xref: /llvm-project/llvm/include/llvm/Support/GenericLoopInfoImpl.h (revision d77a36e01b8fed496b29c3b2c12526f8dc380766)
1 //===- GenericLoopInfoImp.h - Generic Loop Info Implementation --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This fle contains the implementation of GenericLoopInfo. It should only be
10 // included in files that explicitly instantiate a GenericLoopInfo.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
15 #define LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
16 
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetOperations.h"
21 #include "llvm/Support/GenericLoopInfo.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // APIs for simple analysis of the loop. See header notes.
27 
28 /// getExitingBlocks - Return all blocks inside the loop that have successors
29 /// outside of the loop.  These are the blocks _inside of the current loop_
30 /// which branch out.  The returned list is always unique.
31 ///
32 template <class BlockT, class LoopT>
33 void LoopBase<BlockT, LoopT>::getExitingBlocks(
34     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
35   assert(!isInvalid() && "Loop not in a valid state!");
36   for (const auto BB : blocks())
37     for (auto *Succ : children<BlockT *>(BB))
38       if (!contains(Succ)) {
39         // Not in current loop? It must be an exit block.
40         ExitingBlocks.push_back(BB);
41         break;
42       }
43 }
44 
45 /// getExitingBlock - If getExitingBlocks would return exactly one block,
46 /// return that block. Otherwise return null.
47 template <class BlockT, class LoopT>
48 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
49   assert(!isInvalid() && "Loop not in a valid state!");
50   auto notInLoop = [&](BlockT *BB) { return !contains(BB); };
51   auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
52     assert(!AllowRepeats && "Unexpected parameter value.");
53     // Child not in current loop?  It must be an exit block.
54     return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
55   };
56 
57   return find_singleton<BlockT>(blocks(), isExitBlock);
58 }
59 
60 /// getExitBlocks - Return all of the successor blocks of this loop.  These
61 /// are the blocks _outside of the current loop_ which are branched to.
62 ///
63 template <class BlockT, class LoopT>
64 void LoopBase<BlockT, LoopT>::getExitBlocks(
65     SmallVectorImpl<BlockT *> &ExitBlocks) const {
66   assert(!isInvalid() && "Loop not in a valid state!");
67   for (const auto BB : blocks())
68     for (auto *Succ : children<BlockT *>(BB))
69       if (!contains(Succ))
70         // Not in current loop? It must be an exit block.
71         ExitBlocks.push_back(Succ);
72 }
73 
74 /// getExitBlock - If getExitBlocks would return exactly one block,
75 /// return that block. Otherwise return null.
76 template <class BlockT, class LoopT>
77 std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L,
78                                              bool Unique) {
79   assert(!L->isInvalid() && "Loop not in a valid state!");
80   auto notInLoop = [&](BlockT *BB,
81                        bool AllowRepeats) -> std::pair<BlockT *, bool> {
82     assert(AllowRepeats == Unique && "Unexpected parameter value.");
83     return {!L->contains(BB) ? BB : nullptr, false};
84   };
85   auto singleExitBlock = [&](BlockT *BB,
86                              bool AllowRepeats) -> std::pair<BlockT *, bool> {
87     assert(AllowRepeats == Unique && "Unexpected parameter value.");
88     return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop,
89                                          AllowRepeats);
90   };
91   return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique);
92 }
93 
94 template <class BlockT, class LoopT>
95 bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
96   auto RC = getExitBlockHelper(this, false);
97   if (RC.second)
98     // found multiple exit blocks
99     return false;
100   // return true if there is no exit block
101   return !RC.first;
102 }
103 
104 /// getExitBlock - If getExitBlocks would return exactly one block,
105 /// return that block. Otherwise return null.
106 template <class BlockT, class LoopT>
107 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
108   return getExitBlockHelper(this, false).first;
109 }
110 
111 template <class BlockT, class LoopT>
112 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
113   // Each predecessor of each exit block of a normal loop is contained
114   // within the loop.
