1 //===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file exposes the class definitions of all of the subclasses of the
11 // Instruction class. This is meant to be an easy way to get access to all
12 // instruction subclasses.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_IR_INSTRUCTIONS_H
17 #define LLVM_IR_INSTRUCTIONS_H
18
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <iterator>
28
29 namespace llvm {
30
31 class APInt;
32 class ConstantInt;
33 class ConstantRange;
34 class DataLayout;
35 class LLVMContext;
36
37 enum AtomicOrdering {
38 NotAtomic = 0,
39 Unordered = 1,
40 Monotonic = 2,
41 // Consume = 3, // Not specified yet.
42 Acquire = 4,
43 Release = 5,
44 AcquireRelease = 6,
45 SequentiallyConsistent = 7
46 };
47
48 enum SynchronizationScope {
49 SingleThread = 0,
50 CrossThread = 1
51 };
52
53 /// Returns true if the ordering is at least as strong as acquire
54 /// (i.e. acquire, acq_rel or seq_cst)
isAtLeastAcquire(AtomicOrdering Ord)55 inline bool isAtLeastAcquire(AtomicOrdering Ord) {
56 return (Ord == Acquire ||
57 Ord == AcquireRelease ||
58 Ord == SequentiallyConsistent);
59 }
60
61 /// Returns true if the ordering is at least as strong as release
62 /// (i.e. release, acq_rel or seq_cst)
isAtLeastRelease(AtomicOrdering Ord)63 inline bool isAtLeastRelease(AtomicOrdering Ord) {
64 return (Ord == Release ||
65 Ord == AcquireRelease ||
66 Ord == SequentiallyConsistent);
67 }
68
69 //===----------------------------------------------------------------------===//
70 // AllocaInst Class
71 //===----------------------------------------------------------------------===//
72
73 /// AllocaInst - an instruction to allocate memory on the stack
74 ///
75 class AllocaInst : public UnaryInstruction {
76 protected:
77 AllocaInst *clone_impl() const override;
78 public:
79 explicit AllocaInst(Type *Ty, Value *ArraySize = nullptr,
80 const Twine &Name = "",
81 Instruction *InsertBefore = nullptr);
82 AllocaInst(Type *Ty, Value *ArraySize,
83 const Twine &Name, BasicBlock *InsertAtEnd);
84
85 AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore = nullptr);
86 AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
87
88 AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
89 const Twine &Name = "", Instruction *InsertBefore = nullptr);
90 AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
91 const Twine &Name, BasicBlock *InsertAtEnd);
92
93 // Out of line virtual method, so the vtable, etc. has a home.
94 virtual ~AllocaInst();
95
96 /// isArrayAllocation - Return true if there is an allocation size parameter
97 /// to the allocation instruction that is not 1.
98 ///
99 bool isArrayAllocation() const;
100
101 /// getArraySize - Get the number of elements allocated. For a simple
102 /// allocation of a single element, this will return a constant 1 value.
103 ///
getArraySize()104 const Value *getArraySize() const { return getOperand(0); }
getArraySize()105 Value *getArraySize() { return getOperand(0); }
106
107 /// getType - Overload to return most specific pointer type
108 ///
getType()109 PointerType *getType() const {
110 return cast<PointerType>(Instruction::getType());
111 }
112
113 /// getAllocatedType - Return the type that is being allocated by the
114 /// instruction.
115 ///
116 Type *getAllocatedType() const;
117
118 /// getAlignment - Return the alignment of the memory that is being allocated
119 /// by the instruction.
120 ///
getAlignment()121 unsigned getAlignment() const {
122 return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
123 }
124 void setAlignment(unsigned Align);
125
126 /// isStaticAlloca - Return true if this alloca is in the entry block of the
127 /// function and is a constant size. If so, the code generator will fold it
128 /// into the prolog/epilog code, so it is basically free.
129 bool isStaticAlloca() const;
130
131 /// \brief Return true if this alloca is used as an inalloca argument to a
132 /// call. Such allocas are never considered static even if they are in the
133 /// entry block.
isUsedWithInAlloca()134 bool isUsedWithInAlloca() const {
135 return getSubclassDataFromInstruction() & 32;
136 }
137
138 /// \brief Specify whether this alloca is used to represent the arguments to
139 /// a call.
setUsedWithInAlloca(bool V)140 void setUsedWithInAlloca(bool V) {
141 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
142 (V ? 32 : 0));
143 }
144
145 // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Instruction * I)146 static inline bool classof(const Instruction *I) {
147 return (I->getOpcode() == Instruction::Alloca);
148 }
classof(const Value * V)149 static inline bool classof(const Value *V) {
150 return isa<Instruction>(V) && classof(cast<Instruction>(V));
151 }
152 private:
153 // Shadow Instruction::setInstructionSubclassData with a private forwarding
154 // method so that subclasses cannot accidentally use it.
setInstructionSubclassData(unsigned short D)155 void setInstructionSubclassData(unsigned short D) {
156 Instruction::setInstructionSubclassData(D);
157 }
158 };
159
160
161 //===----------------------------------------------------------------------===//
162 // LoadInst Class
163 //===----------------------------------------------------------------------===//
164
165 /// LoadInst - an instruction for reading from memory. This uses the
166 /// SubclassData field in Value to store whether or not the load is volatile.
167 ///
168 class LoadInst : public UnaryInstruction {
169 void AssertOK();
170 protected:
171 LoadInst *clone_impl() const override;
172 public:
173 LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
174 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
175 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
176 Instruction *InsertBefore = nullptr);
177 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
178 BasicBlock *InsertAtEnd);
179 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
180 unsigned Align, Instruction *InsertBefore = nullptr);
181 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
182 unsigned Align, BasicBlock *InsertAtEnd);
183 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
184 unsigned Align, AtomicOrdering Order,
185 SynchronizationScope SynchScope = CrossThread,
186 Instruction *InsertBefore = nullptr);
187 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
188 unsigned Align, AtomicOrdering Order,
189 SynchronizationScope SynchScope,
190 BasicBlock *InsertAtEnd);
191
192 LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
193 LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
194 explicit LoadInst(Value *Ptr, const char *NameStr = nullptr,
195 bool isVolatile = false,
196 Instruction *InsertBefore = nullptr);
197 LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
198 BasicBlock *InsertAtEnd);
199
200 /// isVolatile - Return true if this is a load from a volatile memory
201 /// location.
202 ///
isVolatile()203 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
204
205 /// setVolatile - Specify whether this is a volatile load or not.
206 ///
setVolatile(bool V)207 void setVolatile(bool V) {
208 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
209 (V ? 1 : 0));
210 }
211
212 /// getAlignment - Return the alignment of the access that is being performed
213 ///
getAlignment()214 unsigned getAlignment() const {
215 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
216 }
217
218 void setAlignment(unsigned Align);
219
220 /// Returns the ordering effect of this fence.
getOrdering()221 AtomicOrdering getOrdering() const {
222 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
223 }
224
225 /// Set the ordering constraint on this load. May not be Release or
226 /// AcquireRelease.
setOrdering(AtomicOrdering Ordering)227 void setOrdering(AtomicOrdering Ordering) {
228 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
229 (Ordering << 7));
230 }
231
getSynchScope()232 SynchronizationScope getSynchScope() const {
233 return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
234 }
235
236 /// Specify whether this load is ordered with respect to all
237 /// concurrently executing threads, or only with respect to signal handlers
238 /// executing in the same thread.
setSynchScope(SynchronizationScope xthread)239 void setSynchScope(SynchronizationScope xthread) {
240 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
241 (xthread << 6));
242 }
243
244 void setAtomic(AtomicOrdering Ordering,
245 SynchronizationScope SynchScope = CrossThread) {
246 setOrdering(Ordering);
247 setSynchScope(SynchScope);
248 }
249
isSimple()250 bool isSimple() const { return !isAtomic() && !isVolatile(); }
isUnordered()251 bool isUnordered() const {
252 return getOrdering() <= Unordered && !isVolatile();
253 }
254
getPointerOperand()255 Value *getPointerOperand() { return getOperand(0); }
getPointerOperand()256 const Value *getPointerOperand() const { return getOperand(0); }
getPointerOperandIndex()257 static unsigned getPointerOperandIndex() { return 0U; }
258
259 /// \brief Returns the address space of the pointer operand.
getPointerAddressSpace()260 unsigned getPointerAddressSpace() const {
261 return getPointerOperand()->getType()->getPointerAddressSpace();
262 }
263
264
265 // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Instruction * I)266 static inline bool classof(const Instruction *I) {
267 return I->getOpcode() == Instruction::Load;
268 }
classof(const Value * V)269 static inline bool classof(const Value *V) {
270 return isa<Instruction>(V) && classof(cast<Instruction>(V));
271 }
272 private:
273 // Shadow Instruction::setInstructionSubclassData with a private forwarding
274 // method so that subclasses cannot accidentally use it.
setInstructionSubclassData(unsigned short D)275 void setInstructionSubclassData(unsigned short D) {
276 Instruction::setInstructionSubclassData(D);
277 }
278 };
279
280
281 //===----------------------------------------------------------------------===//
282 // StoreInst Class
283 //===----------------------------------------------------------------------===//
284
285 /// StoreInst - an instruction for storing to memory
286 ///
287 class StoreInst : public Instruction {
288 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
289 void AssertOK();
290 protected:
291 StoreInst *clone_impl() const override;
292 public:
293 // allocate space for exactly two operands
new(size_t s)294 void *operator new(size_t s) {
295 return User::operator new(s, 2);
296 }
297 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
298 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
299 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
300 Instruction *InsertBefore = nullptr);
301 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
302 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
303 unsigned Align, Instruction *InsertBefore = nullptr);
304 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
305 unsigned Align, BasicBlock *InsertAtEnd);
306 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
307 unsigned Align, AtomicOrdering Order,
308 SynchronizationScope SynchScope = CrossThread,
309 Instruction *InsertBefore = nullptr);
310 StoreInst(Value *Val, Value *Ptr, bool isVolatile,
311 unsigned Align, AtomicOrdering Order,
312 SynchronizationScope SynchScope,
313 BasicBlock *InsertAtEnd);
314
315
316 /// isVolatile - Return true if this is a store to a volatile memory
317 /// location.
318 ///
isVolatile()319 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
320
321 /// setVolatile - Specify whether this is a volatile store or not.
322 ///
setVolatile(bool V)323 void setVolatile(bool V) {
324 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
325 (V ? 1 : 0));
326 }
327
328 /// Transparently provide more efficient getOperand methods.
329 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
330
331 /// getAlignment - Return the alignment of the access that is being performed
332 ///
getAlignment()333 unsigned getAlignment() const {
334 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
335 }
336
337 void setAlignment(unsigned Align);
338
339 /// Returns the ordering effect of this store.
getOrdering()340 AtomicOrdering getOrdering() const {
341 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
342 }
343
344 /// Set the ordering constraint on this store. May not be Acquire or
345 /// AcquireRelease.
setOrdering(AtomicOrdering Ordering)346 void setOrdering(AtomicOrdering Ordering) {
347 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
348 (Ordering << 7));
349 }
350
getSynchScope()351 SynchronizationScope getSynchScope() const {
352 return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
353 }
354
355 /// Specify whether this store instruction is ordered with respect to all
356 /// concurrently executing threads, or only with respect to signal handlers
357 /// executing in the same thread.
setSynchScope(SynchronizationScope xthread)358 void setSynchScope(SynchronizationScope xthread) {
359 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
360 (xthread << 6));
361 }
362
363 void setAtomic(AtomicOrdering Ordering,
364 SynchronizationScope SynchScope = CrossThread) {
365 setOrdering(Ordering);
366 setSynchScope(SynchScope);
367 }
368
isSimple()369 bool isSimple() const { return !isAtomic() && !isVolatile(); }
isUnordered()370 bool isUnordered() const {
371 return getOrdering() <= Unordered && !isVolatile();
372 }
373
getValueOperand()374 Value *getValueOperand() { return getOperand(0); }
getValueOperand()375 const Value *getValueOperand() const { return getOperand(0); }
376
getPointerOperand()377 Value *getPointerOperand() { return getOperand(1); }
getPointerOperand()378 const Value *getPointerOperand() const { return getOperand(1); }
getPointerOperandIndex()379 static unsigned getPointerOperandIndex() { return 1U; }
380
381 /// \brief Returns the address space of the pointer operand.
getPointerAddressSpace()382 unsigned getPointerAddressSpace() const {
383 return getPointerOperand()->getType()->getPointerAddressSpace();
384 }
385
386 // Methods for support type inquiry through isa, cast, and dyn_cast:
classof(const Instruction * I)387 static inline bool classof(const Instruction *I) {
388 return I->getOpcode() == Instruction::Store;
389 }
classof(const Value * V)390 static inline bool classof(const Value *V) {
391 return isa<Instruction>(V) && classof(cast<Instruction>(V));
392 }
393 private:
394 // Shadow Instruction::setInstructionSubclassData with a private forwarding
395 // method so that subclasses cannot accidentally use it.
setInstructionSubclassData(unsigned short D)396 void setInstructionSubclassData(unsigned short D) {
397 Instruction::setInstructionSubclassData(D);
398 }
399 };
400
401 template <>
402 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
403 };
404
405 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
406
407 //===----------------------------------------------------------------------===//
408 // FenceInst Class
409 //===----------------------------------------------------------------------===//
410
411 /// FenceInst - an instruction for ordering other memory operations
412 ///
413 class FenceInst : public Instruction {
414 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
415 void Init(AtomicOrdering Ordering, SynchronizationScope SynchScope);
416 protected:
417 FenceInst *clone_impl() const override;
418 public:
419 // allocate space for exactly zero operands
420 void *operator new(size_t s) {
421 return User::operator new(s, 0);
422 }
423
424 // Ordering may only be Acquire, Release, AcquireRelease, or
425 // SequentiallyConsistent.
426 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
427 SynchronizationScope SynchScope = CrossThread,
428 Instruction *InsertBefore = nullptr);
429 FenceInst(LLVMContext &C, AtomicOrdering Ordering,
430 SynchronizationScope SynchScope,
431 BasicBlock *InsertAtEnd);
432
433 /// Returns the ordering effect of this fence.
434 AtomicOrdering getOrdering() const {
435 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
436 }
437
438 /// Set the ordering constraint on this fence. May only be Acquire, Release,
439 /// AcquireRelease, or SequentiallyConsistent.
440 void setOrdering(AtomicOrdering Ordering) {
441 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
442 (Ordering << 1));
443 }
444
445 SynchronizationScope getSynchScope() const {
446 return SynchronizationScope(getSubclassDataFromInstruction() & 1);
447 }
448
449 /// Specify whether this fence orders other operations with respect to all
450 /// concurrently executing threads, or only with respect to signal handlers
451 /// executing in the same thread.
452 void setSynchScope(SynchronizationScope xthread) {
453 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
454 xthread);
455 }
456
457 // Methods for support type inquiry through isa, cast, and dyn_cast:
458 static inline bool classof(const Instruction *I) {
459 return I->getOpcode() == Instruction::Fence;
460 }
461 static inline bool classof(const Value *V) {
462 return isa<Instruction>(V) && classof(cast<Instruction>(V));
463 }
464 private:
465 // Shadow Instruction::setInstructionSubclassData with a private forwarding
466 // method so that subclasses cannot accidentally use it.
467 void setInstructionSubclassData(unsigned short D) {
468 Instruction::setInstructionSubclassData(D);
469 }
470 };
471
472 //===----------------------------------------------------------------------===//
473 // AtomicCmpXchgInst Class
474 //===----------------------------------------------------------------------===//
475
476 /// AtomicCmpXchgInst - an instruction that atomically checks whether a
477 /// specified value is in a memory location, and, if it is, stores a new value
478 /// there. Returns the value that was loaded.
479 ///
480 class AtomicCmpXchgInst : public Instruction {
481 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
482 void Init(Value *Ptr, Value *Cmp, Value *NewVal,
483 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
484 SynchronizationScope SynchScope);
485 protected:
486 AtomicCmpXchgInst *clone_impl() const override;
487 public:
488 // allocate space for exactly three operands
489 void *operator new(size_t s) {
490 return User::operator new(s, 3);
491 }
492 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
493 AtomicOrdering SuccessOrdering,
494 AtomicOrdering FailureOrdering,
495 SynchronizationScope SynchScope,
496 Instruction *InsertBefore = nullptr);
497 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
498 AtomicOrdering SuccessOrdering,
499 AtomicOrdering FailureOrdering,
500 SynchronizationScope SynchScope,
501 BasicBlock *InsertAtEnd);
502
503 /// isVolatile - Return true if this is a cmpxchg from a volatile memory
504 /// location.
