNewDbgInfoFormat = F->getParent()->IsNewDbgInfoFormat; 7032 if (ModuleIsNewDbgInfoFormat || !SeenDebugRecord) 7033 F->setNewDbgInfoFormatFlag(ModuleIsNewDbgInfoFormat); 7034 else 7035 F->setIsNewDbgInfoFormat(ModuleIsNewDbgInfoFormat); 7036 } 7037 7038 if (StripDebugInfo) 7039 stripDebugInfo(*F); 7040 7041 // Upgrade any old intrinsic calls in the function. 7042 for (auto &I : UpgradedIntrinsics) { 7043 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 7044 if (CallInst *CI = dyn_cast<CallInst>(U)) 7045 UpgradeIntrinsicCall(CI, I.second); 7046 } 7047 7048 // Finish fn->subprogram upgrade for materialized functions. 7049 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 7050 F->setSubprogram(SP); 7051 7052 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 7053 if (!MDLoader->isStrippingTBAA()) { 7054 for (auto &I : instructions(F)) { 7055 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 7056 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 7057 continue; 7058 MDLoader->setStripTBAA(true); 7059 stripTBAA(F->getParent()); 7060 } 7061 } 7062 7063 for (auto &I : instructions(F)) { 7064 // "Upgrade" older incorrect branch weights by dropping them. 7065 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 7066 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 7067 MDString *MDS = cast<MDString>(MD->getOperand(0)); 7068 StringRef ProfName = MDS->getString(); 7069 // Check consistency of !prof branch_weights metadata. 7070 if (ProfName != "branch_weights") 7071 continue; 7072 unsigned ExpectedNumOperands = 0; 7073 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 7074 ExpectedNumOperands = BI->getNumSuccessors(); 7075 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 7076 ExpectedNumOperands = SI->getNumSuccessors(); 7077 else if (isa<CallInst>(&I)) 7078 ExpectedNumOperands = 1; 7079 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 7080 ExpectedNumOperands = IBI->getNumDestinations(); 7081 else if (isa<SelectInst>(&I)) 7082 ExpectedNumOperands = 2; 7083 else 7084 continue; // ignore and continue. 7085 7086 unsigned Offset = getBranchWeightOffset(MD); 7087 7088 // If branch weight doesn't match, just strip branch weight. 7089 if (MD->getNumOperands() != Offset + ExpectedNumOperands) 7090 I.setMetadata(LLVMContext::MD_prof, nullptr); 7091 } 7092 } 7093 7094 // Remove incompatible attributes on function calls. 7095 if (auto *CI = dyn_cast<CallBase>(&I)) { 7096 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 7097 CI->getFunctionType()->getReturnType(), CI->getRetAttributes())); 7098 7099 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 7100 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 7101 CI->getArgOperand(ArgNo)->getType(), 7102 CI->getParamAttributes(ArgNo))); 7103 } 7104 } 7105 7106 // Look for functions that rely on old function attribute behavior. 7107 UpgradeFunctionAttributes(*F); 7108 7109 // Bring in any functions that this function forward-referenced via 7110 // blockaddresses. 7111 return materializeForwardReferencedFunctions(); 7112 } 7113 7114 Error BitcodeReader::materializeModule() { 7115 if (Error Err = materializeMetadata()) 7116 return Err; 7117 7118 // Promise to materialize all forward references. 7119 WillMaterializeAllForwardRefs = true; 7120 7121 // Iterate over the module, deserializing any functions that are still on 7122 // disk. 7123 for (Function &F : *TheModule) { 7124 if (Error Err = materialize(&F)) 7125 return Err; 7126 } 7127 // At this point, if there are any function bodies, parse the rest of 7128 // the bits in the module past the last function block we have recorded 7129 // through either lazy scanning or the VST. 7130 if (LastFunctionBlockBit || NextUnreadBit) 7131 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 7132 ? LastFunctionBlockBit 7133 : NextUnreadBit)) 7134 return Err; 7135 7136 // Check that all block address forward references got resolved (as we 7137 // promised above). 7138 if (!BasicBlockFwdRefs.empty()) 7139 return error("Never resolved function from blockaddress"); 7140 7141 // Upgrade any intrinsic calls that slipped through (should not happen!) and 7142 // delete the old functions to clean up. We can't do this unless the entire 7143 // module is materialized because there could always be another function body 7144 // with calls to the old function. 7145 for (auto &I : UpgradedIntrinsics) { 7146 for (auto *U : I.first->users()) { 7147 if (CallInst *CI = dyn_cast<CallInst>(U)) 7148 UpgradeIntrinsicCall(CI, I.second); 7149 } 7150 if (!I.first->use_empty()) 7151 I.first->replaceAllUsesWith(I.second); 7152 I.first->eraseFromParent(); 7153 } 7154 UpgradedIntrinsics.clear(); 7155 7156 UpgradeDebugInfo(*TheModule); 7157 7158 UpgradeModuleFlags(*TheModule); 7159 7160 UpgradeARCRuntime(*TheModule); 7161 7162 return Error::success(); 7163 } 7164 7165 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 7166 return IdentifiedStructTypes; 7167 } 7168 7169 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 7170 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 7171 StringRef ModulePath, std::function<bool(GlobalValue::GUID)> IsPrevailing) 7172 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 7173 ModulePath(ModulePath), IsPrevailing(IsPrevailing) {} 7174 7175 void ModuleSummaryIndexBitcodeReader::addThisModule() { 7176 TheIndex.addModule(ModulePath); 7177 } 7178 7179 ModuleSummaryIndex::ModuleInfo * 7180 ModuleSummaryIndexBitcodeReader::getThisModule() { 7181 return TheIndex.getModule(ModulePath); 7182 } 7183 7184 template <bool AllowNullValueInfo> 7185 std::pair<ValueInfo, GlobalValue::GUID> 7186 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 7187 auto VGI = ValueIdToValueInfoMap[ValueId]; 7188 // We can have a null value info for memprof callsite info records in 7189 // distributed ThinLTO index files when the callee function summary is not 7190 // included in the index. The bitcode writer records 0 in that case, 7191 // and the caller of this helper will set AllowNullValueInfo to true. 7192 assert(AllowNullValueInfo || std::get<0>(VGI)); 7193 return VGI; 7194 } 7195 7196 void ModuleSummaryIndexBitcodeReader::setValueGUID( 7197 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 7198 StringRef SourceFileName) { 7199 std::string GlobalId = 7200 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 7201 auto ValueGUID = GlobalValue::getGUID(GlobalId); 7202 auto OriginalNameID = ValueGUID; 7203 if (GlobalValue::isLocalLinkage(Linkage)) 7204 OriginalNameID = GlobalValue::getGUID(ValueName); 7205 if (PrintSummaryGUIDs) 7206 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 7207 << ValueName << "\n"; 7208 7209 // UseStrtab is false for legacy summary formats and value names are 7210 // created on stack. In that case we save the name in a string saver in 7211 // the index so that the value name can be recorded. 7212 ValueIdToValueInfoMap[ValueID] = std::make_pair( 7213 TheIndex.getOrInsertValueInfo( 7214 ValueGUID, UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 7215 OriginalNameID); 7216 } 7217 7218 // Specialized value symbol table parser used when reading module index 7219 // blocks where we don't actually create global values. The parsed information 7220 // is saved in the bitcode reader for use when later parsing summaries. 7221 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 7222 uint64_t Offset, 7223 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 7224 // With a strtab the VST is not required to parse the summary. 7225 if (UseStrtab) 7226 return Error::success(); 7227 7228 assert(Offset > 0 && "Expected non-zero VST offset"); 7229 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 7230 if (!MaybeCurrentBit) 7231 return MaybeCurrentBit.takeError(); 7232 uint64_t CurrentBit = MaybeCurrentBit.get(); 7233 7234 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 7235 return Err; 7236 7237 SmallVector<uint64_t, 64> Record; 7238 7239 // Read all the records for this value table. 