xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/Support/TargetOpcodes.def (revision 82d56013d7b633d116a93943de88e08335357a7c)
1//===-- llvm/Support/TargetOpcodes.def - Target Indep Opcodes ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the target independent instruction opcodes.
10//
11//===----------------------------------------------------------------------===//
12
13// NOTE: NO INCLUDE GUARD DESIRED!
14
15/// HANDLE_TARGET_OPCODE defines an opcode and its associated enum value.
16///
17#ifndef HANDLE_TARGET_OPCODE
18#define HANDLE_TARGET_OPCODE(OPC, NUM)
19#endif
20
21/// HANDLE_TARGET_OPCODE_MARKER defines an alternative identifier for an opcode.
22///
23#ifndef HANDLE_TARGET_OPCODE_MARKER
24#define HANDLE_TARGET_OPCODE_MARKER(IDENT, OPC)
25#endif
26
27/// Every instruction defined here must also appear in Target.td.
28///
29HANDLE_TARGET_OPCODE(PHI)
30HANDLE_TARGET_OPCODE(INLINEASM)
31HANDLE_TARGET_OPCODE(INLINEASM_BR)
32HANDLE_TARGET_OPCODE(CFI_INSTRUCTION)
33HANDLE_TARGET_OPCODE(EH_LABEL)
34HANDLE_TARGET_OPCODE(GC_LABEL)
35HANDLE_TARGET_OPCODE(ANNOTATION_LABEL)
36
37/// KILL - This instruction is a noop that is used only to adjust the
38/// liveness of registers. This can be useful when dealing with
39/// sub-registers.
40HANDLE_TARGET_OPCODE(KILL)
41
42/// EXTRACT_SUBREG - This instruction takes two operands: a register
43/// that has subregisters, and a subregister index. It returns the
44/// extracted subregister value. This is commonly used to implement
45/// truncation operations on target architectures which support it.
46HANDLE_TARGET_OPCODE(EXTRACT_SUBREG)
47
48/// INSERT_SUBREG - This instruction takes three operands: a register that
49/// has subregisters, a register providing an insert value, and a
50/// subregister index. It returns the value of the first register with the
51/// value of the second register inserted. The first register is often
52/// defined by an IMPLICIT_DEF, because it is commonly used to implement
53/// anyext operations on target architectures which support it.
54HANDLE_TARGET_OPCODE(INSERT_SUBREG)
55
56/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
57HANDLE_TARGET_OPCODE(IMPLICIT_DEF)
58
59/// SUBREG_TO_REG - Assert the value of bits in a super register.
60/// The result of this instruction is the value of the second operand inserted
61/// into the subregister specified by the third operand. All other bits are
62/// assumed to be equal to the bits in the immediate integer constant in the
63/// first operand. This instruction just communicates information; No code
64/// should be generated.
65/// This is typically used after an instruction where the write to a subregister
66/// implicitly cleared the bits in the super registers.
67HANDLE_TARGET_OPCODE(SUBREG_TO_REG)
68
69/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
70/// register-to-register copy into a specific register class. This is only
71/// used between instruction selection and MachineInstr creation, before
72/// virtual registers have been created for all the instructions, and it's
73/// only needed in cases where the register classes implied by the
74/// instructions are insufficient. It is emitted as a COPY MachineInstr.
75  HANDLE_TARGET_OPCODE(COPY_TO_REGCLASS)
76
77/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
78HANDLE_TARGET_OPCODE(DBG_VALUE)
79
80/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic with a variadic
81/// list of locations
82HANDLE_TARGET_OPCODE(DBG_VALUE_LIST)
83
84/// DBG_INSTR_REF - A mapping of llvm.dbg.value referring to the instruction
85/// that defines the value, rather than a virtual register.
86HANDLE_TARGET_OPCODE(DBG_INSTR_REF)
87
88/// DBG_LABEL - a mapping of the llvm.dbg.label intrinsic
89HANDLE_TARGET_OPCODE(DBG_LABEL)
90
91/// REG_SEQUENCE - This variadic instruction is used to form a register that
92/// represents a consecutive sequence of sub-registers. It's used as a
93/// register coalescing / allocation aid and must be eliminated before code
94/// emission.
