xref: /llvm-project/llvm/include/llvm/IR/Value.h (revision 1b12ad124ec9eb83ca7d1511b12e1dc3e1c5e06a)
1 //===- llvm/Value.h - Definition of the Value class -------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file declares the Value class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #ifndef LLVM_IR_VALUE_H
14 #define LLVM_IR_VALUE_H
15 
16 #include "llvm-c/Types.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/IR/Use.h"
21 #include "llvm/Support/Alignment.h"
22 #include "llvm/Support/CBindingWrapping.h"
23 #include "llvm/Support/Casting.h"
24 #include <cassert>
25 #include <iterator>
26 #include <memory>
27 
28 namespace llvm {
29 
30 class APInt;
31 class Argument;
32 class BasicBlock;
33 class Constant;
34 class ConstantData;
35 class ConstantAggregate;
36 class DataLayout;
37 class Function;
38 class GlobalAlias;
39 class GlobalIFunc;
40 class GlobalObject;
41 class GlobalValue;
42 class GlobalVariable;
43 class InlineAsm;
44 class Instruction;
45 class LLVMContext;
46 class MDNode;
47 class Module;
48 class ModuleSlotTracker;
49 class raw_ostream;
50 template<typename ValueTy> class StringMapEntry;
51 class Twine;
52 class Type;
53 class User;
54 
55 using ValueName = StringMapEntry<Value *>;
56 
57 //===----------------------------------------------------------------------===//
58 //                                 Value Class
59 //===----------------------------------------------------------------------===//
60 
61 /// LLVM Value Representation
62 ///
63 /// This is a very important LLVM class. It is the base class of all values
64 /// computed by a program that may be used as operands to other values. Value is
65 /// the super class of other important classes such as Instruction and Function.
66 /// All Values have a Type. Type is not a subclass of Value. Some values can
67 /// have a name and they belong to some Module.  Setting the name on the Value
68 /// automatically updates the module's symbol table.
69 ///
70 /// Every value has a "use list" that keeps track of which other Values are
71 /// using this Value.  A Value can also have an arbitrary number of ValueHandle
72 /// objects that watch it and listen to RAUW and Destroy events.  See
73 /// llvm/IR/ValueHandle.h for details.
74 class Value {
75   const unsigned char SubclassID;   // Subclass identifier (for isa/dyn_cast)
76   unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
77 
78 protected:
79   /// Hold subclass data that can be dropped.
80   ///
81   /// This member is similar to SubclassData, however it is for holding
82   /// information which may be used to aid optimization, but which may be
83   /// cleared to zero without affecting conservative interpretation.
84   unsigned char SubclassOptionalData : 7;
85 
86 private:
87   /// Hold arbitrary subclass data.
88   ///
89   /// This member is defined by this class, but is not used for anything.
90   /// Subclasses can use it to hold whatever state they find useful.  This
91   /// field is initialized to zero by the ctor.
92   unsigned short SubclassData;
93 
94 protected:
95   /// The number of operands in the subclass.
96   ///
97   /// This member is defined by this class, but not used for anything.
98   /// Subclasses can use it to store their number of operands, if they have
99   /// any.
100   ///
101   /// This is stored here to save space in User on 64-bit hosts.  Since most
102   /// instances of Value have operands, 32-bit hosts aren't significantly
103   /// affected.
104   ///
105   /// Note, this should *NOT* be used directly by any class other than User.
106   /// User uses this value to find the Use list.
107   enum : unsigned { NumUserOperandsBits = 27 };
108   unsigned NumUserOperands : NumUserOperandsBits;
109 
110   // Use the same type as the bitfield above so that MSVC will pack them.
111   unsigned IsUsedByMD : 1;
112   unsigned HasName : 1;
113   unsigned HasMetadata : 1; // Has metadata attached to this?
114   unsigned HasHungOffUses : 1;
115   unsigned HasDescriptor : 1;
116 
117 private:
118   Type *VTy;
119   Use *UseList;
120 
121   friend class ValueAsMetadata; // Allow access to IsUsedByMD.
122   friend class ValueHandleBase; // Allow access to HasValueHandle.