505 ///
506 bool isVolatile() const {
507 return getSubclassDataFromInstruction() & 1;
508 }
509
510 /// setVolatile - Specify whether this is a volatile cmpxchg.
511 ///
512 void setVolatile(bool V) {
513 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
514 (unsigned)V);
515 }
516
517 /// Return true if this cmpxchg may spuriously fail.
518 bool isWeak() const {
519 return getSubclassDataFromInstruction() & 0x100;
520 }
521
522 void setWeak(bool IsWeak) {
523 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
524 (IsWeak << 8));
525 }
526
527 /// Transparently provide more efficient getOperand methods.
528 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
529
530 /// Set the ordering constraint on this cmpxchg.
531 void setSuccessOrdering(AtomicOrdering Ordering) {
532 assert(Ordering != NotAtomic &&
533 "CmpXchg instructions can only be atomic.");
534 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
535 (Ordering << 2));
536 }
537
538 void setFailureOrdering(AtomicOrdering Ordering) {
539 assert(Ordering != NotAtomic &&
540 "CmpXchg instructions can only be atomic.");
541 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
542 (Ordering << 5));
543 }
544
545 /// Specify whether this cmpxchg is atomic and orders other operations with
546 /// respect to all concurrently executing threads, or only with respect to
547 /// signal handlers executing in the same thread.
548 void setSynchScope(SynchronizationScope SynchScope) {
549 setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
550 (SynchScope << 1));
551 }
552
553 /// Returns the ordering constraint on this cmpxchg.
554 AtomicOrdering getSuccessOrdering() const {
555 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
556 }
557
558 /// Returns the ordering constraint on this cmpxchg.
559 AtomicOrdering getFailureOrdering() const {
560 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
561 }
562
563 /// Returns whether this cmpxchg is atomic between threads or only within a
564 /// single thread.
565 SynchronizationScope getSynchScope() const {
566 return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
567 }
568
569 Value *getPointerOperand() { return getOperand(0); }
570 const Value *getPointerOperand() const { return getOperand(0); }
571 static unsigned getPointerOperandIndex() { return 0U; }
572
573 Value *getCompareOperand() { return getOperand(1); }
574 const Value *getCompareOperand() const { return getOperand(1); }
575
576 Value *getNewValOperand() { return getOperand(2); }
577 const Value *getNewValOperand() const { return getOperand(2); }
578
579 /// \brief Returns the address space of the pointer operand.
580 unsigned getPointerAddressSpace() const {
581 return getPointerOperand()->getType()->getPointerAddressSpace();
582 }
583
584 /// \brief Returns the strongest permitted ordering on failure, given the
585 /// desired ordering on success.
586 ///
587 /// If the comparison in a cmpxchg operation fails, there is no atomic store
588 /// so release semantics cannot be provided. So this function drops explicit
589 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
590 /// operation would remain SequentiallyConsistent.
591 static AtomicOrdering
592 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
593 switch (SuccessOrdering) {
594 default: llvm_unreachable("invalid cmpxchg success ordering");
595 case Release:
596 case Monotonic:
597 return Monotonic;
598 case AcquireRelease:
599 case Acquire:
600 return Acquire;
601 case SequentiallyConsistent:
602 return SequentiallyConsistent;
603 }
604 }
605
606 // Methods for support type inquiry through isa, cast, and dyn_cast:
607 static inline bool classof(const Instruction *I) {
608 return I->getOpcode() == Instruction::AtomicCmpXchg;
609 }
610 static inline bool classof(const Value *V) {
611 return isa<Instruction>(V) && classof(cast<Instruction>(V));
612 }
613 private:
614 // Shadow Instruction::setInstructionSubclassData with a private forwarding
615 // method so that subclasses cannot accidentally use it.
616 void setInstructionSubclassData(unsigned short D) {
617 Instruction::setInstructionSubclassData(D);
618 }
619 };
620
621 template <>
622 struct OperandTraits<AtomicCmpXchgInst> :
623 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
624 };
625
626 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
627
628 //===----------------------------------------------------------------------===//
629 // AtomicRMWInst Class
630 //===----------------------------------------------------------------------===//
631
632 /// AtomicRMWInst - an instruction that atomically reads a memory location,
633 /// combines it with another value, and then stores the result back. Returns
634 /// the old value.
635 ///
636 class AtomicRMWInst : public Instruction {
637 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
638 protected:
639 AtomicRMWInst *clone_impl() const override;
640 public:
641 /// This enumeration lists the possible modifications atomicrmw can make. In
642 /// the descriptions, 'p' is the pointer to the instruction's memory location,
643 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
644 /// instruction. These instructions always return 'old'.
645 enum BinOp {
646 /// *p = v
647 Xchg,
648 /// *p = old + v
649 Add,
650 /// *p = old - v
651 Sub,
652 /// *p = old & v
653 And,
654 /// *p = ~(old & v)
655 Nand,
656 /// *p = old | v
657 Or,
658 /// *p = old ^ v
659 Xor,
660 /// *p = old >signed v ? old : v
661 Max,
662 /// *p = old <signed v ? old : v
663 Min,
664 /// *p = old >unsigned v ? old : v
665 UMax,
666 /// *p = old <unsigned v ? old : v
667 UMin,
668
669 FIRST_BINOP = Xchg,
670 LAST_BINOP = UMin,
671 BAD_BINOP
672 };
673
674 // allocate space for exactly two operands
675 void *operator new(size_t s) {
676 return User::operator new(s, 2);
677 }
678 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
679 AtomicOrdering Ordering, SynchronizationScope SynchScope,
680 Instruction *InsertBefore = nullptr);
681 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
682 AtomicOrdering Ordering, SynchronizationScope SynchScope,
683 BasicBlock *InsertAtEnd);
684
685 BinOp getOperation() const {
686 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
687 }
688
689 void setOperation(BinOp Operation) {
690 unsigned short SubclassData = getSubclassDataFromInstruction();
691 setInstructionSubclassData((SubclassData & 31) |
692 (Operation << 5));
693 }
694
695 /// isVolatile - Return true if this is a RMW on a volatile memory location.
696 ///
697 bool isVolatile() const {
698 return getSubclassDataFromInstruction() & 1;
699 }
700
701 /// setVolatile - Specify whether this is a volatile RMW or not.
702 ///
703 void setVolatile(bool V) {
704 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
705 (unsigned)V);
706 }
707
708 /// Transparently provide more efficient getOperand methods.
709 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
710
711 /// Set the ordering constraint on this RMW.
712 void setOrdering(AtomicOrdering Ordering) {
713 assert(Ordering != NotAtomic &&
714 "atomicrmw instructions can only be atomic.");
715 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
716 (Ordering << 2));
717 }
718
719 /// Specify whether this RMW orders other operations with respect to all
720 /// concurrently executing threads, or only with respect to signal handlers
721 /// executing in the same thread.
722 void setSynchScope(SynchronizationScope SynchScope) {
723 setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
724 (SynchScope << 1));
725 }
726
727 /// Returns the ordering constraint on this RMW.
728 AtomicOrdering getOrdering() const {
729 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
730 }
731
732 /// Returns whether this RMW is atomic between threads or only within a
733 /// single thread.
734 SynchronizationScope getSynchScope() const {
735 return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
736 }
737
738 Value *getPointerOperand() { return getOperand(0); }
739 const Value *getPointerOperand() const { return getOperand(0); }
740 static unsigned getPointerOperandIndex() { return 0U; }
741
742 Value *getValOperand() { return getOperand(1); }
743 const Value *getValOperand() const { return getOperand(1); }
744
745 /// \brief Returns the address space of the pointer operand.
746 unsigned getPointerAddressSpace() const {
747 return getPointerOperand()->getType()->getPointerAddressSpace();
748 }
749
750 // Methods for support type inquiry through isa, cast, and dyn_cast:
751 static inline bool classof(const Instruction *I) {
752 return I->getOpcode() == Instruction::AtomicRMW;
753 }
754 static inline bool classof(const Value *V) {
755 return isa<Instruction>(V) && classof(cast<Instruction>(V));
756 }
757 private:
758 void Init(BinOp Operation, Value *Ptr, Value *Val,
759 AtomicOrdering Ordering, SynchronizationScope SynchScope);
760 // Shadow Instruction::setInstructionSubclassData with a private forwarding
761 // method so that subclasses cannot accidentally use it.
762 void setInstructionSubclassData(unsigned short D) {
763 Instruction::setInstructionSubclassData(D);
764 }
765 };
766
767 template <>
768 struct OperandTraits<AtomicRMWInst>
769 : public FixedNumOperandTraits<AtomicRMWInst,2> {
770 };
771
772 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
773
774 //===----------------------------------------------------------------------===//
775 // GetElementPtrInst Class
776 //===----------------------------------------------------------------------===//
777
778 // checkGEPType - Simple wrapper function to give a better assertion failure
779 // message on bad indexes for a gep instruction.
780 //
781 inline Type *checkGEPType(Type *Ty) {
782 assert(Ty && "Invalid GetElementPtrInst indices for type!");
783 return Ty;
784 }
785
786 /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
787 /// access elements of arrays and structs
788 ///
789 class GetElementPtrInst : public Instruction {
790 GetElementPtrInst(const GetElementPtrInst &GEPI);
791 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
792
793 /// Constructors - Create a getelementptr instruction with a base pointer an
794 /// list of indices. The first ctor can optionally insert before an existing
795 /// instruction, the second appends the new instruction to the specified
796 /// BasicBlock.
797 inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
798 unsigned Values, const Twine &NameStr,
799 Instruction *InsertBefore);
800 inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
801 unsigned Values, const Twine &NameStr,
802 BasicBlock *InsertAtEnd);
803 protected:
804 GetElementPtrInst *clone_impl() const override;
805 public:
806 static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
807 const Twine &NameStr = "",
808 Instruction *InsertBefore = nullptr) {
809 unsigned Values = 1 + unsigned(IdxList.size());
810 return new(Values)
811 GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertBefore);
812 }
813 static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
814 const Twine &NameStr,
815 BasicBlock *InsertAtEnd) {
816 unsigned Values = 1 + unsigned(IdxList.size());
817 return new(Values)
818 GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertAtEnd);
819 }
820
821 /// Create an "inbounds" getelementptr. See the documentation for the
822 /// "inbounds" flag in LangRef.html for details.
823 static GetElementPtrInst *CreateInBounds(Value *Ptr,
824 ArrayRef<Value *> IdxList,
825 const Twine &NameStr = "",
826 Instruction *InsertBefore = nullptr){
827 GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertBefore);
828 GEP->setIsInBounds(true);
829 return GEP;
830 }
831 static GetElementPtrInst *CreateInBounds(Value *Ptr,
832 ArrayRef<Value *> IdxList,
833 const Twine &NameStr,
834 BasicBlock *InsertAtEnd) {
835 GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertAtEnd);
836 GEP->setIsInBounds(true);
837 return GEP;
838 }
839
840 /// Transparently provide more efficient getOperand methods.
841 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
842
843 // getType - Overload to return most specific sequential type.
844 SequentialType *getType() const {
845 return cast<SequentialType>(Instruction::getType());
846 }
847
848 /// \brief Returns the address space of this instruction's pointer type.
849 unsigned getAddressSpace() const {
850 // Note that this is always the same as the pointer operand's address space
851 // and that is cheaper to compute, so cheat here.
852 return getPointerAddressSpace();
853 }
854
855 /// getIndexedType - Returns the type of the element that would be loaded with
856 /// a load instruction with the specified parameters.
857 ///
858 /// Null is returned if the indices are invalid for the specified
859 /// pointer type.
860 ///
861 static Type *getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList);
862 static Type *getIndexedType(Type *Ptr, ArrayRef<Constant *> IdxList);
863 static Type *getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList);
864
865 inline op_iterator idx_begin() { return op_begin()+1; }
866 inline const_op_iterator idx_begin() const { return op_begin()+1; }
867 inline op_iterator idx_end() { return op_end(); }
868 inline const_op_iterator idx_end() const { return op_end(); }
869
870 Value *getPointerOperand() {
871 return getOperand(0);
872 }
873 const Value *getPointerOperand() const {
874 return getOperand(0);
875 }
876 static unsigned getPointerOperandIndex() {
877 return 0U; // get index for modifying correct operand.
878 }
879
880 /// getPointerOperandType - Method to return the pointer operand as a
881 /// PointerType.
882 Type *getPointerOperandType() const {
883 return getPointerOperand()->getType();
884 }
885
886 /// \brief Returns the address space of the pointer operand.
887 unsigned getPointerAddressSpace() const {
888 return getPointerOperandType()->getPointerAddressSpace();
889 }
890
891 /// GetGEPReturnType - Returns the pointer type returned by the GEP
892 /// instruction, which may be a vector of pointers.
893 static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
894 Type *PtrTy = PointerType::get(checkGEPType(
895 getIndexedType(Ptr->getType(), IdxList)),
896 Ptr->getType()->getPointerAddressSpace());
897 // Vector GEP
898 if (Ptr->getType()->isVectorTy()) {
899 unsigned NumElem = cast<VectorType>(Ptr->getType())->getNumElements();
900 return VectorType::get(PtrTy, NumElem);
901 }
902
903 // Scalar GEP
904 return PtrTy;
905 }
906
907 unsigned getNumIndices() const { // Note: always non-negative
908 return getNumOperands() - 1;
909 }
910
911 bool hasIndices() const {
912 return getNumOperands() > 1;
913 }
914
915 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
916 /// zeros. If so, the result pointer and the first operand have the same
917 /// value, just potentially different types.
918 bool hasAllZeroIndices() const;
919
920 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
921 /// constant integers. If so, the result pointer and the first operand have
922 /// a constant offset between them.
923 bool hasAllConstantIndices() const;
924
925 /// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
926 /// See LangRef.html for the meaning of inbounds on a getelementptr.
927 void setIsInBounds(bool b = true);
928
929 /// isInBounds - Determine whether the GEP has the inbounds flag.
930 bool isInBounds() const;
931
932 /// \brief Accumulate the constant address offset of this GEP if possible.
933 ///
934 /// This routine accepts an APInt into which it will accumulate the constant
935 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
936 /// all-constant, it returns false and the value of the offset APInt is
937 /// undefined (it is *not* preserved!). The APInt passed into this routine
938 /// must be at least as wide as the IntPtr type for the address space of
939 /// the base GEP pointer.
940 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
941
942 // Methods for support type inquiry through isa, cast, and dyn_cast:
943 static inline bool classof(const Instruction *I) {
944 return (I->getOpcode() == Instruction::GetElementPtr);
945 }
946 static inline bool classof(const Value *V) {
947 return isa<Instruction>(V) && classof(cast<Instruction>(V));
948 }
949 };
950
951 template <>
952 struct OperandTraits<GetElementPtrInst> :
953 public VariadicOperandTraits<GetElementPtrInst, 1> {
954 };
955
956 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
957 ArrayRef<Value *> IdxList,
958 unsigned Values,
959 const Twine &NameStr,
960 Instruction *InsertBefore)
961 : Instruction(getGEPReturnType(Ptr, IdxList),
962 GetElementPtr,
963 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
964 Values, InsertBefore) {
965 init(Ptr, IdxList, NameStr);
966 }
967 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
968 ArrayRef<Value *> IdxList,
969 unsigned Values,
970 const Twine &NameStr,
971 BasicBlock *InsertAtEnd)
972 : Instruction(getGEPReturnType(Ptr, IdxList),
973 GetElementPtr,
974 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
975 Values, InsertAtEnd) {
976 init(Ptr, IdxList, NameStr);
977 }
978
979
980 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
981
982
983 //===----------------------------------------------------------------------===//
984 // ICmpInst Class
985 //===----------------------------------------------------------------------===//
986
987 /// This instruction compares its operands according to the predicate given
988 /// to the constructor. It only operates on integers or pointers. The operands
989 /// must be identical types.
990 /// \brief Represent an integer comparison operator.
991 class ICmpInst: public CmpInst {
992 void AssertOK() {
993 assert(getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
994 getPredicate() <= CmpInst::LAST_ICMP_PREDICATE &&
995 "Invalid ICmp predicate value");
996 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
997 "Both operands to ICmp instruction are not of the same type!");
998 // Check that the operands are the right type
999 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1000 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1001 "Invalid operand types for ICmp instruction");
1002 }
1003
1004 protected:
1005 /// \brief Clone an identical ICmpInst
1006 ICmpInst *clone_impl() const override;
1007 public:
1008 /// \brief Constructor with insert-before-instruction semantics.