115   SmallVector<BlockT *, 4> UniqueExitBlocks;
116   getUniqueExitBlocks(UniqueExitBlocks);
117   for (BlockT *EB : UniqueExitBlocks)
118     for (BlockT *Predecessor : inverse_children<BlockT *>(EB))
119       if (!contains(Predecessor))
120         return false;
121   // All the requirements are met.
122   return true;
123 }
124 
125 // Helper function to get unique loop exits. Pred is a predicate pointing to
126 // BasicBlocks in a loop which should be considered to find loop exits.
127 template <class BlockT, class LoopT, typename PredicateT>
128 void getUniqueExitBlocksHelper(const LoopT *L,
129                                SmallVectorImpl<BlockT *> &ExitBlocks,
130                                PredicateT Pred) {
131   assert(!L->isInvalid() && "Loop not in a valid state!");
132   SmallPtrSet<BlockT *, 32> Visited;
133   auto Filtered = make_filter_range(L->blocks(), Pred);
134   for (BlockT *BB : Filtered)
135     for (BlockT *Successor : children<BlockT *>(BB))
136       if (!L->contains(Successor))
137         if (Visited.insert(Successor).second)
138           ExitBlocks.push_back(Successor);
139 }
140 
141 template <class BlockT, class LoopT>
142 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
143     SmallVectorImpl<BlockT *> &ExitBlocks) const {
144   getUniqueExitBlocksHelper(this, ExitBlocks,
145                             [](const BlockT *BB) { return true; });
146 }
147 
148 template <class BlockT, class LoopT>
149 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
150     SmallVectorImpl<BlockT *> &ExitBlocks) const {
151   const BlockT *Latch = getLoopLatch();
152   assert(Latch && "Latch block must exists");
153   getUniqueExitBlocksHelper(this, ExitBlocks,
154                             [Latch](const BlockT *BB) { return BB != Latch; });
155 }
156 
157 template <class BlockT, class LoopT>
158 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
159   return getExitBlockHelper(this, true).first;
160 }
161 
162 template <class BlockT, class LoopT>
163 BlockT *LoopBase<BlockT, LoopT>::getUniqueLatchExitBlock() const {
164   BlockT *Latch = getLoopLatch();
165   assert(Latch && "Latch block must exists");
166   auto IsExitBlock = [this](BlockT *BB, bool AllowRepeats) -> BlockT * {
167     assert(!AllowRepeats && "Unexpected parameter value.");
168     return !contains(BB) ? BB : nullptr;
169   };
170   return find_singleton<BlockT>(children<BlockT *>(Latch), IsExitBlock);
171 }
172 
173 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
174 template <class BlockT, class LoopT>
175 void LoopBase<BlockT, LoopT>::getExitEdges(
176     SmallVectorImpl<Edge> &ExitEdges) const {
177   assert(!isInvalid() && "Loop not in a valid state!");
178   for (const auto BB : blocks())
179     for (auto *Succ : children<BlockT *>(BB))
180       if (!contains(Succ))
181         // Not in current loop? It must be an exit block.
182         ExitEdges.emplace_back(BB, Succ);
183 }
184 
185 namespace detail {
186 template <class BlockT>
187 using has_hoist_check = decltype(&BlockT::isLegalToHoistInto);
188 
189 template <class BlockT>
190 using detect_has_hoist_check = llvm::is_detected<has_hoist_check, BlockT>;
191 
192 /// SFINAE functions that dispatch to the isLegalToHoistInto member function or
193 /// return false, if it doesn't exist.
194 template <class BlockT> bool isLegalToHoistInto(BlockT *Block) {
195   if constexpr (detect_has_hoist_check<BlockT>::value)
196     return Block->isLegalToHoistInto();
197   return false;
198 }
199 } // namespace detail
200 
201 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
202 /// loop has a preheader if there is only one edge to the header of the loop
203 /// from outside of the loop and it is legal to hoist instructions into the
204 /// predecessor. If this is the case, the block branching to the header of the
205 /// loop is the preheader node.
206 ///
207 /// This method returns null if there is no preheader for the loop.
208 ///
209 template <class BlockT, class LoopT>
210 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
211   assert(!isInvalid() && "Loop not in a valid state!");
212   // Keep track of nodes outside the loop branching to the header...