123 
124   template <typename UseT> // UseT == 'Use' or 'const Use'
125   class use_iterator_impl {
126     friend class Value;
127 
128     UseT *U;
129 
130     explicit use_iterator_impl(UseT *u) : U(u) {}
131 
132   public:
133     using iterator_category = std::forward_iterator_tag;
134     using value_type = UseT;
135     using difference_type = std::ptrdiff_t;
136     using pointer = value_type *;
137     using reference = value_type &;
138 
139     use_iterator_impl() : U() {}
140 
141     bool operator==(const use_iterator_impl &x) const { return U == x.U; }
142     bool operator!=(const use_iterator_impl &x) const { return !operator==(x); }
143 
144     use_iterator_impl &operator++() { // Preincrement
145       assert(U && "Cannot increment end iterator!");
146       U = U->getNext();
147       return *this;
148     }
149 
150     use_iterator_impl operator++(int) { // Postincrement
151       auto tmp = *this;
152       ++*this;
153       return tmp;
154     }
155 
156     UseT &operator*() const {
157       assert(U && "Cannot dereference end iterator!");
158       return *U;
159     }
160 
161     UseT *operator->() const { return &operator*(); }
162 
163     operator use_iterator_impl<const UseT>() const {
164       return use_iterator_impl<const UseT>(U);
165     }
166   };
167 
168   template <typename UserTy> // UserTy == 'User' or 'const User'
169   class user_iterator_impl {
170     use_iterator_impl<Use> UI;
171     explicit user_iterator_impl(Use *U) : UI(U) {}
172     friend class Value;
173 
174   public:
175     using iterator_category = std::forward_iterator_tag;
176     using value_type = UserTy *;
177     using difference_type = std::ptrdiff_t;
178     using pointer = value_type *;
179     using reference = value_type &;
180 
181     user_iterator_impl() = default;
182 
183     bool operator==(const user_iterator_impl &x) const { return UI == x.UI; }
184     bool operator!=(const user_iterator_impl &x) const { return !operator==(x); }
185 
186     /// Returns true if this iterator is equal to user_end() on the value.
187     bool atEnd() const { return *this == user_iterator_impl(); }
188 
189     user_iterator_impl &operator++() { // Preincrement
190       ++UI;
191       return *this;
192     }
193 
194     user_iterator_impl operator++(int) { // Postincrement
195       auto tmp = *this;
196       ++*this;
197       return tmp;
198     }
199 
200     // Retrieve a pointer to the current User.
201     UserTy *operator*() const {
202       return UI->getUser();
203     }
204 
205     UserTy *operator->() const { return operator*(); }
206 
207     operator user_iterator_impl<const UserTy>() const {
208       return user_iterator_impl<const UserTy>(*UI);
209     }
210 
211     Use &getUse() const { return *UI; }
212   };
213 
214 protected:
215   Value(Type *Ty, unsigned scid);
216 
217   /// Value's destructor should be virtual by design, but that would require
218   /// that Value and all of its subclasses have a vtable that effectively
219   /// duplicates the information in the value ID. As a size optimization, the
220   /// destructor has been protected, and the caller should manually call
221   /// deleteValue.
222   ~Value(); // Use deleteValue() to delete a generic Value.
223 
224 public:
225   Value(const Value &) = delete;
226   Value &operator=(const Value &) = delete;
227 
228   /// Delete a pointer to a generic Value.
229   void deleteValue();
230 
231   /// Support for debugging, callable in GDB: V->dump()
232   void dump() const;
233 
234   /// Implement operator<< on Value.
235   /// @{
236   void print(raw_ostream &O, bool IsForDebug = false) const;
237   void print(raw_ostream &O, ModuleSlotTracker &MST,
238              bool IsForDebug = false) const;
239   /// @}
240 
241   /// Print the name of this Value out to the specified raw_ostream.
242   ///
243   /// This is useful when you just want to print 'int %reg126', not the
244   /// instruction that generated it. If you specify a Module for context, then
245   /// even constants get pretty-printed; for example, the type of a null
246   /// pointer is printed symbolically.
247   /// @{
248   void printAsOperand(raw_ostream &O, bool PrintType = true,
249                       const Module *M = nullptr) const;
250   void printAsOperand(raw_ostream &O, bool PrintType,
251                       ModuleSlotTracker &MST) const;
252   /// @}
253 
254   /// All values are typed, get the type of this value.
255   Type *getType() const { return VTy; }
256 
257   /// All values hold a context through their type.
258   LLVMContext &getContext() const;
259 
260   // All values can potentially be named.
261   bool hasName() const { return HasName; }
262   ValueName *getValueName() const;
263   void setValueName(ValueName *VN);
264 
265 private:
266   void destroyValueName();
267   enum class ReplaceMetadataUses { No, Yes };
268   void doRAUW(Value *New, ReplaceMetadataUses);
269   void setNameImpl(const Twine &Name);
270 
271 public:
272   /// Return a constant reference to the value's name.
273   ///
274   /// This guaranteed to return the same reference as long as the value is not
275   /// modified.  If the value has a name, this does a hashtable lookup, so it's
276   /// not free.
277   StringRef getName() const;
278 
279   /// Change the name of the value.
280   ///
281   /// Choose a new unique name if the provided name is taken.
282   ///
283   /// \param Name The new name; or "" if the value's name should be removed.
284   void setName(const Twine &Name);
285 
286   /// Transfer the name from V to this value.
287   ///
288   /// After taking V's name, sets V's name to empty.
289   ///
290   /// \note It is an error to call V->takeName(V).
291   void takeName(Value *V);
292 
293 #ifndef NDEBUG
294   std::string getNameOrAsOperand() const;
295 #endif
296 
297   /// Change all uses of this to point to a new Value.
298   ///
299   /// Go through the uses list for this definition and make each use point to
300   /// "V" instead of "this".  After this completes, 'this's use list is
301   /// guaranteed to be empty.