1009 ICmpInst(
1010 Instruction *InsertBefore, ///< Where to insert
1011 Predicate pred, ///< The predicate to use for the comparison
1012 Value *LHS, ///< The left-hand-side of the expression
1013 Value *RHS, ///< The right-hand-side of the expression
1014 const Twine &NameStr = "" ///< Name of the instruction
1015 ) : CmpInst(makeCmpResultType(LHS->getType()),
1016 Instruction::ICmp, pred, LHS, RHS, NameStr,
1017 InsertBefore) {
1018 #ifndef NDEBUG
1019 AssertOK();
1020 #endif
1021 }
1022
1023 /// \brief Constructor with insert-at-end semantics.
1024 ICmpInst(
1025 BasicBlock &InsertAtEnd, ///< Block to insert into.
1026 Predicate pred, ///< The predicate to use for the comparison
1027 Value *LHS, ///< The left-hand-side of the expression
1028 Value *RHS, ///< The right-hand-side of the expression
1029 const Twine &NameStr = "" ///< Name of the instruction
1030 ) : CmpInst(makeCmpResultType(LHS->getType()),
1031 Instruction::ICmp, pred, LHS, RHS, NameStr,
1032 &InsertAtEnd) {
1033 #ifndef NDEBUG
1034 AssertOK();
1035 #endif
1036 }
1037
1038 /// \brief Constructor with no-insertion semantics
1039 ICmpInst(
1040 Predicate pred, ///< The predicate to use for the comparison
1041 Value *LHS, ///< The left-hand-side of the expression
1042 Value *RHS, ///< The right-hand-side of the expression
1043 const Twine &NameStr = "" ///< Name of the instruction
1044 ) : CmpInst(makeCmpResultType(LHS->getType()),
1045 Instruction::ICmp, pred, LHS, RHS, NameStr) {
1046 #ifndef NDEBUG
1047 AssertOK();
1048 #endif
1049 }
1050
1051 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1052 /// @returns the predicate that would be the result if the operand were
1053 /// regarded as signed.
1054 /// \brief Return the signed version of the predicate
1055 Predicate getSignedPredicate() const {
1056 return getSignedPredicate(getPredicate());
1057 }
1058
1059 /// This is a static version that you can use without an instruction.
1060 /// \brief Return the signed version of the predicate.
1061 static Predicate getSignedPredicate(Predicate pred);
1062
1063 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1064 /// @returns the predicate that would be the result if the operand were
1065 /// regarded as unsigned.
1066 /// \brief Return the unsigned version of the predicate
1067 Predicate getUnsignedPredicate() const {
1068 return getUnsignedPredicate(getPredicate());
1069 }
1070
1071 /// This is a static version that you can use without an instruction.
1072 /// \brief Return the unsigned version of the predicate.
1073 static Predicate getUnsignedPredicate(Predicate pred);
1074
1075 /// isEquality - Return true if this predicate is either EQ or NE. This also
1076 /// tests for commutativity.
1077 static bool isEquality(Predicate P) {
1078 return P == ICMP_EQ || P == ICMP_NE;
1079 }
1080
1081 /// isEquality - Return true if this predicate is either EQ or NE. This also
1082 /// tests for commutativity.
1083 bool isEquality() const {
1084 return isEquality(getPredicate());
1085 }
1086
1087 /// @returns true if the predicate of this ICmpInst is commutative
1088 /// \brief Determine if this relation is commutative.
1089 bool isCommutative() const { return isEquality(); }
1090
1091 /// isRelational - Return true if the predicate is relational (not EQ or NE).
1092 ///
1093 bool isRelational() const {
1094 return !isEquality();
1095 }
1096
1097 /// isRelational - Return true if the predicate is relational (not EQ or NE).
1098 ///
1099 static bool isRelational(Predicate P) {
1100 return !isEquality(P);
1101 }
1102
1103 /// Initialize a set of values that all satisfy the predicate with C.
1104 /// \brief Make a ConstantRange for a relation with a constant value.
1105 static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
1106
1107 /// Exchange the two operands to this instruction in such a way that it does
1108 /// not modify the semantics of the instruction. The predicate value may be
1109 /// changed to retain the same result if the predicate is order dependent
1110 /// (e.g. ult).
1111 /// \brief Swap operands and adjust predicate.
1112 void swapOperands() {
1113 setPredicate(getSwappedPredicate());
1114 Op<0>().swap(Op<1>());
1115 }
1116
1117 // Methods for support type inquiry through isa, cast, and dyn_cast:
1118 static inline bool classof(const Instruction *I) {
1119 return I->getOpcode() == Instruction::ICmp;
1120 }
1121 static inline bool classof(const Value *V) {
1122 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1123 }
1124
1125 };
1126
1127 //===----------------------------------------------------------------------===//
1128 // FCmpInst Class
1129 //===----------------------------------------------------------------------===//
1130
1131 /// This instruction compares its operands according to the predicate given
1132 /// to the constructor. It only operates on floating point values or packed
1133 /// vectors of floating point values. The operands must be identical types.
1134 /// \brief Represents a floating point comparison operator.
1135 class FCmpInst: public CmpInst {
1136 protected:
1137 /// \brief Clone an identical FCmpInst
1138 FCmpInst *clone_impl() const override;
1139 public:
1140 /// \brief Constructor with insert-before-instruction semantics.
1141 FCmpInst(
1142 Instruction *InsertBefore, ///< Where to insert
1143 Predicate pred, ///< The predicate to use for the comparison
1144 Value *LHS, ///< The left-hand-side of the expression
1145 Value *RHS, ///< The right-hand-side of the expression
1146 const Twine &NameStr = "" ///< Name of the instruction
1147 ) : CmpInst(makeCmpResultType(LHS->getType()),
1148 Instruction::FCmp, pred, LHS, RHS, NameStr,
1149 InsertBefore) {
1150 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
1151 "Invalid FCmp predicate value");
1152 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1153 "Both operands to FCmp instruction are not of the same type!");
1154 // Check that the operands are the right type
1155 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1156 "Invalid operand types for FCmp instruction");
1157 }
1158
1159 /// \brief Constructor with insert-at-end semantics.
1160 FCmpInst(
1161 BasicBlock &InsertAtEnd, ///< Block to insert into.
1162 Predicate pred, ///< The predicate to use for the comparison
1163 Value *LHS, ///< The left-hand-side of the expression
1164 Value *RHS, ///< The right-hand-side of the expression
1165 const Twine &NameStr = "" ///< Name of the instruction
1166 ) : CmpInst(makeCmpResultType(LHS->getType()),
1167 Instruction::FCmp, pred, LHS, RHS, NameStr,
1168 &InsertAtEnd) {
1169 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
1170 "Invalid FCmp predicate value");
1171 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1172 "Both operands to FCmp instruction are not of the same type!");
1173 // Check that the operands are the right type
1174 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1175 "Invalid operand types for FCmp instruction");
1176 }
1177
1178 /// \brief Constructor with no-insertion semantics
1179 FCmpInst(
1180 Predicate pred, ///< The predicate to use for the comparison
1181 Value *LHS, ///< The left-hand-side of the expression
1182 Value *RHS, ///< The right-hand-side of the expression
1183 const Twine &NameStr = "" ///< Name of the instruction
1184 ) : CmpInst(makeCmpResultType(LHS->getType()),
1185 Instruction::FCmp, pred, LHS, RHS, NameStr) {
1186 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
1187 "Invalid FCmp predicate value");
1188 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1189 "Both operands to FCmp instruction are not of the same type!");
1190 // Check that the operands are the right type
1191 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1192 "Invalid operand types for FCmp instruction");
1193 }
1194
1195 /// @returns true if the predicate of this instruction is EQ or NE.
1196 /// \brief Determine if this is an equality predicate.
1197 bool isEquality() const {
1198 return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE ||
1199 getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE;
1200 }
1201
1202 /// @returns true if the predicate of this instruction is commutative.
1203 /// \brief Determine if this is a commutative predicate.
1204 bool isCommutative() const {
1205 return isEquality() ||
1206 getPredicate() == FCMP_FALSE ||
1207 getPredicate() == FCMP_TRUE ||
1208 getPredicate() == FCMP_ORD ||
1209 getPredicate() == FCMP_UNO;
1210 }
1211
1212 /// @returns true if the predicate is relational (not EQ or NE).
1213 /// \brief Determine if this a relational predicate.
1214 bool isRelational() const { return !isEquality(); }
1215
1216 /// Exchange the two operands to this instruction in such a way that it does
1217 /// not modify the semantics of the instruction. The predicate value may be
1218 /// changed to retain the same result if the predicate is order dependent
1219 /// (e.g. ult).
1220 /// \brief Swap operands and adjust predicate.
1221 void swapOperands() {
1222 setPredicate(getSwappedPredicate());
1223 Op<0>().swap(Op<1>());
1224 }
1225
1226 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
1227 static inline bool classof(const Instruction *I) {
1228 return I->getOpcode() == Instruction::FCmp;
1229 }
1230 static inline bool classof(const Value *V) {
1231 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1232 }
1233 };
1234
1235 //===----------------------------------------------------------------------===//
1236 /// CallInst - This class represents a function call, abstracting a target
1237 /// machine's calling convention. This class uses low bit of the SubClassData
1238 /// field to indicate whether or not this is a tail call. The rest of the bits
1239 /// hold the calling convention of the call.
1240 ///
1241 class CallInst : public Instruction {
1242 AttributeSet AttributeList; ///< parameter attributes for call
1243 CallInst(const CallInst &CI);
1244 void init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr);
1245 void init(Value *Func, const Twine &NameStr);
1246
1247 /// Construct a CallInst given a range of arguments.
1248 /// \brief Construct a CallInst from a range of arguments
1249 inline CallInst(Value *Func, ArrayRef<Value *> Args,
1250 const Twine &NameStr, Instruction *InsertBefore);
1251
1252 /// Construct a CallInst given a range of arguments.
1253 /// \brief Construct a CallInst from a range of arguments
1254 inline CallInst(Value *Func, ArrayRef<Value *> Args,
1255 const Twine &NameStr, BasicBlock *InsertAtEnd);
1256
1257 explicit CallInst(Value *F, const Twine &NameStr,
1258 Instruction *InsertBefore);
1259 CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
1260 protected:
1261 CallInst *clone_impl() const override;
1262 public:
1263 static CallInst *Create(Value *Func,
1264 ArrayRef<Value *> Args,
1265 const Twine &NameStr = "",
1266 Instruction *InsertBefore = nullptr) {
1267 return new(unsigned(Args.size() + 1))
1268 CallInst(Func, Args, NameStr, InsertBefore);
1269 }
1270 static CallInst *Create(Value *Func,
1271 ArrayRef<Value *> Args,
1272 const Twine &NameStr, BasicBlock *InsertAtEnd) {
1273 return new(unsigned(Args.size() + 1))
1274 CallInst(Func, Args, NameStr, InsertAtEnd);
1275 }
1276 static CallInst *Create(Value *F, const Twine &NameStr = "",
1277 Instruction *InsertBefore = nullptr) {
1278 return new(1) CallInst(F, NameStr, InsertBefore);
1279 }
1280 static CallInst *Create(Value *F, const Twine &NameStr,
1281 BasicBlock *InsertAtEnd) {
1282 return new(1) CallInst(F, NameStr, InsertAtEnd);
1283 }
1284 /// CreateMalloc - Generate the IR for a call to malloc:
1285 /// 1. Compute the malloc call's argument as the specified type's size,
1286 /// possibly multiplied by the array size if the array size is not
1287 /// constant 1.
1288 /// 2. Call malloc with that argument.
1289 /// 3. Bitcast the result of the malloc call to the specified type.
1290 static Instruction *CreateMalloc(Instruction *InsertBefore,
1291 Type *IntPtrTy, Type *AllocTy,
1292 Value *AllocSize, Value *ArraySize = nullptr,
1293 Function* MallocF = nullptr,
1294 const Twine &Name = "");
1295 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
1296 Type *IntPtrTy, Type *AllocTy,
1297 Value *AllocSize, Value *ArraySize = nullptr,
1298 Function* MallocF = nullptr,
1299 const Twine &Name = "");
1300 /// CreateFree - Generate the IR for a call to the builtin free function.
1301 static Instruction* CreateFree(Value* Source, Instruction *InsertBefore);
1302 static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
1303
1304 ~CallInst();
1305
1306 // Note that 'musttail' implies 'tail'.
1307 enum TailCallKind { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2 };
1308 TailCallKind getTailCallKind() const {
1309 return TailCallKind(getSubclassDataFromInstruction() & 3);
1310 }
1311 bool isTailCall() const {
1312 return (getSubclassDataFromInstruction() & 3) != TCK_None;
1313 }
1314 bool isMustTailCall() const {
1315 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
1316 }
1317 void setTailCall(bool isTC = true) {
1318 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1319 unsigned(isTC ? TCK_Tail : TCK_None));
1320 }
1321 void setTailCallKind(TailCallKind TCK) {
1322 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1323 unsigned(TCK));
1324 }
1325
1326 /// Provide fast operand accessors
1327 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1328
1329 /// getNumArgOperands - Return the number of call arguments.
1330 ///
1331 unsigned getNumArgOperands() const { return getNumOperands() - 1; }
1332
1333 /// getArgOperand/setArgOperand - Return/set the i-th call argument.
1334 ///
1335 Value *getArgOperand(unsigned i) const { return getOperand(i); }
1336 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
1337
1338 /// arg_operands - iteration adapter for range-for loops.
1339 iterator_range<op_iterator> arg_operands() {
1340 // The last operand in the op list is the callee - it's not one of the args
1341 // so we don't want to iterate over it.
1342 return iterator_range<op_iterator>(op_begin(), op_end() - 1);
1343 }
1344
1345 /// arg_operands - iteration adapter for range-for loops.
1346 iterator_range<const_op_iterator> arg_operands() const {
1347 return iterator_range<const_op_iterator>(op_begin(), op_end() - 1);
1348 }
1349
1350 /// \brief Wrappers for getting the \c Use of a call argument.
1351 const Use &getArgOperandUse(unsigned i) const { return getOperandUse(i); }
1352 Use &getArgOperandUse(unsigned i) { return getOperandUse(i); }
1353
1354 /// getCallingConv/setCallingConv - Get or set the calling convention of this
1355 /// function call.
1356 CallingConv::ID getCallingConv() const {
1357 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
1358 }
1359 void setCallingConv(CallingConv::ID CC) {
1360 setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
1361 (static_cast<unsigned>(CC) << 2));
1362 }
1363
1364 /// getAttributes - Return the parameter attributes for this call.
1365 ///
1366 const AttributeSet &getAttributes() const { return AttributeList; }
1367
1368 /// setAttributes - Set the parameter attributes for this call.
1369 ///
1370 void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
1371
1372 /// addAttribute - adds the attribute to the list of attributes.
1373 void addAttribute(unsigned i, Attribute::AttrKind attr);
1374
1375 /// removeAttribute - removes the attribute from the list of attributes.
1376 void removeAttribute(unsigned i, Attribute attr);
1377
1378 /// \brief Determine whether this call has the given attribute.
1379 bool hasFnAttr(Attribute::AttrKind A) const {
1380 assert(A != Attribute::NoBuiltin &&
1381 "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
1382 return hasFnAttrImpl(A);
1383 }
1384
1385 /// \brief Determine whether the call or the callee has the given attributes.
1386 bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
1387
1388 /// \brief Extract the alignment for a call or parameter (0=unknown).
1389 unsigned getParamAlignment(unsigned i) const {
1390 return AttributeList.getParamAlignment(i);
1391 }
1392
1393 /// \brief Extract the number of dereferenceable bytes for a call or
1394 /// parameter (0=unknown).
1395 uint64_t getDereferenceableBytes(unsigned i) const {
1396 return AttributeList.getDereferenceableBytes(i);
1397 }
1398
1399 /// \brief Return true if the call should not be treated as a call to a
1400 /// builtin.
1401 bool isNoBuiltin() const {
1402 return hasFnAttrImpl(Attribute::NoBuiltin) &&
1403 !hasFnAttrImpl(Attribute::Builtin);
1404 }
1405
1406 /// \brief Return true if the call should not be inlined.
1407 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
1408 void setIsNoInline() {
1409 addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline);
1410 }
1411
1412 /// \brief Return true if the call can return twice
1413 bool canReturnTwice() const {
1414 return hasFnAttr(Attribute::ReturnsTwice);
1415 }
1416 void setCanReturnTwice() {
1417 addAttribute(AttributeSet::FunctionIndex, Attribute::ReturnsTwice);
1418 }
1419
1420 /// \brief Determine if the call does not access memory.
