1 //===- Local.h - Functions to perform local transformations -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This family of functions perform various local transformations to the 10 // program. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_TRANSFORMS_UTILS_LOCAL_H 15 #define LLVM_TRANSFORMS_UTILS_LOCAL_H 16 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/IR/Dominators.h" 19 #include "llvm/Support/CommandLine.h" 20 #include "llvm/Transforms/Utils/SimplifyCFGOptions.h" 21 #include "llvm/Transforms/Utils/ValueMapper.h" 22 #include <cstdint> 23 24 namespace llvm { 25 26 class DataLayout; 27 class Value; 28 class WeakTrackingVH; 29 class WeakVH; 30 template <typename T> class SmallVectorImpl; 31 class AAResults; 32 class AllocaInst; 33 class AssumptionCache; 34 class BasicBlock; 35 class BranchInst; 36 class CallBase; 37 class CallInst; 38 class DbgVariableIntrinsic; 39 class DIBuilder; 40 class DomTreeUpdater; 41 class Function; 42 class Instruction; 43 class InvokeInst; 44 class LoadInst; 45 class MDNode; 46 class MemorySSAUpdater; 47 class PHINode; 48 class StoreInst; 49 class TargetLibraryInfo; 50 class TargetTransformInfo; 51 52 //===----------------------------------------------------------------------===// 53 // Local constant propagation. 54 // 55 56 /// If a terminator instruction is predicated on a constant value, convert it 57 /// into an unconditional branch to the constant destination. 58 /// This is a nontrivial operation because the successors of this basic block 59 /// must have their PHI nodes updated. 60 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch 61 /// conditions and indirectbr addresses this might make dead if 62 /// DeleteDeadConditions is true. 63 bool ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions = false, 64 const TargetLibraryInfo *TLI = nullptr, 65 DomTreeUpdater *DTU = nullptr); 66 67 //===----------------------------------------------------------------------===// 68 // Local dead code elimination. 69 // 70 71 /// Return true if the result produced by the instruction is not used, and the 72 /// instruction will return. Certain side-effecting instructions are also 73 /// considered dead if there are no uses of the instruction. 74 bool isInstructionTriviallyDead(Instruction *I, 75 const TargetLibraryInfo *TLI = nullptr); 76 77 /// Return true if the result produced by the instruction would have no side 78 /// effects if it was not used. This is equivalent to checking whether 79 /// isInstructionTriviallyDead would be true if the use count was 0. 80 bool wouldInstructionBeTriviallyDead(const Instruction *I, 81 const TargetLibraryInfo *TLI = nullptr); 82 83 /// Return true if the result produced by the instruction has no side effects on 84 /// any paths other than where it is used. This is less conservative than 85 /// wouldInstructionBeTriviallyDead which is based on the assumption 86 /// that the use count will be 0. An example usage of this API is for 87 /// identifying instructions that can be sunk down to use(s). 88 bool wouldInstructionBeTriviallyDeadOnUnusedPaths( 89 Instruction *I, const TargetLibraryInfo *TLI = nullptr); 90 91 /// If the specified value is a trivially dead instruction, delete it. 92 /// If that makes any of its operands trivially dead, delete them too, 93 /// recursively. Return true if any instructions were deleted. 94 bool RecursivelyDeleteTriviallyDeadInstructions( 95 Value *V, const TargetLibraryInfo *TLI = nullptr, 96 MemorySSAUpdater *MSSAU = nullptr, 97 std::function<void(Value *)> AboutToDeleteCallback = 98 std::function<void(Value *)>()); 99 100 /// Delete all of the instructions in `DeadInsts`, and all other instructions 101 /// that deleting these in turn causes to be trivially dead. 102 /// 103 /// The initial instructions in the provided vector must all have empty use 104 /// lists and satisfy `isInstructionTriviallyDead`. 105 /// 106 /// `DeadInsts` will be used as scratch storage for this routine and will be 107 /// empty afterward. 108 void RecursivelyDeleteTriviallyDeadInstructions( 109 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 110 const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr, 111 std::function<void(Value *)> AboutToDeleteCallback = 112 std::function<void(Value *)>()); 113 114 /// Same functionality as RecursivelyDeleteTriviallyDeadInstructions, but allow 115 /// instructions that are not trivially dead. These will be ignored. 