302   void replaceAllUsesWith(Value *V);
303 
304   /// Change non-metadata uses of this to point to a new Value.
305   ///
306   /// Go through the uses list for this definition and make each use point to
307   /// "V" instead of "this". This function skips metadata entries in the list.
308   void replaceNonMetadataUsesWith(Value *V);
309 
310   /// Go through the uses list for this definition and make each use point
311   /// to "V" if the callback ShouldReplace returns true for the given Use.
312   /// Unlike replaceAllUsesWith() this function does not support basic block
313   /// values.
314   void replaceUsesWithIf(Value *New,
315                          llvm::function_ref<bool(Use &U)> ShouldReplace);
316 
317   /// replaceUsesOutsideBlock - Go through the uses list for this definition and
318   /// make each use point to "V" instead of "this" when the use is outside the
319   /// block. 'This's use list is expected to have at least one element.
320   /// Unlike replaceAllUsesWith() this function does not support basic block
321   /// values.
322   void replaceUsesOutsideBlock(Value *V, BasicBlock *BB);
323 
324   //----------------------------------------------------------------------
325   // Methods for handling the chain of uses of this Value.
326   //
327   // Materializing a function can introduce new uses, so these methods come in
328   // two variants:
329   // The methods that start with materialized_ check the uses that are
330   // currently known given which functions are materialized. Be very careful
331   // when using them since you might not get all uses.
332   // The methods that don't start with materialized_ assert that modules is
333   // fully materialized.
334   void assertModuleIsMaterializedImpl() const;
335   // This indirection exists so we can keep assertModuleIsMaterializedImpl()
336   // around in release builds of Value.cpp to be linked with other code built
337   // in debug mode. But this avoids calling it in any of the release built code.
338   void assertModuleIsMaterialized() const {
339 #ifndef NDEBUG
340     assertModuleIsMaterializedImpl();
341 #endif
342   }
343 
344   bool use_empty() const {
345     assertModuleIsMaterialized();
346     return UseList == nullptr;
347   }
348 
349   bool materialized_use_empty() const {
350     return UseList == nullptr;
351   }
352 
353   using use_iterator = use_iterator_impl<Use>;
354   using const_use_iterator = use_iterator_impl<const Use>;
355 
356   use_iterator materialized_use_begin() { return use_iterator(UseList); }
357   const_use_iterator materialized_use_begin() const {
358     return const_use_iterator(UseList);
359   }
360   use_iterator use_begin() {
361     assertModuleIsMaterialized();
362     return materialized_use_begin();
363   }
364   const_use_iterator use_begin() const {
365     assertModuleIsMaterialized();
366     return materialized_use_begin();
367   }
368   use_iterator use_end() { return use_iterator(); }
369   const_use_iterator use_end() const { return const_use_iterator(); }
370   iterator_range<use_iterator> materialized_uses() {
371     return make_range(materialized_use_begin(), use_end());
372   }
373   iterator_range<const_use_iterator> materialized_uses() const {
374     return make_range(materialized_use_begin(), use_end());
375   }
376   iterator_range<use_iterator> uses() {
377     assertModuleIsMaterialized();
378     return materialized_uses();
379   }
380   iterator_range<const_use_iterator> uses() const {
381     assertModuleIsMaterialized();
382     return materialized_uses();
383   }
384 
385   bool user_empty() const {
386     assertModuleIsMaterialized();
387     return UseList == nullptr;
388   }
389 
390   using user_iterator = user_iterator_impl<User>;
391   using const_user_iterator = user_iterator_impl<const User>;
392 
393   user_iterator materialized_user_begin() { return user_iterator(UseList); }
394   const_user_iterator materialized_user_begin() const {
395     return const_user_iterator(UseList);
396   }
397   user_iterator user_begin() {
398     assertModuleIsMaterialized();
399     return materialized_user_begin();
400   }
401   const_user_iterator user_begin() const {
402     assertModuleIsMaterialized();
403     return materialized_user_begin();
404   }
405   user_iterator user_end() { return user_iterator(); }
406   const_user_iterator user_end() const { return const_user_iterator(); }
407   User *user_back() {
408     assertModuleIsMaterialized();
409     return *materialized_user_begin();
410   }
411   const User *user_back() const {
412     assertModuleIsMaterialized();
413     return *materialized_user_begin();
414   }
415   iterator_range<user_iterator> materialized_users() {
416     return make_range(materialized_user_begin(), user_end());
417   }
418   iterator_range<const_user_iterator> materialized_users() const {
419     return make_range(materialized_user_begin(), user_end());
420   }
421   iterator_range<user_iterator> users() {
422     assertModuleIsMaterialized();
423     return materialized_users();
424   }
425   iterator_range<const_user_iterator> users() const {
426     assertModuleIsMaterialized();
427     return materialized_users();
428   }
429 
430   /// Return true if there is exactly one use of this value.
431   ///
432   /// This is specialized because it is a common request and does not require
433   /// traversing the whole use list.
434   bool hasOneUse() const { return hasSingleElement(uses()); }
435 
436   /// Return true if this Value has exactly N uses.