1421 bool doesNotAccessMemory() const {
1422 return hasFnAttr(Attribute::ReadNone);
1423 }
1424 void setDoesNotAccessMemory() {
1425 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
1426 }
1427
1428 /// \brief Determine if the call does not access or only reads memory.
1429 bool onlyReadsMemory() const {
1430 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
1431 }
1432 void setOnlyReadsMemory() {
1433 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
1434 }
1435
1436 /// \brief Determine if the call cannot return.
1437 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
1438 void setDoesNotReturn() {
1439 addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
1440 }
1441
1442 /// \brief Determine if the call cannot unwind.
1443 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
1444 void setDoesNotThrow() {
1445 addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
1446 }
1447
1448 /// \brief Determine if the call cannot be duplicated.
1449 bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
1450 void setCannotDuplicate() {
1451 addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate);
1452 }
1453
1454 /// \brief Determine if the call returns a structure through first
1455 /// pointer argument.
1456 bool hasStructRetAttr() const {
1457 // Be friendly and also check the callee.
1458 return paramHasAttr(1, Attribute::StructRet);
1459 }
1460
1461 /// \brief Determine if any call argument is an aggregate passed by value.
1462 bool hasByValArgument() const {
1463 return AttributeList.hasAttrSomewhere(Attribute::ByVal);
1464 }
1465
1466 /// getCalledFunction - Return the function called, or null if this is an
1467 /// indirect function invocation.
1468 ///
1469 Function *getCalledFunction() const {
1470 return dyn_cast<Function>(Op<-1>());
1471 }
1472
1473 /// getCalledValue - Get a pointer to the function that is invoked by this
1474 /// instruction.
1475 const Value *getCalledValue() const { return Op<-1>(); }
1476 Value *getCalledValue() { return Op<-1>(); }
1477
1478 /// setCalledFunction - Set the function called.
1479 void setCalledFunction(Value* Fn) {
1480 Op<-1>() = Fn;
1481 }
1482
1483 /// isInlineAsm - Check if this call is an inline asm statement.
1484 bool isInlineAsm() const {
1485 return isa<InlineAsm>(Op<-1>());
1486 }
1487
1488 // Methods for support type inquiry through isa, cast, and dyn_cast:
1489 static inline bool classof(const Instruction *I) {
1490 return I->getOpcode() == Instruction::Call;
1491 }
1492 static inline bool classof(const Value *V) {
1493 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1494 }
1495 private:
1496
1497 bool hasFnAttrImpl(Attribute::AttrKind A) const;
1498
1499 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1500 // method so that subclasses cannot accidentally use it.
1501 void setInstructionSubclassData(unsigned short D) {
1502 Instruction::setInstructionSubclassData(D);
1503 }
1504 };
1505
1506 template <>
1507 struct OperandTraits<CallInst> : public VariadicOperandTraits<CallInst, 1> {
1508 };
1509
1510 CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
1511 const Twine &NameStr, BasicBlock *InsertAtEnd)
1512 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
1513 ->getElementType())->getReturnType(),
1514 Instruction::Call,
1515 OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
1516 unsigned(Args.size() + 1), InsertAtEnd) {
1517 init(Func, Args, NameStr);
1518 }
1519
1520 CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
1521 const Twine &NameStr, Instruction *InsertBefore)
1522 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
1523 ->getElementType())->getReturnType(),
1524 Instruction::Call,
1525 OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
1526 unsigned(Args.size() + 1), InsertBefore) {
1527 init(Func, Args, NameStr);
1528 }
1529
1530
1531 // Note: if you get compile errors about private methods then
1532 // please update your code to use the high-level operand
1533 // interfaces. See line 943 above.
1534 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
1535
1536 //===----------------------------------------------------------------------===//
1537 // SelectInst Class
1538 //===----------------------------------------------------------------------===//
1539
1540 /// SelectInst - This class represents the LLVM 'select' instruction.
1541 ///
1542 class SelectInst : public Instruction {
1543 void init(Value *C, Value *S1, Value *S2) {
1544 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
1545 Op<0>() = C;
1546 Op<1>() = S1;
1547 Op<2>() = S2;
1548 }
1549
1550 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1551 Instruction *InsertBefore)
1552 : Instruction(S1->getType(), Instruction::Select,
1553 &Op<0>(), 3, InsertBefore) {
1554 init(C, S1, S2);
1555 setName(NameStr);
1556 }
1557 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
1558 BasicBlock *InsertAtEnd)
1559 : Instruction(S1->getType(), Instruction::Select,
1560 &Op<0>(), 3, InsertAtEnd) {
1561 init(C, S1, S2);
1562 setName(NameStr);
1563 }
1564 protected:
1565 SelectInst *clone_impl() const override;
1566 public:
1567 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1568 const Twine &NameStr = "",
1569 Instruction *InsertBefore = nullptr) {
1570 return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
1571 }
1572 static SelectInst *Create(Value *C, Value *S1, Value *S2,
1573 const Twine &NameStr,
1574 BasicBlock *InsertAtEnd) {
1575 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
1576 }
1577
1578 const Value *getCondition() const { return Op<0>(); }
1579 const Value *getTrueValue() const { return Op<1>(); }
1580 const Value *getFalseValue() const { return Op<2>(); }
1581 Value *getCondition() { return Op<0>(); }
1582 Value *getTrueValue() { return Op<1>(); }
1583 Value *getFalseValue() { return Op<2>(); }
1584
1585 /// areInvalidOperands - Return a string if the specified operands are invalid
1586 /// for a select operation, otherwise return null.
1587 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
1588
1589 /// Transparently provide more efficient getOperand methods.
1590 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1591
1592 OtherOps getOpcode() const {
1593 return static_cast<OtherOps>(Instruction::getOpcode());
1594 }
1595
1596 // Methods for support type inquiry through isa, cast, and dyn_cast:
1597 static inline bool classof(const Instruction *I) {
1598 return I->getOpcode() == Instruction::Select;
1599 }
1600 static inline bool classof(const Value *V) {
1601 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1602 }
1603 };
1604
1605 template <>
1606 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
1607 };
1608
1609 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
1610
1611 //===----------------------------------------------------------------------===//
1612 // VAArgInst Class
1613 //===----------------------------------------------------------------------===//
1614
1615 /// VAArgInst - This class represents the va_arg llvm instruction, which returns
1616 /// an argument of the specified type given a va_list and increments that list
1617 ///
1618 class VAArgInst : public UnaryInstruction {
1619 protected:
1620 VAArgInst *clone_impl() const override;
1621
1622 public:
1623 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
1624 Instruction *InsertBefore = nullptr)
1625 : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
1626 setName(NameStr);
1627 }
1628 VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
1629 BasicBlock *InsertAtEnd)
1630 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
1631 setName(NameStr);
1632 }
1633
1634 Value *getPointerOperand() { return getOperand(0); }
1635 const Value *getPointerOperand() const { return getOperand(0); }
1636 static unsigned getPointerOperandIndex() { return 0U; }
1637
1638 // Methods for support type inquiry through isa, cast, and dyn_cast:
1639 static inline bool classof(const Instruction *I) {
1640 return I->getOpcode() == VAArg;
1641 }
1642 static inline bool classof(const Value *V) {
1643 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1644 }
1645 };
1646
1647 //===----------------------------------------------------------------------===//
1648 // ExtractElementInst Class
1649 //===----------------------------------------------------------------------===//
1650
1651 /// ExtractElementInst - This instruction extracts a single (scalar)
1652 /// element from a VectorType value
1653 ///
1654 class ExtractElementInst : public Instruction {
1655 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
1656 Instruction *InsertBefore = nullptr);
1657 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
1658 BasicBlock *InsertAtEnd);
1659 protected:
1660 ExtractElementInst *clone_impl() const override;
1661
1662 public:
1663 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1664 const Twine &NameStr = "",
1665 Instruction *InsertBefore = nullptr) {
1666 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
1667 }
1668 static ExtractElementInst *Create(Value *Vec, Value *Idx,
1669 const Twine &NameStr,
1670 BasicBlock *InsertAtEnd) {
1671 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
1672 }
1673
1674 /// isValidOperands - Return true if an extractelement instruction can be
1675 /// formed with the specified operands.
1676 static bool isValidOperands(const Value *Vec, const Value *Idx);
1677
1678 Value *getVectorOperand() { return Op<0>(); }
1679 Value *getIndexOperand() { return Op<1>(); }
1680 const Value *getVectorOperand() const { return Op<0>(); }
1681 const Value *getIndexOperand() const { return Op<1>(); }
1682
1683 VectorType *getVectorOperandType() const {
1684 return cast<VectorType>(getVectorOperand()->getType());
1685 }
1686
1687
1688 /// Transparently provide more efficient getOperand methods.
1689 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1690
1691 // Methods for support type inquiry through isa, cast, and dyn_cast:
1692 static inline bool classof(const Instruction *I) {
1693 return I->getOpcode() == Instruction::ExtractElement;
1694 }
1695 static inline bool classof(const Value *V) {
1696 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1697 }
1698 };
1699
1700 template <>
1701 struct OperandTraits<ExtractElementInst> :
1702 public FixedNumOperandTraits<ExtractElementInst, 2> {
1703 };
1704
1705 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
1706
1707 //===----------------------------------------------------------------------===//
1708 // InsertElementInst Class
1709 //===----------------------------------------------------------------------===//
1710
1711 /// InsertElementInst - This instruction inserts a single (scalar)
1712 /// element into a VectorType value
1713 ///
1714 class InsertElementInst : public Instruction {
1715 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1716 const Twine &NameStr = "",
1717 Instruction *InsertBefore = nullptr);
1718 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
1719 const Twine &NameStr, BasicBlock *InsertAtEnd);
1720 protected:
1721 InsertElementInst *clone_impl() const override;
1722
1723 public:
1724 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1725 const Twine &NameStr = "",
1726 Instruction *InsertBefore = nullptr) {
1727 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
1728 }
1729 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
1730 const Twine &NameStr,
1731 BasicBlock *InsertAtEnd) {
1732 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
1733 }
1734
1735 /// isValidOperands - Return true if an insertelement instruction can be
1736 /// formed with the specified operands.
1737 static bool isValidOperands(const Value *Vec, const Value *NewElt,
1738 const Value *Idx);
1739
1740 /// getType - Overload to return most specific vector type.
1741 ///
1742 VectorType *getType() const {
1743 return cast<VectorType>(Instruction::getType());
1744 }
1745
1746 /// Transparently provide more efficient getOperand methods.
1747 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1748
1749 // Methods for support type inquiry through isa, cast, and dyn_cast:
1750 static inline bool classof(const Instruction *I) {
1751 return I->getOpcode() == Instruction::InsertElement;
1752 }
1753 static inline bool classof(const Value *V) {
1754 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1755 }
1756 };
1757
1758 template <>
1759 struct OperandTraits<InsertElementInst> :
1760 public FixedNumOperandTraits<InsertElementInst, 3> {
1761 };
1762
1763 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
1764
1765 //===----------------------------------------------------------------------===//
1766 // ShuffleVectorInst Class
1767 //===----------------------------------------------------------------------===//
1768
1769 /// ShuffleVectorInst - This instruction constructs a fixed permutation of two
1770 /// input vectors.
1771 ///
1772 class ShuffleVectorInst : public Instruction {
1773 protected:
1774 ShuffleVectorInst *clone_impl() const override;
1775
1776 public:
1777 // allocate space for exactly three operands
1778 void *operator new(size_t s) {
1779 return User::operator new(s, 3);
1780 }
1781 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1782 const Twine &NameStr = "",
1783 Instruction *InsertBefor = nullptr);
1784 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1785 const Twine &NameStr, BasicBlock *InsertAtEnd);
1786
1787 /// isValidOperands - Return true if a shufflevector instruction can be
1788 /// formed with the specified operands.
1789 static bool isValidOperands(const Value *V1, const Value *V2,
1790 const Value *Mask);
1791
1792 /// getType - Overload to return most specific vector type.
1793 ///
1794 VectorType *getType() const {
1795 return cast<VectorType>(Instruction::getType());
1796 }
1797
1798 /// Transparently provide more efficient getOperand methods.
1799 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1800
1801 Constant *getMask() const {
1802 return cast<Constant>(getOperand(2));
1803 }
1804
1805 /// getMaskValue - Return the index from the shuffle mask for the specified
1806 /// output result. This is either -1 if the element is undef or a number less
1807 /// than 2*numelements.
1808 static int getMaskValue(Constant *Mask, unsigned i);
1809
1810 int getMaskValue(unsigned i) const {
1811 return getMaskValue(getMask(), i);
1812 }
1813
1814 /// getShuffleMask - Return the full mask for this instruction, where each
1815 /// element is the element number and undef's are returned as -1.
1816 static void getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result);
1817
1818 void getShuffleMask(SmallVectorImpl<int> &Result) const {
1819 return getShuffleMask(getMask(), Result);
1820 }
1821
1822 SmallVector<int, 16> getShuffleMask() const {
1823 SmallVector<int, 16> Mask;
1824 getShuffleMask(Mask);
1825 return Mask;
1826 }
1827
1828
1829 // Methods for support type inquiry through isa, cast, and dyn_cast:
1830 static inline bool classof(const Instruction *I) {
1831 return I->getOpcode() == Instruction::ShuffleVector;
1832 }
1833 static inline bool classof(const Value *V) {
1834 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1835 }
1836 };
1837
1838 template <>
1839 struct OperandTraits<ShuffleVectorInst> :
1840 public FixedNumOperandTraits<ShuffleVectorInst, 3> {
1841 };
1842
1843 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
1844
1845 //===----------------------------------------------------------------------===//
1846 // ExtractValueInst Class
1847 //===----------------------------------------------------------------------===//
1848
1849 /// ExtractValueInst - This instruction extracts a struct member or array
1850 /// element value from an aggregate value.
1851 ///
1852 class ExtractValueInst : public UnaryInstruction {
1853 SmallVector<unsigned, 4> Indices;
1854
1855 ExtractValueInst(const ExtractValueInst &EVI);
1856 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
1857
1858 /// Constructors - Create a extractvalue instruction with a base aggregate
1859 /// value and a list of indices. The first ctor can optionally insert before
1860 /// an existing instruction, the second appends the new instruction to the
1861 /// specified BasicBlock.
1862 inline ExtractValueInst(Value *Agg,
1863 ArrayRef<unsigned> Idxs,
1864 const Twine &NameStr,
1865 Instruction *InsertBefore);
1866 inline ExtractValueInst(Value *Agg,
1867 ArrayRef<unsigned> Idxs,
1868 const Twine &NameStr, BasicBlock *InsertAtEnd);
1869
1870 // allocate space for exactly one operand
1871 void *operator new(size_t s) {
1872 return User::operator new(s, 1);
1873 }
1874 protected:
1875 ExtractValueInst *clone_impl() const override;
1876
1877 public:
1878 static ExtractValueInst *Create(Value *Agg,
1879 ArrayRef<unsigned> Idxs,
1880 const Twine &NameStr = "",
1881 Instruction *InsertBefore = nullptr) {
1882 return new
1883 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
1884 }
1885 static ExtractValueInst *Create(Value *Agg,
1886 ArrayRef<unsigned> Idxs,
1887 const Twine &NameStr,
1888 BasicBlock *InsertAtEnd) {
1889 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
1890 }
1891
1892 /// getIndexedType - Returns the type of the element that would be extracted
1893 /// with an extractvalue instruction with the specified parameters.
1894 ///
1895 /// Null is returned if the indices are invalid for the specified type.
1896 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
1897
1898 typedef const unsigned* idx_iterator;
1899 inline idx_iterator idx_begin() const { return Indices.begin(); }
1900 inline idx_iterator idx_end() const { return Indices.end(); }
1901
1902 Value *getAggregateOperand() {
1903 return getOperand(0);
1904 }
1905 const Value *getAggregateOperand() const {
1906 return getOperand(0);
1907 }
1908 static unsigned getAggregateOperandIndex() {
1909 return 0U; // get index for modifying correct operand
1910 }
1911
1912 ArrayRef<unsigned> getIndices() const {
1913 return Indices;
1914 }
1915
1916 unsigned getNumIndices() const {
1917 return (unsigned)Indices.size();
1918 }
1919
1920 bool hasIndices() const {
1921 return true;
1922 }
1923
1924 // Methods for support type inquiry through isa, cast, and dyn_cast:
1925 static inline bool classof(const Instruction *I) {
1926 return I->getOpcode() == Instruction::ExtractValue;
1927 }
1928 static inline bool classof(const Value *V) {
1929 return isa<Instruction>(V) && classof(cast<Instruction>(V));
1930 }
1931 };
1932
1933 ExtractValueInst::ExtractValueInst(Value *Agg,
1934 ArrayRef<unsigned> Idxs,
1935 const Twine &NameStr,
1936 Instruction *InsertBefore)
1937 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
1938 ExtractValue, Agg, InsertBefore) {
1939 init(Idxs, NameStr);
1940 }
1941 ExtractValueInst::ExtractValueInst(Value *Agg,
1942 ArrayRef<unsigned> Idxs,
1943 const Twine &NameStr,
1944 BasicBlock *InsertAtEnd)
1945 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
1946 ExtractValue, Agg, InsertAtEnd) {
1947 init(Idxs, NameStr);
1948 }
1949
1950
1951 //===----------------------------------------------------------------------===//
1952 // InsertValueInst Class
1953 //===----------------------------------------------------------------------===//
1954
1955 /// InsertValueInst - This instruction inserts a struct field of array element
1956 /// value into an aggregate value.