95// In SDNode form, the first operand encodes the register class created by
96// the REG_SEQUENCE, while each subsequent pair names a vreg + subreg index
97// pair.  Once it has been lowered to a MachineInstr, the regclass operand
98// is no longer present.
99/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
100/// After register coalescing references of v1024 should be replace with
101/// v1027:3, v1025 with v1027:4, etc.
102  HANDLE_TARGET_OPCODE(REG_SEQUENCE)
103
104/// COPY - Target-independent register copy. This instruction can also be
105/// used to copy between subregisters of virtual registers.
106  HANDLE_TARGET_OPCODE(COPY)
107
108/// BUNDLE - This instruction represents an instruction bundle. Instructions
109/// which immediately follow a BUNDLE instruction which are marked with
110/// 'InsideBundle' flag are inside the bundle.
111HANDLE_TARGET_OPCODE(BUNDLE)
112
113/// Lifetime markers.
114HANDLE_TARGET_OPCODE(LIFETIME_START)
115HANDLE_TARGET_OPCODE(LIFETIME_END)
116
117/// Pseudo probe
118HANDLE_TARGET_OPCODE(PSEUDO_PROBE)
119
120/// A Stackmap instruction captures the location of live variables at its
121/// position in the instruction stream. It is followed by a shadow of bytes
122/// that must lie within the function and not contain another stackmap.
123HANDLE_TARGET_OPCODE(STACKMAP)
124
125/// FEntry all - This is a marker instruction which gets translated into a raw fentry call.
126HANDLE_TARGET_OPCODE(FENTRY_CALL)
127
128/// Patchable call instruction - this instruction represents a call to a
129/// constant address, followed by a series of NOPs. It is intended to
130/// support optimizations for dynamic languages (such as javascript) that
131/// rewrite calls to runtimes with more efficient code sequences.
132/// This also implies a stack map.
133HANDLE_TARGET_OPCODE(PATCHPOINT)
134
135/// This pseudo-instruction loads the stack guard value. Targets which need
136/// to prevent the stack guard value or address from being spilled to the
137/// stack should override TargetLowering::emitLoadStackGuardNode and
138/// additionally expand this pseudo after register allocation.
139HANDLE_TARGET_OPCODE(LOAD_STACK_GUARD)
140
141/// These are used to support call sites that must have the stack adjusted
142/// before the call (e.g. to initialize an argument passed by value).
143/// See llvm.call.preallocated.{setup,arg} in the LangRef for more details.
144HANDLE_TARGET_OPCODE(PREALLOCATED_SETUP)
145HANDLE_TARGET_OPCODE(PREALLOCATED_ARG)
146
147/// Call instruction with associated vm state for deoptimization and list
148/// of live pointers for relocation by the garbage collector.  It is
149/// intended to support garbage collection with fully precise relocating
150/// collectors and deoptimizations in either the callee or caller.
151HANDLE_TARGET_OPCODE(STATEPOINT)
152
153/// Instruction that records the offset of a local stack allocation passed to
154/// llvm.localescape. It has two arguments: the symbol for the label and the
155/// frame index of the local stack allocation.
156HANDLE_TARGET_OPCODE(LOCAL_ESCAPE)
157
158/// Wraps a machine instruction which can fault, bundled with associated
159/// information on how to handle such a fault.
160/// For example loading instruction that may page fault, bundled with associated
161/// information on how to handle such a page fault.  It is intended to support
162/// "zero cost" null checks in managed languages by allowing LLVM to fold
163/// comparisons into existing memory operations.
164HANDLE_TARGET_OPCODE(FAULTING_OP)
165
166/// Wraps a machine instruction to add patchability constraints.  An
167/// instruction wrapped in PATCHABLE_OP has to either have a minimum
168/// size or be preceded with a nop of that size.  The first operand is
169/// an immediate denoting the minimum size of the instruction, the
170/// second operand is an immediate denoting the opcode of the original
171/// instruction.  The rest of the operands are the operands of the
172/// original instruction.
173HANDLE_TARGET_OPCODE(PATCHABLE_OP)
174
175/// This is a marker instruction which gets translated into a nop sled, useful
176/// for inserting instrumentation instructions at runtime.
177HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_ENTER)
178
179/// Wraps a return instruction and its operands to enable adding nop sleds
180/// either before or after the return. The nop sleds are useful for inserting
181/// instrumentation instructions at runtime.