7240 SmallString<128> ValueName; 7241 7242 while (true) { 7243 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7244 if (!MaybeEntry) 7245 return MaybeEntry.takeError(); 7246 BitstreamEntry Entry = MaybeEntry.get(); 7247 7248 switch (Entry.Kind) { 7249 case BitstreamEntry::SubBlock: // Handled for us already. 7250 case BitstreamEntry::Error: 7251 return error("Malformed block"); 7252 case BitstreamEntry::EndBlock: 7253 // Done parsing VST, jump back to wherever we came from. 7254 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 7255 return JumpFailed; 7256 return Error::success(); 7257 case BitstreamEntry::Record: 7258 // The interesting case. 7259 break; 7260 } 7261 7262 // Read a record. 7263 Record.clear(); 7264 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7265 if (!MaybeRecord) 7266 return MaybeRecord.takeError(); 7267 switch (MaybeRecord.get()) { 7268 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 7269 break; 7270 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 7271 if (convertToString(Record, 1, ValueName)) 7272 return error("Invalid record"); 7273 unsigned ValueID = Record[0]; 7274 assert(!SourceFileName.empty()); 7275 auto VLI = ValueIdToLinkageMap.find(ValueID); 7276 assert(VLI != ValueIdToLinkageMap.end() && 7277 "No linkage found for VST entry?"); 7278 auto Linkage = VLI->second; 7279 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7280 ValueName.clear(); 7281 break; 7282 } 7283 case bitc::VST_CODE_FNENTRY: { 7284 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 7285 if (convertToString(Record, 2, ValueName)) 7286 return error("Invalid record"); 7287 unsigned ValueID = Record[0]; 7288 assert(!SourceFileName.empty()); 7289 auto VLI = ValueIdToLinkageMap.find(ValueID); 7290 assert(VLI != ValueIdToLinkageMap.end() && 7291 "No linkage found for VST entry?"); 7292 auto Linkage = VLI->second; 7293 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 7294 ValueName.clear(); 7295 break; 7296 } 7297 case bitc::VST_CODE_COMBINED_ENTRY: { 7298 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 7299 unsigned ValueID = Record[0]; 7300 GlobalValue::GUID RefGUID = Record[1]; 7301 // The "original name", which is the second value of the pair will be 7302 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 7303 ValueIdToValueInfoMap[ValueID] = 7304 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7305 break; 7306 } 7307 } 7308 } 7309 } 7310 7311 // Parse just the blocks needed for building the index out of the module. 7312 // At the end of this routine the module Index is populated with a map 7313 // from global value id to GlobalValueSummary objects. 7314 Error ModuleSummaryIndexBitcodeReader::parseModule() { 7315 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7316 return Err; 7317 7318 SmallVector<uint64_t, 64> Record; 7319 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 7320 unsigned ValueId = 0; 7321 7322 // Read the index for this module. 7323 while (true) { 7324 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 7325 if (!MaybeEntry) 7326 return MaybeEntry.takeError(); 7327 llvm::BitstreamEntry Entry = MaybeEntry.get(); 7328 7329 switch (Entry.Kind) { 7330 case BitstreamEntry::Error: 7331 return error("Malformed block"); 7332 case BitstreamEntry::EndBlock: 7333 return Error::success(); 7334 7335 case BitstreamEntry::SubBlock: 7336 switch (Entry.ID) { 7337 default: // Skip unknown content. 7338 if (Error Err = Stream.SkipBlock()) 7339 return Err; 7340 break; 7341 case bitc::BLOCKINFO_BLOCK_ID: 7342 // Need to parse these to get abbrev ids (e.g. for VST) 7343 if (Error Err = readBlockInfo()) 7344 return Err; 7345 break; 7346 case bitc::VALUE_SYMTAB_BLOCK_ID: 7347 // Should have been parsed earlier via VSTOffset, unless there 7348 // is no summary section. 7349 assert(((SeenValueSymbolTable && VSTOffset > 0) || 7350 !SeenGlobalValSummary) && 7351 "Expected early VST parse via VSTOffset record"); 7352 if (Error Err = Stream.SkipBlock()) 7353 return Err; 7354 break; 7355 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 7356 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 7357 // Add the module if it is a per-module index (has a source file name). 7358 if (!SourceFileName.empty()) 7359 addThisModule(); 7360 assert(!SeenValueSymbolTable && 7361 "Already read VST when parsing summary block?"); 7362 // We might not have a VST if there were no values in the 7363 // summary. An empty summary block generated when we are 7364 // performing ThinLTO compiles so we don't later invoke 7365 // the regular LTO process on them. 7366 if (VSTOffset > 0) { 7367 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 7368 return Err; 7369 SeenValueSymbolTable = true; 7370 } 7371 SeenGlobalValSummary = true; 7372 if (Error Err = parseEntireSummary(Entry.ID)) 7373 return Err; 7374 break; 7375 case bitc::MODULE_STRTAB_BLOCK_ID: 7376 if (Error Err = parseModuleStringTable()) 7377 return Err; 7378 break; 7379 } 7380 continue; 7381 7382 case BitstreamEntry::Record: { 7383 Record.clear(); 7384 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7385 if (!MaybeBitCode) 7386 return MaybeBitCode.takeError(); 7387 switch (MaybeBitCode.get()) { 7388 default: 7389 break; // Default behavior, ignore unknown content. 7390 case bitc::MODULE_CODE_VERSION: { 7391 if (Error Err = parseVersionRecord(Record).takeError()) 7392 return Err; 7393 break; 7394 } 7395 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 7396 case bitc::MODULE_CODE_SOURCE_FILENAME: { 7397 SmallString<128> ValueName; 7398 if (convertToString(Record, 0, ValueName)) 7399 return error("Invalid record"); 7400 SourceFileName = ValueName.c_str(); 7401 break; 7402 } 7403 /// MODULE_CODE_HASH: [5*i32] 7404 case bitc::MODULE_CODE_HASH: { 7405 if (Record.size() != 5) 7406 return error("Invalid hash length " + Twine(Record.size()).str()); 7407 auto &Hash = getThisModule()->second; 7408 int Pos = 0; 7409 for (auto &Val : Record) { 7410 assert(!(Val >> 32) && "Unexpected high bits set"); 7411 Hash[Pos++] = Val; 7412 } 7413 break; 7414 } 7415 /// MODULE_CODE_VSTOFFSET: [offset] 7416 case bitc::MODULE_CODE_VSTOFFSET: 7417 if (Record.empty()) 7418 return error("Invalid record"); 7419 // Note that we subtract 1 here because the offset is relative to one 7420 // word before the start of the identification or module block, which 7421 // was historically always the start of the regular bitcode header. 7422 VSTOffset = Record[0] - 1; 7423 break; 7424 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 7425 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 7426 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 7427 // v2: [strtab offset, strtab size, v1] 7428 case bitc::MODULE_CODE_GLOBALVAR: 7429 case bitc::MODULE_CODE_FUNCTION: 7430 case bitc::MODULE_CODE_ALIAS: { 7431 StringRef Name; 7432 ArrayRef<uint64_t> GVRecord; 7433 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 7434 if (GVRecord.size() <= 3) 7435 return error("Invalid record"); 7436 uint64_t RawLinkage = GVRecord[3]; 7437 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 7438 if (!UseStrtab) { 7439 ValueIdToLinkageMap[ValueId++] = Linkage; 7440 break; 7441 } 7442 7443 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 7444 break; 7445 } 7446 } 7447 } 7448 continue; 7449 } 7450 } 7451 } 7452 7453 SmallVector<ValueInfo, 0> 7454 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 7455 SmallVector<ValueInfo, 0> Ret; 7456 Ret.reserve(Record.size()); 7457 for (uint64_t RefValueId : Record) 7458 Ret.push_back(std::get<0>(getValueInfoFromValueId(RefValueId))); 7459 return Ret; 7460 } 7461 7462 SmallVector<FunctionSummary::EdgeTy, 0> 7463 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 7464 bool IsOldProfileFormat, 7465 bool HasProfile, bool HasRelBF) { 7466 SmallVector<FunctionSummary::EdgeTy, 0> Ret; 7467 // In the case of new profile formats, there are two Record entries per 7468 // Edge. Otherwise, conservatively reserve up to Record.size. 7469 if (!IsOldProfileFormat && (HasProfile || HasRelBF)) 7470 Ret.reserve(Record.size() / 2); 7471 else 7472 Ret.reserve(Record.size()); 7473 7474 