xref: /llvm-project/llvm/include/llvm/IR/Function.h (revision 18f8106f310ee702046a11f360af47947c030d2e)
1 //===- llvm/Function.h - Class to represent a single function ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the Function class, which represents a
10 // single function/procedure in LLVM.
11 //
12 // A function basically consists of a list of basic blocks, a list of arguments,
13 // and a symbol table.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_IR_FUNCTION_H
18 #define LLVM_IR_FUNCTION_H
19 
20 #include "llvm/ADT/DenseSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/ADT/ilist_node.h"
24 #include "llvm/ADT/iterator_range.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalObject.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/OperandTraits.h"
33 #include "llvm/IR/SymbolTableListTraits.h"
34 #include "llvm/IR/Value.h"
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <memory>
39 #include <string>
40 
41 namespace llvm {
42 
43 namespace Intrinsic {
44 typedef unsigned ID;
45 }
46 
47 class AssemblyAnnotationWriter;
48 class Constant;
49 class ConstantRange;
50 class DataLayout;
51 struct DenormalMode;
52 class DISubprogram;
53 enum LibFunc : unsigned;
54 class LLVMContext;
55 class Module;
56 class raw_ostream;
57 class TargetLibraryInfoImpl;
58 class Type;
59 class User;
60 class BranchProbabilityInfo;
61 class BlockFrequencyInfo;
62 
63 class LLVM_ABI Function : public GlobalObject, public ilist_node<Function> {
64 public:
65   using BasicBlockListType = SymbolTableList<BasicBlock>;
66 
67   // BasicBlock iterators...
68   using iterator = BasicBlockListType::iterator;
69   using const_iterator = BasicBlockListType::const_iterator;
70 
71   using arg_iterator = Argument *;
72   using const_arg_iterator = const Argument *;
73 
74 private:
75   constexpr static HungOffOperandsAllocMarker AllocMarker{};
76 
77   // Important things that make up a function!
78   BasicBlockListType BasicBlocks;         ///< The basic blocks
79 
80   // Basic blocks need to get their number when added to a function.
81   friend void BasicBlock::setParent(Function *);
82   unsigned NextBlockNum = 0;
83   /// Epoch of block numbers. (Could be shrinked to uint8_t if required.)
84   unsigned BlockNumEpoch = 0;
85 
86   mutable Argument *Arguments = nullptr;  ///< The formal arguments
87   size_t NumArgs;
88   std::unique_ptr<ValueSymbolTable>
89       SymTab;                             ///< Symbol table of args/instructions
90   AttributeList AttributeSets;            ///< Parameter attributes
91 
92   /*
93    * Value::SubclassData
94    *
95    * bit 0      : HasLazyArguments
96    * bit 1      : HasPrefixData
97    * bit 2      : HasPrologueData
98    * bit 3      : HasPersonalityFn
99    * bits 4-13  : CallingConvention
100    * bits 14    : HasGC
101    * bits 15 : [reserved]
102    */
103 
104   /// Bits from GlobalObject::GlobalObjectSubclassData.
105   enum {
106     /// Whether this function is materializable.
107     IsMaterializableBit = 0,
108   };
109 
110   friend class SymbolTableListTraits<Function>;
111 
112 public:
113   /// Is this function using intrinsics to record the position of debugging
114   /// information, or non-intrinsic records? See IsNewDbgInfoFormat in
115   /// \ref BasicBlock.
116   bool IsNewDbgInfoFormat;
117 
118   /// hasLazyArguments/CheckLazyArguments - The argument list of a function is
119   /// built on demand, so that the list isn't allocated until the first client
120   /// needs it.  The hasLazyArguments predicate returns true if the arg list
121   /// hasn't been set up yet.
122   bool hasLazyArguments() const {
123     return getSubclassDataFromValue() & (1<<0);
124   }
125 
126   /// \see BasicBlock::convertToNewDbgValues.
127   void convertToNewDbgValues();
128 
129   /// \see BasicBlock::convertFromNewDbgValues.
130   void convertFromNewDbgValues();
131 
132   void setIsNewDbgInfoFormat(bool NewVal);
133   void setNewDbgInfoFormatFlag(bool NewVal);
134 
135 private:
136   friend class TargetLibraryInfoImpl;
137 
138   static constexpr LibFunc UnknownLibFunc = LibFunc(-1);
139 
140   /// Cache for TLI::getLibFunc() result without prototype validation.