1957 ///
1958 class InsertValueInst : public Instruction {
1959 SmallVector<unsigned, 4> Indices;
1960
1961 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
1962 InsertValueInst(const InsertValueInst &IVI);
1963 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1964 const Twine &NameStr);
1965
1966 /// Constructors - Create a insertvalue instruction with a base aggregate
1967 /// value, a value to insert, and a list of indices. The first ctor can
1968 /// optionally insert before an existing instruction, the second appends
1969 /// the new instruction to the specified BasicBlock.
1970 inline InsertValueInst(Value *Agg, Value *Val,
1971 ArrayRef<unsigned> Idxs,
1972 const Twine &NameStr,
1973 Instruction *InsertBefore);
1974 inline InsertValueInst(Value *Agg, Value *Val,
1975 ArrayRef<unsigned> Idxs,
1976 const Twine &NameStr, BasicBlock *InsertAtEnd);
1977
1978 /// Constructors - These two constructors are convenience methods because one
1979 /// and two index insertvalue instructions are so common.
1980 InsertValueInst(Value *Agg, Value *Val,
1981 unsigned Idx, const Twine &NameStr = "",
1982 Instruction *InsertBefore = nullptr);
1983 InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
1984 const Twine &NameStr, BasicBlock *InsertAtEnd);
1985 protected:
1986 InsertValueInst *clone_impl() const override;
1987 public:
1988 // allocate space for exactly two operands
1989 void *operator new(size_t s) {
1990 return User::operator new(s, 2);
1991 }
1992
1993 static InsertValueInst *Create(Value *Agg, Value *Val,
1994 ArrayRef<unsigned> Idxs,
1995 const Twine &NameStr = "",
1996 Instruction *InsertBefore = nullptr) {
1997 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
1998 }
1999 static InsertValueInst *Create(Value *Agg, Value *Val,
2000 ArrayRef<unsigned> Idxs,
2001 const Twine &NameStr,
2002 BasicBlock *InsertAtEnd) {
2003 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
2004 }
2005
2006 /// Transparently provide more efficient getOperand methods.
2007 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2008
2009 typedef const unsigned* idx_iterator;
2010 inline idx_iterator idx_begin() const { return Indices.begin(); }
2011 inline idx_iterator idx_end() const { return Indices.end(); }
2012
2013 Value *getAggregateOperand() {
2014 return getOperand(0);
2015 }
2016 const Value *getAggregateOperand() const {
2017 return getOperand(0);
2018 }
2019 static unsigned getAggregateOperandIndex() {
2020 return 0U; // get index for modifying correct operand
2021 }
2022
2023 Value *getInsertedValueOperand() {
2024 return getOperand(1);
2025 }
2026 const Value *getInsertedValueOperand() const {
2027 return getOperand(1);
2028 }
2029 static unsigned getInsertedValueOperandIndex() {
2030 return 1U; // get index for modifying correct operand
2031 }
2032
2033 ArrayRef<unsigned> getIndices() const {
2034 return Indices;
2035 }
2036
2037 unsigned getNumIndices() const {
2038 return (unsigned)Indices.size();
2039 }
2040
2041 bool hasIndices() const {
2042 return true;
2043 }
2044
2045 // Methods for support type inquiry through isa, cast, and dyn_cast:
2046 static inline bool classof(const Instruction *I) {
2047 return I->getOpcode() == Instruction::InsertValue;
2048 }
2049 static inline bool classof(const Value *V) {
2050 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2051 }
2052 };
2053
2054 template <>
2055 struct OperandTraits<InsertValueInst> :
2056 public FixedNumOperandTraits<InsertValueInst, 2> {
2057 };
2058
2059 InsertValueInst::InsertValueInst(Value *Agg,
2060 Value *Val,
2061 ArrayRef<unsigned> Idxs,
2062 const Twine &NameStr,
2063 Instruction *InsertBefore)
2064 : Instruction(Agg->getType(), InsertValue,
2065 OperandTraits<InsertValueInst>::op_begin(this),
2066 2, InsertBefore) {
2067 init(Agg, Val, Idxs, NameStr);
2068 }
2069 InsertValueInst::InsertValueInst(Value *Agg,
2070 Value *Val,
2071 ArrayRef<unsigned> Idxs,
2072 const Twine &NameStr,
2073 BasicBlock *InsertAtEnd)
2074 : Instruction(Agg->getType(), InsertValue,
2075 OperandTraits<InsertValueInst>::op_begin(this),
2076 2, InsertAtEnd) {
2077 init(Agg, Val, Idxs, NameStr);
2078 }
2079
2080 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
2081
2082 //===----------------------------------------------------------------------===//
2083 // PHINode Class
2084 //===----------------------------------------------------------------------===//
2085
2086 // PHINode - The PHINode class is used to represent the magical mystical PHI
2087 // node, that can not exist in nature, but can be synthesized in a computer
2088 // scientist's overactive imagination.
2089 //
2090 class PHINode : public Instruction {
2091 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
2092 /// ReservedSpace - The number of operands actually allocated. NumOperands is
2093 /// the number actually in use.
2094 unsigned ReservedSpace;
2095 PHINode(const PHINode &PN);
2096 // allocate space for exactly zero operands
2097 void *operator new(size_t s) {
2098 return User::operator new(s, 0);
2099 }
2100 explicit PHINode(Type *Ty, unsigned NumReservedValues,
2101 const Twine &NameStr = "",
2102 Instruction *InsertBefore = nullptr)
2103 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
2104 ReservedSpace(NumReservedValues) {
2105 setName(NameStr);
2106 OperandList = allocHungoffUses(ReservedSpace);
2107 }
2108
2109 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
2110 BasicBlock *InsertAtEnd)
2111 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
2112 ReservedSpace(NumReservedValues) {
2113 setName(NameStr);
2114 OperandList = allocHungoffUses(ReservedSpace);
2115 }
2116 protected:
2117 // allocHungoffUses - this is more complicated than the generic
2118 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2119 // values and pointers to the incoming blocks, all in one allocation.
2120 Use *allocHungoffUses(unsigned) const;
2121
2122 PHINode *clone_impl() const override;
2123 public:
2124 /// Constructors - NumReservedValues is a hint for the number of incoming
2125 /// edges that this phi node will have (use 0 if you really have no idea).
2126 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2127 const Twine &NameStr = "",
2128 Instruction *InsertBefore = nullptr) {
2129 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
2130 }
2131 static PHINode *Create(Type *Ty, unsigned NumReservedValues,
2132 const Twine &NameStr, BasicBlock *InsertAtEnd) {
2133 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
2134 }
2135 ~PHINode();
2136
2137 /// Provide fast operand accessors
2138 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2139
2140 // Block iterator interface. This provides access to the list of incoming
2141 // basic blocks, which parallels the list of incoming values.
2142
2143 typedef BasicBlock **block_iterator;
2144 typedef BasicBlock * const *const_block_iterator;
2145
2146 block_iterator block_begin() {
2147 Use::UserRef *ref =
2148 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
2149 return reinterpret_cast<block_iterator>(ref + 1);
2150 }
2151
2152 const_block_iterator block_begin() const {
2153 const Use::UserRef *ref =
2154 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
2155 return reinterpret_cast<const_block_iterator>(ref + 1);
2156 }
2157
2158 block_iterator block_end() {
2159 return block_begin() + getNumOperands();
2160 }
2161
2162 const_block_iterator block_end() const {
2163 return block_begin() + getNumOperands();
2164 }
2165
2166 /// getNumIncomingValues - Return the number of incoming edges
2167 ///
2168 unsigned getNumIncomingValues() const { return getNumOperands(); }
2169
2170 /// getIncomingValue - Return incoming value number x
2171 ///
2172 Value *getIncomingValue(unsigned i) const {
2173 return getOperand(i);
2174 }
2175 void setIncomingValue(unsigned i, Value *V) {
2176 setOperand(i, V);
2177 }
2178 static unsigned getOperandNumForIncomingValue(unsigned i) {
2179 return i;
2180 }
2181 static unsigned getIncomingValueNumForOperand(unsigned i) {
2182 return i;
2183 }
2184
2185 /// getIncomingBlock - Return incoming basic block number @p i.
2186 ///
2187 BasicBlock *getIncomingBlock(unsigned i) const {
2188 return block_begin()[i];
2189 }
2190
2191 /// getIncomingBlock - Return incoming basic block corresponding
2192 /// to an operand of the PHI.
2193 ///
2194 BasicBlock *getIncomingBlock(const Use &U) const {
2195 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
2196 return getIncomingBlock(unsigned(&U - op_begin()));
2197 }
2198
2199 /// getIncomingBlock - Return incoming basic block corresponding
2200 /// to value use iterator.
2201 ///
2202 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
2203 return getIncomingBlock(I.getUse());
2204 }
2205
2206 void setIncomingBlock(unsigned i, BasicBlock *BB) {
2207 block_begin()[i] = BB;
2208 }
2209
2210 /// addIncoming - Add an incoming value to the end of the PHI list
2211 ///
2212 void addIncoming(Value *V, BasicBlock *BB) {
2213 assert(V && "PHI node got a null value!");
2214 assert(BB && "PHI node got a null basic block!");
2215 assert(getType() == V->getType() &&
2216 "All operands to PHI node must be the same type as the PHI node!");
2217 if (NumOperands == ReservedSpace)
2218 growOperands(); // Get more space!
2219 // Initialize some new operands.
2220 ++NumOperands;
2221 setIncomingValue(NumOperands - 1, V);
2222 setIncomingBlock(NumOperands - 1, BB);
2223 }
2224
2225 /// removeIncomingValue - Remove an incoming value. This is useful if a
2226 /// predecessor basic block is deleted. The value removed is returned.
2227 ///
2228 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2229 /// is true), the PHI node is destroyed and any uses of it are replaced with
2230 /// dummy values. The only time there should be zero incoming values to a PHI
2231 /// node is when the block is dead, so this strategy is sound.
2232 ///
2233 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
2234
2235 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
2236 int Idx = getBasicBlockIndex(BB);
2237 assert(Idx >= 0 && "Invalid basic block argument to remove!");
2238 return removeIncomingValue(Idx, DeletePHIIfEmpty);
2239 }
2240
2241 /// getBasicBlockIndex - Return the first index of the specified basic
2242 /// block in the value list for this PHI. Returns -1 if no instance.
2243 ///
2244 int getBasicBlockIndex(const BasicBlock *BB) const {
2245 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2246 if (block_begin()[i] == BB)
2247 return i;
2248 return -1;
2249 }
2250
2251 Value *getIncomingValueForBlock(const BasicBlock *BB) const {
2252 int Idx = getBasicBlockIndex(BB);
2253 assert(Idx >= 0 && "Invalid basic block argument!");
2254 return getIncomingValue(Idx);
2255 }
2256
2257 /// hasConstantValue - If the specified PHI node always merges together the
2258 /// same value, return the value, otherwise return null.
2259 Value *hasConstantValue() const;
2260
2261 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2262 static inline bool classof(const Instruction *I) {
2263 return I->getOpcode() == Instruction::PHI;
2264 }
2265 static inline bool classof(const Value *V) {
2266 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2267 }
2268 private:
2269 void growOperands();
2270 };
2271
2272 template <>
2273 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
2274 };
2275
2276 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
2277
2278 //===----------------------------------------------------------------------===//
2279 // LandingPadInst Class
2280 //===----------------------------------------------------------------------===//
2281
2282 //===---------------------------------------------------------------------------
2283 /// LandingPadInst - The landingpad instruction holds all of the information
2284 /// necessary to generate correct exception handling. The landingpad instruction
2285 /// cannot be moved from the top of a landing pad block, which itself is
2286 /// accessible only from the 'unwind' edge of an invoke. This uses the
2287 /// SubclassData field in Value to store whether or not the landingpad is a
2288 /// cleanup.
2289 ///
2290 class LandingPadInst : public Instruction {
2291 /// ReservedSpace - The number of operands actually allocated. NumOperands is
2292 /// the number actually in use.
2293 unsigned ReservedSpace;
2294 LandingPadInst(const LandingPadInst &LP);
2295 public:
2296 enum ClauseType { Catch, Filter };
2297 private:
2298 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
2299 // Allocate space for exactly zero operands.
2300 void *operator new(size_t s) {
2301 return User::operator new(s, 0);
2302 }
2303 void growOperands(unsigned Size);
2304 void init(Value *PersFn, unsigned NumReservedValues, const Twine &NameStr);
2305
2306 explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
2307 unsigned NumReservedValues, const Twine &NameStr,
2308 Instruction *InsertBefore);
2309 explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
2310 unsigned NumReservedValues, const Twine &NameStr,
2311 BasicBlock *InsertAtEnd);
2312 protected:
2313 LandingPadInst *clone_impl() const override;
2314 public:
2315 /// Constructors - NumReservedClauses is a hint for the number of incoming
2316 /// clauses that this landingpad will have (use 0 if you really have no idea).
2317 static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
2318 unsigned NumReservedClauses,
2319 const Twine &NameStr = "",
2320 Instruction *InsertBefore = nullptr);
2321 static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
2322 unsigned NumReservedClauses,
2323 const Twine &NameStr, BasicBlock *InsertAtEnd);
2324 ~LandingPadInst();
2325
2326 /// Provide fast operand accessors
2327 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2328
2329 /// getPersonalityFn - Get the personality function associated with this
2330 /// landing pad.
2331 Value *getPersonalityFn() const { return getOperand(0); }
2332
2333 /// isCleanup - Return 'true' if this landingpad instruction is a
2334 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2335 /// doesn't catch the exception.
2336 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2337
2338 /// setCleanup - Indicate that this landingpad instruction is a cleanup.
2339 void setCleanup(bool V) {
2340 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2341 (V ? 1 : 0));
2342 }
2343
2344 /// Add a catch or filter clause to the landing pad.
2345 void addClause(Constant *ClauseVal);
2346
2347 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2348 /// determine what type of clause this is.
2349 Constant *getClause(unsigned Idx) const {
2350 return cast<Constant>(OperandList[Idx + 1]);
2351 }
2352
2353 /// isCatch - Return 'true' if the clause and index Idx is a catch clause.
2354 bool isCatch(unsigned Idx) const {
2355 return !isa<ArrayType>(OperandList[Idx + 1]->getType());
2356 }
2357
2358 /// isFilter - Return 'true' if the clause and index Idx is a filter clause.
2359 bool isFilter(unsigned Idx) const {
2360 return isa<ArrayType>(OperandList[Idx + 1]->getType());
2361 }
2362
2363 /// getNumClauses - Get the number of clauses for this landing pad.
2364 unsigned getNumClauses() const { return getNumOperands() - 1; }
2365
2366 /// reserveClauses - Grow the size of the operand list to accommodate the new
2367 /// number of clauses.
2368 void reserveClauses(unsigned Size) { growOperands(Size); }
2369
2370 // Methods for support type inquiry through isa, cast, and dyn_cast:
2371 static inline bool classof(const Instruction *I) {
2372 return I->getOpcode() == Instruction::LandingPad;
2373 }
2374 static inline bool classof(const Value *V) {
2375 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2376 }
2377 };
2378
2379 template <>
2380 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<2> {
2381 };
2382
2383 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
2384
2385 //===----------------------------------------------------------------------===//
2386 // ReturnInst Class
2387 //===----------------------------------------------------------------------===//
2388
2389 //===---------------------------------------------------------------------------
2390 /// ReturnInst - Return a value (possibly void), from a function. Execution
2391 /// does not continue in this function any longer.
