1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the Value class.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_IR_VALUE_H
14 #define LLVM_IR_VALUE_H
15
16 #include "llvm-c/Types.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/IR/Use.h"
21 #include "llvm/Support/Alignment.h"
22 #include "llvm/Support/CBindingWrapping.h"
23 #include "llvm/Support/Casting.h"
24 #include <cassert>
25 #include <iterator>
26 #include <memory>
27
28 namespace llvm {
29
30 class APInt;
31 class Argument;
32 class BasicBlock;
33 class Constant;
34 class ConstantData;
35 class ConstantAggregate;
36 class DataLayout;
37 class Function;
38 class GlobalAlias;
39 class GlobalIFunc;
40 class GlobalIndirectSymbol;
41 class GlobalObject;
42 class GlobalValue;
43 class GlobalVariable;
44 class InlineAsm;
45 class Instruction;
46 class LLVMContext;
47 class MDNode;
48 class Module;
49 class ModuleSlotTracker;
50 class raw_ostream;
51 template<typename ValueTy> class StringMapEntry;
52 class Twine;
53 class Type;
54 class User;
55
56 using ValueName = StringMapEntry<Value *>;
57
58 //===----------------------------------------------------------------------===//
59 // Value Class
60 //===----------------------------------------------------------------------===//
61
62 /// LLVM Value Representation
63 ///
64 /// This is a very important LLVM class. It is the base class of all values
65 /// computed by a program that may be used as operands to other values. Value is
66 /// the super class of other important classes such as Instruction and Function.
67 /// All Values have a Type. Type is not a subclass of Value. Some values can
68 /// have a name and they belong to some Module. Setting the name on the Value
69 /// automatically updates the module's symbol table.
70 ///
71 /// Every value has a "use list" that keeps track of which other Values are
72 /// using this Value. A Value can also have an arbitrary number of ValueHandle
73 /// objects that watch it and listen to RAUW and Destroy events. See
74 /// llvm/IR/ValueHandle.h for details.
75 class Value {
76 Type *VTy;
77 Use *UseList;
78
79 friend class ValueAsMetadata; // Allow access to IsUsedByMD.
80 friend class ValueHandleBase;
81
82 const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
83 unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
84
85 protected:
86 /// Hold subclass data that can be dropped.
87 ///
88 /// This member is similar to SubclassData, however it is for holding
89 /// information which may be used to aid optimization, but which may be
90 /// cleared to zero without affecting conservative interpretation.
91 unsigned char SubclassOptionalData : 7;
92
93 private:
94 /// Hold arbitrary subclass data.
95 ///
96 /// This member is defined by this class, but is not used for anything.
97 /// Subclasses can use it to hold whatever state they find useful. This
98 /// field is initialized to zero by the ctor.
99 unsigned short SubclassData;
100
101 protected:
102 /// The number of operands in the subclass.
103 ///
104 /// This member is defined by this class, but not used for anything.
105 /// Subclasses can use it to store their number of operands, if they have
106 /// any.
107 ///
108 /// This is stored here to save space in User on 64-bit hosts. Since most
109 /// instances of Value have operands, 32-bit hosts aren't significantly
110 /// affected.
111 ///
112 /// Note, this should *NOT* be used directly by any class other than User.
113 /// User uses this value to find the Use list.
114 enum : unsigned { NumUserOperandsBits = 27 };
115 unsigned NumUserOperands : NumUserOperandsBits;
116
117 // Use the same type as the bitfield above so that MSVC will pack them.
118 unsigned IsUsedByMD : 1;
119 unsigned HasName : 1;
120 unsigned HasMetadata : 1; // Has metadata attached to this?
121 unsigned HasHungOffUses : 1;
122 unsigned HasDescriptor : 1;
123
124 private:
125 template <typename UseT> // UseT == 'Use' or 'const Use'
126 class use_iterator_impl {
127 friend class Value;
128
129 UseT *U;
130
use_iterator_impl(UseT * u)131 explicit use_iterator_impl(UseT *u) : U(u) {}
132
133 public:
134 using iterator_category = std::forward_iterator_tag;
135 using value_type = UseT *;
136 using difference_type = std::ptrdiff_t;
137 using pointer = value_type *;
138 using reference = value_type &;
139
use_iterator_impl()140 use_iterator_impl() : U() {}
141
142 bool operator==(const use_iterator_impl &x) const { return U == x.U; }
143 bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
144
145 use_iterator_impl &operator++() { // Preincrement
146 assert(U && "Cannot increment end iterator!");
147 U = U->getNext();
148 return *this;
149 }
150
151 use_iterator_impl operator++(int) { // Postincrement
152 auto tmp = *this;
153 ++*this;
154 return tmp;
155 }
156
157 UseT &operator*() const {
158 assert(U && "Cannot dereference end iterator!");
159 return *U;
160 }
161
162 UseT *operator->() const { return &operator*(); }
163
164 operator use_iterator_impl<const UseT>() const {
165 return use_iterator_impl<const UseT>(U);
166 }
167 };
168
169 template <typename UserTy> // UserTy == 'User' or 'const User'
170 class user_iterator_impl {
171 use_iterator_impl<Use> UI;
user_iterator_impl(Use * U)172 explicit user_iterator_impl(Use *U) : UI(U) {}
173 friend class Value;
174
175 public:
176 using iterator_category = std::forward_iterator_tag;
177 using value_type = UserTy *;
178 using difference_type = std::ptrdiff_t;
179 using pointer = value_type *;
180 using reference = value_type &;
181
182 user_iterator_impl() = default;
183
184 bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
185 bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
186
187 /// Returns true if this iterator is equal to user_end() on the value.
