1 //===- ValueMap.h - Safe map from Values to data ----------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the ValueMap class. ValueMap maps Value* or any subclass 11 // to an arbitrary other type. It provides the DenseMap interface but updates 12 // itself to remain safe when keys are RAUWed or deleted. By default, when a 13 // key is RAUWed from V1 to V2, the old mapping V1->target is removed, and a new 14 // mapping V2->target is added. If V2 already existed, its old target is 15 // overwritten. When a key is deleted, its mapping is removed. 16 // 17 // You can override a ValueMap's Config parameter to control exactly what 18 // happens on RAUW and destruction and to get called back on each event. It's 19 // legal to call back into the ValueMap from a Config's callbacks. Config 20 // parameters should inherit from ValueMapConfig<KeyT> to get default 21 // implementations of all the methods ValueMap uses. See ValueMapConfig for 22 // documentation of the functions you can override. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #ifndef LLVM_IR_VALUEMAP_H 27 #define LLVM_IR_VALUEMAP_H 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/IR/TrackingMDRef.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/Mutex.h" 33 #include "llvm/Support/UniqueLock.h" 34 #include "llvm/Support/type_traits.h" 35 #include <iterator> 36 #include <memory> 37 38 namespace llvm { 39 40 template<typename KeyT, typename ValueT, typename Config> 41 class ValueMapCallbackVH; 42 43 template<typename DenseMapT, typename KeyT> 44 class ValueMapIterator; 45 template<typename DenseMapT, typename KeyT> 46 class ValueMapConstIterator; 47 48 /// This class defines the default behavior for configurable aspects of 49 /// ValueMap<>. User Configs should inherit from this class to be as compatible 50 /// as possible with future versions of ValueMap. 51 template<typename KeyT, typename MutexT = sys::Mutex> 52 struct ValueMapConfig { 53 typedef MutexT mutex_type; 54 55 /// If FollowRAUW is true, the ValueMap will update mappings on RAUW. If it's 56 /// false, the ValueMap will leave the original mapping in place. 57 enum { FollowRAUW = true }; 58 59 // All methods will be called with a first argument of type ExtraData. The 60 // default implementations in this class take a templated first argument so 61 // that users' subclasses can use any type they want without having to 62 // override all the defaults. 63 struct ExtraData {}; 64 65 template<typename ExtraDataT> onRAUWValueMapConfig66 static void onRAUW(const ExtraDataT & /*Data*/, KeyT /*Old*/, KeyT /*New*/) {} 67 template<typename ExtraDataT> onDeleteValueMapConfig68 static void onDelete(const ExtraDataT &/*Data*/, KeyT /*Old*/) {} 69 70 /// Returns a mutex that should be acquired around any changes to the map. 71 /// This is only acquired from the CallbackVH (and held around calls to onRAUW 72 /// and onDelete) and not inside other ValueMap methods. NULL means that no 73 /// mutex is necessary. 74 template<typename ExtraDataT> getMutexValueMapConfig75 static mutex_type *getMutex(const ExtraDataT &/*Data*/) { return nullptr; } 76 }; 77 78 /// See the file comment. 