141   /// UnknownLibFunc if uninitialized. NotLibFunc if definitely not lib func.
142   /// Otherwise may be libfunc if prototype validation passes.
143   mutable LibFunc LibFuncCache = UnknownLibFunc;
144 
145   void CheckLazyArguments() const {
146     if (hasLazyArguments())
147       BuildLazyArguments();
148   }
149 
150   void BuildLazyArguments() const;
151 
152   void clearArguments();
153 
154   void deleteBodyImpl(bool ShouldDrop);
155 
156   /// Function ctor - If the (optional) Module argument is specified, the
157   /// function is automatically inserted into the end of the function list for
158   /// the module.
159   ///
160   Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
161            const Twine &N = "", Module *M = nullptr);
162 
163 public:
164   Function(const Function&) = delete;
165   void operator=(const Function&) = delete;
166   ~Function();
167 
168   // This is here to help easily convert from FunctionT * (Function * or
169   // MachineFunction *) in BlockFrequencyInfoImpl to Function * by calling
170   // FunctionT->getFunction().
171   const Function &getFunction() const { return *this; }
172 
173   static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
174                           unsigned AddrSpace, const Twine &N = "",
175                           Module *M = nullptr) {
176     return new (AllocMarker) Function(Ty, Linkage, AddrSpace, N, M);
177   }
178 
179   // TODO: remove this once all users have been updated to pass an AddrSpace
180   static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
181                           const Twine &N = "", Module *M = nullptr) {
182     return new (AllocMarker)
183         Function(Ty, Linkage, static_cast<unsigned>(-1), N, M);
184   }
185 
186   /// Creates a new function and attaches it to a module.
187   ///
188   /// Places the function in the program address space as specified
189   /// by the module's data layout.
190   static Function *Create(FunctionType *Ty, LinkageTypes Linkage,
191                           const Twine &N, Module &M);
192 
193   /// Creates a function with some attributes recorded in llvm.module.flags
194   /// and the LLVMContext applied.
195   ///
196   /// Use this when synthesizing new functions that need attributes that would
197   /// have been set by command line options.
198   ///
199   /// This function should not be called from backends or the LTO pipeline. If
200   /// it is called from one of those places, some default attributes will not be
201   /// applied to the function.
202   static Function *createWithDefaultAttr(FunctionType *Ty, LinkageTypes Linkage,
203                                          unsigned AddrSpace,
204                                          const Twine &N = "",
205                                          Module *M = nullptr);
206 
207   // Provide fast operand accessors.
208   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
209 
210   /// Returns the number of non-debug IR instructions in this function.
211   /// This is equivalent to the sum of the sizes of each basic block contained
212   /// within this function.
213   unsigned getInstructionCount() const;
214 
215   /// Returns the FunctionType for me.
216   FunctionType *getFunctionType() const {
217     return cast<FunctionType>(getValueType());
218   }
219 
220   /// Returns the type of the ret val.
221   Type *getReturnType() const { return getFunctionType()->getReturnType(); }
222 
223   /// getContext - Return a reference to the LLVMContext associated with this
224   /// function.
225   LLVMContext &getContext() const;
226 
227   /// Get the data layout of the module this function belongs to.
228   ///
229   /// Requires the function to have a parent module.
230   const DataLayout &getDataLayout() const;
231 
232   /// isVarArg - Return true if this function takes a variable number of
233   /// arguments.
234   bool isVarArg() const { return getFunctionType()->isVarArg(); }
235 
236   bool isMaterializable() const {
237     return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
238   }
239   void setIsMaterializable(bool V) {
240     unsigned Mask = 1 << IsMaterializableBit;
241     setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
242                                 (V ? Mask : 0u));
243   }
244 
245   /// getIntrinsicID - This method returns the ID number of the specified
246   /// function, or Intrinsic::not_intrinsic if the function is not an
247   /// intrinsic, or if the pointer is null.  This value is always defined to be
248   /// zero to allow easy checking for whether a function is intrinsic or not.
249   /// The particular intrinsic functions which correspond to this value are
250   /// defined in llvm/Intrinsics.h.