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 7475 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7476 bool HasTailCall = false; 7477 uint64_t RelBF = 0; 7478 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7479 if (IsOldProfileFormat) { 7480 I += 1; // Skip old callsitecount field 7481 if (HasProfile) 7482 I += 1; // Skip old profilecount field 7483 } else if (HasProfile) 7484 std::tie(Hotness, HasTailCall) = 7485 getDecodedHotnessCallEdgeInfo(Record[++I]); 7486 else if (HasRelBF) 7487 getDecodedRelBFCallEdgeInfo(Record[++I], RelBF, HasTailCall); 7488 Ret.push_back(FunctionSummary::EdgeTy{ 7489 Callee, CalleeInfo(Hotness, HasTailCall, RelBF)}); 7490 } 7491 return Ret; 7492 } 7493 7494 static void 7495 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 7496 WholeProgramDevirtResolution &Wpd) { 7497 uint64_t ArgNum = Record[Slot++]; 7498 WholeProgramDevirtResolution::ByArg &B = 7499 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 7500 Slot += ArgNum; 7501 7502 B.TheKind = 7503 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 7504 B.Info = Record[Slot++]; 7505 B.Byte = Record[Slot++]; 7506 B.Bit = Record[Slot++]; 7507 } 7508 7509 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 7510 StringRef Strtab, size_t &Slot, 7511 TypeIdSummary &TypeId) { 7512 uint64_t Id = Record[Slot++]; 7513 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 7514 7515 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 7516 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 7517 static_cast<size_t>(Record[Slot + 1])}; 7518 Slot += 2; 7519 7520 uint64_t ResByArgNum = Record[Slot++]; 7521 for (uint64_t I = 0; I != ResByArgNum; ++I) 7522 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 7523 } 7524 7525 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 7526 StringRef Strtab, 7527 ModuleSummaryIndex &TheIndex) { 7528 size_t Slot = 0; 7529 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 7530 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 7531 Slot += 2; 7532 7533 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 7534 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 7535 TypeId.TTRes.AlignLog2 = Record[Slot++]; 7536 TypeId.TTRes.SizeM1 = Record[Slot++]; 7537 TypeId.TTRes.BitMask = Record[Slot++]; 7538 TypeId.TTRes.InlineBits = Record[Slot++]; 7539 7540 while (Slot < Record.size()) 7541 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 7542 } 7543 7544 std::vector<FunctionSummary::ParamAccess> 7545 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 7546 auto ReadRange = [&]() { 7547 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 7548 BitcodeReader::decodeSignRotatedValue(Record.front())); 7549 Record = Record.drop_front(); 7550 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 7551 BitcodeReader::decodeSignRotatedValue(Record.front())); 7552 Record = Record.drop_front(); 7553 ConstantRange Range{Lower, Upper}; 7554 assert(!Range.isFullSet()); 7555 assert(!Range.isUpperSignWrapped()); 7556 return Range; 7557 }; 7558 7559 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7560 while (!Record.empty()) { 7561 PendingParamAccesses.emplace_back(); 7562 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 7563 ParamAccess.ParamNo = Record.front(); 7564 Record = Record.drop_front(); 7565 ParamAccess.Use = ReadRange(); 7566 ParamAccess.Calls.resize(Record.front()); 7567 Record = Record.drop_front(); 7568 for (auto &Call : ParamAccess.Calls) { 7569 Call.ParamNo = Record.front(); 7570 Record = Record.drop_front(); 7571 Call.Callee = std::get<0>(getValueInfoFromValueId(Record.front())); 7572 Record = Record.drop_front(); 7573 Call.Offsets = ReadRange(); 7574 } 7575 } 7576 return PendingParamAccesses; 7577 } 7578 7579 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 7580 ArrayRef<uint64_t> Record, size_t &Slot, 7581 TypeIdCompatibleVtableInfo &TypeId) { 7582 uint64_t Offset = Record[Slot++]; 7583 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[Slot++])); 7584 TypeId.push_back({Offset, Callee}); 7585 } 7586 7587 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 7588 ArrayRef<uint64_t> Record) { 7589 size_t Slot = 0; 7590 TypeIdCompatibleVtableInfo &TypeId = 7591 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 7592 {Strtab.data() + Record[Slot], 7593 static_cast<size_t>(Record[Slot + 1])}); 7594 Slot += 2; 7595 7596 while (Slot < Record.size()) 7597 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 7598 } 7599 7600 SmallVector<unsigned> ModuleSummaryIndexBitcodeReader::parseAllocInfoContext( 7601 ArrayRef<uint64_t> Record, unsigned &I) { 7602 SmallVector<unsigned> StackIdList; 7603 // For backwards compatibility with old format before radix tree was 7604 // used, simply see if we found a radix tree array record (and thus if 7605 // the RadixArray is non-empty). 7606 if (RadixArray.empty()) { 7607 unsigned NumStackEntries = Record[I++]; 7608 assert(Record.size() - I >= NumStackEntries); 7609 StackIdList.reserve(NumStackEntries); 7610 for (unsigned J = 0; J < NumStackEntries; J++) { 7611 assert(Record[I] < StackIds.size()); 7612 StackIdList.push_back( 7613 TheIndex.addOrGetStackIdIndex(StackIds[Record[I++]])); 7614 } 7615 } else { 7616 unsigned RadixIndex = Record[I++]; 7617 // See the comments above CallStackRadixTreeBuilder in ProfileData/MemProf.h 7618 // for a detailed description of the radix tree array format. Briefly, the 7619 // first entry will be the number of frames, any negative values are the 7620 // negative of the offset of the next frame, and otherwise the frames are in 7621 // increasing linear order. 7622 assert(RadixIndex < RadixArray.size()); 7623 unsigned NumStackIds = RadixArray[RadixIndex++]; 7624 StackIdList.reserve(NumStackIds); 7625 while (NumStackIds--) { 7626 assert(RadixIndex < RadixArray.size()); 7627 unsigned Elem = RadixArray[RadixIndex]; 7628 if (static_cast<std::make_signed_t<unsigned>>(Elem) < 0) { 7629 RadixIndex = RadixIndex - Elem; 7630 assert(RadixIndex < RadixArray.size()); 7631 Elem = RadixArray[RadixIndex]; 7632 // We shouldn't encounter a second offset in a row. 7633 assert(static_cast<std::make_signed_t<unsigned>>(Elem) >= 0); 7634 } 7635 RadixIndex++; 7636 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[Elem])); 7637 } 7638 } 7639 return StackIdList; 7640 } 7641 7642 static void setSpecialRefs(SmallVectorImpl<ValueInfo> &Refs, unsigned ROCnt, 7643 unsigned WOCnt) { 7644 // Readonly and writeonly refs are in the end of the refs list. 7645 assert(ROCnt + WOCnt <= Refs.size()); 7646 unsigned FirstWORef = Refs.size() - WOCnt; 7647 unsigned RefNo = FirstWORef - ROCnt; 7648 for (; RefNo < FirstWORef; ++RefNo) 7649 Refs[RefNo].setReadOnly(); 7650 for (; RefNo < Refs.size(); ++RefNo) 7651 Refs[RefNo].setWriteOnly(); 7652 } 7653 7654 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 7655 // objects in the index. 7656 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 7657 if (Error Err = Stream.EnterSubBlock(ID)) 7658 return Err; 7659 SmallVector<uint64_t, 64> Record; 7660 7661 // Parse version 7662 { 7663 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7664 if (!MaybeEntry) 7665 return MaybeEntry.takeError(); 7666 BitstreamEntry Entry = MaybeEntry.get(); 7667 7668 if (Entry.Kind != BitstreamEntry::Record) 7669 return error("Invalid Summary Block: record for version expected"); 7670 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 7671 if (!MaybeRecord) 7672 return MaybeRecord.takeError(); 7673 if (MaybeRecord.get() != bitc::FS_VERSION) 7674 return error("Invalid Summary Block: version expected"); 7675 } 7676 const uint64_t Version = Record[0]; 7677 const bool IsOldProfileFormat = Version == 1; 7678 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 7679 return error("Invalid summary version " + Twine(Version) + 7680 ". Version should be in the range [1-" + 7681 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 7682 "]."); 7683 Record.clear(); 7684 7685 // Keep around the last seen summary to be used when we see an optional 7686 // "OriginalName" attachement. 