116 /// Returns true if any changes were made, i.e. any instructions trivially dead 117 /// were found and deleted. 118 bool RecursivelyDeleteTriviallyDeadInstructionsPermissive( 119 SmallVectorImpl<WeakTrackingVH> &DeadInsts, 120 const TargetLibraryInfo *TLI = nullptr, MemorySSAUpdater *MSSAU = nullptr, 121 std::function<void(Value *)> AboutToDeleteCallback = 122 std::function<void(Value *)>()); 123 124 /// If the specified value is an effectively dead PHI node, due to being a 125 /// def-use chain of single-use nodes that either forms a cycle or is terminated 126 /// by a trivially dead instruction, delete it. If that makes any of its 127 /// operands trivially dead, delete them too, recursively. Return true if a 128 /// change was made. 129 bool RecursivelyDeleteDeadPHINode(PHINode *PN, 130 const TargetLibraryInfo *TLI = nullptr, 131 MemorySSAUpdater *MSSAU = nullptr); 132 133 /// Scan the specified basic block and try to simplify any instructions in it 134 /// and recursively delete dead instructions. 135 /// 136 /// This returns true if it changed the code, note that it can delete 137 /// instructions in other blocks as well in this block. 138 bool SimplifyInstructionsInBlock(BasicBlock *BB, 139 const TargetLibraryInfo *TLI = nullptr); 140 141 /// Replace all the uses of an SSA value in @llvm.dbg intrinsics with 142 /// undef. This is useful for signaling that a variable, e.g. has been 143 /// found dead and hence it's unavailable at a given program point. 144 /// Returns true if the dbg values have been changed. 145 bool replaceDbgUsesWithUndef(Instruction *I); 146 147 //===----------------------------------------------------------------------===// 148 // Control Flow Graph Restructuring. 149 // 150 151 /// BB is a block with one predecessor and its predecessor is known to have one 152 /// successor (BB!). Eliminate the edge between them, moving the instructions in 153 /// the predecessor into BB. This deletes the predecessor block. 154 void MergeBasicBlockIntoOnlyPred(BasicBlock *BB, DomTreeUpdater *DTU = nullptr); 155 156 /// BB is known to contain an unconditional branch, and contains no instructions 157 /// other than PHI nodes, potential debug intrinsics and the branch. If 158 /// possible, eliminate BB by rewriting all the predecessors to branch to the 159 /// successor block and return true. If we can't transform, return false. 160 bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, 161 DomTreeUpdater *DTU = nullptr); 162 163 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try 164 /// to be clever about PHI nodes which differ only in the order of the incoming 165 /// values, but instcombine orders them so it usually won't matter. 166 /// 167 /// This overload removes the duplicate PHI nodes directly. 168 bool EliminateDuplicatePHINodes(BasicBlock *BB); 169 170 /// Check for and eliminate duplicate PHI nodes in this block. This doesn't try 171 /// to be clever about PHI nodes which differ only in the order of the incoming 172 /// values, but instcombine orders them so it usually won't matter. 173 /// 174 /// This overload collects the PHI nodes to be removed into the ToRemove set. 175 bool EliminateDuplicatePHINodes(BasicBlock *BB, 176 SmallPtrSetImpl<PHINode *> &ToRemove); 177 178 /// This function is used to do simplification of a CFG. For example, it 179 /// adjusts branches to branches to eliminate the extra hop, it eliminates 180 /// unreachable basic blocks, and does other peephole optimization of the CFG. 181 /// It returns true if a modification was made, possibly deleting the basic 182 /// block that was pointed to. LoopHeaders is an optional input parameter 183 /// providing the set of loop headers that SimplifyCFG should not eliminate. 184 extern cl::opt<bool> RequireAndPreserveDomTree; 185 bool simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, 186 DomTreeUpdater *DTU = nullptr, 187 const SimplifyCFGOptions &Options = {}, 188 ArrayRef<WeakVH> LoopHeaders = {}); 189 190 /// This function is used to flatten a CFG. For example, it uses parallel-and 191 /// and parallel-or mode to collapse if-conditions and merge if-regions with 192 /// identical statements. 193 bool FlattenCFG(BasicBlock *BB, AAResults *AA = nullptr); 194 195 /// If this basic block is ONLY a setcc and a branch, and if a predecessor 196 /// branches to us and one of our successors, fold the setcc into the 197 /// predecessor and use logical operations to pick the right destination. 