atEnd()188 bool atEnd() const { return *this == user_iterator_impl(); }
189
190 user_iterator_impl &operator++() { // Preincrement
191 ++UI;
192 return *this;
193 }
194
195 user_iterator_impl operator++(int) { // Postincrement
196 auto tmp = *this;
197 ++*this;
198 return tmp;
199 }
200
201 // Retrieve a pointer to the current User.
202 UserTy *operator*() const {
203 return UI->getUser();
204 }
205
206 UserTy *operator->() const { return operator*(); }
207
208 operator user_iterator_impl<const UserTy>() const {
209 return user_iterator_impl<const UserTy>(*UI);
210 }
211
getUse()212 Use &getUse() const { return *UI; }
213 };
214
215 protected:
216 Value(Type *Ty, unsigned scid);
217
218 /// Value's destructor should be virtual by design, but that would require
219 /// that Value and all of its subclasses have a vtable that effectively
220 /// duplicates the information in the value ID. As a size optimization, the
221 /// destructor has been protected, and the caller should manually call
222 /// deleteValue.
223 ~Value(); // Use deleteValue() to delete a generic Value.
224
225 public:
226 Value(const Value &) = delete;
227 Value &operator=(const Value &) = delete;
228
229 /// Delete a pointer to a generic Value.
230 void deleteValue();
231
232 /// Support for debugging, callable in GDB: V->dump()
233 void dump() const;
234
235 /// Implement operator<< on Value.
236 /// @{
237 void print(raw_ostream &O, bool IsForDebug = false) const;
238 void print(raw_ostream &O, ModuleSlotTracker &MST,
239 bool IsForDebug = false) const;
240 /// @}
241
242 /// Print the name of this Value out to the specified raw_ostream.
243 ///
244 /// This is useful when you just want to print 'int %reg126', not the
245 /// instruction that generated it. If you specify a Module for context, then
246 /// even constanst get pretty-printed; for example, the type of a null
247 /// pointer is printed symbolically.
248 /// @{
249 void printAsOperand(raw_ostream &O, bool PrintType = true,
250 const Module *M = nullptr) const;
251 void printAsOperand(raw_ostream &O, bool PrintType,
252 ModuleSlotTracker &MST) const;
253 /// @}
254
255 /// All values are typed, get the type of this value.
getType()256 Type *getType() const { return VTy; }
257
258 /// All values hold a context through their type.
259 LLVMContext &getContext() const;
260
261 // All values can potentially be named.
hasName()262 bool hasName() const { return HasName; }
263 ValueName *getValueName() const;
264 void setValueName(ValueName *VN);
265
266 private:
267 void destroyValueName();
268 enum class ReplaceMetadataUses { No, Yes };
269 void doRAUW(Value *New, ReplaceMetadataUses);
270 void setNameImpl(const Twine &Name);
271
272 public:
273 /// Return a constant reference to the value's name.
274 ///
275 /// This guaranteed to return the same reference as long as the value is not
276 /// modified. If the value has a name, this does a hashtable lookup, so it's
277 /// not free.
278 StringRef getName() const;
279
280 /// Change the name of the value.
281 ///
282 /// Choose a new unique name if the provided name is taken.
283 ///
284 /// \param Name The new name; or "" if the value's name should be removed.
285 void setName(const Twine &Name);
286
287 /// Transfer the name from V to this value.
288 ///
289 /// After taking V's name, sets V's name to empty.
290 ///
291 /// \note It is an error to call V->takeName(V).
292 void takeName(Value *V);
293
294 #ifndef NDEBUG
295 std::string getNameOrAsOperand() const;
296 #endif
297
298 /// Change all uses of this to point to a new Value.
299 ///
300 /// Go through the uses list for this definition and make each use point to
301 /// "V" instead of "this". After this completes, 'this's use list is
302 /// guaranteed to be empty.