182/// The patch here replaces the return instruction.
183HANDLE_TARGET_OPCODE(PATCHABLE_RET)
184
185/// This is a marker instruction which gets translated into a nop sled, useful
186/// for inserting instrumentation instructions at runtime.
187/// The patch here prepends the return instruction.
188/// The same thing as in x86_64 is not possible for ARM because it has multiple
189/// return instructions. Furthermore, CPU allows parametrized and even
190/// conditional return instructions. In the current ARM implementation we are
191/// making use of the fact that currently LLVM doesn't seem to generate
192/// conditional return instructions.
193/// On ARM, the same instruction can be used for popping multiple registers
194/// from the stack and returning (it just pops pc register too), and LLVM
195/// generates it sometimes. So we can't insert the sled between this stack
196/// adjustment and the return without splitting the original instruction into 2
197/// instructions. So on ARM, rather than jumping into the exit trampoline, we
198/// call it, it does the tracing, preserves the stack and returns.
199HANDLE_TARGET_OPCODE(PATCHABLE_FUNCTION_EXIT)
200
201/// Wraps a tail call instruction and its operands to enable adding nop sleds
202/// either before or after the tail exit. We use this as a disambiguation from
203/// PATCHABLE_RET which specifically only works for return instructions.
204HANDLE_TARGET_OPCODE(PATCHABLE_TAIL_CALL)
205
206/// Wraps a logging call and its arguments with nop sleds. At runtime, this can
207/// be patched to insert instrumentation instructions.
208HANDLE_TARGET_OPCODE(PATCHABLE_EVENT_CALL)
209
210/// Wraps a typed logging call and its argument with nop sleds. At runtime, this
211/// can be patched to insert instrumentation instructions.
212HANDLE_TARGET_OPCODE(PATCHABLE_TYPED_EVENT_CALL)
213
214HANDLE_TARGET_OPCODE(ICALL_BRANCH_FUNNEL)
215
216/// The following generic opcodes are not supposed to appear after ISel.
217/// This is something we might want to relax, but for now, this is convenient
218/// to produce diagnostics.
219
220/// Instructions which should not exist past instruction selection, but do not
221/// generate code. These instructions only act as optimization hints.
222HANDLE_TARGET_OPCODE(G_ASSERT_SEXT)
223HANDLE_TARGET_OPCODE(G_ASSERT_ZEXT)
224HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_START,
225                            G_ASSERT_SEXT)
226HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPTIMIZATION_HINT_END,
227                            G_ASSERT_ZEXT)
228
229/// Generic ADD instruction. This is an integer add.
230HANDLE_TARGET_OPCODE(G_ADD)
231HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_START, G_ADD)
232
233/// Generic SUB instruction. This is an integer sub.
234HANDLE_TARGET_OPCODE(G_SUB)
235
236// Generic multiply instruction.
237HANDLE_TARGET_OPCODE(G_MUL)
238
239// Generic signed division instruction.
240HANDLE_TARGET_OPCODE(G_SDIV)
241
242// Generic unsigned division instruction.
243HANDLE_TARGET_OPCODE(G_UDIV)
244
245// Generic signed remainder instruction.
246HANDLE_TARGET_OPCODE(G_SREM)
247
248// Generic unsigned remainder instruction.
249HANDLE_TARGET_OPCODE(G_UREM)
250
251// Generic signed divrem instruction.
252HANDLE_TARGET_OPCODE(G_SDIVREM)
253
254// Generic unsigned divrem instruction.
255HANDLE_TARGET_OPCODE(G_UDIVREM)
256
257/// Generic bitwise and instruction.
258HANDLE_TARGET_OPCODE(G_AND)
259
260/// Generic bitwise or instruction.
261HANDLE_TARGET_OPCODE(G_OR)
262
263/// Generic bitwise exclusive-or instruction.
264HANDLE_TARGET_OPCODE(G_XOR)
265
266
267HANDLE_TARGET_OPCODE(G_IMPLICIT_DEF)
268
269/// Generic PHI instruction with types.
270HANDLE_TARGET_OPCODE(G_PHI)
271
272/// Generic instruction to materialize the address of an alloca or other
273/// stack-based object.
274HANDLE_TARGET_OPCODE(G_FRAME_INDEX)
275
276/// Generic reference to global value.