437   bool hasNUses(unsigned N) const;
438 
439   /// Return true if this value has N uses or more.
440   ///
441   /// This is logically equivalent to getNumUses() >= N.
442   bool hasNUsesOrMore(unsigned N) const;
443 
444   /// Return true if there is exactly one user of this value.
445   ///
446   /// Note that this is not the same as "has one use". If a value has one use,
447   /// then there certainly is a single user. But if value has several uses,
448   /// it is possible that all uses are in a single user, or not.
449   ///
450   /// This check is potentially costly, since it requires traversing,
451   /// in the worst case, the whole use list of a value.
452   bool hasOneUser() const;
453 
454   /// Return true if there is exactly one use of this value that cannot be
455   /// dropped.
456   Use *getSingleUndroppableUse();
457   const Use *getSingleUndroppableUse() const {
458     return const_cast<Value *>(this)->getSingleUndroppableUse();
459   }
460 
461   /// Return true if there is exactly one unique user of this value that cannot be
462   /// dropped (that user can have multiple uses of this value).
463   User *getUniqueUndroppableUser();
464   const User *getUniqueUndroppableUser() const {
465     return const_cast<Value *>(this)->getUniqueUndroppableUser();
466   }
467 
468   /// Return true if there this value.
469   ///
470   /// This is specialized because it is a common request and does not require
471   /// traversing the whole use list.
472   bool hasNUndroppableUses(unsigned N) const;
473 
474   /// Return true if this value has N uses or more.
475   ///
476   /// This is logically equivalent to getNumUses() >= N.
477   bool hasNUndroppableUsesOrMore(unsigned N) const;
478 
479   /// Remove every uses that can safely be removed.
480   ///
481   /// This will remove for example uses in llvm.assume.
482   /// This should be used when performing want to perform a tranformation but
483   /// some Droppable uses pervent it.
484   /// This function optionally takes a filter to only remove some droppable
485   /// uses.
486   void dropDroppableUses(llvm::function_ref<bool(const Use *)> ShouldDrop =
487                              [](const Use *) { return true; });
488 
489   /// Remove every use of this value in \p User that can safely be removed.
490   void dropDroppableUsesIn(User &Usr);
491 
492   /// Remove the droppable use \p U.
493   static void dropDroppableUse(Use &U);
494 
495   /// Check if this value is used in the specified basic block.
496   bool isUsedInBasicBlock(const BasicBlock *BB) const;
497 
498   /// This method computes the number of uses of this Value.
499   ///
500   /// This is a linear time operation.  Use hasOneUse, hasNUses, or
501   /// hasNUsesOrMore to check for specific values.
502   unsigned getNumUses() const;
503 
504   /// This method should only be used by the Use class.
505   void addUse(Use &U) { U.addToList(&UseList); }
506 
507   /// Concrete subclass of this.
508   ///
509   /// An enumeration for keeping track of the concrete subclass of Value that
510   /// is actually instantiated. Values of this enumeration are kept in the
511   /// Value classes SubclassID field. They are used for concrete type
512   /// identification.
513   enum ValueTy {
514 #define HANDLE_VALUE(Name) Name##Val,
515 #include "llvm/IR/Value.def"
516 
517     // Markers:
518 #define HANDLE_CONSTANT_MARKER(Marker, Constant) Marker = Constant##Val,
519 #include "llvm/IR/Value.def"
520   };
521 
522   /// Return an ID for the concrete type of this object.
523   ///
524   /// This is used to implement the classof checks.  This should not be used
525   /// for any other purpose, as the values may change as LLVM evolves.  Also,
526   /// note that for instructions, the Instruction's opcode is added to
527   /// InstructionVal. So this means three things:
528   /// # there is no value with code InstructionVal (no opcode==0).
529   /// # there are more possible values for the value type than in ValueTy enum.
530   /// # the InstructionVal enumerator must be the highest valued enumerator in
531   ///   the ValueTy enum.
532   unsigned getValueID() const {
533     return SubclassID;
534   }
535 
536   /// Return the raw optional flags value contained in this value.
537   ///
538   /// This should only be used when testing two Values for equivalence.
539   unsigned getRawSubclassOptionalData() const {
540     return SubclassOptionalData;
541   }
542 
543   /// Clear the optional flags contained in this value.
544   void clearSubclassOptionalData() {
545     SubclassOptionalData = 0;
546   }
547 
548   /// Check the optional flags for equality.
549   bool hasSameSubclassOptionalData(const Value *V) const {
550     return SubclassOptionalData == V->SubclassOptionalData;
551   }
552 
553   /// Return true if there is a value handle associated with this value.
554   bool hasValueHandle() const { return HasValueHandle; }
555 
556   /// Return true if there is metadata referencing this value.
557   bool isUsedByMetadata() const { return IsUsedByMD; }
558 
559 protected:
560   /// Get the current metadata attachments for the given kind, if any.
561   ///
562   /// These functions require that the value have at most a single attachment
563   /// of the given kind, and return \c nullptr if such an attachment is missing.