7687 GlobalValueSummary *LastSeenSummary = nullptr; 7688 GlobalValue::GUID LastSeenGUID = 0; 7689 7690 // We can expect to see any number of type ID information records before 7691 // each function summary records; these variables store the information 7692 // collected so far so that it can be used to create the summary object. 7693 std::vector<GlobalValue::GUID> PendingTypeTests; 7694 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 7695 PendingTypeCheckedLoadVCalls; 7696 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 7697 PendingTypeCheckedLoadConstVCalls; 7698 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 7699 7700 std::vector<CallsiteInfo> PendingCallsites; 7701 std::vector<AllocInfo> PendingAllocs; 7702 std::vector<uint64_t> PendingContextIds; 7703 7704 while (true) { 7705 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 7706 if (!MaybeEntry) 7707 return MaybeEntry.takeError(); 7708 BitstreamEntry Entry = MaybeEntry.get(); 7709 7710 switch (Entry.Kind) { 7711 case BitstreamEntry::SubBlock: // Handled for us already. 7712 case BitstreamEntry::Error: 7713 return error("Malformed block"); 7714 case BitstreamEntry::EndBlock: 7715 return Error::success(); 7716 case BitstreamEntry::Record: 7717 // The interesting case. 7718 break; 7719 } 7720 7721 // Read a record. The record format depends on whether this 7722 // is a per-module index or a combined index file. In the per-module 7723 // case the records contain the associated value's ID for correlation 7724 // with VST entries. In the combined index the correlation is done 7725 // via the bitcode offset of the summary records (which were saved 7726 // in the combined index VST entries). The records also contain 7727 // information used for ThinLTO renaming and importing. 7728 Record.clear(); 7729 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7730 if (!MaybeBitCode) 7731 return MaybeBitCode.takeError(); 7732 switch (unsigned BitCode = MaybeBitCode.get()) { 7733 default: // Default behavior: ignore. 7734 break; 7735 case bitc::FS_FLAGS: { // [flags] 7736 TheIndex.setFlags(Record[0]); 7737 break; 7738 } 7739 case bitc::FS_VALUE_GUID: { // [valueid, refguid_upper32, refguid_lower32] 7740 uint64_t ValueID = Record[0]; 7741 GlobalValue::GUID RefGUID; 7742 if (Version >= 11) { 7743 RefGUID = Record[1] << 32 | Record[2]; 7744 } else { 7745 RefGUID = Record[1]; 7746 } 7747 ValueIdToValueInfoMap[ValueID] = 7748 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 7749 break; 7750 } 7751 // FS_PERMODULE is legacy and does not have support for the tail call flag. 7752 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 7753 // numrefs x valueid, n x (valueid)] 7754 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 7755 // numrefs x valueid, 7756 // n x (valueid, hotness+tailcall flags)] 7757 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 7758 // numrefs x valueid, 7759 // n x (valueid, relblockfreq+tailcall)] 7760 case bitc::FS_PERMODULE: 7761 case bitc::FS_PERMODULE_RELBF: 7762 case bitc::FS_PERMODULE_PROFILE: { 7763 unsigned ValueID = Record[0]; 7764 uint64_t RawFlags = Record[1]; 7765 unsigned InstCount = Record[2]; 7766 uint64_t RawFunFlags = 0; 7767 unsigned NumRefs = Record[3]; 7768 unsigned NumRORefs = 0, NumWORefs = 0; 7769 int RefListStartIndex = 4; 7770 if (Version >= 4) { 7771 RawFunFlags = Record[3]; 7772 NumRefs = Record[4]; 7773 RefListStartIndex = 5; 7774 if (Version >= 5) { 7775 NumRORefs = Record[5]; 7776 RefListStartIndex = 6; 7777 if (Version >= 7) { 7778 NumWORefs = Record[6]; 7779 RefListStartIndex = 7; 7780 } 7781 } 7782 } 7783 7784 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7785 // The module path string ref set in the summary must be owned by the 7786 // index's module string table. Since we don't have a module path 7787 // string table section in the per-module index, we create a single 7788 // module path string table entry with an empty (0) ID to take 7789 // ownership. 7790 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7791 assert(Record.size() >= RefListStartIndex + NumRefs && 7792 "Record size inconsistent with number of references"); 7793 SmallVector<ValueInfo, 0> Refs = makeRefList( 7794 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7795 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 7796 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 7797 SmallVector<FunctionSummary::EdgeTy, 0> Calls = makeCallList( 7798 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7799 IsOldProfileFormat, HasProfile, HasRelBF); 7800 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7801 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 7802 // In order to save memory, only record the memprof summaries if this is 7803 // the prevailing copy of a symbol. The linker doesn't resolve local 7804 // linkage values so don't check whether those are prevailing. 7805 auto LT = (GlobalValue::LinkageTypes)Flags.Linkage; 7806 if (IsPrevailing && !GlobalValue::isLocalLinkage(LT) && 7807 !IsPrevailing(VIAndOriginalGUID.first.getGUID())) { 7808 PendingCallsites.clear(); 7809 PendingAllocs.clear(); 7810 } 7811 auto FS = std::make_unique<FunctionSummary>( 7812 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7813 std::move(Calls), std::move(PendingTypeTests), 7814 std::move(PendingTypeTestAssumeVCalls), 7815 std::move(PendingTypeCheckedLoadVCalls), 7816 std::move(PendingTypeTestAssumeConstVCalls), 7817 std::move(PendingTypeCheckedLoadConstVCalls), 7818 std::move(PendingParamAccesses), std::move(PendingCallsites), 7819 std::move(PendingAllocs)); 7820 FS->setModulePath(getThisModule()->first()); 7821 FS->setOriginalName(std::get<1>(VIAndOriginalGUID)); 7822 TheIndex.addGlobalValueSummary(std::get<0>(VIAndOriginalGUID), 7823 std::move(FS)); 7824 break; 7825 } 7826 // FS_ALIAS: [valueid, flags, valueid] 7827 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 7828 // they expect all aliasee summaries to be available. 7829 case bitc::FS_ALIAS: { 7830 unsigned ValueID = Record[0]; 7831 uint64_t RawFlags = Record[1]; 7832 unsigned AliaseeID = Record[2]; 7833 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7834 auto AS = std::make_unique<AliasSummary>(Flags); 7835 // The module path string ref set in the summary must be owned by the 7836 // index's module string table. Since we don't have a module path 7837 // string table section in the per-module index, we create a single 7838 // module path string table entry with an empty (0) ID to take 7839 // ownership. 7840 AS->setModulePath(getThisModule()->first()); 7841 7842 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeID)); 7843 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 7844 if (!AliaseeInModule) 7845 return error("Alias expects aliasee summary to be parsed"); 7846 AS->setAliasee(AliaseeVI, AliaseeInModule); 7847 7848 auto GUID = getValueInfoFromValueId(ValueID); 7849 AS->setOriginalName(std::get<1>(GUID)); 7850 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(AS)); 7851 break; 7852 } 7853 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 7854 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 7855 unsigned ValueID = Record[0]; 7856 uint64_t RawFlags = Record[1]; 7857 unsigned RefArrayStart = 2; 7858 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7859 /* WriteOnly */ false, 7860 /* Constant */ false, 7861 GlobalObject::VCallVisibilityPublic); 7862 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7863 if (Version >= 5) { 7864 GVF = getDecodedGVarFlags(Record[2]); 7865 RefArrayStart = 3; 7866 } 7867 SmallVector<ValueInfo, 0> Refs = 7868 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 7869 auto FS = 7870 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7871 FS->setModulePath(getThisModule()->first()); 7872 auto GUID = getValueInfoFromValueId(ValueID); 7873 FS->setOriginalName(std::get<1>(GUID)); 7874 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(FS)); 7875 break; 7876 } 7877 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 7878 // numrefs, numrefs x valueid, 7879 // n x (valueid, offset)] 7880 