277HANDLE_TARGET_OPCODE(G_GLOBAL_VALUE)
278
279/// Generic instruction to extract blocks of bits from the register given
280/// (typically a sub-register COPY after instruction selection).
281HANDLE_TARGET_OPCODE(G_EXTRACT)
282
283HANDLE_TARGET_OPCODE(G_UNMERGE_VALUES)
284
285/// Generic instruction to insert blocks of bits from the registers given into
286/// the source.
287HANDLE_TARGET_OPCODE(G_INSERT)
288
289/// Generic instruction to paste a variable number of components together into a
290/// larger register.
291HANDLE_TARGET_OPCODE(G_MERGE_VALUES)
292
293/// Generic instruction to create a vector value from a number of scalar
294/// components.
295HANDLE_TARGET_OPCODE(G_BUILD_VECTOR)
296
297/// Generic instruction to create a vector value from a number of scalar
298/// components, which have types larger than the result vector elt type.
299HANDLE_TARGET_OPCODE(G_BUILD_VECTOR_TRUNC)
300
301/// Generic instruction to create a vector by concatenating multiple vectors.
302HANDLE_TARGET_OPCODE(G_CONCAT_VECTORS)
303
304/// Generic pointer to int conversion.
305HANDLE_TARGET_OPCODE(G_PTRTOINT)
306
307/// Generic int to pointer conversion.
308HANDLE_TARGET_OPCODE(G_INTTOPTR)
309
310/// Generic bitcast. The source and destination types must be different, or a
311/// COPY is the relevant instruction.
312HANDLE_TARGET_OPCODE(G_BITCAST)
313
314/// Generic freeze.
315HANDLE_TARGET_OPCODE(G_FREEZE)
316
317/// INTRINSIC trunc intrinsic.
318HANDLE_TARGET_OPCODE(G_INTRINSIC_TRUNC)
319
320/// INTRINSIC round intrinsic.
321HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUND)
322
323/// INTRINSIC round to integer intrinsic.
324HANDLE_TARGET_OPCODE(G_INTRINSIC_LRINT)
325
326/// INTRINSIC roundeven intrinsic.
327HANDLE_TARGET_OPCODE(G_INTRINSIC_ROUNDEVEN)
328
329/// INTRINSIC readcyclecounter
330HANDLE_TARGET_OPCODE(G_READCYCLECOUNTER)
331
332/// Generic load (including anyext load)
333HANDLE_TARGET_OPCODE(G_LOAD)
334
335/// Generic signext load
336HANDLE_TARGET_OPCODE(G_SEXTLOAD)
337
338/// Generic zeroext load
339HANDLE_TARGET_OPCODE(G_ZEXTLOAD)
340
341/// Generic indexed load (including anyext load)
342HANDLE_TARGET_OPCODE(G_INDEXED_LOAD)
343
344/// Generic indexed signext load
345HANDLE_TARGET_OPCODE(G_INDEXED_SEXTLOAD)
346
347/// Generic indexed zeroext load
348HANDLE_TARGET_OPCODE(G_INDEXED_ZEXTLOAD)
349
350/// Generic store.
351HANDLE_TARGET_OPCODE(G_STORE)
352
353/// Generic indexed store.
354HANDLE_TARGET_OPCODE(G_INDEXED_STORE)
355
356/// Generic atomic cmpxchg with internal success check.
357HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG_WITH_SUCCESS)
358
359/// Generic atomic cmpxchg.
360HANDLE_TARGET_OPCODE(G_ATOMIC_CMPXCHG)
361
362/// Generic atomicrmw.
363HANDLE_TARGET_OPCODE(G_ATOMICRMW_XCHG)
364HANDLE_TARGET_OPCODE(G_ATOMICRMW_ADD)
365HANDLE_TARGET_OPCODE(G_ATOMICRMW_SUB)
366HANDLE_TARGET_OPCODE(G_ATOMICRMW_AND)
367HANDLE_TARGET_OPCODE(G_ATOMICRMW_NAND)
368HANDLE_TARGET_OPCODE(G_ATOMICRMW_OR)
369HANDLE_TARGET_OPCODE(G_ATOMICRMW_XOR)
370HANDLE_TARGET_OPCODE(G_ATOMICRMW_MAX)
371HANDLE_TARGET_OPCODE(G_ATOMICRMW_MIN)
372HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMAX)
373HANDLE_TARGET_OPCODE(G_ATOMICRMW_UMIN)
374HANDLE_TARGET_OPCODE(G_ATOMICRMW_FADD)
375HANDLE_TARGET_OPCODE(G_ATOMICRMW_FSUB)
376
377// Generic atomic fence
378HANDLE_TARGET_OPCODE(G_FENCE)
379
380/// Generic conditional branch instruction.