2392 ///
2393 class ReturnInst : public TerminatorInst {
2394 ReturnInst(const ReturnInst &RI);
2395
2396 private:
2397 // ReturnInst constructors:
2398 // ReturnInst() - 'ret void' instruction
2399 // ReturnInst( null) - 'ret void' instruction
2400 // ReturnInst(Value* X) - 'ret X' instruction
2401 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2402 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2403 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2404 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2405 //
2406 // NOTE: If the Value* passed is of type void then the constructor behaves as
2407 // if it was passed NULL.
2408 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
2409 Instruction *InsertBefore = nullptr);
2410 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
2411 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
2412 protected:
2413 ReturnInst *clone_impl() const override;
2414 public:
2415 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
2416 Instruction *InsertBefore = nullptr) {
2417 return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
2418 }
2419 static ReturnInst* Create(LLVMContext &C, Value *retVal,
2420 BasicBlock *InsertAtEnd) {
2421 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
2422 }
2423 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
2424 return new(0) ReturnInst(C, InsertAtEnd);
2425 }
2426 virtual ~ReturnInst();
2427
2428 /// Provide fast operand accessors
2429 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2430
2431 /// Convenience accessor. Returns null if there is no return value.
2432 Value *getReturnValue() const {
2433 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2434 }
2435
2436 unsigned getNumSuccessors() const { return 0; }
2437
2438 // Methods for support type inquiry through isa, cast, and dyn_cast:
2439 static inline bool classof(const Instruction *I) {
2440 return (I->getOpcode() == Instruction::Ret);
2441 }
2442 static inline bool classof(const Value *V) {
2443 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2444 }
2445 private:
2446 BasicBlock *getSuccessorV(unsigned idx) const override;
2447 unsigned getNumSuccessorsV() const override;
2448 void setSuccessorV(unsigned idx, BasicBlock *B) override;
2449 };
2450
2451 template <>
2452 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
2453 };
2454
2455 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
2456
2457 //===----------------------------------------------------------------------===//
2458 // BranchInst Class
2459 //===----------------------------------------------------------------------===//
2460
2461 //===---------------------------------------------------------------------------
2462 /// BranchInst - Conditional or Unconditional Branch instruction.
2463 ///
2464 class BranchInst : public TerminatorInst {
2465 /// Ops list - Branches are strange. The operands are ordered:
2466 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
2467 /// they don't have to check for cond/uncond branchness. These are mostly
2468 /// accessed relative from op_end().
2469 BranchInst(const BranchInst &BI);
2470 void AssertOK();
2471 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
2472 // BranchInst(BB *B) - 'br B'
2473 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
2474 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
2475 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
2476 // BranchInst(BB* B, BB *I) - 'br B' insert at end
2477 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
2478 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
2479 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2480 Instruction *InsertBefore = nullptr);
2481 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
2482 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
2483 BasicBlock *InsertAtEnd);
2484 protected:
2485 BranchInst *clone_impl() const override;
2486 public:
2487 static BranchInst *Create(BasicBlock *IfTrue,
2488 Instruction *InsertBefore = nullptr) {
2489 return new(1) BranchInst(IfTrue, InsertBefore);
2490 }
2491 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
2492 Value *Cond, Instruction *InsertBefore = nullptr) {
2493 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
2494 }
2495 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
2496 return new(1) BranchInst(IfTrue, InsertAtEnd);
2497 }
2498 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
2499 Value *Cond, BasicBlock *InsertAtEnd) {
2500 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
2501 }
2502
2503 /// Transparently provide more efficient getOperand methods.
2504 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2505
2506 bool isUnconditional() const { return getNumOperands() == 1; }
2507 bool isConditional() const { return getNumOperands() == 3; }
2508
2509 Value *getCondition() const {
2510 assert(isConditional() && "Cannot get condition of an uncond branch!");
2511 return Op<-3>();
2512 }
2513
2514 void setCondition(Value *V) {
2515 assert(isConditional() && "Cannot set condition of unconditional branch!");
2516 Op<-3>() = V;
2517 }
2518
2519 unsigned getNumSuccessors() const { return 1+isConditional(); }
2520
2521 BasicBlock *getSuccessor(unsigned i) const {
2522 assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
2523 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
2524 }
2525
2526 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2527 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
2528 *(&Op<-1>() - idx) = (Value*)NewSucc;
2529 }
2530
2531 /// \brief Swap the successors of this branch instruction.
2532 ///
2533 /// Swaps the successors of the branch instruction. This also swaps any
2534 /// branch weight metadata associated with the instruction so that it
2535 /// continues to map correctly to each operand.
2536 void swapSuccessors();
2537
2538 // Methods for support type inquiry through isa, cast, and dyn_cast:
2539 static inline bool classof(const Instruction *I) {
2540 return (I->getOpcode() == Instruction::Br);
2541 }
2542 static inline bool classof(const Value *V) {
2543 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2544 }
2545 private:
2546 BasicBlock *getSuccessorV(unsigned idx) const override;
2547 unsigned getNumSuccessorsV() const override;
2548 void setSuccessorV(unsigned idx, BasicBlock *B) override;
2549 };
2550
2551 template <>
2552 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
2553 };
2554
2555 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
2556
2557 //===----------------------------------------------------------------------===//
2558 // SwitchInst Class
2559 //===----------------------------------------------------------------------===//
2560
2561 //===---------------------------------------------------------------------------
2562 /// SwitchInst - Multiway switch
2563 ///
2564 class SwitchInst : public TerminatorInst {
2565 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
2566 unsigned ReservedSpace;
2567 // Operand[0] = Value to switch on
2568 // Operand[1] = Default basic block destination
2569 // Operand[2n ] = Value to match
2570 // Operand[2n+1] = BasicBlock to go to on match
2571 SwitchInst(const SwitchInst &SI);
2572 void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
2573 void growOperands();
2574 // allocate space for exactly zero operands
2575 void *operator new(size_t s) {
2576 return User::operator new(s, 0);
2577 }
2578 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2579 /// switch on and a default destination. The number of additional cases can
2580 /// be specified here to make memory allocation more efficient. This
2581 /// constructor can also autoinsert before another instruction.
2582 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2583 Instruction *InsertBefore);
2584
2585 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
2586 /// switch on and a default destination. The number of additional cases can
2587 /// be specified here to make memory allocation more efficient. This
2588 /// constructor also autoinserts at the end of the specified BasicBlock.
2589 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
2590 BasicBlock *InsertAtEnd);
2591 protected:
2592 SwitchInst *clone_impl() const override;
2593 public:
2594
2595 // -2
2596 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
2597
2598 template <class SwitchInstTy, class ConstantIntTy, class BasicBlockTy>
2599 class CaseIteratorT {
2600 protected:
2601
2602 SwitchInstTy *SI;
2603 unsigned Index;
2604
2605 public:
2606
2607 typedef CaseIteratorT<SwitchInstTy, ConstantIntTy, BasicBlockTy> Self;
2608
2609 /// Initializes case iterator for given SwitchInst and for given
2610 /// case number.
2611 CaseIteratorT(SwitchInstTy *SI, unsigned CaseNum) {
2612 this->SI = SI;
2613 Index = CaseNum;
2614 }
2615
2616 /// Initializes case iterator for given SwitchInst and for given
2617 /// TerminatorInst's successor index.
2618 static Self fromSuccessorIndex(SwitchInstTy *SI, unsigned SuccessorIndex) {
2619 assert(SuccessorIndex < SI->getNumSuccessors() &&
2620 "Successor index # out of range!");
2621 return SuccessorIndex != 0 ?
2622 Self(SI, SuccessorIndex - 1) :
2623 Self(SI, DefaultPseudoIndex);
2624 }
2625
2626 /// Resolves case value for current case.
2627 ConstantIntTy *getCaseValue() {
2628 assert(Index < SI->getNumCases() && "Index out the number of cases.");
2629 return reinterpret_cast<ConstantIntTy*>(SI->getOperand(2 + Index*2));
2630 }
2631
2632 /// Resolves successor for current case.
2633 BasicBlockTy *getCaseSuccessor() {
2634 assert((Index < SI->getNumCases() ||
2635 Index == DefaultPseudoIndex) &&
2636 "Index out the number of cases.");
2637 return SI->getSuccessor(getSuccessorIndex());
2638 }
2639
2640 /// Returns number of current case.
2641 unsigned getCaseIndex() const { return Index; }
2642
2643 /// Returns TerminatorInst's successor index for current case successor.
2644 unsigned getSuccessorIndex() const {
2645 assert((Index == DefaultPseudoIndex || Index < SI->getNumCases()) &&
2646 "Index out the number of cases.");
2647 return Index != DefaultPseudoIndex ? Index + 1 : 0;
2648 }
2649
2650 Self operator++() {
2651 // Check index correctness after increment.
2652 // Note: Index == getNumCases() means end().
2653 assert(Index+1 <= SI->getNumCases() && "Index out the number of cases.");
2654 ++Index;
2655 return *this;
2656 }
2657 Self operator++(int) {
2658 Self tmp = *this;
2659 ++(*this);
2660 return tmp;
2661 }
2662 Self operator--() {
2663 // Check index correctness after decrement.
2664 // Note: Index == getNumCases() means end().
2665 // Also allow "-1" iterator here. That will became valid after ++.
2666 assert((Index == 0 || Index-1 <= SI->getNumCases()) &&
2667 "Index out the number of cases.");
2668 --Index;
2669 return *this;
2670 }
2671 Self operator--(int) {
2672 Self tmp = *this;
2673 --(*this);
2674 return tmp;
2675 }
2676 bool operator==(const Self& RHS) const {
2677 assert(RHS.SI == SI && "Incompatible operators.");
2678 return RHS.Index == Index;
2679 }
2680 bool operator!=(const Self& RHS) const {
2681 assert(RHS.SI == SI && "Incompatible operators.");
2682 return RHS.Index != Index;
2683 }
2684 Self &operator*() {
2685 return *this;
2686 }
2687 };
2688
2689 typedef CaseIteratorT<const SwitchInst, const ConstantInt, const BasicBlock>
2690 ConstCaseIt;
2691
2692 class CaseIt : public CaseIteratorT<SwitchInst, ConstantInt, BasicBlock> {
2693
2694 typedef CaseIteratorT<SwitchInst, ConstantInt, BasicBlock> ParentTy;
2695
2696 public:
2697
2698 CaseIt(const ParentTy& Src) : ParentTy(Src) {}
2699 CaseIt(SwitchInst *SI, unsigned CaseNum) : ParentTy(SI, CaseNum) {}
2700
2701 /// Sets the new value for current case.
2702 void setValue(ConstantInt *V) {
2703 assert(Index < SI->getNumCases() && "Index out the number of cases.");
2704 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
2705 }
2706
2707 /// Sets the new successor for current case.
2708 void setSuccessor(BasicBlock *S) {
2709 SI->setSuccessor(getSuccessorIndex(), S);
2710 }
2711 };
2712
2713 static SwitchInst *Create(Value *Value, BasicBlock *Default,
2714 unsigned NumCases,
2715 Instruction *InsertBefore = nullptr) {
2716 return new SwitchInst(Value, Default, NumCases, InsertBefore);
2717 }
2718 static SwitchInst *Create(Value *Value, BasicBlock *Default,
2719 unsigned NumCases, BasicBlock *InsertAtEnd) {
2720 return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
2721 }
2722
2723 ~SwitchInst();
2724
2725 /// Provide fast operand accessors
2726 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2727
2728 // Accessor Methods for Switch stmt
2729 Value *getCondition() const { return getOperand(0); }
2730 void setCondition(Value *V) { setOperand(0, V); }
2731
2732 BasicBlock *getDefaultDest() const {
2733 return cast<BasicBlock>(getOperand(1));
2734 }
2735
2736 void setDefaultDest(BasicBlock *DefaultCase) {
2737 setOperand(1, reinterpret_cast<Value*>(DefaultCase));
2738 }
2739
2740 /// getNumCases - return the number of 'cases' in this switch instruction,
2741 /// except the default case
2742 unsigned getNumCases() const {
2743 return getNumOperands()/2 - 1;
2744 }
2745
2746 /// Returns a read/write iterator that points to the first
2747 /// case in SwitchInst.
2748 CaseIt case_begin() {
2749 return CaseIt(this, 0);
2750 }
2751 /// Returns a read-only iterator that points to the first
2752 /// case in the SwitchInst.
2753 ConstCaseIt case_begin() const {
2754 return ConstCaseIt(this, 0);
2755 }
2756
2757 /// Returns a read/write iterator that points one past the last
2758 /// in the SwitchInst.
2759 CaseIt case_end() {
2760 return CaseIt(this, getNumCases());
2761 }
2762 /// Returns a read-only iterator that points one past the last
2763 /// in the SwitchInst.
2764 ConstCaseIt case_end() const {
2765 return ConstCaseIt(this, getNumCases());
2766 }
2767
2768 /// cases - iteration adapter for range-for loops.
2769 iterator_range<CaseIt> cases() {
2770 return iterator_range<CaseIt>(case_begin(), case_end());
2771 }
2772
2773 /// cases - iteration adapter for range-for loops.
2774 iterator_range<ConstCaseIt> cases() const {
2775 return iterator_range<ConstCaseIt>(case_begin(), case_end());
2776 }
2777
2778 /// Returns an iterator that points to the default case.
2779 /// Note: this iterator allows to resolve successor only. Attempt
2780 /// to resolve case value causes an assertion.
2781 /// Also note, that increment and decrement also causes an assertion and
2782 /// makes iterator invalid.
2783 CaseIt case_default() {
2784 return CaseIt(this, DefaultPseudoIndex);
2785 }
2786 ConstCaseIt case_default() const {
2787 return ConstCaseIt(this, DefaultPseudoIndex);
2788 }
2789
2790 /// findCaseValue - Search all of the case values for the specified constant.
2791 /// If it is explicitly handled, return the case iterator of it, otherwise
2792 /// return default case iterator to indicate
2793 /// that it is handled by the default handler.
2794 CaseIt findCaseValue(const ConstantInt *C) {
2795 for (CaseIt i = case_begin(), e = case_end(); i != e; ++i)
2796 if (i.getCaseValue() == C)
2797 return i;
2798 return case_default();
2799 }
2800 ConstCaseIt findCaseValue(const ConstantInt *C) const {
2801 for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i)
2802 if (i.getCaseValue() == C)
2803 return i;
2804 return case_default();
2805 }
2806
2807 /// findCaseDest - Finds the unique case value for a given successor. Returns
2808 /// null if the successor is not found, not unique, or is the default case.
2809 ConstantInt *findCaseDest(BasicBlock *BB) {
2810 if (BB == getDefaultDest()) return nullptr;
2811
2812 ConstantInt *CI = nullptr;
2813 for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) {
2814 if (i.getCaseSuccessor() == BB) {
2815 if (CI) return nullptr; // Multiple cases lead to BB.
2816 else CI = i.getCaseValue();
2817 }
2818 }
2819 return CI;
2820 }
2821
2822 /// addCase - Add an entry to the switch instruction...
2823 /// Note:
2824 /// This action invalidates case_end(). Old case_end() iterator will
2825 /// point to the added case.
2826 void addCase(ConstantInt *OnVal, BasicBlock *Dest);
2827
2828 /// removeCase - This method removes the specified case and its successor
2829 /// from the switch instruction. Note that this operation may reorder the
2830 /// remaining cases at index idx and above.
2831 /// Note:
2832 /// This action invalidates iterators for all cases following the one removed,
2833 /// including the case_end() iterator.
2834 void removeCase(CaseIt i);
2835
2836 unsigned getNumSuccessors() const { return getNumOperands()/2; }
2837 BasicBlock *getSuccessor(unsigned idx) const {
2838 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
2839 return cast<BasicBlock>(getOperand(idx*2+1));
2840 }
2841 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
2842 assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
2843 setOperand(idx*2+1, (Value*)NewSucc);
2844 }
2845
2846 // Methods for support type inquiry through isa, cast, and dyn_cast:
2847 static inline bool classof(const Instruction *I) {
2848 return I->getOpcode() == Instruction::Switch;
2849 }
2850 static inline bool classof(const Value *V) {
2851 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2852 }
2853 private:
2854 BasicBlock *getSuccessorV(unsigned idx) const override;
2855 unsigned getNumSuccessorsV() const override;
2856 void setSuccessorV(unsigned idx, BasicBlock *B) override;
2857 };
2858
2859 template <>
2860 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
2861 };
2862
2863 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
2864
2865
2866 //===----------------------------------------------------------------------===//
2867 // IndirectBrInst Class
2868 //===----------------------------------------------------------------------===//
2869
2870 //===---------------------------------------------------------------------------
2871 /// IndirectBrInst - Indirect Branch Instruction.