564   /// @{
565   MDNode *getMetadata(unsigned KindID) const {
566     if (!HasMetadata)
567       return nullptr;
568     return getMetadataImpl(KindID);
569   }
570   MDNode *getMetadata(StringRef Kind) const;
571   /// @}
572 
573   /// Appends all attachments with the given ID to \c MDs in insertion order.
574   /// If the Value has no attachments with the given ID, or if ID is invalid,
575   /// leaves MDs unchanged.
576   /// @{
577   void getMetadata(unsigned KindID, SmallVectorImpl<MDNode *> &MDs) const;
578   void getMetadata(StringRef Kind, SmallVectorImpl<MDNode *> &MDs) const;
579   /// @}
580 
581   /// Appends all metadata attached to this value to \c MDs, sorting by
582   /// KindID. The first element of each pair returned is the KindID, the second
583   /// element is the metadata value. Attachments with the same ID appear in
584   /// insertion order.
585   void
586   getAllMetadata(SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const;
587 
588   /// Return true if this value has any metadata attached to it.
589   bool hasMetadata() const { return (bool)HasMetadata; }
590 
591   /// Return true if this value has the given type of metadata attached.
592   /// @{
593   bool hasMetadata(unsigned KindID) const {
594     return getMetadata(KindID) != nullptr;
595   }
596   bool hasMetadata(StringRef Kind) const {
597     return getMetadata(Kind) != nullptr;
598   }
599   /// @}
600 
601   /// Set a particular kind of metadata attachment.
602   ///
603   /// Sets the given attachment to \c MD, erasing it if \c MD is \c nullptr or
604   /// replacing it if it already exists.
605   /// @{
606   void setMetadata(unsigned KindID, MDNode *Node);
607   void setMetadata(StringRef Kind, MDNode *Node);
608   /// @}
609 
610   /// Add a metadata attachment.
611   /// @{
612   void addMetadata(unsigned KindID, MDNode &MD);
613   void addMetadata(StringRef Kind, MDNode &MD);
614   /// @}
615 
616   /// Erase all metadata attachments with the given kind.
617   ///
618   /// \returns true if any metadata was removed.
619   bool eraseMetadata(unsigned KindID);
620 
621   /// Erase all metadata attachments matching the given predicate.
622   void eraseMetadataIf(function_ref<bool(unsigned, MDNode *)> Pred);
623 
624   /// Erase all metadata attached to this Value.
625   void clearMetadata();
626 
627   /// Get metadata for the given kind, if any.
628   /// This is an internal function that must only be called after
629   /// checking that `hasMetadata()` returns true.
630   MDNode *getMetadataImpl(unsigned KindID) const;
631 
632 public:
633   /// Return true if this value is a swifterror value.
634   ///
635   /// swifterror values can be either a function argument or an alloca with a
636   /// swifterror attribute.
637   bool isSwiftError() const;
638 
639   /// Strip off pointer casts, all-zero GEPs and address space casts.
640   ///
641   /// Returns the original uncasted value.  If this is called on a non-pointer
642   /// value, it returns 'this'.
643   const Value *stripPointerCasts() const;
644   Value *stripPointerCasts() {
645     return const_cast<Value *>(
646         static_cast<const Value *>(this)->stripPointerCasts());
647   }
648 
649   /// Strip off pointer casts, all-zero GEPs, address space casts, and aliases.
650   ///
651   /// Returns the original uncasted value.  If this is called on a non-pointer
652   /// value, it returns 'this'.
653   const Value *stripPointerCastsAndAliases() const;
654   Value *stripPointerCastsAndAliases() {
655     return const_cast<Value *>(
656         static_cast<const Value *>(this)->stripPointerCastsAndAliases());
657   }
658 
659   /// Strip off pointer casts, all-zero GEPs and address space casts
660   /// but ensures the representation of the result stays the same.
661   ///
662   /// Returns the original uncasted value with the same representation. If this
663   /// is called on a non-pointer value, it returns 'this'.
664   const Value *stripPointerCastsSameRepresentation() const;
665   Value *stripPointerCastsSameRepresentation() {
666     return const_cast<Value *>(static_cast<const Value *>(this)
667                                    ->stripPointerCastsSameRepresentation());
668   }
669 
670   /// Strip off pointer casts, all-zero GEPs, single-argument phi nodes and
671   /// invariant group info.
672   ///
673   /// Returns the original uncasted value.  If this is called on a non-pointer
674   /// value, it returns 'this'. This function should be used only in
675   /// Alias analysis.
676   const Value *stripPointerCastsForAliasAnalysis() const;
677   Value *stripPointerCastsForAliasAnalysis() {
678     return const_cast<Value *>(static_cast<const Value *>(this)
679                                    ->stripPointerCastsForAliasAnalysis());
680   }
681 
682   /// Strip off pointer casts and all-constant inbounds GEPs.
683   ///
684   /// Returns the original pointer value.  If this is called on a non-pointer
685   /// value, it returns 'this'.