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 7881 unsigned ValueID = Record[0]; 7882 uint64_t RawFlags = Record[1]; 7883 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 7884 unsigned NumRefs = Record[3]; 7885 unsigned RefListStartIndex = 4; 7886 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 7887 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7888 SmallVector<ValueInfo, 0> Refs = makeRefList( 7889 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7890 VTableFuncList VTableFuncs; 7891 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 7892 ValueInfo Callee = std::get<0>(getValueInfoFromValueId(Record[I])); 7893 uint64_t Offset = Record[++I]; 7894 VTableFuncs.push_back({Callee, Offset}); 7895 } 7896 auto VS = 7897 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 7898 VS->setModulePath(getThisModule()->first()); 7899 VS->setVTableFuncs(VTableFuncs); 7900 auto GUID = getValueInfoFromValueId(ValueID); 7901 VS->setOriginalName(std::get<1>(GUID)); 7902 TheIndex.addGlobalValueSummary(std::get<0>(GUID), std::move(VS)); 7903 break; 7904 } 7905 // FS_COMBINED is legacy and does not have support for the tail call flag. 7906 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 7907 // numrefs x valueid, n x (valueid)] 7908 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 7909 // numrefs x valueid, 7910 // n x (valueid, hotness+tailcall flags)] 7911 case bitc::FS_COMBINED: 7912 case bitc::FS_COMBINED_PROFILE: { 7913 unsigned ValueID = Record[0]; 7914 uint64_t ModuleId = Record[1]; 7915 uint64_t RawFlags = Record[2]; 7916 unsigned InstCount = Record[3]; 7917 uint64_t RawFunFlags = 0; 7918 unsigned NumRefs = Record[4]; 7919 unsigned NumRORefs = 0, NumWORefs = 0; 7920 int RefListStartIndex = 5; 7921 7922 if (Version >= 4) { 7923 RawFunFlags = Record[4]; 7924 RefListStartIndex = 6; 7925 size_t NumRefsIndex = 5; 7926 if (Version >= 5) { 7927 unsigned NumRORefsOffset = 1; 7928 RefListStartIndex = 7; 7929 if (Version >= 6) { 7930 NumRefsIndex = 6; 7931 RefListStartIndex = 8; 7932 if (Version >= 7) { 7933 RefListStartIndex = 9; 7934 NumWORefs = Record[8]; 7935 NumRORefsOffset = 2; 7936 } 7937 } 7938 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 7939 } 7940 NumRefs = Record[NumRefsIndex]; 7941 } 7942 7943 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7944 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 7945 assert(Record.size() >= RefListStartIndex + NumRefs && 7946 "Record size inconsistent with number of references"); 7947 SmallVector<ValueInfo, 0> Refs = makeRefList( 7948 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 7949 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 7950 SmallVector<FunctionSummary::EdgeTy, 0> Edges = makeCallList( 7951 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 7952 IsOldProfileFormat, HasProfile, false); 7953 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7954 setSpecialRefs(Refs, NumRORefs, NumWORefs); 7955 auto FS = std::make_unique<FunctionSummary>( 7956 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 7957 std::move(Edges), std::move(PendingTypeTests), 7958 std::move(PendingTypeTestAssumeVCalls), 7959 std::move(PendingTypeCheckedLoadVCalls), 7960 std::move(PendingTypeTestAssumeConstVCalls), 7961 std::move(PendingTypeCheckedLoadConstVCalls), 7962 std::move(PendingParamAccesses), std::move(PendingCallsites), 7963 std::move(PendingAllocs)); 7964 LastSeenSummary = FS.get(); 7965 LastSeenGUID = VI.getGUID(); 7966 FS->setModulePath(ModuleIdMap[ModuleId]); 7967 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 7968 break; 7969 } 7970 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 7971 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 7972 // they expect all aliasee summaries to be available. 7973 case bitc::FS_COMBINED_ALIAS: { 7974 unsigned ValueID = Record[0]; 7975 uint64_t ModuleId = Record[1]; 7976 uint64_t RawFlags = Record[2]; 7977 unsigned AliaseeValueId = Record[3]; 7978 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 7979 auto AS = std::make_unique<AliasSummary>(Flags); 7980 LastSeenSummary = AS.get(); 7981 AS->setModulePath(ModuleIdMap[ModuleId]); 7982 7983 auto AliaseeVI = std::get<0>(getValueInfoFromValueId(AliaseeValueId)); 7984 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 7985 AS->setAliasee(AliaseeVI, AliaseeInModule); 7986 7987 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 7988 LastSeenGUID = VI.getGUID(); 7989 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 7990 break; 7991 } 7992 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 7993 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 7994 unsigned ValueID = Record[0]; 7995 uint64_t ModuleId = Record[1]; 7996 uint64_t RawFlags = Record[2]; 7997 unsigned RefArrayStart = 3; 7998 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 7999 /* WriteOnly */ false, 8000 /* Constant */ false, 8001 GlobalObject::VCallVisibilityPublic); 8002 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 8003 if (Version >= 5) { 8004 GVF = getDecodedGVarFlags(Record[3]); 8005 RefArrayStart = 4; 8006 } 8007 SmallVector<ValueInfo, 0> Refs = 8008 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 8009 auto FS = 8010 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 8011 LastSeenSummary = FS.get(); 8012 FS->setModulePath(ModuleIdMap[ModuleId]); 8013 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8014 LastSeenGUID = VI.getGUID(); 8015 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 8016 break; 8017 } 8018 // FS_COMBINED_ORIGINAL_NAME: [original_name] 8019 case bitc::FS_COMBINED_ORIGINAL_NAME: { 8020 uint64_t OriginalName = Record[0]; 8021 if (!LastSeenSummary) 8022 return error("Name attachment that does not follow a combined record"); 8023 LastSeenSummary->setOriginalName(OriginalName); 8024 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 8025 // Reset the LastSeenSummary 8026 LastSeenSummary = nullptr; 8027 LastSeenGUID = 0; 8028 break; 8029 } 8030 case bitc::FS_TYPE_TESTS: 8031 assert(PendingTypeTests.empty()); 8032 llvm::append_range(PendingTypeTests, Record); 8033 break; 8034 8035 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 8036 assert(PendingTypeTestAssumeVCalls.empty()); 8037 for (unsigned I = 0; I != Record.size(); I += 2) 8038 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 8039 break; 8040 8041 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 8042 assert(PendingTypeCheckedLoadVCalls.empty()); 8043 for (unsigned I = 0; I != Record.size(); I += 2) 8044 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 8045 break; 8046 8047 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 8048 PendingTypeTestAssumeConstVCalls.push_back( 8049 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8050 break; 8051 8052 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 8053 PendingTypeCheckedLoadConstVCalls.push_back( 8054 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 8055 break; 8056 8057 case bitc::FS_CFI_FUNCTION_DEFS: { 8058 std::set<std::string, std::less<>> &CfiFunctionDefs = 8059 TheIndex.cfiFunctionDefs(); 8060 for (unsigned I = 0; I != Record.size(); I += 2) 8061 CfiFunctionDefs.insert( 8062 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8063 break; 8064 } 8065 8066 case bitc::FS_CFI_FUNCTION_DECLS: { 8067 std::set<std::string, std::less<>> &CfiFunctionDecls = 8068 TheIndex.cfiFunctionDecls(); 8069 for (unsigned I = 0; I != Record.size(); I += 2) 8070 CfiFunctionDecls.insert( 8071 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 8072 break; 8073 } 8074 8075 case bitc::FS_TYPE_ID: 8076 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 8077 break; 8078 8079 case bitc::FS_TYPE_ID_METADATA: 8080 parseTypeIdCompatibleVtableSummaryRecord(Record); 8081 break; 8082 8083 case bitc::FS_BLOCK_COUNT: 8084 TheIndex.addBlockCount(Record[0]); 8085 break; 8086 8087 case bitc::FS_PARAM_ACCESS: { 8088 PendingParamAccesses = parseParamAccesses(Record); 8089 break; 8090 } 8091 8092 case bitc::FS_STACK_IDS: { // [n x stackid] 8093 // Save stack ids in the reader to consult when adding stack ids from the 8094 // lists in the stack node and alloc node entries. 