213   BlockT *Out = getLoopPredecessor();
214   if (!Out)
215     return nullptr;
216 
217   // Make sure we are allowed to hoist instructions into the predecessor.
218   if (!detail::isLegalToHoistInto(Out))
219     return nullptr;
220 
221   // Make sure there is only one exit out of the preheader.
222   if (!llvm::hasSingleElement(llvm::children<BlockT *>(Out)))
223     return nullptr; // Multiple exits from the block, must not be a preheader.
224 
225   // The predecessor has exactly one successor, so it is a preheader.
226   return Out;
227 }
228 
229 /// getLoopPredecessor - If the given loop's header has exactly one unique
230 /// predecessor outside the loop, return it. Otherwise return null.
231 /// This is less strict that the loop "preheader" concept, which requires
232 /// the predecessor to have exactly one successor.
233 ///
234 template <class BlockT, class LoopT>
235 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
236   assert(!isInvalid() && "Loop not in a valid state!");
237   // Keep track of nodes outside the loop branching to the header...
238   BlockT *Out = nullptr;
239 
240   // Loop over the predecessors of the header node...
241   BlockT *Header = getHeader();
242   for (const auto Pred : inverse_children<BlockT *>(Header)) {
243     if (!contains(Pred)) { // If the block is not in the loop...
244       if (Out && Out != Pred)
245         return nullptr; // Multiple predecessors outside the loop
246       Out = Pred;
247     }
248   }
249 
250   return Out;
251 }
252 
253 /// getLoopLatch - If there is a single latch block for this loop, return it.
254 /// A latch block is a block that contains a branch back to the header.
255 template <class BlockT, class LoopT>
256 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
257   assert(!isInvalid() && "Loop not in a valid state!");
258   BlockT *Header = getHeader();
259   BlockT *Latch = nullptr;
260   for (const auto Pred : inverse_children<BlockT *>(Header)) {
261     if (contains(Pred)) {
262       if (Latch)
263         return nullptr;
264       Latch = Pred;
265     }
266   }
267 
268   return Latch;
269 }
270 
271 //===----------------------------------------------------------------------===//
272 // APIs for updating loop information after changing the CFG
273 //
274 
275 /// addBasicBlockToLoop - This method is used by other analyses to update loop
276 /// information.  NewBB is set to be a new member of the current loop.
277 /// Because of this, it is added as a member of all parent loops, and is added
278 /// to the specified LoopInfo object as being in the current basic block.  It
279 /// is not valid to replace the loop header with this method.
280 ///
281 template <class BlockT, class LoopT>
282 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
283     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
284   assert(!isInvalid() && "Loop not in a valid state!");
285 #ifndef NDEBUG
286   if (!Blocks.empty()) {
287     auto SameHeader = LIB[getHeader()];
288     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
289            "Incorrect LI specified for this loop!");
290   }
291 #endif
292   assert(NewBB && "Cannot add a null basic block to the loop!");
293   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
294 
295   LoopT *L = static_cast<LoopT *>(this);
296 
297   // Add the loop mapping to the LoopInfo object...
298   LIB.BBMap[NewBB] = L;
299 
300   // Add the basic block to this loop and all parent loops...
301   while (L) {
302     L->addBlockEntry(NewBB);
303     L = L->getParentLoop();
304   }
305 }
306 
307 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
308 /// the OldChild entry in our children list with NewChild, and updates the
309 /// parent pointer of OldChild to be null and the NewChild to be this loop.
310 /// This updates the loop depth of the new child.
311 template <class BlockT, class LoopT>
312 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
313                                                    LoopT *NewChild) {
314   assert(!isInvalid() && "Loop not in a valid state!");
315   assert(OldChild->ParentLoop == this && "This loop is already broken!");
316   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
317   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
318   assert(I != SubLoops.end() && "OldChild not in loop!");
319   *I = NewChild;
320   OldChild->ParentLoop = nullptr;
321   NewChild->ParentLoop = static_cast<LoopT *>(this);
322 }
323 
324 /// verifyLoop - Verify loop structure
325 template <class BlockT, class LoopT>
326 void LoopBase<BlockT, LoopT>::verifyLoop() const {
327   assert(!isInvalid() && "Loop not in a valid state!");
328 #ifndef NDEBUG
329   assert(!Blocks.empty() && "Loop header is missing");
330 
331   // Setup for using a depth-first iterator to visit every block in the loop.