686   const Value *stripInBoundsConstantOffsets() const;
687   Value *stripInBoundsConstantOffsets() {
688     return const_cast<Value *>(
689               static_cast<const Value *>(this)->stripInBoundsConstantOffsets());
690   }
691 
692   /// Accumulate the constant offset this value has compared to a base pointer.
693   /// Only 'getelementptr' instructions (GEPs) are accumulated but other
694   /// instructions, e.g., casts, are stripped away as well.
695   /// The accumulated constant offset is added to \p Offset and the base
696   /// pointer is returned.
697   ///
698   /// The APInt \p Offset has to have a bit-width equal to the IntPtr type for
699   /// the address space of 'this' pointer value, e.g., use
700   /// DataLayout::getIndexTypeSizeInBits(Ty).
701   ///
702   /// If \p AllowNonInbounds is true, offsets in GEPs are stripped and
703   /// accumulated even if the GEP is not "inbounds".
704   ///
705   /// If \p AllowInvariantGroup is true then this method also looks through
706   /// strip.invariant.group and launder.invariant.group intrinsics.
707   ///
708   /// If \p ExternalAnalysis is provided it will be used to calculate a offset
709   /// when a operand of GEP is not constant.
710   /// For example, for a value \p ExternalAnalysis might try to calculate a
711   /// lower bound. If \p ExternalAnalysis is successful, it should return true.
712   ///
713   /// If this is called on a non-pointer value, it returns 'this' and the
714   /// \p Offset is not modified.
715   ///
716   /// Note that this function will never return a nullptr. It will also never
717   /// manipulate the \p Offset in a way that would not match the difference
718   /// between the underlying value and the returned one. Thus, if no constant
719   /// offset was found, the returned value is the underlying one and \p Offset
720   /// is unchanged.
721   const Value *stripAndAccumulateConstantOffsets(
722       const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
723       bool AllowInvariantGroup = false,
724       function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
725           nullptr) const;
726 
727   Value *stripAndAccumulateConstantOffsets(
728       const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
729       bool AllowInvariantGroup = false,
730       function_ref<bool(Value &Value, APInt &Offset)> ExternalAnalysis =
731           nullptr) {
732     return const_cast<Value *>(
733         static_cast<const Value *>(this)->stripAndAccumulateConstantOffsets(
734             DL, Offset, AllowNonInbounds, AllowInvariantGroup,
735             ExternalAnalysis));
736   }
737 
738   /// This is a wrapper around stripAndAccumulateConstantOffsets with the
739   /// in-bounds requirement set to false.
740   const Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
741                                                          APInt &Offset) const {
742     return stripAndAccumulateConstantOffsets(DL, Offset,
743                                              /* AllowNonInbounds */ false);
744   }
745   Value *stripAndAccumulateInBoundsConstantOffsets(const DataLayout &DL,
746                                                    APInt &Offset) {
747     return stripAndAccumulateConstantOffsets(DL, Offset,
748                                              /* AllowNonInbounds */ false);
749   }
750 
751   /// Strip off pointer casts and inbounds GEPs.
752   ///
753   /// Returns the original pointer value.  If this is called on a non-pointer
754   /// value, it returns 'this'.
755   const Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
756                                         [](const Value *) {}) const;
757   inline Value *stripInBoundsOffsets(function_ref<void(const Value *)> Func =
758                                   [](const Value *) {}) {
759     return const_cast<Value *>(
760         static_cast<const Value *>(this)->stripInBoundsOffsets(Func));
761   }
762 
763   /// If this ptr is provably equal to \p Other plus a constant offset, return
764   /// that offset in bytes. Essentially `ptr this` subtract `ptr Other`.
765   std::optional<int64_t> getPointerOffsetFrom(const Value *Other,
766                                               const DataLayout &DL) const;
767 
768   /// Return true if the memory object referred to by V can by freed in the
769   /// scope for which the SSA value defining the allocation is statically
770   /// defined.  E.g.  deallocation after the static scope of a value does not
771   /// count, but a deallocation before that does.
772   bool canBeFreed() const;
773 
774   /// Returns the number of bytes known to be dereferenceable for the
775   /// pointer value.
776   ///
777   /// If CanBeNull is set by this function the pointer can either be null or be
778   /// dereferenceable up to the returned number of bytes.
779   ///
780   /// IF CanBeFreed is true, the pointer is known to be dereferenceable at
781   /// point of definition only.  Caller must prove that allocation is not
782   /// deallocated between point of definition and use.
783   uint64_t getPointerDereferenceableBytes(const DataLayout &DL,
784                                           bool &CanBeNull,
785                                           bool &CanBeFreed) const;
786 
787   /// Returns an alignment of the pointer value.
788   ///
789   /// Returns an alignment which is either specified explicitly, e.g. via
790   /// align attribute of a function argument, or guaranteed by DataLayout.
791   Align getPointerAlignment(const DataLayout &DL) const;
792 
793   /// Translate PHI node to its predecessor from the given basic block.
794   ///
795   /// If this value is a PHI node with CurBB as its parent, return the value in
796   /// the PHI node corresponding to PredBB.  If not, return ourself.  This is
797   /// useful if you want to know the value something has in a predecessor
798   /// block.