381HANDLE_TARGET_OPCODE(G_BRCOND)
382
383/// Generic indirect branch instruction.
384HANDLE_TARGET_OPCODE(G_BRINDIRECT)
385
386/// Generic intrinsic use (without side effects).
387HANDLE_TARGET_OPCODE(G_INTRINSIC)
388
389/// Generic intrinsic use (with side effects).
390HANDLE_TARGET_OPCODE(G_INTRINSIC_W_SIDE_EFFECTS)
391
392/// Generic extension allowing rubbish in high bits.
393HANDLE_TARGET_OPCODE(G_ANYEXT)
394
395/// Generic instruction to discard the high bits of a register. This differs
396/// from (G_EXTRACT val, 0) on its action on vectors: G_TRUNC will truncate
397/// each element individually, G_EXTRACT will typically discard the high
398/// elements of the vector.
399HANDLE_TARGET_OPCODE(G_TRUNC)
400
401/// Generic integer constant.
402HANDLE_TARGET_OPCODE(G_CONSTANT)
403
404/// Generic floating constant.
405HANDLE_TARGET_OPCODE(G_FCONSTANT)
406
407/// Generic va_start instruction. Stores to its one pointer operand.
408HANDLE_TARGET_OPCODE(G_VASTART)
409
410/// Generic va_start instruction. Stores to its one pointer operand.
411HANDLE_TARGET_OPCODE(G_VAARG)
412
413// Generic sign extend
414HANDLE_TARGET_OPCODE(G_SEXT)
415HANDLE_TARGET_OPCODE(G_SEXT_INREG)
416
417// Generic zero extend
418HANDLE_TARGET_OPCODE(G_ZEXT)
419
420// Generic left-shift
421HANDLE_TARGET_OPCODE(G_SHL)
422
423// Generic logical right-shift
424HANDLE_TARGET_OPCODE(G_LSHR)
425
426// Generic arithmetic right-shift
427HANDLE_TARGET_OPCODE(G_ASHR)
428
429// Generic funnel left shift
430HANDLE_TARGET_OPCODE(G_FSHL)
431
432// Generic funnel right shift
433HANDLE_TARGET_OPCODE(G_FSHR)
434
435// Generic right rotate
436HANDLE_TARGET_OPCODE(G_ROTR)
437
438// Generic left rotate
439HANDLE_TARGET_OPCODE(G_ROTL)
440
441/// Generic integer-base comparison, also applicable to vectors of integers.
442HANDLE_TARGET_OPCODE(G_ICMP)
443
444/// Generic floating-point comparison, also applicable to vectors.
445HANDLE_TARGET_OPCODE(G_FCMP)
446
447/// Generic select.
448HANDLE_TARGET_OPCODE(G_SELECT)
449
450/// Generic unsigned add instruction, consuming the normal operands and
451/// producing the result and a carry flag.
452HANDLE_TARGET_OPCODE(G_UADDO)
453
454/// Generic unsigned add instruction, consuming the normal operands plus a carry
455/// flag, and similarly producing the result and a carry flag.
456HANDLE_TARGET_OPCODE(G_UADDE)
457
458/// Generic unsigned sub instruction, consuming the normal operands and
459/// producing the result and a carry flag.
460HANDLE_TARGET_OPCODE(G_USUBO)
461
462/// Generic unsigned subtract instruction, consuming the normal operands plus a
463/// carry flag, and similarly producing the result and a carry flag.
464HANDLE_TARGET_OPCODE(G_USUBE)
465
466/// Generic signed add instruction, producing the result and a signed overflow
467/// flag.
468HANDLE_TARGET_OPCODE(G_SADDO)
469
470/// Generic signed add instruction, consuming the normal operands plus a carry
471/// flag, and similarly producing the result and a carry flag.
472HANDLE_TARGET_OPCODE(G_SADDE)
473
474/// Generic signed subtract instruction, producing the result and a signed
475/// overflow flag.