251   Intrinsic::ID getIntrinsicID() const LLVM_READONLY { return IntID; }
252 
253   /// isIntrinsic - Returns true if the function's name starts with "llvm.".
254   /// It's possible for this function to return true while getIntrinsicID()
255   /// returns Intrinsic::not_intrinsic!
256   bool isIntrinsic() const { return HasLLVMReservedName; }
257 
258   /// isTargetIntrinsic - Returns true if this function is an intrinsic and the
259   /// intrinsic is specific to a certain target. If this is not an intrinsic
260   /// or a generic intrinsic, false is returned.
261   bool isTargetIntrinsic() const;
262 
263   /// Returns true if the function is one of the "Constrained Floating-Point
264   /// Intrinsics". Returns false if not, and returns false when
265   /// getIntrinsicID() returns Intrinsic::not_intrinsic.
266   bool isConstrainedFPIntrinsic() const;
267 
268   /// Update internal caches that depend on the function name (such as the
269   /// intrinsic ID and libcall cache).
270   /// Note, this method does not need to be called directly, as it is called
271   /// from Value::setName() whenever the name of this function changes.
272   void updateAfterNameChange();
273 
274   /// getCallingConv()/setCallingConv(CC) - These method get and set the
275   /// calling convention of this function.  The enum values for the known
276   /// calling conventions are defined in CallingConv.h.
277   CallingConv::ID getCallingConv() const {
278     return static_cast<CallingConv::ID>((getSubclassDataFromValue() >> 4) &
279                                         CallingConv::MaxID);
280   }
281   void setCallingConv(CallingConv::ID CC) {
282     auto ID = static_cast<unsigned>(CC);
283     assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention");
284     setValueSubclassData((getSubclassDataFromValue() & 0xc00f) | (ID << 4));
285   }
286 
287   /// Does it have a kernel calling convention?
288   bool hasKernelCallingConv() const {
289     switch (getCallingConv()) {
290     default:
291       return false;
292     case CallingConv::PTX_Kernel:
293     case CallingConv::AMDGPU_KERNEL:
294     case CallingConv::SPIR_KERNEL:
295       return true;
296     }
297   }
298 
299   enum ProfileCountType { PCT_Real, PCT_Synthetic };
300 
301   /// Class to represent profile counts.
302   ///
303   /// This class represents both real and synthetic profile counts.
304   class ProfileCount {
305   private:
306     uint64_t Count = 0;
307     ProfileCountType PCT = PCT_Real;
308 
309   public:
310     ProfileCount(uint64_t Count, ProfileCountType PCT)
311         : Count(Count), PCT(PCT) {}
312     uint64_t getCount() const { return Count; }
313     ProfileCountType getType() const { return PCT; }
314     bool isSynthetic() const { return PCT == PCT_Synthetic; }
315   };
316 
317   /// Set the entry count for this function.
318   ///
319   /// Entry count is the number of times this function was executed based on
320   /// pgo data. \p Imports points to a set of GUIDs that needs to
321   /// be imported by the function for sample PGO, to enable the same inlines as
322   /// the profiled optimized binary.
323   void setEntryCount(ProfileCount Count,
324                      const DenseSet<GlobalValue::GUID> *Imports = nullptr);
325 
326   /// A convenience wrapper for setting entry count
327   void setEntryCount(uint64_t Count, ProfileCountType Type = PCT_Real,
328                      const DenseSet<GlobalValue::GUID> *Imports = nullptr);
329 
330   /// Get the entry count for this function.
331   ///
332   /// Entry count is the number of times the function was executed.
333   /// When AllowSynthetic is false, only pgo_data will be returned.
334   std::optional<ProfileCount> getEntryCount(bool AllowSynthetic = false) const;
335 
336   /// Return true if the function is annotated with profile data.
337   ///
338   /// Presence of entry counts from a profile run implies the function has
339   /// profile annotations. If IncludeSynthetic is false, only return true
340   /// when the profile data is real.
341   bool hasProfileData(bool IncludeSynthetic = false) const {
342     return getEntryCount(IncludeSynthetic).has_value();
343   }
344 
345   /// Returns the set of GUIDs that needs to be imported to the function for
346   /// sample PGO, to enable the same inlines as the profiled optimized binary.