79 template<typename KeyT, typename ValueT, typename Config =ValueMapConfig<KeyT> > 80 class ValueMap { 81 friend class ValueMapCallbackVH<KeyT, ValueT, Config>; 82 typedef ValueMapCallbackVH<KeyT, ValueT, Config> ValueMapCVH; 83 typedef DenseMap<ValueMapCVH, ValueT, DenseMapInfo<ValueMapCVH> > MapT; 84 typedef DenseMap<const Metadata *, TrackingMDRef> MDMapT; 85 typedef typename Config::ExtraData ExtraData; 86 MapT Map; 87 std::unique_ptr<MDMapT> MDMap; 88 ExtraData Data; 89 ValueMap(const ValueMap&) LLVM_DELETED_FUNCTION; 90 ValueMap& operator=(const ValueMap&) LLVM_DELETED_FUNCTION; 91 public: 92 typedef KeyT key_type; 93 typedef ValueT mapped_type; 94 typedef std::pair<KeyT, ValueT> value_type; 95 typedef unsigned size_type; 96 97 explicit ValueMap(unsigned NumInitBuckets = 64) Map(NumInitBuckets)98 : Map(NumInitBuckets), Data() {} 99 explicit ValueMap(const ExtraData &Data, unsigned NumInitBuckets = 64) Map(NumInitBuckets)100 : Map(NumInitBuckets), Data(Data) {} 101 ~ValueMap()102 ~ValueMap() {} 103 hasMD()104 bool hasMD() const { return MDMap; } MD()105 MDMapT &MD() { 106 if (!MDMap) 107 MDMap.reset(new MDMapT); 108 return *MDMap; 109 } 110 111 typedef ValueMapIterator<MapT, KeyT> iterator; 112 typedef ValueMapConstIterator<MapT, KeyT> const_iterator; begin()113 inline iterator begin() { return iterator(Map.begin()); } end()114 inline iterator end() { return iterator(Map.end()); } begin()115 inline const_iterator begin() const { return const_iterator(Map.begin()); } end()116 inline const_iterator end() const { return const_iterator(Map.end()); } 117 empty()118 bool empty() const { return Map.empty(); } size()119 size_type size() const { return Map.size(); } 120 121 /// Grow the map so that it has at least Size buckets. Does not shrink resize(size_t Size)122 void resize(size_t Size) { Map.resize(Size); } 123 clear()124 void clear() { 125 Map.clear(); 126 MDMap.reset(); 127 } 128 129 /// Return 1 if the specified key is in the map, 0 otherwise. count(const KeyT & Val)130 size_type count(const KeyT &Val) const { 131 return Map.find_as(Val) == Map.end() ? 0 : 1; 132 } 133 find(const KeyT & Val)134 iterator find(const KeyT &Val) { 135 return iterator(Map.find_as(Val)); 136 } find(const KeyT & Val)137 const_iterator find(const KeyT &Val) const { 138 return const_iterator(Map.find_as(Val)); 139 } 140 141 /// lookup - Return the entry for the specified key, or a default 142 /// constructed value if no such entry exists. lookup(const KeyT & Val)143 ValueT lookup(const KeyT &Val) const { 144 typename MapT::const_iterator I = Map.find_as(Val); 145 return I != Map.end() ? I->second : ValueT(); 146 } 147 148 // Inserts key,value pair into the map if the key isn't already in the map. 149 // If the key is already in the map, it returns false and doesn't update the 150 // value. insert(const std::pair<KeyT,ValueT> & KV)151 std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) { 152 std::pair<typename MapT::iterator, bool> map_result= 153 Map.insert(std::make_pair(Wrap(KV.first), KV.second)); 154 return std::make_pair(iterator(map_result.first), map_result.second); 155 } 156 157 /// insert - Range insertion of pairs. 158 template<typename InputIt> insert(InputIt I,InputIt E)159 void insert(InputIt I, InputIt E) { 160 for (; I != E; ++I) 161 insert(*I); 162 } 163 164 erase(const KeyT & Val)165 bool erase(const KeyT &Val) { 166 typename MapT::iterator I = Map.find_as(Val); 167 if (I == Map.end()) 168 return false; 169 170 Map.erase(I); 171 return true; 172 } erase(iterator I)173 void erase(iterator I) { 174 return Map.erase(I.base()); 175 } 176 FindAndConstruct(const KeyT & Key)177 value_type& FindAndConstruct(const KeyT &Key) { 178 return Map.FindAndConstruct(Wrap(Key)); 179 } 180 181 ValueT &operator[](const KeyT &Key) { 182 return Map[Wrap(Key)]; 183 } 184 185 /// isPointerIntoBucketsArray - Return true if the specified pointer points 186 /// somewhere into the ValueMap's array of buckets (i.e. either to a key or 187 /// value in the ValueMap). isPointerIntoBucketsArray(const void * Ptr)188 bool isPointerIntoBucketsArray(const void *Ptr) const { 189 return Map.isPointerIntoBucketsArray(Ptr); 190 } 191 192 /// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets 193 /// array. In conjunction with the previous method, this can be used to 194 /// determine whether an insertion caused the ValueMap to reallocate. getPointerIntoBucketsArray()195 const void *getPointerIntoBucketsArray() const { 196 return Map.getPointerIntoBucketsArray(); 197 } 198 199 private: 200 // Takes a key being looked up in the map and wraps it into a 201 // ValueMapCallbackVH, the actual key type of the map. We use a helper 202 // function because ValueMapCVH is constructed with a second parameter. Wrap(KeyT key)203 ValueMapCVH Wrap(KeyT key) const { 204 // The only way the resulting CallbackVH could try to modify *this (making 205 // the const_cast incorrect) is if it gets inserted into the map. But then 206 // this function must have been called from a non-const method, making the 207 // const_cast ok. 208 return ValueMapCVH(key, const_cast<ValueMap*>(this)); 209 } 210 }; 211 212 // This CallbackVH updates its ValueMap when the contained Value changes, 213 // according to the user's preferences expressed through the Config object. 214 template<typename KeyT, typename ValueT, typename Config> 215 class ValueMapCallbackVH : public CallbackVH { 216 friend class ValueMap<KeyT, ValueT, Config>; 217 friend struct DenseMapInfo<ValueMapCallbackVH>; 218 typedef ValueMap<KeyT, ValueT, Config> ValueMapT; 219 typedef typename std::remove_pointer<KeyT>::type KeySansPointerT; 220 221 ValueMapT *Map; 222 223 ValueMapCallbackVH(KeyT Key, ValueMapT *Map) 224 : CallbackVH(const_cast<Value*>(static_cast<const Value*>(Key))), 225 Map(Map) {} 226 227 // Private constructor used to create empty/tombstone DenseMap keys. 228 ValueMapCallbackVH(Value *V) : CallbackVH(V), Map(nullptr) {} 229 230 public: 231 KeyT Unwrap() const { return cast_or_null<KeySansPointerT>(getValPtr()); } 232 233 void deleted() override { 234 // Make a copy that won't get changed even when *this is destroyed. 235 ValueMapCallbackVH Copy(*this); 236 typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data); 237 unique_lock<typename Config::mutex_type> Guard; 238 if (M) 239 Guard = unique_lock<typename Config::mutex_type>(*M); 240 Config::onDelete(Copy.Map->Data, Copy.Unwrap()); // May destroy *this. 241 Copy.Map->Map.erase(Copy); // Definitely destroys *this. 242 } 243 void allUsesReplacedWith(Value *new_key) override { 244 assert(isa<KeySansPointerT>(new_key) && 245 "Invalid RAUW on key of ValueMap<>"); 246 // Make a copy that won't get changed even when *this is destroyed. 247 ValueMapCallbackVH Copy(*this); 248 typename Config::mutex_type *M = Config::getMutex(Copy.Map->Data); 249 unique_lock<typename Config::mutex_type> Guard; 250 if (M) 251 Guard = unique_lock<typename Config::mutex_type>(*M); 252 253 KeyT typed_new_key = cast<KeySansPointerT>(new_key); 254 // Can destroy *this: 255 Config::onRAUW(Copy.Map->Data, Copy.Unwrap(), typed_new_key); 256 if (Config::FollowRAUW) { 257 typename ValueMapT::MapT::iterator I = Copy.Map->Map.find(Copy); 258 // I could == Copy.Map->Map.end() if the onRAUW callback already 259 // removed the old mapping. 