2872 ///
2873 class IndirectBrInst : public TerminatorInst {
2874 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
2875 unsigned ReservedSpace;
2876 // Operand[0] = Value to switch on
2877 // Operand[1] = Default basic block destination
2878 // Operand[2n ] = Value to match
2879 // Operand[2n+1] = BasicBlock to go to on match
2880 IndirectBrInst(const IndirectBrInst &IBI);
2881 void init(Value *Address, unsigned NumDests);
2882 void growOperands();
2883 // allocate space for exactly zero operands
2884 void *operator new(size_t s) {
2885 return User::operator new(s, 0);
2886 }
2887 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
2888 /// Address to jump to. The number of expected destinations can be specified
2889 /// here to make memory allocation more efficient. This constructor can also
2890 /// autoinsert before another instruction.
2891 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
2892
2893 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
2894 /// Address to jump to. The number of expected destinations can be specified
2895 /// here to make memory allocation more efficient. This constructor also
2896 /// autoinserts at the end of the specified BasicBlock.
2897 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
2898 protected:
2899 IndirectBrInst *clone_impl() const override;
2900 public:
2901 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
2902 Instruction *InsertBefore = nullptr) {
2903 return new IndirectBrInst(Address, NumDests, InsertBefore);
2904 }
2905 static IndirectBrInst *Create(Value *Address, unsigned NumDests,
2906 BasicBlock *InsertAtEnd) {
2907 return new IndirectBrInst(Address, NumDests, InsertAtEnd);
2908 }
2909 ~IndirectBrInst();
2910
2911 /// Provide fast operand accessors.
2912 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
2913
2914 // Accessor Methods for IndirectBrInst instruction.
2915 Value *getAddress() { return getOperand(0); }
2916 const Value *getAddress() const { return getOperand(0); }
2917 void setAddress(Value *V) { setOperand(0, V); }
2918
2919
2920 /// getNumDestinations - return the number of possible destinations in this
2921 /// indirectbr instruction.
2922 unsigned getNumDestinations() const { return getNumOperands()-1; }
2923
2924 /// getDestination - Return the specified destination.
2925 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
2926 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
2927
2928 /// addDestination - Add a destination.
2929 ///
2930 void addDestination(BasicBlock *Dest);
2931
2932 /// removeDestination - This method removes the specified successor from the
2933 /// indirectbr instruction.
2934 void removeDestination(unsigned i);
2935
2936 unsigned getNumSuccessors() const { return getNumOperands()-1; }
2937 BasicBlock *getSuccessor(unsigned i) const {
2938 return cast<BasicBlock>(getOperand(i+1));
2939 }
2940 void setSuccessor(unsigned i, BasicBlock *NewSucc) {
2941 setOperand(i+1, (Value*)NewSucc);
2942 }
2943
2944 // Methods for support type inquiry through isa, cast, and dyn_cast:
2945 static inline bool classof(const Instruction *I) {
2946 return I->getOpcode() == Instruction::IndirectBr;
2947 }
2948 static inline bool classof(const Value *V) {
2949 return isa<Instruction>(V) && classof(cast<Instruction>(V));
2950 }
2951 private:
2952 BasicBlock *getSuccessorV(unsigned idx) const override;
2953 unsigned getNumSuccessorsV() const override;
2954 void setSuccessorV(unsigned idx, BasicBlock *B) override;
2955 };
2956
2957 template <>
2958 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
2959 };
2960
2961 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
2962
2963
2964 //===----------------------------------------------------------------------===//
2965 // InvokeInst Class
2966 //===----------------------------------------------------------------------===//
2967
2968 /// InvokeInst - Invoke instruction. The SubclassData field is used to hold the
2969 /// calling convention of the call.
2970 ///
2971 class InvokeInst : public TerminatorInst {
2972 AttributeSet AttributeList;
2973 InvokeInst(const InvokeInst &BI);
2974 void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2975 ArrayRef<Value *> Args, const Twine &NameStr);
2976
2977 /// Construct an InvokeInst given a range of arguments.
2978 ///
2979 /// \brief Construct an InvokeInst from a range of arguments
2980 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2981 ArrayRef<Value *> Args, unsigned Values,
2982 const Twine &NameStr, Instruction *InsertBefore);
2983
2984 /// Construct an InvokeInst given a range of arguments.
2985 ///
2986 /// \brief Construct an InvokeInst from a range of arguments
2987 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
2988 ArrayRef<Value *> Args, unsigned Values,
2989 const Twine &NameStr, BasicBlock *InsertAtEnd);
2990 protected:
2991 InvokeInst *clone_impl() const override;
2992 public:
2993 static InvokeInst *Create(Value *Func,
2994 BasicBlock *IfNormal, BasicBlock *IfException,
2995 ArrayRef<Value *> Args, const Twine &NameStr = "",
2996 Instruction *InsertBefore = nullptr) {
2997 unsigned Values = unsigned(Args.size()) + 3;
2998 return new(Values) InvokeInst(Func, IfNormal, IfException, Args,
2999 Values, NameStr, InsertBefore);
3000 }
3001 static InvokeInst *Create(Value *Func,
3002 BasicBlock *IfNormal, BasicBlock *IfException,
3003 ArrayRef<Value *> Args, const Twine &NameStr,
3004 BasicBlock *InsertAtEnd) {
3005 unsigned Values = unsigned(Args.size()) + 3;
3006 return new(Values) InvokeInst(Func, IfNormal, IfException, Args,
3007 Values, NameStr, InsertAtEnd);
3008 }
3009
3010 /// Provide fast operand accessors
3011 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3012
3013 /// getNumArgOperands - Return the number of invoke arguments.
3014 ///
3015 unsigned getNumArgOperands() const { return getNumOperands() - 3; }
3016
3017 /// getArgOperand/setArgOperand - Return/set the i-th invoke argument.
3018 ///
3019 Value *getArgOperand(unsigned i) const { return getOperand(i); }
3020 void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
3021
3022 /// arg_operands - iteration adapter for range-for loops.
3023 iterator_range<op_iterator> arg_operands() {
3024 return iterator_range<op_iterator>(op_begin(), op_end() - 3);
3025 }
3026
3027 /// arg_operands - iteration adapter for range-for loops.
3028 iterator_range<const_op_iterator> arg_operands() const {
3029 return iterator_range<const_op_iterator>(op_begin(), op_end() - 3);
3030 }
3031
3032 /// \brief Wrappers for getting the \c Use of a invoke argument.
3033 const Use &getArgOperandUse(unsigned i) const { return getOperandUse(i); }
3034 Use &getArgOperandUse(unsigned i) { return getOperandUse(i); }
3035
3036 /// getCallingConv/setCallingConv - Get or set the calling convention of this
3037 /// function call.
3038 CallingConv::ID getCallingConv() const {
3039 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction());
3040 }
3041 void setCallingConv(CallingConv::ID CC) {
3042 setInstructionSubclassData(static_cast<unsigned>(CC));
3043 }
3044
3045 /// getAttributes - Return the parameter attributes for this invoke.
3046 ///
3047 const AttributeSet &getAttributes() const { return AttributeList; }
3048
3049 /// setAttributes - Set the parameter attributes for this invoke.
3050 ///
3051 void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
3052
3053 /// addAttribute - adds the attribute to the list of attributes.
3054 void addAttribute(unsigned i, Attribute::AttrKind attr);
3055
3056 /// removeAttribute - removes the attribute from the list of attributes.
3057 void removeAttribute(unsigned i, Attribute attr);
3058
3059 /// \brief Determine whether this call has the given attribute.
3060 bool hasFnAttr(Attribute::AttrKind A) const {
3061 assert(A != Attribute::NoBuiltin &&
3062 "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
3063 return hasFnAttrImpl(A);
3064 }
3065
3066 /// \brief Determine whether the call or the callee has the given attributes.
3067 bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
3068
3069 /// \brief Extract the alignment for a call or parameter (0=unknown).
3070 unsigned getParamAlignment(unsigned i) const {
3071 return AttributeList.getParamAlignment(i);
3072 }
3073
3074 /// \brief Extract the number of dereferenceable bytes for a call or
3075 /// parameter (0=unknown).
3076 uint64_t getDereferenceableBytes(unsigned i) const {
3077 return AttributeList.getDereferenceableBytes(i);
3078 }
3079
3080 /// \brief Return true if the call should not be treated as a call to a
3081 /// builtin.
3082 bool isNoBuiltin() const {
3083 // We assert in hasFnAttr if one passes in Attribute::NoBuiltin, so we have
3084 // to check it by hand.
3085 return hasFnAttrImpl(Attribute::NoBuiltin) &&
3086 !hasFnAttrImpl(Attribute::Builtin);
3087 }
3088
3089 /// \brief Return true if the call should not be inlined.
3090 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
3091 void setIsNoInline() {
3092 addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline);
3093 }
3094
3095 /// \brief Determine if the call does not access memory.
3096 bool doesNotAccessMemory() const {
3097 return hasFnAttr(Attribute::ReadNone);
3098 }
3099 void setDoesNotAccessMemory() {
3100 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
3101 }
3102
3103 /// \brief Determine if the call does not access or only reads memory.
3104 bool onlyReadsMemory() const {
3105 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
3106 }
3107 void setOnlyReadsMemory() {
3108 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
3109 }
3110
3111 /// \brief Determine if the call cannot return.
3112 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
3113 void setDoesNotReturn() {
3114 addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
3115 }
3116
3117 /// \brief Determine if the call cannot unwind.
3118 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
3119 void setDoesNotThrow() {
3120 addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
3121 }
3122
3123 /// \brief Determine if the invoke cannot be duplicated.
3124 bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
3125 void setCannotDuplicate() {
3126 addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate);
3127 }
3128
3129 /// \brief Determine if the call returns a structure through first
3130 /// pointer argument.
3131 bool hasStructRetAttr() const {
3132 // Be friendly and also check the callee.
3133 return paramHasAttr(1, Attribute::StructRet);
3134 }
3135
3136 /// \brief Determine if any call argument is an aggregate passed by value.
3137 bool hasByValArgument() const {
3138 return AttributeList.hasAttrSomewhere(Attribute::ByVal);
3139 }
3140
3141 /// getCalledFunction - Return the function called, or null if this is an
3142 /// indirect function invocation.
3143 ///
3144 Function *getCalledFunction() const {
3145 return dyn_cast<Function>(Op<-3>());
3146 }
3147
3148 /// getCalledValue - Get a pointer to the function that is invoked by this
3149 /// instruction
3150 const Value *getCalledValue() const { return Op<-3>(); }
3151 Value *getCalledValue() { return Op<-3>(); }
3152
3153 /// setCalledFunction - Set the function called.
3154 void setCalledFunction(Value* Fn) {
3155 Op<-3>() = Fn;
3156 }
3157
3158 // get*Dest - Return the destination basic blocks...
3159 BasicBlock *getNormalDest() const {
3160 return cast<BasicBlock>(Op<-2>());
3161 }
3162 BasicBlock *getUnwindDest() const {
3163 return cast<BasicBlock>(Op<-1>());
3164 }
3165 void setNormalDest(BasicBlock *B) {
3166 Op<-2>() = reinterpret_cast<Value*>(B);
3167 }
3168 void setUnwindDest(BasicBlock *B) {
3169 Op<-1>() = reinterpret_cast<Value*>(B);
3170 }
3171
3172 /// getLandingPadInst - Get the landingpad instruction from the landing pad
3173 /// block (the unwind destination).
3174 LandingPadInst *getLandingPadInst() const;
3175
3176 BasicBlock *getSuccessor(unsigned i) const {
3177 assert(i < 2 && "Successor # out of range for invoke!");
3178 return i == 0 ? getNormalDest() : getUnwindDest();
3179 }
3180
3181 void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
3182 assert(idx < 2 && "Successor # out of range for invoke!");
3183 *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
3184 }
3185
3186 unsigned getNumSuccessors() const { return 2; }
3187
3188 // Methods for support type inquiry through isa, cast, and dyn_cast:
3189 static inline bool classof(const Instruction *I) {
3190 return (I->getOpcode() == Instruction::Invoke);
3191 }
3192 static inline bool classof(const Value *V) {
3193 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3194 }
3195
3196 private:
3197 BasicBlock *getSuccessorV(unsigned idx) const override;
3198 unsigned getNumSuccessorsV() const override;
3199 void setSuccessorV(unsigned idx, BasicBlock *B) override;
3200
3201 bool hasFnAttrImpl(Attribute::AttrKind A) const;
3202
3203 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3204 // method so that subclasses cannot accidentally use it.
3205 void setInstructionSubclassData(unsigned short D) {
3206 Instruction::setInstructionSubclassData(D);
3207 }
3208 };
3209
3210 template <>
3211 struct OperandTraits<InvokeInst> : public VariadicOperandTraits<InvokeInst, 3> {
3212 };
3213
3214 InvokeInst::InvokeInst(Value *Func,
3215 BasicBlock *IfNormal, BasicBlock *IfException,
3216 ArrayRef<Value *> Args, unsigned Values,
3217 const Twine &NameStr, Instruction *InsertBefore)
3218 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
3219 ->getElementType())->getReturnType(),
3220 Instruction::Invoke,
3221 OperandTraits<InvokeInst>::op_end(this) - Values,
3222 Values, InsertBefore) {
3223 init(Func, IfNormal, IfException, Args, NameStr);
3224 }
3225 InvokeInst::InvokeInst(Value *Func,
3226 BasicBlock *IfNormal, BasicBlock *IfException,
3227 ArrayRef<Value *> Args, unsigned Values,
3228 const Twine &NameStr, BasicBlock *InsertAtEnd)
3229 : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
3230 ->getElementType())->getReturnType(),
3231 Instruction::Invoke,
3232 OperandTraits<InvokeInst>::op_end(this) - Values,
3233 Values, InsertAtEnd) {
3234 init(Func, IfNormal, IfException, Args, NameStr);
3235 }
3236
3237 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
3238
3239 //===----------------------------------------------------------------------===//
3240 // ResumeInst Class
3241 //===----------------------------------------------------------------------===//
3242
3243 //===---------------------------------------------------------------------------
3244 /// ResumeInst - Resume the propagation of an exception.
3245 ///
3246 class ResumeInst : public TerminatorInst {
3247 ResumeInst(const ResumeInst &RI);
3248
3249 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
3250 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
3251 protected:
3252 ResumeInst *clone_impl() const override;
3253 public:
3254 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
3255 return new(1) ResumeInst(Exn, InsertBefore);
3256 }
3257 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
3258 return new(1) ResumeInst(Exn, InsertAtEnd);
3259 }
3260
3261 /// Provide fast operand accessors
3262 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
3263
3264 /// Convenience accessor.
3265 Value *getValue() const { return Op<0>(); }
3266
3267 unsigned getNumSuccessors() const { return 0; }
3268
3269 // Methods for support type inquiry through isa, cast, and dyn_cast:
3270 static inline bool classof(const Instruction *I) {
3271 return I->getOpcode() == Instruction::Resume;
3272 }
3273 static inline bool classof(const Value *V) {
3274 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3275 }
3276 private:
3277 BasicBlock *getSuccessorV(unsigned idx) const override;
3278 unsigned getNumSuccessorsV() const override;
3279 void setSuccessorV(unsigned idx, BasicBlock *B) override;
3280 };
3281
3282 template <>
3283 struct OperandTraits<ResumeInst> :
3284 public FixedNumOperandTraits<ResumeInst, 1> {
3285 };
3286
3287 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
3288
3289 //===----------------------------------------------------------------------===//
3290 // UnreachableInst Class
3291 //===----------------------------------------------------------------------===//
3292
3293 //===---------------------------------------------------------------------------
3294 /// UnreachableInst - This function has undefined behavior. In particular, the
3295 /// presence of this instruction indicates some higher level knowledge that the
3296 /// end of the block cannot be reached.
3297 ///
3298 class UnreachableInst : public TerminatorInst {
3299 void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
3300 protected:
3301 UnreachableInst *clone_impl() const override;
3302
3303 public:
3304 // allocate space for exactly zero operands
3305 void *operator new(size_t s) {
3306 return User::operator new(s, 0);
3307 }
3308 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
3309 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
3310
3311 unsigned getNumSuccessors() const { return 0; }
3312
3313 // Methods for support type inquiry through isa, cast, and dyn_cast:
3314 static inline bool classof(const Instruction *I) {
3315 return I->getOpcode() == Instruction::Unreachable;
3316 }
3317 static inline bool classof(const Value *V) {
3318 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3319 }
3320 private:
3321 BasicBlock *getSuccessorV(unsigned idx) const override;
3322 unsigned getNumSuccessorsV() const override;
3323 void setSuccessorV(unsigned idx, BasicBlock *B) override;
3324 };
3325
3326 //===----------------------------------------------------------------------===//
3327 // TruncInst Class
3328 //===----------------------------------------------------------------------===//
3329
3330 /// \brief This class represents a truncation of integer types.