8095 if (Version <= 11) { 8096 StackIds = ArrayRef<uint64_t>(Record); 8097 break; 8098 } 8099 // This is an array of 32-bit fixed-width values, holding each 64-bit 8100 // context id as a pair of adjacent (most significant first) 32-bit words. 8101 assert(Record.size() % 2 == 0); 8102 StackIds.reserve(Record.size() / 2); 8103 for (auto R = Record.begin(); R != Record.end(); R += 2) 8104 StackIds.push_back(*R << 32 | *(R + 1)); 8105 break; 8106 } 8107 8108 case bitc::FS_CONTEXT_RADIX_TREE_ARRAY: { // [n x entry] 8109 RadixArray = ArrayRef<uint64_t>(Record); 8110 break; 8111 } 8112 8113 case bitc::FS_PERMODULE_CALLSITE_INFO: { 8114 unsigned ValueID = Record[0]; 8115 SmallVector<unsigned> StackIdList; 8116 for (auto R = Record.begin() + 1; R != Record.end(); R++) { 8117 assert(*R < StackIds.size()); 8118 StackIdList.push_back(TheIndex.addOrGetStackIdIndex(StackIds[*R])); 8119 } 8120 ValueInfo VI = std::get<0>(getValueInfoFromValueId(ValueID)); 8121 PendingCallsites.push_back(CallsiteInfo({VI, std::move(StackIdList)})); 8122 break; 8123 } 8124 8125 case bitc::FS_COMBINED_CALLSITE_INFO: { 8126 auto RecordIter = Record.begin(); 8127 unsigned ValueID = *RecordIter++; 8128 unsigned NumStackIds = *RecordIter++; 8129 unsigned NumVersions = *RecordIter++; 8130 assert(Record.size() == 3 + NumStackIds + NumVersions); 8131 SmallVector<unsigned> StackIdList; 8132 for (unsigned J = 0; J < NumStackIds; J++) { 8133 assert(*RecordIter < StackIds.size()); 8134 StackIdList.push_back( 8135 TheIndex.addOrGetStackIdIndex(StackIds[*RecordIter++])); 8136 } 8137 SmallVector<unsigned> Versions; 8138 for (unsigned J = 0; J < NumVersions; J++) 8139 Versions.push_back(*RecordIter++); 8140 ValueInfo VI = std::get<0>( 8141 getValueInfoFromValueId</*AllowNullValueInfo*/ true>(ValueID)); 8142 PendingCallsites.push_back( 8143 CallsiteInfo({VI, std::move(Versions), std::move(StackIdList)})); 8144 break; 8145 } 8146 8147 case bitc::FS_ALLOC_CONTEXT_IDS: { 8148 // This is an array of 32-bit fixed-width values, holding each 64-bit 8149 // context id as a pair of adjacent (most significant first) 32-bit words. 8150 assert(Record.size() % 2 == 0); 8151 PendingContextIds.reserve(Record.size() / 2); 8152 for (auto R = Record.begin(); R != Record.end(); R += 2) 8153 PendingContextIds.push_back(*R << 32 | *(R + 1)); 8154 break; 8155 } 8156 8157 case bitc::FS_PERMODULE_ALLOC_INFO: { 8158 unsigned I = 0; 8159 std::vector<MIBInfo> MIBs; 8160 unsigned NumMIBs = 0; 8161 if (Version >= 10) 8162 NumMIBs = Record[I++]; 8163 unsigned MIBsRead = 0; 8164 while ((Version >= 10 && MIBsRead++ < NumMIBs) || 8165 (Version < 10 && I < Record.size())) { 8166 assert(Record.size() - I >= 2); 8167 AllocationType AllocType = (AllocationType)Record[I++]; 8168 auto StackIdList = parseAllocInfoContext(Record, I); 8169 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8170 } 8171 // We either have nothing left or at least NumMIBs context size info 8172 // indices left (for the total sizes included when reporting of hinted 8173 // bytes is enabled). 8174 assert(I == Record.size() || Record.size() - I >= NumMIBs); 8175 std::vector<std::vector<ContextTotalSize>> AllContextSizes; 8176 if (I < Record.size()) { 8177 assert(!PendingContextIds.empty() && 8178 "Missing context ids for alloc sizes"); 8179 unsigned ContextIdIndex = 0; 8180 MIBsRead = 0; 8181 // The sizes are a linearized array of sizes, where for each MIB there 8182 // is 1 or more sizes (due to context trimming, each MIB in the metadata 8183 // and summarized here can correspond to more than one original context 8184 // from the profile). 8185 while (MIBsRead++ < NumMIBs) { 8186 // First read the number of contexts recorded for this MIB. 8187 unsigned NumContextSizeInfoEntries = Record[I++]; 8188 assert(Record.size() - I >= NumContextSizeInfoEntries); 8189 std::vector<ContextTotalSize> ContextSizes; 8190 ContextSizes.reserve(NumContextSizeInfoEntries); 8191 for (unsigned J = 0; J < NumContextSizeInfoEntries; J++) { 8192 assert(ContextIdIndex < PendingContextIds.size()); 8193 // PendingContextIds read from the preceding FS_ALLOC_CONTEXT_IDS 8194 // should be in the same order as the total sizes. 8195 ContextSizes.push_back( 8196 {PendingContextIds[ContextIdIndex++], Record[I++]}); 8197 } 8198 AllContextSizes.push_back(std::move(ContextSizes)); 8199 } 8200 PendingContextIds.clear(); 8201 } 8202 PendingAllocs.push_back(AllocInfo(std::move(MIBs))); 8203 if (!AllContextSizes.empty()) { 8204 assert(PendingAllocs.back().MIBs.size() == AllContextSizes.size()); 8205 PendingAllocs.back().ContextSizeInfos = std::move(AllContextSizes); 8206 } 8207 break; 8208 } 8209 8210 case bitc::FS_COMBINED_ALLOC_INFO: { 8211 unsigned I = 0; 8212 std::vector<MIBInfo> MIBs; 8213 unsigned NumMIBs = Record[I++]; 8214 unsigned NumVersions = Record[I++]; 8215 unsigned MIBsRead = 0; 8216 while (MIBsRead++ < NumMIBs) { 8217 assert(Record.size() - I >= 2); 8218 AllocationType AllocType = (AllocationType)Record[I++]; 8219 auto StackIdList = parseAllocInfoContext(Record, I); 8220 MIBs.push_back(MIBInfo(AllocType, std::move(StackIdList))); 8221 } 8222 assert(Record.size() - I >= NumVersions); 8223 SmallVector<uint8_t> Versions; 8224 for (unsigned J = 0; J < NumVersions; J++) 8225 Versions.push_back(Record[I++]); 8226 assert(I == Record.size()); 8227 PendingAllocs.push_back(AllocInfo(std::move(Versions), std::move(MIBs))); 8228 break; 8229 } 8230 } 8231 } 8232 llvm_unreachable("Exit infinite loop"); 8233 } 8234 8235 // Parse the module string table block into the Index. 8236 // This populates the ModulePathStringTable map in the index. 8237 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 8238 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 8239 return Err; 8240 8241 SmallVector<uint64_t, 64> Record; 8242 8243 SmallString<128> ModulePath; 8244 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 8245 8246 while (true) { 8247 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 8248 if (!MaybeEntry) 8249 return MaybeEntry.takeError(); 8250 BitstreamEntry Entry = MaybeEntry.get(); 8251 8252 switch (Entry.Kind) { 8253 case BitstreamEntry::SubBlock: // Handled for us already. 8254 case BitstreamEntry::Error: 8255 return error("Malformed block"); 8256 case BitstreamEntry::EndBlock: 8257 return Error::success(); 8258 case BitstreamEntry::Record: 8259 // The interesting case. 8260 break; 8261 } 8262 8263 Record.clear(); 8264 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 8265 if (!MaybeRecord) 8266 return MaybeRecord.takeError(); 8267 switch (MaybeRecord.get()) { 8268 default: // Default behavior: ignore. 8269 break; 8270 case bitc::MST_CODE_ENTRY: { 8271 // MST_ENTRY: [modid, namechar x N] 8272 uint64_t ModuleId = Record[0]; 8273 8274 if (convertToString(Record, 1, ModulePath)) 8275 return error("Invalid record"); 8276 8277 LastSeenModule = TheIndex.addModule(ModulePath); 8278 ModuleIdMap[ModuleId] = LastSeenModule->first(); 8279 8280 ModulePath.clear(); 8281 break; 8282 } 8283 /// MST_CODE_HASH: [5*i32] 8284 case bitc::MST_CODE_HASH: { 8285 if (Record.size() != 5) 8286 return error("Invalid hash length " + Twine(Record.size()).str()); 8287 if (!LastSeenModule) 8288 return error("Invalid hash that does not follow a module path"); 8289 int Pos = 0; 8290 for (auto &Val : Record) { 8291 assert(!