332   SmallVector<BlockT *, 8> ExitBBs;
333   getExitBlocks(ExitBBs);
334   df_iterator_default_set<BlockT *> VisitSet;
335   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
336 
337   // Keep track of the BBs visited.
338   SmallPtrSet<BlockT *, 8> VisitedBBs;
339 
340   // Check the individual blocks.
341   for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
342     assert(llvm::any_of(children<BlockT *>(BB),
343                         [&](BlockT *B) { return contains(B); }) &&
344            "Loop block has no in-loop successors!");
345 
346     assert(llvm::any_of(inverse_children<BlockT *>(BB),
347                         [&](BlockT *B) { return contains(B); }) &&
348            "Loop block has no in-loop predecessors!");
349 
350     SmallVector<BlockT *, 2> OutsideLoopPreds;
351     for (BlockT *B : inverse_children<BlockT *>(BB))
352       if (!contains(B))
353         OutsideLoopPreds.push_back(B);
354 
355     if (BB == getHeader()) {
356       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
357     } else if (!OutsideLoopPreds.empty()) {
358       // A non-header loop shouldn't be reachable from outside the loop,
359       // though it is permitted if the predecessor is not itself actually
360       // reachable.
361       BlockT *EntryBB = &BB->getParent()->front();
362       for (BlockT *CB : depth_first(EntryBB))
363         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
364           assert(CB != OutsideLoopPreds[i] &&
365                  "Loop has multiple entry points!");
366     }
367     assert(BB != &getHeader()->getParent()->front() &&
368            "Loop contains function entry block!");
369 
370     VisitedBBs.insert(BB);
371   }
372 
373   if (VisitedBBs.size() != getNumBlocks()) {
374     dbgs() << "The following blocks are unreachable in the loop: ";
375     for (auto *BB : Blocks) {
376       if (!VisitedBBs.count(BB)) {
377         dbgs() << *BB << "\n";
378       }
379     }
380     assert(false && "Unreachable block in loop");
381   }
382 
383   // Check the subloops.
384   for (iterator I = begin(), E = end(); I != E; ++I)
385     // Each block in each subloop should be contained within this loop.
386     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
387          BI != BE; ++BI) {
388       assert(contains(*BI) &&
389              "Loop does not contain all the blocks of a subloop!");
390     }
391 
392   // Check the parent loop pointer.
393   if (ParentLoop) {
394     assert(is_contained(ParentLoop->getSubLoops(), this) &&
395            "Loop is not a subloop of its parent!");
396   }
397 #endif
398 }
399 
400 /// verifyLoop - Verify loop structure of this loop and all nested loops.
401 template <class BlockT, class LoopT>
402 void LoopBase<BlockT, LoopT>::verifyLoopNest(
403     DenseSet<const LoopT *> *Loops) const {
404   assert(!isInvalid() && "Loop not in a valid state!");
405   Loops->insert(static_cast<const LoopT *>(this));
406   // Verify this loop.
407   verifyLoop();
408   // Verify the subloops.
409   for (iterator I = begin(), E = end(); I != E; ++I)
410     (*I)->verifyLoopNest(Loops);
411 }
412 
413 template <class BlockT, class LoopT>
414 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
415                                     bool PrintNested, unsigned Depth) const {
416   OS.indent(Depth * 2);
417   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
418     OS << "Parallel ";
419   OS << "Loop at depth " << getLoopDepth() << " containing: ";
420 
421   BlockT *H = getHeader();
422   for (unsigned i = 0; i < getBlocks().size(); ++i) {
423     BlockT *BB = getBlocks()[i];
424     if (!Verbose) {
425       if (i)
426         OS << ",";
427       BB->printAsOperand(OS, false);
428     } else
429       OS << "\n";
430 
431     if (BB == H)
432       OS << "<header>";
433     if (isLoopLatch(BB))
434       OS << "<latch>";
435     if (isLoopExiting(BB))
436       OS << "<exiting>";
437     if (Verbose)
438       BB->print(OS);
439   }
440 
441   if (PrintNested) {
442     OS << "\n";
443 
444     for (iterator I = begin(), E = end(); I != E; ++I)
445       (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
446   }
447 }
448 
449 //===----------------------------------------------------------------------===//
450 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
451 /// result does / not depend on use list (block predecessor) order.