303 void replaceAllUsesWith(Value *V);
304
305 /// Change non-metadata uses of this to point to a new Value.
306 ///
307 /// Go through the uses list for this definition and make each use point to
308 /// "V" instead of "this". This function skips metadata entries in the list.
309 void replaceNonMetadataUsesWith(Value *V);
310
311 /// Go through the uses list for this definition and make each use point
312 /// to "V" if the callback ShouldReplace returns true for the given Use.
313 /// Unlike replaceAllUsesWith() this function does not support basic block
314 /// values or constant users.
replaceUsesWithIf(Value * New,llvm::function_ref<bool (Use & U)> ShouldReplace)315 void replaceUsesWithIf(Value *New,
316 llvm::function_ref<bool(Use &U)> ShouldReplace) {
317 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
318 assert(New->getType() == getType() &&
319 "replaceUses of value with new value of different type!");
320
321 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
322 Use &U = *UI;
323 ++UI;
324 if (!ShouldReplace(U))
325 continue;
326 U.set(New);
327 }
328 }
329
330 /// replaceUsesOutsideBlock - Go through the uses list for this definition and
331 /// make each use point to "V" instead of "this" when the use is outside the
332 /// block. 'This's use list is expected to have at least one element.
333 /// Unlike replaceAllUsesWith() this function does not support basic block
334 /// values or constant users.
335 void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
336
337 //----------------------------------------------------------------------
338 // Methods for handling the chain of uses of this Value.
339 //
340 // Materializing a function can introduce new uses, so these methods come in
341 // two variants:
342 // The methods that start with materialized_ check the uses that are
343 // currently known given which functions are materialized. Be very careful
344 // when using them since you might not get all uses.
345 // The methods that don't start with materialized_ assert that modules is
346 // fully materialized.
347 void assertModuleIsMaterializedImpl() const;
348 // This indirection exists so we can keep assertModuleIsMaterializedImpl()
349 // around in release builds of Value.cpp to be linked with other code built
350 // in debug mode. But this avoids calling it in any of the release built code.
assertModuleIsMaterialized()351 void assertModuleIsMaterialized() const {
352 #ifndef NDEBUG
353 assertModuleIsMaterializedImpl();
354 #endif
355 }
356
use_empty()357 bool use_empty() const {
358 assertModuleIsMaterialized();
359 return UseList == nullptr;
360 }
361
materialized_use_empty()362 bool materialized_use_empty() const {
363 return UseList == nullptr;
364 }
365
366 using use_iterator = use_iterator_impl<Use>;
367 using const_use_iterator = use_iterator_impl<const Use>;
368
materialized_use_begin()369 use_iterator materialized_use_begin() { return use_iterator(UseList); }
materialized_use_begin()370 const_use_iterator materialized_use_begin() const {
371 return const_use_iterator(UseList);
372 }
use_begin()373 use_iterator use_begin() {
374 assertModuleIsMaterialized();
375 return materialized_use_begin();
376 }
use_begin()377 const_use_iterator use_begin() const {
378 assertModuleIsMaterialized();
379 return materialized_use_begin();
380 }
use_end()381 use_iterator use_end() { return use_iterator(); }
use_end()382 const_use_iterator use_end() const { return const_use_iterator(); }
materialized_uses()383 iterator_range<use_iterator> materialized_uses() {
384 return make_range(materialized_use_begin(), use_end());
385 }
materialized_uses()386 iterator_range<const_use_iterator> materialized_uses() const {
387 return make_range(materialized_use_begin(), use_end());
388 }
uses()389 iterator_range<use_iterator> uses() {
390 assertModuleIsMaterialized();
391 return materialized_uses();
392 }
uses()393 iterator_range<const_use_iterator> uses() const {
394 assertModuleIsMaterialized();
395 return materialized_uses();
396 }
397
user_empty()398 bool user_empty() const {
399 assertModuleIsMaterialized();
400 return UseList == nullptr;
401 }
402
403 using user_iterator = user_iterator_impl<User>;
404 using const_user_iterator = user_iterator_impl<const User>;
405
materialized_user_begin()406 user_iterator materialized_user_begin() { return user_iterator(UseList); }
materialized_user_begin()407 const_user_iterator materialized_user_begin() const {
408 return const_user_iterator(UseList);
409 }
user_begin()410 user_iterator user_begin() {
411 assertModuleIsMaterialized();
412 return materialized_user_begin();
413 }
user_begin()414 const_user_iterator user_begin() const {
415 assertModuleIsMaterialized();
416 return materialized_user_begin();
417 }
user_end()418 user_iterator user_end() { return user_iterator(); }
user_end()419 const_user_iterator user_end() const { return const_user_iterator(); }
user_back()420 User *user_back() {
421 assertModuleIsMaterialized();
422 return *materialized_user_begin();
423 }
user_back()424 const User *user_back() const {
425 assertModuleIsMaterialized();
426 return *materialized_user_begin();
427 }
materialized_users()428 iterator_range<user_iterator> materialized_users() {
429 return make_range(materialized_user_begin(), user_end());
430 }
materialized_users()431 iterator_range<const_user_iterator> materialized_users() const {
432 return make_range(materialized_user_begin(), user_end());
433 }
users()434 iterator_range<user_iterator> users() {
435 assertModuleIsMaterialized();
436 return materialized_users();
437 }
users()438 iterator_range<const_user_iterator> users() const {
439 assertModuleIsMaterialized();
440 return materialized_users();
441 }
442
443 /// Return true if there is exactly one use of this value.