347   DenseSet<GlobalValue::GUID> getImportGUIDs() const;
348 
349   /// Set the section prefix for this function.
350   void setSectionPrefix(StringRef Prefix);
351 
352   /// Get the section prefix for this function.
353   std::optional<StringRef> getSectionPrefix() const;
354 
355   /// hasGC/getGC/setGC/clearGC - The name of the garbage collection algorithm
356   ///                             to use during code generation.
357   bool hasGC() const {
358     return getSubclassDataFromValue() & (1<<14);
359   }
360   const std::string &getGC() const;
361   void setGC(std::string Str);
362   void clearGC();
363 
364   /// Return the attribute list for this Function.
365   AttributeList getAttributes() const { return AttributeSets; }
366 
367   /// Set the attribute list for this Function.
368   void setAttributes(AttributeList Attrs) { AttributeSets = Attrs; }
369 
370   // TODO: remove non-AtIndex versions of these methods.
371   /// adds the attribute to the list of attributes.
372   void addAttributeAtIndex(unsigned i, Attribute Attr);
373 
374   /// Add function attributes to this function.
375   void addFnAttr(Attribute::AttrKind Kind);
376 
377   /// Add function attributes to this function.
378   void addFnAttr(StringRef Kind, StringRef Val = StringRef());
379 
380   /// Add function attributes to this function.
381   void addFnAttr(Attribute Attr);
382 
383   /// Add function attributes to this function.
384   void addFnAttrs(const AttrBuilder &Attrs);
385 
386   /// Add return value attributes to this function.
387   void addRetAttr(Attribute::AttrKind Kind);
388 
389   /// Add return value attributes to this function.
390   void addRetAttr(Attribute Attr);
391 
392   /// Add return value attributes to this function.
393   void addRetAttrs(const AttrBuilder &Attrs);
394 
395   /// adds the attribute to the list of attributes for the given arg.
396   void addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
397 
398   /// adds the attribute to the list of attributes for the given arg.
399   void addParamAttr(unsigned ArgNo, Attribute Attr);
400 
401   /// adds the attributes to the list of attributes for the given arg.
402   void addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs);
403 
404   /// removes the attribute from the list of attributes.
405   void removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind);
406 
407   /// removes the attribute from the list of attributes.
408   void removeAttributeAtIndex(unsigned i, StringRef Kind);
409 
410   /// Remove function attributes from this function.
411   void removeFnAttr(Attribute::AttrKind Kind);
412 
413   /// Remove function attribute from this function.
414   void removeFnAttr(StringRef Kind);
415 
416   void removeFnAttrs(const AttributeMask &Attrs);
417 
418   /// removes the attribute from the return value list of attributes.
419   void removeRetAttr(Attribute::AttrKind Kind);
420 
421   /// removes the attribute from the return value list of attributes.
422   void removeRetAttr(StringRef Kind);
423 
424   /// removes the attributes from the return value list of attributes.
425   void removeRetAttrs(const AttributeMask &Attrs);
426 
427   /// removes the attribute from the list of attributes.
428   void removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind);
429 
430   /// removes the attribute from the list of attributes.
431   void removeParamAttr(unsigned ArgNo, StringRef Kind);
432 
433   /// removes the attribute from the list of attributes.
434   void removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs);
435 
436   /// Return true if the function has the attribute.
437   bool hasFnAttribute(Attribute::AttrKind Kind) const;
438 
439   /// Return true if the function has the attribute.
440   bool hasFnAttribute(StringRef Kind) const;
441 
442   /// check if an attribute is in the list of attributes for the return value.
443   bool hasRetAttribute(Attribute::AttrKind Kind) const;
444 
445   /// check if an attributes is in the list of attributes.
446   bool hasParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const;
447 
448   /// Check if an attribute is in the list of attributes.
449   bool hasParamAttribute(unsigned ArgNo, StringRef Kind) const;
450 
451   /// gets the attribute from the list of attributes.
452   Attribute getAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) const;
453 
454   /// gets the attribute from the list of attributes.
455   Attribute getAttributeAtIndex(unsigned i, StringRef Kind) const;
456 
457   /// Check if attribute of the given kind is set at the given index.