476HANDLE_TARGET_OPCODE(G_SSUBO)
477
478/// Generic signed sub instruction, consuming the normal operands plus a carry
479/// flag, and similarly producing the result and a carry flag.
480HANDLE_TARGET_OPCODE(G_SSUBE)
481
482/// Generic unsigned multiply instruction, producing the result and a signed
483/// overflow flag.
484HANDLE_TARGET_OPCODE(G_UMULO)
485
486/// Generic signed multiply instruction, producing the result and a signed
487/// overflow flag.
488HANDLE_TARGET_OPCODE(G_SMULO)
489
490// Multiply two numbers at twice the incoming bit width (unsigned) and return
491// the high half of the result.
492HANDLE_TARGET_OPCODE(G_UMULH)
493
494// Multiply two numbers at twice the incoming bit width (signed) and return
495// the high half of the result.
496HANDLE_TARGET_OPCODE(G_SMULH)
497
498/// Generic saturating unsigned addition.
499HANDLE_TARGET_OPCODE(G_UADDSAT)
500
501/// Generic saturating signed addition.
502HANDLE_TARGET_OPCODE(G_SADDSAT)
503
504/// Generic saturating unsigned subtraction.
505HANDLE_TARGET_OPCODE(G_USUBSAT)
506
507/// Generic saturating signed subtraction.
508HANDLE_TARGET_OPCODE(G_SSUBSAT)
509
510/// Generic saturating unsigned left shift.
511HANDLE_TARGET_OPCODE(G_USHLSAT)
512
513/// Generic saturating signed left shift.
514HANDLE_TARGET_OPCODE(G_SSHLSAT)
515
516// Perform signed fixed point multiplication
517HANDLE_TARGET_OPCODE(G_SMULFIX)
518
519// Perform unsigned fixed point multiplication
520HANDLE_TARGET_OPCODE(G_UMULFIX)
521
522// Perform signed, saturating fixed point multiplication
523HANDLE_TARGET_OPCODE(G_SMULFIXSAT)
524
525// Perform unsigned, saturating fixed point multiplication
526HANDLE_TARGET_OPCODE(G_UMULFIXSAT)
527
528// Perform signed fixed point division
529HANDLE_TARGET_OPCODE(G_SDIVFIX)
530
531// Perform unsigned fixed point division
532HANDLE_TARGET_OPCODE(G_UDIVFIX)
533
534// Perform signed, saturating fixed point division
535HANDLE_TARGET_OPCODE(G_SDIVFIXSAT)
536
537// Perform unsigned, saturating fixed point division
538HANDLE_TARGET_OPCODE(G_UDIVFIXSAT)
539
540/// Generic FP addition.
541HANDLE_TARGET_OPCODE(G_FADD)
542
543/// Generic FP subtraction.
544HANDLE_TARGET_OPCODE(G_FSUB)
545
546/// Generic FP multiplication.
547HANDLE_TARGET_OPCODE(G_FMUL)
548
549/// Generic FMA multiplication. Behaves like llvm fma intrinsic
550HANDLE_TARGET_OPCODE(G_FMA)
551
552/// Generic FP multiply and add. Behaves as separate fmul and fadd.
553HANDLE_TARGET_OPCODE(G_FMAD)
554
555/// Generic FP division.
556HANDLE_TARGET_OPCODE(G_FDIV)
557
558/// Generic FP remainder.
559HANDLE_TARGET_OPCODE(G_FREM)
560
561/// Generic FP exponentiation.
562HANDLE_TARGET_OPCODE(G_FPOW)
563
564/// Generic FP exponentiation, with an integer exponent.
565HANDLE_TARGET_OPCODE(G_FPOWI)
566
567/// Generic base-e exponential of a value.
568HANDLE_TARGET_OPCODE(G_FEXP)
569
570/// Generic base-2 exponential of a value.
571HANDLE_TARGET_OPCODE(G_FEXP2)
572
573/// Floating point base-e logarithm of a value.
574HANDLE_TARGET_OPCODE(G_FLOG)
575
576/// Floating point base-2 logarithm of a value.
577HANDLE_TARGET_OPCODE(G_FLOG2)
578
579/// Floating point base-10 logarithm of a value.