444 ///
445 /// This is specialized because it is a common request and does not require
446 /// traversing the whole use list.
hasOneUse()447 bool hasOneUse() const { return hasSingleElement(uses()); }
448
449 /// Return true if this Value has exactly N uses.
450 bool hasNUses(unsigned N) const;
451
452 /// Return true if this value has N uses or more.
453 ///
454 /// This is logically equivalent to getNumUses() >= N.
455 bool hasNUsesOrMore(unsigned N) const;
456
457 /// Return true if there is exactly one user of this value.
458 ///
459 /// Note that this is not the same as "has one use". If a value has one use,
460 /// then there certainly is a single user. But if value has several uses,
461 /// it is possible that all uses are in a single user, or not.
462 ///
463 /// This check is potentially costly, since it requires traversing,
464 /// in the worst case, the whole use list of a value.
465 bool hasOneUser() const;
466
467 /// Return true if there is exactly one use of this value that cannot be
468 /// dropped.
469 ///
470 /// This is specialized because it is a common request and does not require
471 /// traversing the whole use list.
472 Use *getSingleUndroppableUse();
getSingleUndroppableUse()473 const Use *getSingleUndroppableUse() const {
474 return const_cast<Value *>(this)->getSingleUndroppableUse();
475 }
476
477 /// Return true if there this value.
478 ///
479 /// This is specialized because it is a common request and does not require
480 /// traversing the whole use list.
481 bool hasNUndroppableUses(unsigned N) const;
482
483 /// Return true if this value has N uses or more.
484 ///
485 /// This is logically equivalent to getNumUses() >= N.
486 bool hasNUndroppableUsesOrMore(unsigned N) const;
487
488 /// Remove every uses that can safely be removed.
489 ///
490 /// This will remove for example uses in llvm.assume.
491 /// This should be used when performing want to perform a tranformation but
492 /// some Droppable uses pervent it.
493 /// This function optionally takes a filter to only remove some droppable
494 /// uses.
495 void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop =
496 [](const Use *) { return true; });
497
498 /// Remove every use of this value in \p User that can safely be removed.
499 void dropDroppableUsesIn(User &Usr);
500
501 /// Remove the droppable use \p U.
502 static void dropDroppableUse(Use &U);
503
504 /// Check if this value is used in the specified basic block.
505 bool isUsedInBasicBlock(const BasicBlock *BB) const;
506
507 /// This method computes the number of uses of this Value.
508 ///
509 /// This is a linear time operation. Use hasOneUse, hasNUses, or
510 /// hasNUsesOrMore to check for specific values.
511 unsigned getNumUses() const;
512
513 /// This method should only be used by the Use class.
addUse(Use & U)514 void addUse(Use &U) { U.addToList(&UseList); }
515
516 /// Concrete subclass of this.
517 ///
518 /// An enumeration for keeping track of the concrete subclass of Value that
519 /// is actually instantiated. Values of this enumeration are kept in the
520 /// Value classes SubclassID field. They are used for concrete type
521 /// identification.
522 enum ValueTy {
523 #define HANDLE_VALUE(Name) Name##Val,
524 #include "llvm/IR/Value.def"
525
526 // Markers:
527 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
528 #include "llvm/IR/Value.def"
529 };
530
531 /// Return an ID for the concrete type of this object.
532 ///
533 /// This is used to implement the classof checks. This should not be used
534 /// for any other purpose, as the values may change as LLVM evolves. Also,
535 /// note that for instructions, the Instruction's opcode is added to
536 /// InstructionVal. So this means three things:
537 /// # there is no value with code InstructionVal (no opcode==0).
538 /// # there are more possible values for the value type than in ValueTy enum.
539 /// # the InstructionVal enumerator must be the highest valued enumerator in
540 /// the ValueTy enum.
getValueID()541 unsigned getValueID() const {
542 return SubclassID;
543 }
544
545 /// Return the raw optional flags value contained in this value.