452 ///
453 
454 /// Discover a subloop with the specified backedges such that: All blocks within
455 /// this loop are mapped to this loop or a subloop. And all subloops within this
456 /// loop have their parent loop set to this loop or a subloop.
457 template <class BlockT, class LoopT>
458 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
459                                   LoopInfoBase<BlockT, LoopT> *LI,
460                                   const DomTreeBase<BlockT> &DomTree) {
461   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
462 
463   unsigned NumBlocks = 0;
464   unsigned NumSubloops = 0;
465 
466   // Perform a backward CFG traversal using a worklist.
467   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
468   while (!ReverseCFGWorklist.empty()) {
469     BlockT *PredBB = ReverseCFGWorklist.back();
470     ReverseCFGWorklist.pop_back();
471 
472     LoopT *Subloop = LI->getLoopFor(PredBB);
473     if (!Subloop) {
474       if (!DomTree.isReachableFromEntry(PredBB))
475         continue;
476 
477       // This is an undiscovered block. Map it to the current loop.
478       LI->changeLoopFor(PredBB, L);
479       ++NumBlocks;
480       if (PredBB == L->getHeader())
481         continue;
482       // Push all block predecessors on the worklist.
483       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
484                                 InvBlockTraits::child_begin(PredBB),
485                                 InvBlockTraits::child_end(PredBB));
486     } else {
487       // This is a discovered block. Find its outermost discovered loop.
488       Subloop = Subloop->getOutermostLoop();
489 
490       // If it is already discovered to be a subloop of this loop, continue.
491       if (Subloop == L)
492         continue;
493 
494       // Discover a subloop of this loop.
495       Subloop->setParentLoop(L);
496       ++NumSubloops;
497       NumBlocks += Subloop->getBlocksVector().capacity();
498       PredBB = Subloop->getHeader();
499       // Continue traversal along predecessors that are not loop-back edges from
500       // within this subloop tree itself. Note that a predecessor may directly
501       // reach another subloop that is not yet discovered to be a subloop of
502       // this loop, which we must traverse.
503       for (const auto Pred : inverse_children<BlockT *>(PredBB)) {
504         if (LI->getLoopFor(Pred) != Subloop)
505           ReverseCFGWorklist.push_back(Pred);
506       }
507     }
508   }
509   L->getSubLoopsVector().reserve(NumSubloops);
510   L->reserveBlocks(NumBlocks);
511 }
512 
513 /// Populate all loop data in a stable order during a single forward DFS.
514 template <class BlockT, class LoopT> class PopulateLoopsDFS {
515   typedef GraphTraits<BlockT *> BlockTraits;
516   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
517 
518   LoopInfoBase<BlockT, LoopT> *LI;
519 
520 public:
521   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
522 
523   void traverse(BlockT *EntryBlock);
524 
525 protected:
526   void insertIntoLoop(BlockT *Block);
527 };
528 
529 /// Top-level driver for the forward DFS within the loop.
530 template <class BlockT, class LoopT>
531 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
532   for (BlockT *BB : post_order(EntryBlock))
533     insertIntoLoop(BB);
534 }
535 
536 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
537 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
538 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
539 template <class BlockT, class LoopT>
540 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
541   LoopT *Subloop = LI->getLoopFor(Block);
542   if (Subloop && Block == Subloop->getHeader()) {
543     // We reach this point once per subloop after processing all the blocks in
544     // the subloop.
545     if (!Subloop->isOutermost())
546       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
547     else
548       LI->addTopLevelLoop(Subloop);
549 
550     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
551     // the lists, except for the loop header, which is always at the beginning.