580HANDLE_TARGET_OPCODE(G_FLOG10)
581
582/// Generic FP negation.
583HANDLE_TARGET_OPCODE(G_FNEG)
584
585/// Generic FP extension.
586HANDLE_TARGET_OPCODE(G_FPEXT)
587
588/// Generic float to signed-int conversion
589HANDLE_TARGET_OPCODE(G_FPTRUNC)
590
591/// Generic float to signed-int conversion
592HANDLE_TARGET_OPCODE(G_FPTOSI)
593
594/// Generic float to unsigned-int conversion
595HANDLE_TARGET_OPCODE(G_FPTOUI)
596
597/// Generic signed-int to float conversion
598HANDLE_TARGET_OPCODE(G_SITOFP)
599
600/// Generic unsigned-int to float conversion
601HANDLE_TARGET_OPCODE(G_UITOFP)
602
603/// Generic FP absolute value.
604HANDLE_TARGET_OPCODE(G_FABS)
605
606/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y.  NOTE: This does
607/// not require that X and Y have the same type, just that they are both
608/// floating point. X and the result must have the same type.  FCOPYSIGN(f32,
609/// f64) is allowed.
610HANDLE_TARGET_OPCODE(G_FCOPYSIGN)
611
612/// Generic FP canonicalize value.
613HANDLE_TARGET_OPCODE(G_FCANONICALIZE)
614
615/// FP min/max matching libm's fmin/fmax
616HANDLE_TARGET_OPCODE(G_FMINNUM)
617HANDLE_TARGET_OPCODE(G_FMAXNUM)
618
619/// FP min/max matching IEEE-754 2008's minnum/maxnum semantics.
620HANDLE_TARGET_OPCODE(G_FMINNUM_IEEE)
621HANDLE_TARGET_OPCODE(G_FMAXNUM_IEEE)
622
623/// FP min/max matching IEEE-754 2018 draft semantics.
624HANDLE_TARGET_OPCODE(G_FMINIMUM)
625HANDLE_TARGET_OPCODE(G_FMAXIMUM)
626
627/// Generic pointer offset
628HANDLE_TARGET_OPCODE(G_PTR_ADD)
629
630/// Clear the specified bits in a pointer.
631HANDLE_TARGET_OPCODE(G_PTRMASK)
632
633/// Generic signed integer minimum.
634HANDLE_TARGET_OPCODE(G_SMIN)
635
636/// Generic signed integer maximum.
637HANDLE_TARGET_OPCODE(G_SMAX)
638
639/// Generic unsigned integer maximum.
640HANDLE_TARGET_OPCODE(G_UMIN)
641
642/// Generic unsigned integer maximum.
643HANDLE_TARGET_OPCODE(G_UMAX)
644
645/// Generic integer absolute value.
646HANDLE_TARGET_OPCODE(G_ABS)
647
648/// Generic BRANCH instruction. This is an unconditional branch.
649HANDLE_TARGET_OPCODE(G_BR)
650
651/// Generic branch to jump table entry.
652HANDLE_TARGET_OPCODE(G_BRJT)
653
654/// Generic insertelement.
655HANDLE_TARGET_OPCODE(G_INSERT_VECTOR_ELT)
656
657/// Generic extractelement.
658HANDLE_TARGET_OPCODE(G_EXTRACT_VECTOR_ELT)
659
660/// Generic shufflevector.
661HANDLE_TARGET_OPCODE(G_SHUFFLE_VECTOR)
662
663/// Generic count trailing zeroes.
664HANDLE_TARGET_OPCODE(G_CTTZ)
665
666/// Same as above, undefined for zero inputs.
667HANDLE_TARGET_OPCODE(G_CTTZ_ZERO_UNDEF)
668
669/// Generic count leading zeroes.
670HANDLE_TARGET_OPCODE(G_CTLZ)
671
672/// Same as above, undefined for zero inputs.
673HANDLE_TARGET_OPCODE(G_CTLZ_ZERO_UNDEF)
674
675/// Generic count bits.
676HANDLE_TARGET_OPCODE(G_CTPOP)
677
678/// Generic byte swap.
679HANDLE_TARGET_OPCODE(G_BSWAP)
680
681/// Generic bit reverse.
682HANDLE_TARGET_OPCODE(G_BITREVERSE)
683
684/// Floating point ceil.