546 ///
547 /// This should only be used when testing two Values for equivalence.
getRawSubclassOptionalData()548 unsigned getRawSubclassOptionalData() const {
549 return SubclassOptionalData;
550 }
551
552 /// Clear the optional flags contained in this value.
clearSubclassOptionalData()553 void clearSubclassOptionalData() {
554 SubclassOptionalData = 0;
555 }
556
557 /// Check the optional flags for equality.
hasSameSubclassOptionalData(const Value * V)558 bool hasSameSubclassOptionalData(const Value *V) const {
559 return SubclassOptionalData == V->SubclassOptionalData;
560 }
561
562 /// Return true if there is a value handle associated with this value.
hasValueHandle()563 bool hasValueHandle() const { return HasValueHandle; }
564
565 /// Return true if there is metadata referencing this value.
isUsedByMetadata()566 bool isUsedByMetadata() const { return IsUsedByMD; }
567
568 // Return true if this value is only transitively referenced by metadata.
569 bool isTransitiveUsedByMetadataOnly() const;
570
571 protected:
572 /// Get the current metadata attachments for the given kind, if any.
573 ///
574 /// These functions require that the value have at most a single attachment
575 /// of the given kind, and return \c nullptr if such an attachment is missing.
576 /// @{
577 MDNode *getMetadata(unsigned KindID) const;
578 MDNode *getMetadata(StringRef Kind) const;
579 /// @}
580
581 /// Appends all attachments with the given ID to \c MDs in insertion order.
582 /// If the Value has no attachments with the given ID, or if ID is invalid,
583 /// leaves MDs unchanged.
584 /// @{
585 void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const;
586 void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const;
587 /// @}
588
589 /// Appends all metadata attached to this value to \c MDs, sorting by
590 /// KindID. The first element of each pair returned is the KindID, the second
591 /// element is the metadata value. Attachments with the same ID appear in
592 /// insertion order.
593 void
594 getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const;
595
596 /// Return true if this value has any metadata attached to it.
hasMetadata()597 bool hasMetadata() const { return (bool)HasMetadata; }
598
599 /// Return true if this value has the given type of metadata attached.
600 /// @{
hasMetadata(unsigned KindID)601 bool hasMetadata(unsigned KindID) const {
602 return getMetadata(KindID) != nullptr;
603 }
hasMetadata(StringRef Kind)604 bool hasMetadata(StringRef Kind) const {
605 return getMetadata(Kind) != nullptr;
606 }
607 /// @}
608
609 /// Set a particular kind of metadata attachment.
610 ///
611 /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or
612 /// replacing it if it already exists.
613 /// @{
614 void setMetadata(unsigned KindID, MDNode *Node);
615 void setMetadata(StringRef Kind, MDNode *Node);
616 /// @}
617
618 /// Add a metadata attachment.
619 /// @{
620 void addMetadata(unsigned KindID, MDNode &MD);
621 void addMetadata(StringRef Kind, MDNode &MD);
622 /// @}
623
624 /// Erase all metadata attachments with the given kind.
625 ///
626 /// \returns true if any metadata was removed.
627 bool eraseMetadata(unsigned KindID);
628
629 /// Erase all metadata attached to this Value.
630 void clearMetadata();
631
632 public:
633 /// Return true if this value is a swifterror value.
634 ///
635 /// swifterror values can be either a function argument or an alloca with a
636 /// swifterror attribute.
637 bool isSwiftError() const;
638
639 /// Strip off pointer casts, all-zero GEPs and address space casts.
640 ///
641 /// Returns the original uncasted value. If this is called on a non-pointer
642 /// value, it returns 'this'.
643 const Value *stripPointerCasts() const;
stripPointerCasts()644 Value *stripPointerCasts() {
645 return const_cast<Value *>(
646 static_cast<const Value *>(this)->stripPointerCasts());
647 }
648
649 /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
650 ///
651 /// Returns the original uncasted value. If this is called on a non-pointer
652 /// value, it returns 'this'.
653 const Value *stripPointerCastsAndAliases() const;
stripPointerCastsAndAliases()654 Value *stripPointerCastsAndAliases() {
655 return const_cast<Value *>(
656 static_cast<const Value *>(this)->stripPointerCastsAndAliases());
657 }
658
659 /// Strip off pointer casts, all-zero GEPs and address space casts
660 /// but ensures the representation of the result stays the same.
661 ///
662 /// Returns the original uncasted value with the same representation. If this
663 /// is called on a non-pointer value, it returns 'this'.
664 const Value *stripPointerCastsSameRepresentation() const;
stripPointerCastsSameRepresentation()665 Value *stripPointerCastsSameRepresentation() {
666 return const_cast<Value *>(static_cast<const Value *>(this)
667 ->stripPointerCastsSameRepresentation());
668 }
669
670 /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and
671 /// invariant group info.