198 bool foldBranchToCommonDest(BranchInst *BI, llvm::DomTreeUpdater *DTU = nullptr, 199 MemorySSAUpdater *MSSAU = nullptr, 200 const TargetTransformInfo *TTI = nullptr, 201 unsigned BonusInstThreshold = 1); 202 203 /// This function takes a virtual register computed by an Instruction and 204 /// replaces it with a slot in the stack frame, allocated via alloca. 205 /// This allows the CFG to be changed around without fear of invalidating the 206 /// SSA information for the value. It returns the pointer to the alloca inserted 207 /// to create a stack slot for X. 208 AllocaInst *DemoteRegToStack(Instruction &X, 209 bool VolatileLoads = false, 210 std::optional<BasicBlock::iterator> AllocaPoint = std::nullopt); 211 212 /// This function takes a virtual register computed by a phi node and replaces 213 /// it with a slot in the stack frame, allocated via alloca. The phi node is 214 /// deleted and it returns the pointer to the alloca inserted. 215 AllocaInst *DemotePHIToStack(PHINode *P, std::optional<BasicBlock::iterator> AllocaPoint = std::nullopt); 216 217 /// If the specified pointer points to an object that we control, try to modify 218 /// the object's alignment to PrefAlign. Returns a minimum known alignment of 219 /// the value after the operation, which may be lower than PrefAlign. 220 /// 221 /// Increating value alignment isn't often possible though. If alignment is 222 /// important, a more reliable approach is to simply align all global variables 223 /// and allocation instructions to their preferred alignment from the beginning. 224 Align tryEnforceAlignment(Value *V, Align PrefAlign, const DataLayout &DL); 225 226 /// Try to ensure that the alignment of \p V is at least \p PrefAlign bytes. If 227 /// the owning object can be modified and has an alignment less than \p 228 /// PrefAlign, it will be increased and \p PrefAlign returned. If the alignment 229 /// cannot be increased, the known alignment of the value is returned. 230 /// 231 /// It is not always possible to modify the alignment of the underlying object, 232 /// so if alignment is important, a more reliable approach is to simply align 233 /// all global variables and allocation instructions to their preferred 234 /// alignment from the beginning. 235 Align getOrEnforceKnownAlignment(Value *V, MaybeAlign PrefAlign, 236 const DataLayout &DL, 237 const Instruction *CxtI = nullptr, 238 AssumptionCache *AC = nullptr, 239 const DominatorTree *DT = nullptr); 240 241 /// Try to infer an alignment for the specified pointer. 242 inline Align getKnownAlignment(Value *V, const DataLayout &DL, 243 const Instruction *CxtI = nullptr, 244 AssumptionCache *AC = nullptr, 245 const DominatorTree *DT = nullptr) { 246 return getOrEnforceKnownAlignment(V, MaybeAlign(), DL, CxtI, AC, DT); 247 } 248 249 /// Create a call that matches the invoke \p II in terms of arguments, 250 /// attributes, debug information, etc. The call is not placed in a block and it 251 /// will not have a name. The invoke instruction is not removed, nor are the 252 /// uses replaced by the new call. 253 CallInst *createCallMatchingInvoke(InvokeInst *II); 254 255 /// This function converts the specified invoke into a normal call. 256 CallInst *changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr); 257 258 ///===---------------------------------------------------------------------===// 259 /// Dbg Intrinsic utilities 260 /// 261 262 /// Creates and inserts a dbg_value record intrinsic before a store 263 /// that has an associated llvm.dbg.value intrinsic. 264 void InsertDebugValueAtStoreLoc(DbgVariableRecord *DVR, StoreInst *SI, 265 DIBuilder &Builder); 266 267 /// Creates and inserts an llvm.dbg.value intrinsic before a store 268 /// that has an associated llvm.dbg.value intrinsic. 269 void InsertDebugValueAtStoreLoc(DbgVariableIntrinsic *DII, StoreInst *SI, 270 DIBuilder &Builder); 271 272 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value 273 /// that has an associated llvm.dbg.declare intrinsic. 274 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 275 StoreInst *SI, DIBuilder &Builder); 276 void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, StoreInst *SI, 277 DIBuilder &Builder); 278 279 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value 280 /// that has an associated llvm.dbg.declare intrinsic. 281 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 282 LoadInst *LI, DIBuilder &Builder); 283 void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, LoadInst *LI, 284 DIBuilder &Builder); 285 286 /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated 287 /// llvm.dbg.declare intrinsic. 