799   const Value *DoPHITranslation(const BasicBlock *CurBB,
800                                 const BasicBlock *PredBB) const;
801   Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) {
802     return const_cast<Value *>(
803              static_cast<const Value *>(this)->DoPHITranslation(CurBB, PredBB));
804   }
805 
806   /// The maximum alignment for instructions.
807   ///
808   /// This is the greatest alignment value supported by load, store, and alloca
809   /// instructions, and global values.
810   static constexpr unsigned MaxAlignmentExponent = 32;
811   static constexpr uint64_t MaximumAlignment = 1ULL << MaxAlignmentExponent;
812 
813   /// Mutate the type of this Value to be of the specified type.
814   ///
815   /// Note that this is an extremely dangerous operation which can create
816   /// completely invalid IR very easily.  It is strongly recommended that you
817   /// recreate IR objects with the right types instead of mutating them in
818   /// place.
819   void mutateType(Type *Ty) {
820     VTy = Ty;
821   }
822 
823   /// Sort the use-list.
824   ///
825   /// Sorts the Value's use-list by Cmp using a stable mergesort.  Cmp is
826   /// expected to compare two \a Use references.
827   template <class Compare> void sortUseList(Compare Cmp);
828 
829   /// Reverse the use-list.
830   void reverseUseList();
831 
832 private:
833   /// Merge two lists together.
834   ///
835   /// Merges \c L and \c R using \c Cmp.  To enable stable sorts, always pushes
836   /// "equal" items from L before items from R.
837   ///
838   /// \return the first element in the list.
839   ///
840   /// \note Completely ignores \a Use::Prev (doesn't read, doesn't update).
841   template <class Compare>
842   static Use *mergeUseLists(Use *L, Use *R, Compare Cmp) {
843     Use *Merged;
844     Use **Next = &Merged;
845 
846     while (true) {
847       if (!L) {
848         *Next = R;
849         break;
850       }
851       if (!R) {
852         *Next = L;
853         break;
854       }
855       if (Cmp(*R, *L)) {
856         *Next = R;
857         Next = &R->Next;
858         R = R->Next;
859       } else {
860         *Next = L;
861         Next = &L->Next;
862         L = L->Next;
863       }
864     }
865 
866     return Merged;
867   }
868 
869 protected:
870   unsigned short getSubclassDataFromValue() const { return SubclassData; }
871   void setValueSubclassData(unsigned short D) { SubclassData = D; }
872 };
873 
874 struct ValueDeleter { void operator()(Value *V) { V->deleteValue(); } };
875 
876 /// Use this instead of std::unique_ptr<Value> or std::unique_ptr<Instruction>.
877 /// Those don't work because Value and Instruction's destructors are protected,
878 /// aren't virtual, and won't destroy the complete object.
879 using unique_value = std::unique_ptr<Value, ValueDeleter>;
880 
881 inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
882   V.print(OS);
883   return OS;
884 }
885 
886 void Use::set(Value *V) {
887   if (Val) removeFromList();
888   Val = V;
889   if (V) V->addUse(*this);
890 }
891 
892 Value *Use::operator=(Value *RHS) {
893   set(RHS);
894   return RHS;
895 }
896 
897 const Use &Use::operator=(const Use &RHS) {
898   set(RHS.Val);
899   return *this;
900 }
901 
902 template <class Compare> void Value::sortUseList(Compare Cmp) {
903   if (!UseList || !UseList->Next)
904     // No need to sort 0 or 1 uses.
905     return;
906 
907   // Note: this function completely ignores Prev pointers until the end when
908   // they're fixed en masse.
909 
910   // Create a binomial vector of sorted lists, visiting uses one at a time and
911   // merging lists as necessary.
912   const unsigned MaxSlots = 32;
913   Use *Slots[MaxSlots];
914 
915   // Collect the first use, turning it into a single-item list.
916   Use *Next = UseList->Next;
917   UseList->Next = nullptr;
918   unsigned NumSlots = 1;
919   Slots[0] = UseList;
920 
921   // Collect all but the last use.
922   while (Next->Next) {
923     Use *Current = Next;
924     Next = Current->Next;
925 
926     // Turn Current into a single-item list.
927     Current->Next = nullptr;
928 
929     // Save Current in the first available slot, merging on collisions.
930     unsigned I;
931     for (I = 0; I < NumSlots; ++I) {
932       if (!Slots[I])
933         break;
934 
935       // Merge two lists, doubling the size of Current and emptying slot I.
936       //
937       // Since the uses in Slots[I] originally preceded those in Current, send
938       // Slots[I] in as the left parameter to maintain a stable sort.
939       Current = mergeUseLists(Slots[I], Current, Cmp);
940       Slots[I] = nullptr;
941     }
942     // Check if this is a new slot.
943     if (I == NumSlots) {
944       ++NumSlots;
945       assert(NumSlots <= MaxSlots && "Use list bigger than 2^32");
946     }
947 
948     // Found an open slot.