685HANDLE_TARGET_OPCODE(G_FCEIL)
686
687/// Floating point cosine.
688HANDLE_TARGET_OPCODE(G_FCOS)
689
690/// Floating point sine.
691HANDLE_TARGET_OPCODE(G_FSIN)
692
693/// Floating point square root.
694HANDLE_TARGET_OPCODE(G_FSQRT)
695
696/// Floating point floor.
697HANDLE_TARGET_OPCODE(G_FFLOOR)
698
699/// Floating point round to next integer.
700HANDLE_TARGET_OPCODE(G_FRINT)
701
702/// Floating point round to nearest integer.
703HANDLE_TARGET_OPCODE(G_FNEARBYINT)
704
705/// Generic AddressSpaceCast.
706HANDLE_TARGET_OPCODE(G_ADDRSPACE_CAST)
707
708/// Generic block address
709HANDLE_TARGET_OPCODE(G_BLOCK_ADDR)
710
711/// Generic jump table address
712HANDLE_TARGET_OPCODE(G_JUMP_TABLE)
713
714/// Generic dynamic stack allocation.
715HANDLE_TARGET_OPCODE(G_DYN_STACKALLOC)
716
717/// Strict floating point instructions.
718HANDLE_TARGET_OPCODE(G_STRICT_FADD)
719HANDLE_TARGET_OPCODE(G_STRICT_FSUB)
720HANDLE_TARGET_OPCODE(G_STRICT_FMUL)
721HANDLE_TARGET_OPCODE(G_STRICT_FDIV)
722HANDLE_TARGET_OPCODE(G_STRICT_FREM)
723HANDLE_TARGET_OPCODE(G_STRICT_FMA)
724HANDLE_TARGET_OPCODE(G_STRICT_FSQRT)
725
726/// read_register intrinsic
727HANDLE_TARGET_OPCODE(G_READ_REGISTER)
728
729/// write_register intrinsic
730HANDLE_TARGET_OPCODE(G_WRITE_REGISTER)
731
732/// llvm.memcpy intrinsic
733HANDLE_TARGET_OPCODE(G_MEMCPY)
734
735/// llvm.memmove intrinsic
736HANDLE_TARGET_OPCODE(G_MEMMOVE)
737
738/// llvm.memset intrinsic
739HANDLE_TARGET_OPCODE(G_MEMSET)
740HANDLE_TARGET_OPCODE(G_BZERO)
741
742/// Vector reductions
743HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FADD)
744HANDLE_TARGET_OPCODE(G_VECREDUCE_SEQ_FMUL)
745HANDLE_TARGET_OPCODE(G_VECREDUCE_FADD)
746HANDLE_TARGET_OPCODE(G_VECREDUCE_FMUL)
747HANDLE_TARGET_OPCODE(G_VECREDUCE_FMAX)
748HANDLE_TARGET_OPCODE(G_VECREDUCE_FMIN)
749HANDLE_TARGET_OPCODE(G_VECREDUCE_ADD)
750HANDLE_TARGET_OPCODE(G_VECREDUCE_MUL)
751HANDLE_TARGET_OPCODE(G_VECREDUCE_AND)
752HANDLE_TARGET_OPCODE(G_VECREDUCE_OR)
753HANDLE_TARGET_OPCODE(G_VECREDUCE_XOR)
754HANDLE_TARGET_OPCODE(G_VECREDUCE_SMAX)
755HANDLE_TARGET_OPCODE(G_VECREDUCE_SMIN)
756HANDLE_TARGET_OPCODE(G_VECREDUCE_UMAX)
757HANDLE_TARGET_OPCODE(G_VECREDUCE_UMIN)
758
759HANDLE_TARGET_OPCODE(G_SBFX)
760HANDLE_TARGET_OPCODE(G_UBFX)
761
762/// Marker for the end of the generic opcode.
763/// This is used to check if an opcode is in the range of the
764/// generic opcodes.
765HANDLE_TARGET_OPCODE_MARKER(PRE_ISEL_GENERIC_OPCODE_END, G_UBFX)
766
767/// BUILTIN_OP_END - This must be the last enum value in this list.
768/// The target-specific post-isel opcode values start here.
769HANDLE_TARGET_OPCODE_MARKER(GENERIC_OP_END, PRE_ISEL_GENERIC_OPCODE_END)
770