672 ///
673 /// Returns the original uncasted value. If this is called on a non-pointer
674 /// value, it returns 'this'. This function should be used only in
675 /// Alias analysis.
676 const Value *stripPointerCastsForAliasAnalysis() const;
stripPointerCastsForAliasAnalysis()677 Value *stripPointerCastsForAliasAnalysis() {
678 return const_cast<Value *>(static_cast<const Value *>(this)
679 ->stripPointerCastsForAliasAnalysis());
680 }
681
682 /// Strip off pointer casts and all-constant inbounds GEPs.
683 ///
684 /// Returns the original pointer value. If this is called on a non-pointer
685 /// value, it returns 'this'.
686 const Value *stripInBoundsConstantOffsets() const;
stripInBoundsConstantOffsets()687 Value *stripInBoundsConstantOffsets() {
688 return const_cast<Value *>(
689 static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
690 }
691
692 /// Accumulate the constant offset this value has compared to a base pointer.
693 /// Only 'getelementptr' instructions (GEPs) are accumulated but other
694 /// instructions, e.g., casts, are stripped away as well.
695 /// The accumulated constant offset is added to \p Offset and the base
696 /// pointer is returned.
697 ///
698 /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
699 /// the address space of 'this' pointer value, e.g., use
700 /// DataLayout::getIndexTypeSizeInBits(Ty).
701 ///
702 /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and
703 /// accumulated even if the GEP is not "inbounds".
704 ///
705 /// If \p ExternalAnalysis is provided it will be used to calculate a offset
706 /// when a operand of GEP is not constant.
707 /// For example, for a value \p ExternalAnalysis might try to calculate a
708 /// lower bound. If \p ExternalAnalysis is successful, it should return true.
709 ///
710 /// If this is called on a non-pointer value, it returns 'this' and the
711 /// \p Offset is not modified.
712 ///
713 /// Note that this function will never return a nullptr. It will also never
714 /// manipulate the \p Offset in a way that would not match the difference
715 /// between the underlying value and the returned one. Thus, if no constant
716 /// offset was found, the returned value is the underlying one and \p Offset
717 /// is unchanged.
718 const Value *stripAndAccumulateConstantOffsets(
719 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
720 function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
721 nullptr) const;
stripAndAccumulateConstantOffsets(const DataLayout & DL,APInt & Offset,bool AllowNonInbounds)722 Value *stripAndAccumulateConstantOffsets(const DataLayout &DL, APInt &Offset,
723 bool AllowNonInbounds) {
724 return const_cast<Value *>(
725 static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
726 DL, Offset, AllowNonInbounds));
727 }
728
729 /// This is a wrapper around stripAndAccumulateConstantOffsets with the
730 /// in-bounds requirement set to false.
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)731 const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
732 APInt &Offset) const {
733 return stripAndAccumulateConstantOffsets(DL, Offset,
734 /* AllowNonInbounds */ false);
735 }
stripAndAccumulateInBoundsConstantOffsets(const DataLayout & DL,APInt & Offset)736 Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
737 APInt &Offset) {
738 return stripAndAccumulateConstantOffsets(DL, Offset,
739 /* AllowNonInbounds */ false);
740 }
741
742 /// Strip off pointer casts and inbounds GEPs.
743 ///
744 /// Returns the original pointer value. If this is called on a non-pointer
745 /// value, it returns 'this'.
746 const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
747 [](const Value *) {}) const;
748 inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
749 [](const Value *) {}) {
750 return const_cast<Value *>(
751 static_cast<const Value *>(this)->stripInBoundsOffsets(Func));
752 }
753
754 /// Return true if the memory object referred to by V can by freed in the
755 /// scope for which the SSA value defining the allocation is statically
756 /// defined. E.g. deallocation after the static scope of a value does not
757 /// count, but a deallocation before that does.
758 bool canBeFreed() const;
759
760 /// Returns the number of bytes known to be dereferenceable for the
761 /// pointer value.
762 ///
763 /// If CanBeNull is set by this function the pointer can either be null or be
764 /// dereferenceable up to the returned number of bytes.
765 ///
766 /// IF CanBeFreed is true, the pointer is known to be dereferenceable at
767 /// point of definition only. Caller must prove that allocation is not
768 /// deallocated between point of definition and use.
769 uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
770 bool &CanBeNull,
771 bool &CanBeFreed) const;
772
773 /// Returns an alignment of the pointer value.
774 ///
775 /// Returns an alignment which is either specified explicitly, e.g. via
776 /// align attribute of a function argument, or guaranteed by DataLayout.
777 Align getPointerAlignment(const DataLayout &DL) const;
778
779 /// Translate PHI node to its predecessor from the given basic block.