260 if (I != Copy.Map->Map.end()) { 261 ValueT Target(I->second); 262 Copy.Map->Map.erase(I); // Definitely destroys *this. 263 Copy.Map->insert(std::make_pair(typed_new_key, Target)); 264 } 265 } 266 } 267 }; 268 269 template<typename KeyT, typename ValueT, typename Config> 270 struct DenseMapInfo<ValueMapCallbackVH<KeyT, ValueT, Config> > { 271 typedef ValueMapCallbackVH<KeyT, ValueT, Config> VH; 272 273 static inline VH getEmptyKey() { 274 return VH(DenseMapInfo<Value *>::getEmptyKey()); 275 } 276 static inline VH getTombstoneKey() { 277 return VH(DenseMapInfo<Value *>::getTombstoneKey()); 278 } 279 static unsigned getHashValue(const VH &Val) { 280 return DenseMapInfo<KeyT>::getHashValue(Val.Unwrap()); 281 } 282 static unsigned getHashValue(const KeyT &Val) { 283 return DenseMapInfo<KeyT>::getHashValue(Val); 284 } 285 static bool isEqual(const VH &LHS, const VH &RHS) { 286 return LHS == RHS; 287 } 288 static bool isEqual(const KeyT &LHS, const VH &RHS) { 289 return LHS == RHS.getValPtr(); 290 } 291 }; 292 293 294 template<typename DenseMapT, typename KeyT> 295 class ValueMapIterator : 296 public std::iterator<std::forward_iterator_tag, 297 std::pair<KeyT, typename DenseMapT::mapped_type>, 298 ptrdiff_t> { 299 typedef typename DenseMapT::iterator BaseT; 300 typedef typename DenseMapT::mapped_type ValueT; 301 BaseT I; 302 public: 303 ValueMapIterator() : I() {} 304 305 ValueMapIterator(BaseT I) : I(I) {} 306 307 BaseT base() const { return I; } 308 309 struct ValueTypeProxy { 310 const KeyT first; 311 ValueT& second; 312 ValueTypeProxy *operator->() { return this; } 313 operator std::pair<KeyT, ValueT>() const { 314 return std::make_pair(first, second); 315 } 316 }; 317 318 ValueTypeProxy operator*() const { 319 ValueTypeProxy Result = {I->first.Unwrap(), I->second}; 320 return Result; 321 } 322 323 ValueTypeProxy operator->() const { 324 return operator*(); 325 } 326 327 bool operator==(const ValueMapIterator &RHS) const { 328 return I == RHS.I; 329 } 330 bool operator!=(const ValueMapIterator &RHS) const { 331 return I != RHS.I; 332 } 333 334 inline ValueMapIterator& operator++() { // Preincrement 335 ++I; 336 return *this; 337 } 338 ValueMapIterator operator++(int) { // Postincrement 339 ValueMapIterator tmp = *this; ++*this; return tmp; 340 } 341 }; 342 343 template<typename DenseMapT, typename KeyT> 344 class ValueMapConstIterator : 345 public std::iterator<std::forward_iterator_tag, 346 std::pair<KeyT, typename DenseMapT::mapped_type>, 347 ptrdiff_t> { 348 typedef typename DenseMapT::const_iterator BaseT; 349 typedef typename DenseMapT::mapped_type ValueT; 350 BaseT I; 351 public: 352 ValueMapConstIterator() : I() {} 353 ValueMapConstIterator(BaseT I) : I(I) {} 354 ValueMapConstIterator(ValueMapIterator<DenseMapT, KeyT> Other) 355 : I(Other.base()) {} 356 357 BaseT base() const { return I; } 358 359 struct ValueTypeProxy { 360 const KeyT first; 361 const ValueT& second; 362 ValueTypeProxy *operator->() { return this; } 363 operator std::pair<KeyT, ValueT>() const { 364 return std::make_pair(first, second); 365 } 366 }; 367 368 ValueTypeProxy operator*() const { 369 ValueTypeProxy Result = {I->first.Unwrap(), I->second}; 370 return Result; 371 } 372 373 ValueTypeProxy operator->() const { 374 return operator*(); 375 } 376 377 bool operator==(const ValueMapConstIterator &RHS) const { 378 return I == RHS.I; 379 } 380 bool operator!=(const ValueMapConstIterator &RHS) const { 381 return I != RHS.I; 382 } 383 384 inline ValueMapConstIterator& operator++() { // Preincrement 385 ++I; 386 return *this; 387 } 388 ValueMapConstIterator operator++(int) { // Postincrement 389 ValueMapConstIterator tmp = *this; ++*this; return tmp; 390 } 391 }; 392 393 } // end namespace llvm 394 395 #endif 396