(Val >> 32) && "Unexpected high bits set"); 8292 LastSeenModule->second[Pos++] = Val; 8293 } 8294 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 8295 LastSeenModule = nullptr; 8296 break; 8297 } 8298 } 8299 } 8300 llvm_unreachable("Exit infinite loop"); 8301 } 8302 8303 namespace { 8304 8305 // FIXME: This class is only here to support the transition to llvm::Error. It 8306 // will be removed once this transition is complete. Clients should prefer to 8307 // deal with the Error value directly, rather than converting to error_code. 8308 class BitcodeErrorCategoryType : public std::error_category { 8309 const char *name() const noexcept override { 8310 return "llvm.bitcode"; 8311 } 8312 8313 std::string message(int IE) const override { 8314 BitcodeError E = static_cast<BitcodeError>(IE); 8315 switch (E) { 8316 case BitcodeError::CorruptedBitcode: 8317 return "Corrupted bitcode"; 8318 } 8319 llvm_unreachable("Unknown error type!"); 8320 } 8321 }; 8322 8323 } // end anonymous namespace 8324 8325 const std::error_category &llvm::BitcodeErrorCategory() { 8326 static BitcodeErrorCategoryType ErrorCategory; 8327 return ErrorCategory; 8328 } 8329 8330 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 8331 unsigned Block, unsigned RecordID) { 8332 if (Error Err = Stream.EnterSubBlock(Block)) 8333 return std::move(Err); 8334 8335 StringRef Strtab; 8336 while (true) { 8337 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8338 if (!MaybeEntry) 8339 return MaybeEntry.takeError(); 8340 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8341 8342 switch (Entry.Kind) { 8343 case BitstreamEntry::EndBlock: 8344 return Strtab; 8345 8346 case BitstreamEntry::Error: 8347 return error("Malformed block"); 8348 8349 case BitstreamEntry::SubBlock: 8350 if (Error Err = Stream.SkipBlock()) 8351 return std::move(Err); 8352 break; 8353 8354 case BitstreamEntry::Record: 8355 StringRef Blob; 8356 SmallVector<uint64_t, 1> Record; 8357 Expected<unsigned> MaybeRecord = 8358 Stream.readRecord(Entry.ID, Record, &Blob); 8359 if (!MaybeRecord) 8360 return MaybeRecord.takeError(); 8361 if (MaybeRecord.get() == RecordID) 8362 Strtab = Blob; 8363 break; 8364 } 8365 } 8366 } 8367 8368 //===----------------------------------------------------------------------===// 8369 // External interface 8370 //===----------------------------------------------------------------------===// 8371 8372 Expected<std::vector<BitcodeModule>> 8373 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 8374 auto FOrErr = getBitcodeFileContents(Buffer); 8375 if (!FOrErr) 8376 return FOrErr.takeError(); 8377 return std::move(FOrErr->Mods); 8378 } 8379 8380 Expected<BitcodeFileContents> 8381 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 8382 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8383 if (!StreamOrErr) 8384 return StreamOrErr.takeError(); 8385 BitstreamCursor &Stream = *StreamOrErr; 8386 8387 BitcodeFileContents F; 8388 while (true) { 8389 uint64_t BCBegin = Stream.getCurrentByteNo(); 8390 8391 // We may be consuming bitcode from a client that leaves garbage at the end 8392 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 8393 // the end that there cannot possibly be another module, stop looking. 8394 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 8395 return F; 8396 8397 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8398 if (!MaybeEntry) 8399 return MaybeEntry.takeError(); 8400 llvm::BitstreamEntry Entry = MaybeEntry.get(); 8401 8402 switch (Entry.Kind) { 8403 case BitstreamEntry::EndBlock: 8404 case BitstreamEntry::Error: 8405 return error("Malformed block"); 8406 8407 case BitstreamEntry::SubBlock: { 8408 uint64_t IdentificationBit = -1ull; 8409 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 8410 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8411 if (Error Err = Stream.SkipBlock()) 8412 return std::move(Err); 8413 8414 { 8415 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 8416 if (!MaybeEntry) 8417 return MaybeEntry.takeError(); 8418 Entry = MaybeEntry.get(); 8419 } 8420 8421 if (Entry.Kind != BitstreamEntry::SubBlock || 8422 Entry.ID != bitc::MODULE_BLOCK_ID) 8423 return error("Malformed block"); 8424 } 8425 8426 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 8427 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 8428 if (Error Err = Stream.SkipBlock()) 8429 return std::move(Err); 8430 8431 F.Mods.push_back({Stream.getBitcodeBytes().slice( 8432 BCBegin, Stream.getCurrentByteNo() - BCBegin), 8433 Buffer.getBufferIdentifier(), IdentificationBit, 8434 ModuleBit}); 8435 continue; 8436 } 8437 8438 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 8439 Expected<StringRef> Strtab = 8440 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 8441 if (!Strtab) 8442 return Strtab.takeError(); 8443 // This string table is used by every preceding bitcode module that does 8444 // not have its own string table. A bitcode file may have multiple 8445 // string tables if it was created by binary concatenation, for example 8446 // with "llvm-cat -b". 8447 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 8448 if (!I.Strtab.empty()) 8449 break; 8450 I.Strtab = *Strtab; 8451 } 8452 // Similarly, the string table is used by every preceding symbol table; 8453 // normally there will be just one unless the bitcode file was created 8454 // by binary concatenation. 8455 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 8456 F.StrtabForSymtab = *Strtab; 8457 continue; 8458 } 8459 8460 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 8461 Expected<StringRef> SymtabOrErr = 8462 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 8463 if (!SymtabOrErr) 8464 return SymtabOrErr.takeError(); 8465 8466 // We can expect the bitcode file to have multiple symbol tables if it 8467 // was created by binary concatenation. In that case we silently 8468 // ignore any subsequent symbol tables, which is fine because this is a 8469 // low level function. The client is expected to notice that the number 8470 // of modules in the symbol table does not match the number of modules 8471 // in the input file and regenerate the symbol table. 8472 if (F.Symtab.empty()) 8473 F.Symtab = *SymtabOrErr; 8474 continue; 8475 } 8476 8477 if (Error Err = Stream.SkipBlock()) 8478 return std::move(Err); 8479 continue; 8480 } 8481 case BitstreamEntry::Record: 8482 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 8483 return std::move(E); 8484 continue; 8485 } 8486 } 8487 } 8488 8489 /// Get a lazy one-at-time loading module from bitcode. 8490 /// 8491 /// This isn't always used in a lazy context. In particular, it's also used by 8492 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 8493 /// in forward-referenced functions from block address references. 8494 /// 8495 /// \param[in] MaterializeAll Set to \c true if we should materialize 8496 /// everything. 8497 Expected<std::unique_ptr<Module>> 8498 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 8499 bool ShouldLazyLoadMetadata, bool IsImporting, 8500 ParserCallbacks Callbacks) { 8501 BitstreamCursor Stream(Buffer); 8502 8503 std::string ProducerIdentification; 8504 if (IdentificationBit != -1ull) { 8505 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 8506 return std::move(JumpFailed); 8507 if (Error E = 8508 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 8509 return std::move(E); 8510 } 8511 8512 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8513 return std::move(JumpFailed); 8514 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 8515 Context); 8516 8517 std::unique_ptr<Module> M = 8518 std::make_unique<Module>(ModuleIdentifier, Context); 8519 M->setMaterializer(R); 8520 8521 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 8522 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 8523 IsImporting, Callbacks)) 8524 return std::move(Err); 8525 8526 if (MaterializeAll) { 8527 // Read in the entire module, and destroy the BitcodeReader. 8528 if (Error Err = M->materializeAll()) 8529 return std::move(Err); 8530 } else { 8531 // Resolve forward references from blockaddresses. 8532 if (Error Err = R->materializeForwardReferencedFunctions()) 8533 return std::move(Err); 8534 } 8535 8536 return std::move(M); 8537 } 8538 8539 Expected<std::unique_ptr<Module>> 8540 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 8541 bool IsImporting, ParserCallbacks Callbacks) { 8542 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 8543 Callbacks); 8544 } 8545 8546 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 8547 // We don't use ModuleIdentifier here because the client may need to control the 8548 // module path used in the combined summary (e.g. when reading summaries for 8549 // regular LTO modules). 