780 ///
781 /// If this value is a PHI node with CurBB as its parent, return the value in
782 /// the PHI node corresponding to PredBB. If not, return ourself. This is
783 /// useful if you want to know the value something has in a predecessor
784 /// block.
785 const Value *DoPHITranslation(const BasicBlock *CurBB,
786 const BasicBlock *PredBB) const;
DoPHITranslation(const BasicBlock * CurBB,const BasicBlock * PredBB)787 Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
788 return const_cast<Value *>(
789 static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
790 }
791
792 /// The maximum alignment for instructions.
793 ///
794 /// This is the greatest alignment value supported by load, store, and alloca
795 /// instructions, and global values.
796 static const unsigned MaxAlignmentExponent = 29;
797 static const unsigned MaximumAlignment = 1u << MaxAlignmentExponent;
798
799 /// Mutate the type of this Value to be of the specified type.
800 ///
801 /// Note that this is an extremely dangerous operation which can create
802 /// completely invalid IR very easily. It is strongly recommended that you
803 /// recreate IR objects with the right types instead of mutating them in
804 /// place.
mutateType(Type * Ty)805 void mutateType(Type *Ty) {
806 VTy = Ty;
807 }
808
809 /// Sort the use-list.
810 ///
811 /// Sorts the Value's use-list by Cmp using a stable mergesort. Cmp is
812 /// expected to compare two \a Use references.
813 template <class Compare> void sortUseList(Compare Cmp);
814
815 /// Reverse the use-list.
816 void reverseUseList();
817
818 private:
819 /// Merge two lists together.
820 ///
821 /// Merges \c L and \c R using \c Cmp. To enable stable sorts, always pushes
822 /// "equal" items from L before items from R.
823 ///
824 /// \return the first element in the list.
825 ///
826 /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
827 template <class Compare>
mergeUseLists(Use * L,Use * R,Compare Cmp)828 static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
829 Use *Merged;
830 Use **Next = &Merged;
831
832 while (true) {
833 if (!L) {
834 *Next = R;
835 break;
836 }
837 if (!R) {
838 *Next = L;
839 break;
840 }
841 if (Cmp(*R, *L)) {
842 *Next = R;
843 Next = &R->Next;
844 R = R->Next;
845 } else {
846 *Next = L;
847 Next = &L->Next;
848 L = L->Next;
849 }
850 }
851
852 return Merged;
853 }
854
855 protected:
getSubclassDataFromValue()856 unsigned short getSubclassDataFromValue() const { return SubclassData; }
setValueSubclassData(unsigned short D)857 void setValueSubclassData(unsigned short D) { SubclassData = D; }
858 };
859
operatorValueDeleter860 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
861
862 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
863 /// Those don't work because Value and Instruction's destructors are protected,
864 /// aren't virtual, and won't destroy the complete object.
865 using unique_value = std::unique_ptr<Value, ValueDeleter>;
866
867 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
868 V.print(OS);
869 return OS;
870 }
871
set(Value * V)872 void Use::set(Value *V) {
873 if (Val) removeFromList();
874 Val = V;
875 if (V) V->addUse(*this);
876 }
877
878 Value *Use::operator=(Value *RHS) {
879 set(RHS);
880 return RHS;
881 }
882
883 const Use &Use::operator=(const Use &RHS) {
884 set(RHS.Val);
885 return *this;
886 }
887
sortUseList(Compare Cmp)888 template <class Compare> void Value::sortUseList(Compare Cmp) {
889 if (!UseList || !UseList->Next)
890 // No need to sort 0 or 1 uses.
891 return;
892
893 // Note: this function completely ignores Prev pointers until the end when
894 // they're fixed en masse.
895
896 // Create a binomial vector of sorted lists, visiting uses one at a time and
897 // merging lists as necessary.
898 const unsigned MaxSlots = 32;
899 Use *Slots[MaxSlots];
900
901 // Collect the first use, turning it into a single-item list.
902 Use *Next = UseList->Next;
903 UseList->Next = nullptr;
904 unsigned NumSlots = 1;
905 Slots[0] = UseList;
906
907 // Collect all but the last use.
908 while (Next->Next) {
909 Use *Current = Next;
910 Next = Current->Next;
911
912 // Turn Current into a single-item list.
913 Current->Next = nullptr;
914
915 // Save Current in the first available slot, merging on collisions.
916 unsigned I;
917 for (I = 0; I < NumSlots; ++I) {
918 if (!Slots[I])
919 break;
920
921 // Merge two lists, doubling the size of Current and emptying slot I.
922 //
923 // Since the uses in Slots[I] originally preceded those in Current, send
924 // Slots[I] in as the left parameter to maintain a stable sort.
925 Current = mergeUseLists(Slots[I], Current, Cmp);
926 Slots[I] = nullptr;
927 }
928 // Check if this is a new slot.