458   bool hasAttributeAtIndex(unsigned Idx, Attribute::AttrKind Kind) const;
459 
460   /// Return the attribute for the given attribute kind.
461   Attribute getFnAttribute(Attribute::AttrKind Kind) const;
462 
463   /// Return the attribute for the given attribute kind.
464   Attribute getFnAttribute(StringRef Kind) const;
465 
466   /// Return the attribute for the given attribute kind for the return value.
467   Attribute getRetAttribute(Attribute::AttrKind Kind) const;
468 
469   /// For a string attribute \p Kind, parse attribute as an integer.
470   ///
471   /// \returns \p Default if attribute is not present.
472   ///
473   /// \returns \p Default if there is an error parsing the attribute integer,
474   /// and error is emitted to the LLVMContext
475   uint64_t getFnAttributeAsParsedInteger(StringRef Kind,
476                                          uint64_t Default = 0) const;
477 
478   /// gets the specified attribute from the list of attributes.
479   Attribute getParamAttribute(unsigned ArgNo, Attribute::AttrKind Kind) const;
480 
481   /// Return the stack alignment for the function.
482   MaybeAlign getFnStackAlign() const {
483     return AttributeSets.getFnStackAlignment();
484   }
485 
486   /// Returns true if the function has ssp, sspstrong, or sspreq fn attrs.
487   bool hasStackProtectorFnAttr() const;
488 
489   /// adds the dereferenceable attribute to the list of attributes for
490   /// the given arg.
491   void addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes);
492 
493   /// adds the dereferenceable_or_null attribute to the list of
494   /// attributes for the given arg.
495   void addDereferenceableOrNullParamAttr(unsigned ArgNo, uint64_t Bytes);
496 
497   /// adds the range attribute to the list of attributes for the return value.
498   void addRangeRetAttr(const ConstantRange &CR);
499 
500   MaybeAlign getParamAlign(unsigned ArgNo) const {
501     return AttributeSets.getParamAlignment(ArgNo);
502   }
503 
504   MaybeAlign getParamStackAlign(unsigned ArgNo) const {
505     return AttributeSets.getParamStackAlignment(ArgNo);
506   }
507 
508   /// Extract the byval type for a parameter.
509   Type *getParamByValType(unsigned ArgNo) const {
510     return AttributeSets.getParamByValType(ArgNo);
511   }
512 
513   /// Extract the sret type for a parameter.
514   Type *getParamStructRetType(unsigned ArgNo) const {
515     return AttributeSets.getParamStructRetType(ArgNo);
516   }
517 
518   /// Extract the inalloca type for a parameter.
519   Type *getParamInAllocaType(unsigned ArgNo) const {
520     return AttributeSets.getParamInAllocaType(ArgNo);
521   }
522 
523   /// Extract the byref type for a parameter.
524   Type *getParamByRefType(unsigned ArgNo) const {
525     return AttributeSets.getParamByRefType(ArgNo);
526   }
527 
528   /// Extract the preallocated type for a parameter.
529   Type *getParamPreallocatedType(unsigned ArgNo) const {
530     return AttributeSets.getParamPreallocatedType(ArgNo);
531   }
532 
533   /// Extract the number of dereferenceable bytes for a parameter.
534   /// @param ArgNo Index of an argument, with 0 being the first function arg.
535   uint64_t getParamDereferenceableBytes(unsigned ArgNo) const {
536     return AttributeSets.getParamDereferenceableBytes(ArgNo);
537   }
538 
539   /// Extract the number of dereferenceable_or_null bytes for a
540   /// parameter.
541   /// @param ArgNo AttributeList ArgNo, referring to an argument.
542   uint64_t getParamDereferenceableOrNullBytes(unsigned ArgNo) const {
543     return AttributeSets.getParamDereferenceableOrNullBytes(ArgNo);
544   }
545 
546   /// Extract the nofpclass attribute for a parameter.
547   FPClassTest getParamNoFPClass(unsigned ArgNo) const {
548     return AttributeSets.getParamNoFPClass(ArgNo);
549   }
550 
551   /// Determine if the function is presplit coroutine.