3331 class TruncInst : public CastInst {
3332 protected:
3333 /// \brief Clone an identical TruncInst
3334 TruncInst *clone_impl() const override;
3335
3336 public:
3337 /// \brief Constructor with insert-before-instruction semantics
3338 TruncInst(
3339 Value *S, ///< The value to be truncated
3340 Type *Ty, ///< The (smaller) type to truncate to
3341 const Twine &NameStr = "", ///< A name for the new instruction
3342 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3343 );
3344
3345 /// \brief Constructor with insert-at-end-of-block semantics
3346 TruncInst(
3347 Value *S, ///< The value to be truncated
3348 Type *Ty, ///< The (smaller) type to truncate to
3349 const Twine &NameStr, ///< A name for the new instruction
3350 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3351 );
3352
3353 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3354 static inline bool classof(const Instruction *I) {
3355 return I->getOpcode() == Trunc;
3356 }
3357 static inline bool classof(const Value *V) {
3358 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3359 }
3360 };
3361
3362 //===----------------------------------------------------------------------===//
3363 // ZExtInst Class
3364 //===----------------------------------------------------------------------===//
3365
3366 /// \brief This class represents zero extension of integer types.
3367 class ZExtInst : public CastInst {
3368 protected:
3369 /// \brief Clone an identical ZExtInst
3370 ZExtInst *clone_impl() const override;
3371
3372 public:
3373 /// \brief Constructor with insert-before-instruction semantics
3374 ZExtInst(
3375 Value *S, ///< The value to be zero extended
3376 Type *Ty, ///< The type to zero extend to
3377 const Twine &NameStr = "", ///< A name for the new instruction
3378 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3379 );
3380
3381 /// \brief Constructor with insert-at-end semantics.
3382 ZExtInst(
3383 Value *S, ///< The value to be zero extended
3384 Type *Ty, ///< The type to zero extend to
3385 const Twine &NameStr, ///< A name for the new instruction
3386 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3387 );
3388
3389 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3390 static inline bool classof(const Instruction *I) {
3391 return I->getOpcode() == ZExt;
3392 }
3393 static inline bool classof(const Value *V) {
3394 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3395 }
3396 };
3397
3398 //===----------------------------------------------------------------------===//
3399 // SExtInst Class
3400 //===----------------------------------------------------------------------===//
3401
3402 /// \brief This class represents a sign extension of integer types.
3403 class SExtInst : public CastInst {
3404 protected:
3405 /// \brief Clone an identical SExtInst
3406 SExtInst *clone_impl() const override;
3407
3408 public:
3409 /// \brief Constructor with insert-before-instruction semantics
3410 SExtInst(
3411 Value *S, ///< The value to be sign extended
3412 Type *Ty, ///< The type to sign extend to
3413 const Twine &NameStr = "", ///< A name for the new instruction
3414 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3415 );
3416
3417 /// \brief Constructor with insert-at-end-of-block semantics
3418 SExtInst(
3419 Value *S, ///< The value to be sign extended
3420 Type *Ty, ///< The type to sign extend to
3421 const Twine &NameStr, ///< A name for the new instruction
3422 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3423 );
3424
3425 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3426 static inline bool classof(const Instruction *I) {
3427 return I->getOpcode() == SExt;
3428 }
3429 static inline bool classof(const Value *V) {
3430 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3431 }
3432 };
3433
3434 //===----------------------------------------------------------------------===//
3435 // FPTruncInst Class
3436 //===----------------------------------------------------------------------===//
3437
3438 /// \brief This class represents a truncation of floating point types.
3439 class FPTruncInst : public CastInst {
3440 protected:
3441 /// \brief Clone an identical FPTruncInst
3442 FPTruncInst *clone_impl() const override;
3443
3444 public:
3445 /// \brief Constructor with insert-before-instruction semantics
3446 FPTruncInst(
3447 Value *S, ///< The value to be truncated
3448 Type *Ty, ///< The type to truncate to
3449 const Twine &NameStr = "", ///< A name for the new instruction
3450 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3451 );
3452
3453 /// \brief Constructor with insert-before-instruction semantics
3454 FPTruncInst(
3455 Value *S, ///< The value to be truncated
3456 Type *Ty, ///< The type to truncate to
3457 const Twine &NameStr, ///< A name for the new instruction
3458 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3459 );
3460
3461 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3462 static inline bool classof(const Instruction *I) {
3463 return I->getOpcode() == FPTrunc;
3464 }
3465 static inline bool classof(const Value *V) {
3466 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3467 }
3468 };
3469
3470 //===----------------------------------------------------------------------===//
3471 // FPExtInst Class
3472 //===----------------------------------------------------------------------===//
3473
3474 /// \brief This class represents an extension of floating point types.
3475 class FPExtInst : public CastInst {
3476 protected:
3477 /// \brief Clone an identical FPExtInst
3478 FPExtInst *clone_impl() const override;
3479
3480 public:
3481 /// \brief Constructor with insert-before-instruction semantics
3482 FPExtInst(
3483 Value *S, ///< The value to be extended
3484 Type *Ty, ///< The type to extend to
3485 const Twine &NameStr = "", ///< A name for the new instruction
3486 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3487 );
3488
3489 /// \brief Constructor with insert-at-end-of-block semantics
3490 FPExtInst(
3491 Value *S, ///< The value to be extended
3492 Type *Ty, ///< The type to extend to
3493 const Twine &NameStr, ///< A name for the new instruction
3494 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3495 );
3496
3497 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3498 static inline bool classof(const Instruction *I) {
3499 return I->getOpcode() == FPExt;
3500 }
3501 static inline bool classof(const Value *V) {
3502 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3503 }
3504 };
3505
3506 //===----------------------------------------------------------------------===//
3507 // UIToFPInst Class
3508 //===----------------------------------------------------------------------===//
3509
3510 /// \brief This class represents a cast unsigned integer to floating point.
3511 class UIToFPInst : public CastInst {
3512 protected:
3513 /// \brief Clone an identical UIToFPInst
3514 UIToFPInst *clone_impl() const override;
3515
3516 public:
3517 /// \brief Constructor with insert-before-instruction semantics
3518 UIToFPInst(
3519 Value *S, ///< The value to be converted
3520 Type *Ty, ///< The type to convert to
3521 const Twine &NameStr = "", ///< A name for the new instruction
3522 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3523 );
3524
3525 /// \brief Constructor with insert-at-end-of-block semantics
3526 UIToFPInst(
3527 Value *S, ///< The value to be converted
3528 Type *Ty, ///< The type to convert to
3529 const Twine &NameStr, ///< A name for the new instruction
3530 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3531 );
3532
3533 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3534 static inline bool classof(const Instruction *I) {
3535 return I->getOpcode() == UIToFP;
3536 }
3537 static inline bool classof(const Value *V) {
3538 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3539 }
3540 };
3541
3542 //===----------------------------------------------------------------------===//
3543 // SIToFPInst Class
3544 //===----------------------------------------------------------------------===//
3545
3546 /// \brief This class represents a cast from signed integer to floating point.
3547 class SIToFPInst : public CastInst {
3548 protected:
3549 /// \brief Clone an identical SIToFPInst
3550 SIToFPInst *clone_impl() const override;
3551
3552 public:
3553 /// \brief Constructor with insert-before-instruction semantics
3554 SIToFPInst(
3555 Value *S, ///< The value to be converted
3556 Type *Ty, ///< The type to convert to
3557 const Twine &NameStr = "", ///< A name for the new instruction
3558 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3559 );
3560
3561 /// \brief Constructor with insert-at-end-of-block semantics
3562 SIToFPInst(
3563 Value *S, ///< The value to be converted
3564 Type *Ty, ///< The type to convert to
3565 const Twine &NameStr, ///< A name for the new instruction
3566 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3567 );
3568
3569 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3570 static inline bool classof(const Instruction *I) {
3571 return I->getOpcode() == SIToFP;
3572 }
3573 static inline bool classof(const Value *V) {
3574 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3575 }
3576 };
3577
3578 //===----------------------------------------------------------------------===//
3579 // FPToUIInst Class
3580 //===----------------------------------------------------------------------===//
3581
3582 /// \brief This class represents a cast from floating point to unsigned integer
3583 class FPToUIInst : public CastInst {
3584 protected:
3585 /// \brief Clone an identical FPToUIInst
3586 FPToUIInst *clone_impl() const override;
3587
3588 public:
3589 /// \brief Constructor with insert-before-instruction semantics
3590 FPToUIInst(
3591 Value *S, ///< The value to be converted
3592 Type *Ty, ///< The type to convert to
3593 const Twine &NameStr = "", ///< A name for the new instruction
3594 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3595 );
3596
3597 /// \brief Constructor with insert-at-end-of-block semantics
3598 FPToUIInst(
3599 Value *S, ///< The value to be converted
3600 Type *Ty, ///< The type to convert to
3601 const Twine &NameStr, ///< A name for the new instruction
3602 BasicBlock *InsertAtEnd ///< Where to insert the new instruction
3603 );
3604
3605 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3606 static inline bool classof(const Instruction *I) {
3607 return I->getOpcode() == FPToUI;
3608 }
3609 static inline bool classof(const Value *V) {
3610 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3611 }
3612 };
3613
3614 //===----------------------------------------------------------------------===//
3615 // FPToSIInst Class
3616 //===----------------------------------------------------------------------===//
3617
3618 /// \brief This class represents a cast from floating point to signed integer.
3619 class FPToSIInst : public CastInst {
3620 protected:
3621 /// \brief Clone an identical FPToSIInst
3622 FPToSIInst *clone_impl() const override;
3623
3624 public:
3625 /// \brief Constructor with insert-before-instruction semantics
3626 FPToSIInst(
3627 Value *S, ///< The value to be converted
3628 Type *Ty, ///< The type to convert to
3629 const Twine &NameStr = "", ///< A name for the new instruction
3630 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3631 );
3632
3633 /// \brief Constructor with insert-at-end-of-block semantics
3634 FPToSIInst(
3635 Value *S, ///< The value to be converted
3636 Type *Ty, ///< The type to convert to
3637 const Twine &NameStr, ///< A name for the new instruction
3638 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3639 );
3640
3641 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
3642 static inline bool classof(const Instruction *I) {
3643 return I->getOpcode() == FPToSI;
3644 }
3645 static inline bool classof(const Value *V) {
3646 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3647 }
3648 };
3649
3650 //===----------------------------------------------------------------------===//
3651 // IntToPtrInst Class
3652 //===----------------------------------------------------------------------===//
3653
3654 /// \brief This class represents a cast from an integer to a pointer.
3655 class IntToPtrInst : public CastInst {
3656 public:
3657 /// \brief Constructor with insert-before-instruction semantics
3658 IntToPtrInst(
3659 Value *S, ///< The value to be converted
3660 Type *Ty, ///< The type to convert to
3661 const Twine &NameStr = "", ///< A name for the new instruction
3662 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3663 );
3664
3665 /// \brief Constructor with insert-at-end-of-block semantics
3666 IntToPtrInst(
3667 Value *S, ///< The value to be converted
3668 Type *Ty, ///< The type to convert to
3669 const Twine &NameStr, ///< A name for the new instruction
3670 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3671 );
3672
3673 /// \brief Clone an identical IntToPtrInst
3674 IntToPtrInst *clone_impl() const override;
3675
3676 /// \brief Returns the address space of this instruction's pointer type.
3677 unsigned getAddressSpace() const {
3678 return getType()->getPointerAddressSpace();
3679 }
3680
3681 // Methods for support type inquiry through isa, cast, and dyn_cast:
3682 static inline bool classof(const Instruction *I) {
3683 return I->getOpcode() == IntToPtr;
3684 }
3685 static inline bool classof(const Value *V) {
3686 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3687 }
3688 };
3689
3690 //===----------------------------------------------------------------------===//
3691 // PtrToIntInst Class
3692 //===----------------------------------------------------------------------===//
3693
3694 /// \brief This class represents a cast from a pointer to an integer
3695 class PtrToIntInst : public CastInst {
3696 protected:
3697 /// \brief Clone an identical PtrToIntInst
3698 PtrToIntInst *clone_impl() const override;
3699
3700 public:
3701 /// \brief Constructor with insert-before-instruction semantics
3702 PtrToIntInst(
3703 Value *S, ///< The value to be converted
3704 Type *Ty, ///< The type to convert to
3705 const Twine &NameStr = "", ///< A name for the new instruction
3706 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3707 );
3708
3709 /// \brief Constructor with insert-at-end-of-block semantics
3710 PtrToIntInst(
3711 Value *S, ///< The value to be converted
3712 Type *Ty, ///< The type to convert to
3713 const Twine &NameStr, ///< A name for the new instruction
3714 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3715 );
3716
3717 /// \brief Gets the pointer operand.
3718 Value *getPointerOperand() { return getOperand(0); }
3719 /// \brief Gets the pointer operand.
3720 const Value *getPointerOperand() const { return getOperand(0); }
3721 /// \brief Gets the operand index of the pointer operand.
3722 static unsigned getPointerOperandIndex() { return 0U; }
3723
3724 /// \brief Returns the address space of the pointer operand.
3725 unsigned getPointerAddressSpace() const {
3726 return getPointerOperand()->getType()->getPointerAddressSpace();
3727 }
3728
3729 // Methods for support type inquiry through isa, cast, and dyn_cast:
3730 static inline bool classof(const Instruction *I) {
3731 return I->getOpcode() == PtrToInt;
3732 }
3733 static inline bool classof(const Value *V) {
3734 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3735 }
3736 };
3737
3738 //===----------------------------------------------------------------------===//
3739 // BitCastInst Class
3740 //===----------------------------------------------------------------------===//
3741
3742 /// \brief This class represents a no-op cast from one type to another.
3743 class BitCastInst : public CastInst {
3744 protected:
3745 /// \brief Clone an identical BitCastInst
3746 BitCastInst *clone_impl() const override;
3747
3748 public:
3749 /// \brief Constructor with insert-before-instruction semantics
3750 BitCastInst(
3751 Value *S, ///< The value to be casted
3752 Type *Ty, ///< The type to casted to
3753 const Twine &NameStr = "", ///< A name for the new instruction
3754 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3755 );
3756
3757 /// \brief Constructor with insert-at-end-of-block semantics
3758 BitCastInst(
3759 Value *S, ///< The value to be casted
3760 Type *Ty, ///< The type to casted to
3761 const Twine &NameStr, ///< A name for the new instruction
3762 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3763 );
3764
3765 // Methods for support type inquiry through isa, cast, and dyn_cast:
3766 static inline bool classof(const Instruction *I) {
3767 return I->getOpcode() == BitCast;
3768 }
3769 static inline bool classof(const Value *V) {
3770 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3771 }
3772 };
3773
3774 //===----------------------------------------------------------------------===//
3775 // AddrSpaceCastInst Class
3776 //===----------------------------------------------------------------------===//
3777
3778 /// \brief This class represents a conversion between pointers from
3779 /// one address space to another.
3780 class AddrSpaceCastInst : public CastInst {
3781 protected:
3782 /// \brief Clone an identical AddrSpaceCastInst
3783 AddrSpaceCastInst *clone_impl() const override;
3784
3785 public:
3786 /// \brief Constructor with insert-before-instruction semantics
3787 AddrSpaceCastInst(
3788 Value *S, ///< The value to be casted
3789 Type *Ty, ///< The type to casted to
3790 const Twine &NameStr = "", ///< A name for the new instruction
3791 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
3792 );
3793
3794 /// \brief Constructor with insert-at-end-of-block semantics
3795 AddrSpaceCastInst(
3796 Value *S, ///< The value to be casted
3797 Type *Ty, ///< The type to casted to
3798 const Twine &NameStr, ///< A name for the new instruction
3799 BasicBlock *InsertAtEnd ///< The block to insert the instruction into
3800 );
3801
3802 // Methods for support type inquiry through isa, cast, and dyn_cast:
3803 static inline bool classof(const Instruction *I) {
3804 return I->getOpcode() == AddrSpaceCast;
3805 }
3806 static inline bool classof(const Value *V) {
3807 return isa<Instruction>(V) && classof(cast<Instruction>(V));
3808 }
3809 };
3810
3811 } // End llvm namespace
3812
3813 #endif
3814