288 void ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, 289 PHINode *LI, DIBuilder &Builder); 290 void ConvertDebugDeclareToDebugValue(DbgVariableRecord *DVR, PHINode *LI, 291 DIBuilder &Builder); 292 293 /// Lowers llvm.dbg.declare intrinsics into appropriate set of 294 /// llvm.dbg.value intrinsics. 295 bool LowerDbgDeclare(Function &F); 296 297 /// Propagate dbg.value intrinsics through the newly inserted PHIs. 298 void insertDebugValuesForPHIs(BasicBlock *BB, 299 SmallVectorImpl<PHINode *> &InsertedPHIs); 300 301 /// Replaces llvm.dbg.declare instruction when the address it 302 /// describes is replaced with a new value. If Deref is true, an 303 /// additional DW_OP_deref is prepended to the expression. If Offset 304 /// is non-zero, a constant displacement is added to the expression 305 /// (between the optional Deref operations). Offset can be negative. 306 bool replaceDbgDeclare(Value *Address, Value *NewAddress, DIBuilder &Builder, 307 uint8_t DIExprFlags, int Offset); 308 309 /// Replaces multiple llvm.dbg.value instructions when the alloca it describes 310 /// is replaced with a new value. If Offset is non-zero, a constant displacement 311 /// is added to the expression (after the mandatory Deref). Offset can be 312 /// negative. New llvm.dbg.value instructions are inserted at the locations of 313 /// the instructions they replace. 314 void replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, 315 DIBuilder &Builder, int Offset = 0); 316 317 /// Assuming the instruction \p I is going to be deleted, attempt to salvage 318 /// debug users of \p I by writing the effect of \p I in a DIExpression. If it 319 /// cannot be salvaged changes its debug uses to undef. 320 void salvageDebugInfo(Instruction &I); 321 322 /// Implementation of salvageDebugInfo, applying only to instructions in 323 /// \p Insns, rather than all debug users from findDbgUsers( \p I). 324 /// Mark undef if salvaging cannot be completed. 325 void salvageDebugInfoForDbgValues(Instruction &I, 326 ArrayRef<DbgVariableIntrinsic *> Insns, 327 ArrayRef<DbgVariableRecord *> DPInsns); 328 329 /// Given an instruction \p I and DIExpression \p DIExpr operating on 330 /// it, append the effects of \p I to the DIExpression operand list 331 /// \p Ops, or return \p nullptr if it cannot be salvaged. 332 /// \p CurrentLocOps is the number of SSA values referenced by the 333 /// incoming \p Ops. \return the first non-constant operand 334 /// implicitly referred to by Ops. If \p I references more than one 335 /// non-constant operand, any additional operands are added to 336 /// \p AdditionalValues. 337 /// 338 /// \example 339 //// 340 /// I = add %a, i32 1 341 /// 342 /// Return = %a 343 /// Ops = llvm::dwarf::DW_OP_lit1 llvm::dwarf::DW_OP_add 344 /// 345 /// I = add %a, %b 346 /// 347 /// Return = %a 348 /// Ops = llvm::dwarf::DW_OP_LLVM_arg0 llvm::dwarf::DW_OP_add 349 /// AdditionalValues = %b 350 Value *salvageDebugInfoImpl(Instruction &I, uint64_t CurrentLocOps, 351 SmallVectorImpl<uint64_t> &Ops, 352 SmallVectorImpl<Value *> &AdditionalValues); 353 354 /// Point debug users of \p From to \p To or salvage them. Use this function 355 /// only when replacing all uses of \p From with \p To, with a guarantee that 356 /// \p From is going to be deleted. 357 /// 358 /// Follow these rules to prevent use-before-def of \p To: 359 /// . If \p To is a linked Instruction, set \p DomPoint to \p To. 360 /// . If \p To is an unlinked Instruction, set \p DomPoint to the Instruction 361 /// \p To will be inserted after. 362 /// . If \p To is not an Instruction (e.g a Constant), the choice of 363 /// \p DomPoint is arbitrary. Pick \p From for simplicity. 364 /// 365 /// If a debug user cannot be preserved without reordering variable updates or 366 /// introducing a use-before-def, it is either salvaged (\ref salvageDebugInfo) 367 /// or deleted. Returns true if any debug users were updated. 368 bool replaceAllDbgUsesWith(Instruction &From, Value &To, Instruction &DomPoint, 369 DominatorTree &DT); 370 371 /// If a terminator in an unreachable basic block has an operand of type 372 /// Instruction, transform it into poison. Return true if any operands 373 /// are changed to poison. Original Values prior to being changed to poison 374 /// are returned in \p PoisonedValues. 