552     Subloop->reverseBlock(1);
553     std::reverse(Subloop->getSubLoopsVector().begin(),
554                  Subloop->getSubLoopsVector().end());
555 
556     Subloop = Subloop->getParentLoop();
557   }
558   for (; Subloop; Subloop = Subloop->getParentLoop())
559     Subloop->addBlockEntry(Block);
560 }
561 
562 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
563 /// interleaved with backward CFG traversals within each subloop
564 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
565 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
566 /// Block vectors are then populated during a single forward CFG traversal
567 /// (PopulateLoopDFS).
568 ///
569 /// During the two CFG traversals each block is seen three times:
570 /// 1) Discovered and mapped by a reverse CFG traversal.
571 /// 2) Visited during a forward DFS CFG traversal.
572 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
573 ///
574 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
575 /// insertions per block.
576 template <class BlockT, class LoopT>
577 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
578   // Postorder traversal of the dominator tree.
579   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
580   for (auto DomNode : post_order(DomRoot)) {
581 
582     BlockT *Header = DomNode->getBlock();
583     SmallVector<BlockT *, 4> Backedges;
584 
585     // Check each predecessor of the potential loop header.
586     for (const auto Backedge : inverse_children<BlockT *>(Header)) {
587       // If Header dominates predBB, this is a new loop. Collect the backedges.
588       const DomTreeNodeBase<BlockT> *BackedgeNode = DomTree.getNode(Backedge);
589       if (BackedgeNode && DomTree.dominates(DomNode, BackedgeNode))
590         Backedges.push_back(Backedge);
591     }
592     // Perform a backward CFG traversal to discover and map blocks in this loop.
593     if (!Backedges.empty()) {
594       LoopT *L = AllocateLoop(Header);
595       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
596     }
597   }
598   // Perform a single forward CFG traversal to populate block and subloop
599   // vectors for all loops.
600   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
601   DFS.traverse(DomRoot->getBlock());
602 }
603 
604 template <class BlockT, class LoopT>
605 SmallVector<LoopT *, 4>
606 LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const {
607   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
608   // The outer-most loop actually goes into the result in the same relative
609   // order as we walk it. But LoopInfo stores the top level loops in reverse
610   // program order so for here we reverse it to get forward program order.
611   // FIXME: If we change the order of LoopInfo we will want to remove the
612   // reverse here.
613   for (LoopT *RootL : reverse(*this)) {
614     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
615     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
616                          PreOrderLoopsInRootL.end());
617   }
618 
619   return PreOrderLoops;
620 }
621 
622 template <class BlockT, class LoopT>
623 SmallVector<LoopT *, 4>
624 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const {
625   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
626   // The outer-most loop actually goes into the result in the same relative
627   // order as we walk it. LoopInfo stores the top level loops in reverse
628   // program order so we walk in order here.
629   // FIXME: If we change the order of LoopInfo we will want to add a reverse
630   // here.
631   for (LoopT *RootL : *this) {
632     assert(PreOrderWorklist.empty() &&
633            "Must start with an empty preorder walk worklist.");
634     PreOrderWorklist.push_back(RootL);
635     do {
636       LoopT *L = PreOrderWorklist.pop_back_val();
637       // Sub-loops are stored in forward program order, but will process the
638       // worklist backwards so we can just append them in order.