8550 Error BitcodeModule::readSummary( 8551 ModuleSummaryIndex &CombinedIndex, StringRef ModulePath, 8552 std::function<bool(GlobalValue::GUID)> IsPrevailing) { 8553 BitstreamCursor Stream(Buffer); 8554 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8555 return JumpFailed; 8556 8557 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 8558 ModulePath, IsPrevailing); 8559 return R.parseModule(); 8560 } 8561 8562 // Parse the specified bitcode buffer, returning the function info index. 8563 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 8564 BitstreamCursor Stream(Buffer); 8565 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8566 return std::move(JumpFailed); 8567 8568 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 8569 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 8570 ModuleIdentifier, 0); 8571 8572 if (Error Err = R.parseModule()) 8573 return std::move(Err); 8574 8575 return std::move(Index); 8576 } 8577 8578 static Expected<std::pair<bool, bool>> 8579 getEnableSplitLTOUnitAndUnifiedFlag(BitstreamCursor &Stream, 8580 unsigned ID, 8581 BitcodeLTOInfo <OInfo) { 8582 if (Error Err = Stream.EnterSubBlock(ID)) 8583 return std::move(Err); 8584 SmallVector<uint64_t, 64> Record; 8585 8586 while (true) { 8587 BitstreamEntry Entry; 8588 std::pair<bool, bool> Result = {false,false}; 8589 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 8590 return std::move(E); 8591 8592 switch (Entry.Kind) { 8593 case BitstreamEntry::SubBlock: // Handled for us already. 8594 case BitstreamEntry::Error: 8595 return error("Malformed block"); 8596 case BitstreamEntry::EndBlock: { 8597 // If no flags record found, set both flags to false. 8598 return Result; 8599 } 8600 case BitstreamEntry::Record: 8601 // The interesting case. 8602 break; 8603 } 8604 8605 // Look for the FS_FLAGS record. 8606 Record.clear(); 8607 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 8608 if (!MaybeBitCode) 8609 return MaybeBitCode.takeError(); 8610 switch (MaybeBitCode.get()) { 8611 default: // Default behavior: ignore. 8612 break; 8613 case bitc::FS_FLAGS: { // [flags] 8614 uint64_t Flags = Record[0]; 8615 // Scan flags. 8616 assert(Flags <= 0x2ff && "Unexpected bits in flag"); 8617 8618 bool EnableSplitLTOUnit = Flags & 0x8; 8619 bool UnifiedLTO = Flags & 0x200; 8620 Result = {EnableSplitLTOUnit, UnifiedLTO}; 8621 8622 return Result; 8623 } 8624 } 8625 } 8626 llvm_unreachable("Exit infinite loop"); 8627 } 8628 8629 // Check if the given bitcode buffer contains a global value summary block. 8630 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 8631 BitstreamCursor Stream(Buffer); 8632 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 8633 return std::move(JumpFailed); 8634 8635 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 8636 return std::move(Err); 8637 8638 while (true) { 8639 llvm::BitstreamEntry Entry; 8640 if (Error E = Stream.advance().moveInto(Entry)) 8641 return std::move(E); 8642 8643 switch (Entry.Kind) { 8644 case BitstreamEntry::Error: 8645 return error("Malformed block"); 8646 case BitstreamEntry::EndBlock: 8647 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 8648 /*EnableSplitLTOUnit=*/false, /*UnifiedLTO=*/false}; 8649 8650 case BitstreamEntry::SubBlock: 8651 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 8652 BitcodeLTOInfo LTOInfo; 8653 Expected<std::pair<bool, bool>> Flags = 8654 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8655 if (!Flags) 8656 return Flags.takeError(); 8657 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8658 LTOInfo.IsThinLTO = true; 8659 LTOInfo.HasSummary = true; 8660 return LTOInfo; 8661 } 8662 8663 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 8664 BitcodeLTOInfo LTOInfo; 8665 Expected<std::pair<bool, bool>> Flags = 8666 getEnableSplitLTOUnitAndUnifiedFlag(Stream, Entry.ID, LTOInfo); 8667 if (!Flags) 8668 return Flags.takeError(); 8669 std::tie(LTOInfo.EnableSplitLTOUnit, LTOInfo.UnifiedLTO) = Flags.get(); 8670 LTOInfo.IsThinLTO = false; 8671 LTOInfo.HasSummary = true; 8672 return LTOInfo; 8673 } 8674 8675 // Ignore other sub-blocks. 8676 if (Error Err = Stream.SkipBlock()) 8677 return std::move(Err); 8678 continue; 8679 8680 case BitstreamEntry::Record: 8681 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 8682 continue; 8683 else 8684 return StreamFailed.takeError(); 8685 } 8686 } 8687 } 8688 8689 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 8690 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 8691 if (!MsOrErr) 8692 return MsOrErr.takeError(); 8693 8694 if (MsOrErr->size() != 1) 8695 return error("Expected a single module"); 8696 8697 return (*MsOrErr)[0]; 8698 } 8699 8700 Expected<std::unique_ptr<Module>> 8701 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 8702 bool ShouldLazyLoadMetadata, bool IsImporting, 8703 ParserCallbacks Callbacks) { 8704 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8705 if (!BM) 8706 return BM.takeError(); 8707 8708 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting, 8709 Callbacks); 8710 } 8711 8712 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 8713 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 8714 bool ShouldLazyLoadMetadata, bool IsImporting, ParserCallbacks Callbacks) { 8715 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 8716 IsImporting, Callbacks); 8717 if (MOrErr) 8718 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 8719 return MOrErr; 8720 } 8721 8722 Expected<std::unique_ptr<Module>> 8723 BitcodeModule::parseModule(LLVMContext &Context, ParserCallbacks Callbacks) { 8724 return getModuleImpl(Context, true, false, false, Callbacks); 8725 // TODO: Restore the use-lists to the in-memory state when the bitcode was 8726 // written. We must defer until the Module has been fully materialized. 8727 } 8728 8729 Expected<std::unique_ptr<Module>> 8730 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 8731 ParserCallbacks Callbacks) { 8732 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8733 if (!BM) 8734 return BM.takeError(); 8735 8736 return BM->parseModule(Context, Callbacks); 8737 } 8738 8739 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 8740 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8741 if (!StreamOrErr) 8742 return StreamOrErr.takeError(); 8743 8744 return readTriple(*StreamOrErr); 8745 } 8746 8747 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 8748 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8749 if (!StreamOrErr) 8750 return StreamOrErr.takeError(); 8751 8752 return hasObjCCategory(*StreamOrErr); 8753 } 8754 8755 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 8756 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 8757 if (!StreamOrErr) 8758 return StreamOrErr.takeError(); 8759 8760 return readIdentificationCode(*StreamOrErr); 8761 } 8762 8763 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 8764 ModuleSummaryIndex &CombinedIndex) { 8765 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8766 if (!BM) 8767 return BM.takeError(); 8768 8769 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier()); 8770 } 8771 8772 Expected<std::unique_ptr<ModuleSummaryIndex>> 8773 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 8774 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8775 if (!BM) 8776 return BM.takeError(); 8777 8778 return BM->getSummary(); 8779 } 8780 8781 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 8782 Expected<BitcodeModule> BM = getSingleModule(Buffer); 8783 if (!BM) 8784 return BM.takeError(); 8785 8786 return BM->getLTOInfo(); 8787 } 8788 8789 Expected<std::unique_ptr<ModuleSummaryIndex>> 8790 llvm::getModuleSummaryIndexForFile(StringRef Path, 8791 bool IgnoreEmptyThinLTOIndexFile) { 8792 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 8793 MemoryBuffer::getFileOrSTDIN(Path); 8794 if (!FileOrErr) 8795 return errorCodeToError(FileOrErr.getError()); 8796 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 8797 return nullptr; 8798 return getModuleSummaryIndex(**FileOrErr); 8799 } 8800