375 bool handleUnreachableTerminator(Instruction *I, 376 SmallVectorImpl<Value *> &PoisonedValues); 377 378 /// Remove all instructions from a basic block other than its terminator 379 /// and any present EH pad instructions. Returns a pair where the first element 380 /// is the number of instructions (excluding debug info intrinsics) that have 381 /// been removed, and the second element is the number of debug info intrinsics 382 /// that have been removed. 383 std::pair<unsigned, unsigned> 384 removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB); 385 386 /// Insert an unreachable instruction before the specified 387 /// instruction, making it and the rest of the code in the block dead. 388 unsigned changeToUnreachable(Instruction *I, bool PreserveLCSSA = false, 389 DomTreeUpdater *DTU = nullptr, 390 MemorySSAUpdater *MSSAU = nullptr); 391 392 /// Convert the CallInst to InvokeInst with the specified unwind edge basic 393 /// block. This also splits the basic block where CI is located, because 394 /// InvokeInst is a terminator instruction. Returns the newly split basic 395 /// block. 396 BasicBlock *changeToInvokeAndSplitBasicBlock(CallInst *CI, 397 BasicBlock *UnwindEdge, 398 DomTreeUpdater *DTU = nullptr); 399 400 /// Replace 'BB's terminator with one that does not have an unwind successor 401 /// block. Rewrites `invoke` to `call`, etc. Updates any PHIs in unwind 402 /// successor. Returns the instruction that replaced the original terminator, 403 /// which might be a call in case the original terminator was an invoke. 404 /// 405 /// \param BB Block whose terminator will be replaced. Its terminator must 406 /// have an unwind successor. 407 Instruction *removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU = nullptr); 408 409 /// Remove all blocks that can not be reached from the function's entry. 410 /// 411 /// Returns true if any basic block was removed. 412 bool removeUnreachableBlocks(Function &F, DomTreeUpdater *DTU = nullptr, 413 MemorySSAUpdater *MSSAU = nullptr); 414 415 /// Combine the metadata of two instructions so that K can replace J. This 416 /// specifically handles the case of CSE-like transformations. Some 417 /// metadata can only be kept if K dominates J. For this to be correct, 418 /// K cannot be hoisted. 419 /// 420 /// Unknown metadata is removed. 421 void combineMetadataForCSE(Instruction *K, const Instruction *J, 422 bool DoesKMove); 423 424 /// Combine metadata of two instructions, where instruction J is a memory 425 /// access that has been merged into K. This will intersect alias-analysis 426 /// metadata, while preserving other known metadata. 427 void combineAAMetadata(Instruction *K, const Instruction *J); 428 429 /// Copy the metadata from the source instruction to the destination (the 430 /// replacement for the source instruction). 431 void copyMetadataForLoad(LoadInst &Dest, const LoadInst &Source); 432 433 /// Patch the replacement so that it is not more restrictive than the value 434 /// being replaced. It assumes that the replacement does not get moved from 435 /// its original position. 436 void patchReplacementInstruction(Instruction *I, Value *Repl); 437 438 // Replace each use of 'From' with 'To', if that use does not belong to basic 439 // block where 'From' is defined. Returns the number of replacements made. 440 unsigned replaceNonLocalUsesWith(Instruction *From, Value *To); 441 442 /// Replace each use of 'From' with 'To' if that use is dominated by 443 /// the given edge. Returns the number of replacements made. 444 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, 445 const BasicBlockEdge &Edge); 446 /// Replace each use of 'From' with 'To' if that use is dominated by 447 /// the end of the given BasicBlock. Returns the number of replacements made. 448 unsigned replaceDominatedUsesWith(Value *From, Value *To, DominatorTree &DT, 449 const BasicBlock *BB); 450 /// Replace each use of 'From' with 'To' if that use is dominated by 451 /// the given edge and the callback ShouldReplace returns true. Returns the 452 /// number of replacements made. 453 unsigned replaceDominatedUsesWithIf( 454 Value *From, Value *To, DominatorTree &DT, const BasicBlockEdge &Edge, 455 function_ref<bool(const Use &U, const Value *To)> ShouldReplace); 456 /// Replace each use of 'From' with 'To' if that use is dominated by 457 /// the end of the given BasicBlock and the callback ShouldReplace returns true. 458 /// Returns the number of replacements made. 459 unsigned replaceDominatedUsesWithIf( 460 Value *From, Value *To, DominatorTree &DT, const BasicBlock *BB, 461 function_ref<bool(const Use &U, const Value *To)> ShouldReplace); 462 463 /// Return true if this call calls a gc leaf function. 