639       PreOrderWorklist.append(L->begin(), L->end());
640       PreOrderLoops.push_back(L);
641     } while (!PreOrderWorklist.empty());
642   }
643 
644   return PreOrderLoops;
645 }
646 
647 // Debugging
648 template <class BlockT, class LoopT>
649 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
650   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
651     TopLevelLoops[i]->print(OS);
652 #if 0
653   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
654          E = BBMap.end(); I != E; ++I)
655     OS << "BB '" << I->first->getName() << "' level = "
656        << I->second->getLoopDepth() << "\n";
657 #endif
658 }
659 
660 template <typename T>
661 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
662   llvm::sort(BB1);
663   llvm::sort(BB2);
664   return BB1 == BB2;
665 }
666 
667 template <class BlockT, class LoopT>
668 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
669                                const LoopInfoBase<BlockT, LoopT> &LI,
670                                const LoopT &L) {
671   LoopHeaders[L.getHeader()] = &L;
672   for (LoopT *SL : L)
673     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
674 }
675 
676 #ifndef NDEBUG
677 template <class BlockT, class LoopT>
678 static void compareLoops(const LoopT *L, const LoopT *OtherL,
679                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
680   BlockT *H = L->getHeader();
681   BlockT *OtherH = OtherL->getHeader();
682   assert(H == OtherH &&
683          "Mismatched headers even though found in the same map entry!");
684 
685   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
686          "Mismatched loop depth!");
687   const LoopT *ParentL = L, *OtherParentL = OtherL;
688   do {
689     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
690            "Mismatched parent loop headers!");
691     ParentL = ParentL->getParentLoop();
692     OtherParentL = OtherParentL->getParentLoop();
693   } while (ParentL);
694 
695   for (const LoopT *SubL : *L) {
696     BlockT *SubH = SubL->getHeader();
697     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
698     assert(OtherSubL && "Inner loop is missing in computed loop info!");
699     OtherLoopHeaders.erase(SubH);
700     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
701   }
702 
703   std::vector<BlockT *> BBs = L->getBlocks();
704   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
705   assert(compareVectors(BBs, OtherBBs) &&
706          "Mismatched basic blocks in the loops!");
707 
708   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
709   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
710       OtherL->getBlocksSet();
711   assert(BlocksSet.size() == OtherBlocksSet.size() &&
712          llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
713          "Mismatched basic blocks in BlocksSets!");
714 }
715 #endif
716 
717 template <class BlockT, class LoopT>
718 void LoopInfoBase<BlockT, LoopT>::verify(
719     const DomTreeBase<BlockT> &DomTree) const {
720   DenseSet<const LoopT *> Loops;
721   for (iterator I = begin(), E = end(); I != E; ++I) {
722     assert((*I)->isOutermost() && "Top-level loop has a parent!");
723     (*I)->verifyLoopNest(&Loops);
724   }
725 
726 // Verify that blocks are mapped to valid loops.
727 #ifndef NDEBUG
728   for (auto &Entry : BBMap) {
729     const BlockT *BB = Entry.first;
730     LoopT *L = Entry.second;
731     assert(Loops.count(L) && "orphaned loop");
732     assert(L->contains(BB) && "orphaned block");
733     for (LoopT *ChildLoop : *L)
734       assert(!ChildLoop->contains(BB) &&
735              "BBMap should point to the innermost loop containing BB");
736   }
737 
738   // Recompute LoopInfo to verify loops structure.
739   LoopInfoBase<BlockT, LoopT> OtherLI;
740   OtherLI.analyze(DomTree);
741 
742   // Build a map we can use to move from our LI to the computed one. This
743   // allows us to ignore the particular order in any layer of the loop forest
744   // while still comparing the structure.
745   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
746   for (LoopT *L : OtherLI)
747     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
748 
749   // Walk the top level loops and ensure there is a corresponding top-level
750   // loop in the computed version and then recursively compare those loop
751   // nests.
752   for (LoopT *L : *this) {
753     BlockT *Header = L->getHeader();
754     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
755     assert(OtherL && "Top level loop is missing in computed loop info!");
756     // Now that we've matched this loop, erase its header from the map.
757     OtherLoopHeaders.erase(Header);
758     // And recursively compare these loops.
759     compareLoops(L, OtherL, OtherLoopHeaders);
760   }
761 
762   // Any remaining entries in the map are loops which were found when computing
763   // a fresh LoopInfo but not present in the current one.
764   if (!OtherLoopHeaders.empty()) {
765     for (const auto &HeaderAndLoop : OtherLoopHeaders)
766       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
767     llvm_unreachable("Found new loops when recomputing LoopInfo!");
768   }
769 #endif
770 }
771 
772 } // namespace llvm
773 
774 #endif // LLVM_SUPPORT_GENERICLOOPINFOIMPL_H
775