552   bool isPresplitCoroutine() const {
553     return hasFnAttribute(Attribute::PresplitCoroutine);
554   }
555   void setPresplitCoroutine() { addFnAttr(Attribute::PresplitCoroutine); }
556   void setSplittedCoroutine() { removeFnAttr(Attribute::PresplitCoroutine); }
557 
558   bool isCoroOnlyDestroyWhenComplete() const {
559     return hasFnAttribute(Attribute::CoroDestroyOnlyWhenComplete);
560   }
561   void setCoroDestroyOnlyWhenComplete() {
562     addFnAttr(Attribute::CoroDestroyOnlyWhenComplete);
563   }
564 
565   MemoryEffects getMemoryEffects() const;
566   void setMemoryEffects(MemoryEffects ME);
567 
568   /// Determine if the function does not access memory.
569   bool doesNotAccessMemory() const;
570   void setDoesNotAccessMemory();
571 
572   /// Determine if the function does not access or only reads memory.
573   bool onlyReadsMemory() const;
574   void setOnlyReadsMemory();
575 
576   /// Determine if the function does not access or only writes memory.
577   bool onlyWritesMemory() const;
578   void setOnlyWritesMemory();
579 
580   /// Determine if the call can access memmory only using pointers based
581   /// on its arguments.
582   bool onlyAccessesArgMemory() const;
583   void setOnlyAccessesArgMemory();
584 
585   /// Determine if the function may only access memory that is
586   ///  inaccessible from the IR.
587   bool onlyAccessesInaccessibleMemory() const;
588   void setOnlyAccessesInaccessibleMemory();
589 
590   /// Determine if the function may only access memory that is
591   ///  either inaccessible from the IR or pointed to by its arguments.
592   bool onlyAccessesInaccessibleMemOrArgMem() const;
593   void setOnlyAccessesInaccessibleMemOrArgMem();
594 
595   /// Determine if the function cannot return.
596   bool doesNotReturn() const {
597     return hasFnAttribute(Attribute::NoReturn);
598   }
599   void setDoesNotReturn() {
600     addFnAttr(Attribute::NoReturn);
601   }
602 
603   /// Determine if the function should not perform indirect branch tracking.
604   bool doesNoCfCheck() const { return hasFnAttribute(Attribute::NoCfCheck); }
605 
606   /// Determine if the function cannot unwind.
607   bool doesNotThrow() const {
608     return hasFnAttribute(Attribute::NoUnwind);
609   }
610   void setDoesNotThrow() {
611     addFnAttr(Attribute::NoUnwind);
612   }
613 
614   /// Determine if the call cannot be duplicated.
615   bool cannotDuplicate() const {
616     return hasFnAttribute(Attribute::NoDuplicate);
617   }
618   void setCannotDuplicate() {
619     addFnAttr(Attribute::NoDuplicate);
620   }
621 
622   /// Determine if the call is convergent.
623   bool isConvergent() const {
624     return hasFnAttribute(Attribute::Convergent);
625   }
626   void setConvergent() {
627     addFnAttr(Attribute::Convergent);
628   }
629   void setNotConvergent() {
630     removeFnAttr(Attribute::Convergent);
631   }
632 
633   /// Determine if the call has sideeffects.
634   bool isSpeculatable() const {
635     return hasFnAttribute(Attribute::Speculatable);
636   }
637   void setSpeculatable() {
638     addFnAttr(Attribute::Speculatable);
639   }
640 
641   /// Determine if the call might deallocate memory.
642   bool doesNotFreeMemory() const {
643     return onlyReadsMemory() || hasFnAttribute(Attribute::NoFree);
644   }
645   void setDoesNotFreeMemory() {
646     addFnAttr(Attribute::NoFree);
647   }
648 
649   /// Determine if the call can synchroize with other threads
650   bool hasNoSync() const {
651     return hasFnAttribute(Attribute::NoSync);
652   }
653   void setNoSync() {
654     addFnAttr(Attribute::NoSync);
655   }
656 
657   /// Determine if the function is known not to recurse, directly or
658   /// indirectly.
659   bool doesNotRecurse() const {
660     return hasFnAttribute(Attribute::NoRecurse);
661   }
662   void setDoesNotRecurse() {
663     addFnAttr(Attribute::NoRecurse);
664   }
665 
666   /// Determine if the function is required to make forward progress.