464 /// 465 /// A leaf function is a function that does not safepoint the thread during its 466 /// execution. During a call or invoke to such a function, the callers stack 467 /// does not have to be made parseable. 468 /// 469 /// Most passes can and should ignore this information, and it is only used 470 /// during lowering by the GC infrastructure. 471 bool callsGCLeafFunction(const CallBase *Call, const TargetLibraryInfo &TLI); 472 473 /// Copy a nonnull metadata node to a new load instruction. 474 /// 475 /// This handles mapping it to range metadata if the new load is an integer 476 /// load instead of a pointer load. 477 void copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, LoadInst &NewLI); 478 479 /// Copy a range metadata node to a new load instruction. 480 /// 481 /// This handles mapping it to nonnull metadata if the new load is a pointer 482 /// load instead of an integer load and the range doesn't cover null. 483 void copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, MDNode *N, 484 LoadInst &NewLI); 485 486 /// Remove the debug intrinsic instructions for the given instruction. 487 void dropDebugUsers(Instruction &I); 488 489 /// Hoist all of the instructions in the \p IfBlock to the dominant block 490 /// \p DomBlock, by moving its instructions to the insertion point \p InsertPt. 491 /// 492 /// The moved instructions receive the insertion point debug location values 493 /// (DILocations) and their debug intrinsic instructions are removed. 494 void hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, 495 BasicBlock *BB); 496 497 /// Given a constant, create a debug information expression. 498 DIExpression *getExpressionForConstant(DIBuilder &DIB, const Constant &C, 499 Type &Ty); 500 501 /// Remap the operands of the debug records attached to \p Inst, and the 502 /// operands of \p Inst itself if it's a debug intrinsic. 503 void remapDebugVariable(ValueToValueMapTy &Mapping, Instruction *Inst); 504 505 //===----------------------------------------------------------------------===// 506 // Intrinsic pattern matching 507 // 508 509 /// Try to match a bswap or bitreverse idiom. 510 /// 511 /// If an idiom is matched, an intrinsic call is inserted before \c I. Any added 512 /// instructions are returned in \c InsertedInsts. They will all have been added 513 /// to a basic block. 514 /// 515 /// A bitreverse idiom normally requires around 2*BW nodes to be searched (where 516 /// BW is the bitwidth of the integer type). A bswap idiom requires anywhere up 517 /// to BW / 4 nodes to be searched, so is significantly faster. 518 /// 519 /// This function returns true on a successful match or false otherwise. 520 bool recognizeBSwapOrBitReverseIdiom( 521 Instruction *I, bool MatchBSwaps, bool MatchBitReversals, 522 SmallVectorImpl<Instruction *> &InsertedInsts); 523 524 //===----------------------------------------------------------------------===// 525 // Sanitizer utilities 526 // 527 528 /// Given a CallInst, check if it calls a string function known to CodeGen, 529 /// and mark it with NoBuiltin if so. To be used by sanitizers that intend 530 /// to intercept string functions and want to avoid converting them to target 531 /// specific instructions. 532 void maybeMarkSanitizerLibraryCallNoBuiltin(CallInst *CI, 533 const TargetLibraryInfo *TLI); 534 535 //===----------------------------------------------------------------------===// 536 // Transform predicates 537 // 538 539 /// Given an instruction, is it legal to set operand OpIdx to a non-constant 540 /// value? 541 bool canReplaceOperandWithVariable(const Instruction *I, unsigned OpIdx); 542 543 //===----------------------------------------------------------------------===// 544 // Value helper functions 545 // 546 547 /// Invert the given true/false value, possibly reusing an existing copy. 548 Value *invertCondition(Value *Condition); 549 550 551 //===----------------------------------------------------------------------===// 552 // Assorted 553 // 554 555 /// If we can infer one attribute from another on the declaration of a 556 /// function, explicitly materialize the maximal set in the IR. 557 bool inferAttributesFromOthers(Function &F); 558 559 } // end namespace llvm 560 561 #endif // LLVM_TRANSFORMS_UTILS_LOCAL_H 562