929 if (I == NumSlots) {
930 ++NumSlots;
931 assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
932 }
933
934 // Found an open slot.
935 Slots[I] = Current;
936 }
937
938 // Merge all the lists together.
939 assert(Next && "Expected one more Use");
940 assert(!Next->Next && "Expected only one Use");
941 UseList = Next;
942 for (unsigned I = 0; I < NumSlots; ++I)
943 if (Slots[I])
944 // Since the uses in Slots[I] originally preceded those in UseList, send
945 // Slots[I] in as the left parameter to maintain a stable sort.
946 UseList = mergeUseLists(Slots[I], UseList, Cmp);
947
948 // Fix the Prev pointers.
949 for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
950 I->Prev = Prev;
951 Prev = &I->Next;
952 }
953 }
954
955 // isa - Provide some specializations of isa so that we don't have to include
956 // the subtype header files to test to see if the value is a subclass...
957 //
958 template <> struct isa_impl<Constant, Value> {
959 static inline bool doit(const Value &Val) {
960 static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
961 return Val.getValueID() <= Value::ConstantLastVal;
962 }
963 };
964
965 template <> struct isa_impl<ConstantData, Value> {
966 static inline bool doit(const Value &Val) {
967 return Val.getValueID() >= Value::ConstantDataFirstVal &&
968 Val.getValueID() <= Value::ConstantDataLastVal;
969 }
970 };
971
972 template <> struct isa_impl<ConstantAggregate, Value> {
973 static inline bool doit(const Value &Val) {
974 return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
975 Val.getValueID() <= Value::ConstantAggregateLastVal;
976 }
977 };
978
979 template <> struct isa_impl<Argument, Value> {
980 static inline bool doit (const Value &Val) {
981 return Val.getValueID() == Value::ArgumentVal;
982 }
983 };
984
985 template <> struct isa_impl<InlineAsm, Value> {
986 static inline bool doit(const Value &Val) {
987 return Val.getValueID() == Value::InlineAsmVal;
988 }
989 };
990
991 template <> struct isa_impl<Instruction, Value> {
992 static inline bool doit(const Value &Val) {
993 return Val.getValueID() >= Value::InstructionVal;
994 }
995 };
996
997 template <> struct isa_impl<BasicBlock, Value> {
998 static inline bool doit(const Value &Val) {
999 return Val.getValueID() == Value::BasicBlockVal;
1000 }
1001 };
1002
1003 template <> struct isa_impl<Function, Value> {
1004 static inline bool doit(const Value &Val) {
1005 return Val.getValueID() == Value::FunctionVal;
1006 }
1007 };
1008
1009 template <> struct isa_impl<GlobalVariable, Value> {
1010 static inline bool doit(const Value &Val) {
1011 return Val.getValueID() == Value::GlobalVariableVal;
1012 }
1013 };
1014
1015 template <> struct isa_impl<GlobalAlias, Value> {
1016 static inline bool doit(const Value &Val) {
1017 return Val.getValueID() == Value::GlobalAliasVal;
1018 }
1019 };
1020
1021 template <> struct isa_impl<GlobalIFunc, Value> {
1022 static inline bool doit(const Value &Val) {
1023 return Val.getValueID() == Value::GlobalIFuncVal;
1024 }
1025 };
1026
1027 template <> struct isa_impl<GlobalIndirectSymbol, Value> {
1028 static inline bool doit(const Value &Val) {
1029 return isa<GlobalAlias>(Val) || isa<GlobalIFunc>(Val);
1030 }
1031 };
1032
1033 template <> struct isa_impl<GlobalValue, Value> {
1034 static inline bool doit(const Value &Val) {
1035 return isa<GlobalObject>(Val) || isa<GlobalIndirectSymbol>(Val);
1036 }
1037 };
1038
1039 template <> struct isa_impl<GlobalObject, Value> {
1040 static inline bool doit(const Value &Val) {
1041 return isa<GlobalVariable>(Val) || isa<Function>(Val);
1042 }
1043 };
1044
1045 // Create wrappers for C Binding types (see CBindingWrapping.h).
1046 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
1047
1048 // Specialized opaque value conversions.
1049 inline Value **unwrap(LLVMValueRef *Vals) {
1050 return reinterpret_cast<Value**>(Vals);
1051 }
1052
1053 template<typename T>
1054 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
1055 #ifndef NDEBUG
1056 for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
1057 unwrap<T>(*I); // For side effect of calling assert on invalid usage.
1058 #endif
1059 (void)Length;
1060 return reinterpret_cast<T**>(Vals);
1061 }
1062
1063 inline LLVMValueRef *wrap(const Value **Vals) {
1064 return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
1065 }
1066
1067 } // end namespace llvm
1068
1069 #endif // LLVM_IR_VALUE_H
1070