667   bool mustProgress() const {
668     return hasFnAttribute(Attribute::MustProgress) ||
669            hasFnAttribute(Attribute::WillReturn);
670   }
671   void setMustProgress() { addFnAttr(Attribute::MustProgress); }
672 
673   /// Determine if the function will return.
674   bool willReturn() const { return hasFnAttribute(Attribute::WillReturn); }
675   void setWillReturn() { addFnAttr(Attribute::WillReturn); }
676 
677   /// Get what kind of unwind table entry to generate for this function.
678   UWTableKind getUWTableKind() const {
679     return AttributeSets.getUWTableKind();
680   }
681 
682   /// True if the ABI mandates (or the user requested) that this
683   /// function be in a unwind table.
684   bool hasUWTable() const {
685     return getUWTableKind() != UWTableKind::None;
686   }
687   void setUWTableKind(UWTableKind K) {
688     if (K == UWTableKind::None)
689       removeFnAttr(Attribute::UWTable);
690     else
691       addFnAttr(Attribute::getWithUWTableKind(getContext(), K));
692   }
693   /// True if this function needs an unwind table.
694   bool needsUnwindTableEntry() const {
695     return hasUWTable() || !doesNotThrow() || hasPersonalityFn();
696   }
697 
698   /// Determine if the function returns a structure through first
699   /// or second pointer argument.
700   bool hasStructRetAttr() const {
701     return AttributeSets.hasParamAttr(0, Attribute::StructRet) ||
702            AttributeSets.hasParamAttr(1, Attribute::StructRet);
703   }
704 
705   /// Determine if the parameter or return value is marked with NoAlias
706   /// attribute.
707   bool returnDoesNotAlias() const {
708     return AttributeSets.hasRetAttr(Attribute::NoAlias);
709   }
710   void setReturnDoesNotAlias() { addRetAttr(Attribute::NoAlias); }
711 
712   /// Do not optimize this function (-O0).
713   bool hasOptNone() const { return hasFnAttribute(Attribute::OptimizeNone); }
714 
715   /// Optimize this function for minimum size (-Oz).
716   bool hasMinSize() const { return hasFnAttribute(Attribute::MinSize); }
717 
718   /// Optimize this function for size (-Os) or minimum size (-Oz).
719   bool hasOptSize() const {
720     return hasFnAttribute(Attribute::OptimizeForSize) || hasMinSize();
721   }
722 
723   /// Returns the denormal handling type for the default rounding mode of the
724   /// function.
725   DenormalMode getDenormalMode(const fltSemantics &FPType) const;
726 
727   /// Return the representational value of "denormal-fp-math". Code interested
728   /// in the semantics of the function should use getDenormalMode instead.
729   DenormalMode getDenormalModeRaw() const;
730 
731   /// Return the representational value of "denormal-fp-math-f32". Code
732   /// interested in the semantics of the function should use getDenormalMode
733   /// instead.
734   DenormalMode getDenormalModeF32Raw() const;
735 
736   /// copyAttributesFrom - copy all additional attributes (those not needed to
737   /// create a Function) from the Function Src to this one.
738   void copyAttributesFrom(const Function *Src);
739 
740   /// deleteBody - This method deletes the body of the function, and converts
741   /// the linkage to external.
742   ///
743   void deleteBody() {
744     deleteBodyImpl(/*ShouldDrop=*/false);
745     setLinkage(ExternalLinkage);
746   }
747 
748   /// removeFromParent - This method unlinks 'this' from the containing module,
749   /// but does not delete it.
750   ///
751   void removeFromParent();
752 
753   /// eraseFromParent - This method unlinks 'this' from the containing module
754   /// and deletes it.
755   ///
756   void eraseFromParent();
757 
758   /// Steal arguments from another function.
759   ///
760   /// Drop this function's arguments and splice in the ones from \c Src.
761   /// Requires that this has no function body.
762   void stealArgumentListFrom(Function &Src);
763 
764   /// Insert \p BB in the basic block list at \p Position. \Returns an iterator
765   /// to the newly inserted BB.
766   Function::iterator insert(Function::iterator Position, BasicBlock *BB) {
767     Function::iterator FIt = BasicBlocks.insert(Position, BB);
768     BB->setIsNewDbgInfoFormat(IsNewDbgInfoFormat);
769     return FIt;
770   }
771 
772   /// Transfer all blocks from \p FromF to this function at \p ToIt.