949     Slots[I] = Current;
950   }
951 
952   // Merge all the lists together.
953   assert(Next && "Expected one more Use");
954   assert(!Next->Next && "Expected only one Use");
955   UseList = Next;
956   for (unsigned I = 0; I < NumSlots; ++I)
957     if (Slots[I])
958       // Since the uses in Slots[I] originally preceded those in UseList, send
959       // Slots[I] in as the left parameter to maintain a stable sort.
960       UseList = mergeUseLists(Slots[I], UseList, Cmp);
961 
962   // Fix the Prev pointers.
963   for (Use *I = UseList, **Prev = &UseList; I; I = I->Next) {
964     I->Prev = Prev;
965     Prev = &I->Next;
966   }
967 }
968 
969 // isa - Provide some specializations of isa so that we don't have to include
970 // the subtype header files to test to see if the value is a subclass...
971 //
972 template <> struct isa_impl<Constant, Value> {
973   static inline bool doit(const Value &Val) {
974     static_assert(Value::ConstantFirstVal == 0, "Val.getValueID() >= Value::ConstantFirstVal");
975     return Val.getValueID() <= Value::ConstantLastVal;
976   }
977 };
978 
979 template <> struct isa_impl<ConstantData, Value> {
980   static inline bool doit(const Value &Val) {
981     return Val.getValueID() >= Value::ConstantDataFirstVal &&
982            Val.getValueID() <= Value::ConstantDataLastVal;
983   }
984 };
985 
986 template <> struct isa_impl<ConstantAggregate, Value> {
987   static inline bool doit(const Value &Val) {
988     return Val.getValueID() >= Value::ConstantAggregateFirstVal &&
989            Val.getValueID() <= Value::ConstantAggregateLastVal;
990   }
991 };
992 
993 template <> struct isa_impl<Argument, Value> {
994   static inline bool doit (const Value &Val) {
995     return Val.getValueID() == Value::ArgumentVal;
996   }
997 };
998 
999 template <> struct isa_impl<InlineAsm, Value> {
1000   static inline bool doit(const Value &Val) {
1001     return Val.getValueID() == Value::InlineAsmVal;
1002   }
1003 };
1004 
1005 template <> struct isa_impl<Instruction, Value> {
1006   static inline bool doit(const Value &Val) {
1007     return Val.getValueID() >= Value::InstructionVal;
1008   }
1009 };
1010 
1011 template <> struct isa_impl<BasicBlock, Value> {
1012   static inline bool doit(const Value &Val) {
1013     return Val.getValueID() == Value::BasicBlockVal;
1014   }
1015 };
1016 
1017 template <> struct isa_impl<Function, Value> {
1018   static inline bool doit(const Value &Val) {
1019     return Val.getValueID() == Value::FunctionVal;
1020   }
1021 };
1022 
1023 template <> struct isa_impl<GlobalVariable, Value> {
1024   static inline bool doit(const Value &Val) {
1025     return Val.getValueID() == Value::GlobalVariableVal;
1026   }
1027 };
1028 
1029 template <> struct isa_impl<GlobalAlias, Value> {
1030   static inline bool doit(const Value &Val) {
1031     return Val.getValueID() == Value::GlobalAliasVal;
1032   }
1033 };
1034 
1035 template <> struct isa_impl<GlobalIFunc, Value> {
1036   static inline bool doit(const Value &Val) {
1037     return Val.getValueID() == Value::GlobalIFuncVal;
1038   }
1039 };
1040 
1041 template <> struct isa_impl<GlobalValue, Value> {
1042   static inline bool doit(const Value &Val) {
1043     return isa<GlobalObject>(Val) || isa<GlobalAlias>(Val);
1044   }
1045 };
1046 
1047 template <> struct isa_impl<GlobalObject, Value> {
1048   static inline bool doit(const Value &Val) {
1049     return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
1050            isa<GlobalIFunc>(Val);
1051   }
1052 };
1053 
1054 // Create wrappers for C Binding types (see CBindingWrapping.h).
1055 DEFINE_ISA_CONVERSION_FUNCTIONS(Value, LLVMValueRef)
1056 
1057 // Specialized opaque value conversions.
1058 inline Value **unwrap(LLVMValueRef *Vals) {
1059   return reinterpret_cast<Value**>(Vals);
1060 }
1061 
1062 template<typename T>
1063 inline T **unwrap(LLVMValueRef *Vals, unsigned Length) {
1064 #ifndef NDEBUG
1065   for (LLVMValueRef *I = Vals, *E = Vals + Length; I != E; ++I)
1066     unwrap<T>(*I); // For side effect of calling assert on invalid usage.
1067 #endif
1068   (void)Length;
1069   return reinterpret_cast<T**>(Vals);
1070 }
1071 
1072 inline LLVMValueRef *wrap(const Value **Vals) {
1073   return reinterpret_cast<LLVMValueRef*>(const_cast<Value**>(Vals));
1074 }
1075 
1076 } // end namespace llvm
1077 
1078 #endif // LLVM_IR_VALUE_H
1079