773   void splice(Function::iterator ToIt, Function *FromF) {
774     splice(ToIt, FromF, FromF->begin(), FromF->end());
775   }
776 
777   /// Transfer one BasicBlock from \p FromF at \p FromIt to this function
778   /// at \p ToIt.
779   void splice(Function::iterator ToIt, Function *FromF,
780               Function::iterator FromIt) {
781     auto FromItNext = std::next(FromIt);
782     // Single-element splice is a noop if destination == source.
783     if (ToIt == FromIt || ToIt == FromItNext)
784       return;
785     splice(ToIt, FromF, FromIt, FromItNext);
786   }
787 
788   /// Transfer a range of basic blocks that belong to \p FromF from \p
789   /// FromBeginIt to \p FromEndIt, to this function at \p ToIt.
790   void splice(Function::iterator ToIt, Function *FromF,
791               Function::iterator FromBeginIt,
792               Function::iterator FromEndIt);
793 
794   /// Erases a range of BasicBlocks from \p FromIt to (not including) \p ToIt.
795   /// \Returns \p ToIt.
796   Function::iterator erase(Function::iterator FromIt, Function::iterator ToIt);
797 
798 private:
799   // These need access to the underlying BB list.
800   friend void BasicBlock::removeFromParent();
801   friend iplist<BasicBlock>::iterator BasicBlock::eraseFromParent();
802   template <class BB_t, class BB_i_t, class BI_t, class II_t>
803   friend class InstIterator;
804   friend class llvm::SymbolTableListTraits<llvm::BasicBlock>;
805   friend class llvm::ilist_node_with_parent<llvm::BasicBlock, llvm::Function>;
806 
807   /// Get the underlying elements of the Function... the basic block list is
808   /// empty for external functions.
809   ///
810   /// This is deliberately private because we have implemented an adequate set
811   /// of functions to modify the list, including Function::splice(),
812   /// Function::erase(), Function::insert() etc.
813   const BasicBlockListType &getBasicBlockList() const { return BasicBlocks; }
814         BasicBlockListType &getBasicBlockList()       { return BasicBlocks; }
815 
816   static BasicBlockListType Function::*getSublistAccess(BasicBlock*) {
817     return &Function::BasicBlocks;
818   }
819 
820 public:
821   const BasicBlock       &getEntryBlock() const   { return front(); }
822         BasicBlock       &getEntryBlock()         { return front(); }
823 
824   //===--------------------------------------------------------------------===//
825   // Symbol Table Accessing functions...
826 
827   /// getSymbolTable() - Return the symbol table if any, otherwise nullptr.
828   ///
829   inline ValueSymbolTable *getValueSymbolTable() { return SymTab.get(); }
830   inline const ValueSymbolTable *getValueSymbolTable() const {
831     return SymTab.get();
832   }
833 
834   //===--------------------------------------------------------------------===//
835   // Block number functions
836 
837   /// Return a value larger than the largest block number. Intended to allocate
838   /// a vector that is sufficiently large to hold all blocks indexed by their
839   /// number.
840   unsigned getMaxBlockNumber() const { return NextBlockNum; }
841 
842   /// Renumber basic blocks into a dense value range starting from 0. Be aware
843   /// that other data structures and analyses (e.g., DominatorTree) may depend
844   /// on the value numbers and need to be updated or invalidated.
845   void renumberBlocks();
846 
847   /// Return the "epoch" of current block numbers. This will return a different
848   /// value after every renumbering. The intention is: if something (e.g., an
849   /// analysis) uses block numbers, it also stores the number epoch and then
850   /// can assert later on that the epoch didn't change (indicating that the
851   /// numbering is still valid). If the epoch changed, blocks might have been
852   /// assigned new numbers and previous uses of the numbers needs to be
853   /// invalidated. This is solely intended as a debugging feature.
854   unsigned getBlockNumberEpoch() const { return BlockNumEpoch; }
855 
856 private:
857   /// Assert that all blocks have unique numbers within 0..NextBlockNum. This
858   /// has O(n) runtime complexity.
859   void validateBlockNumbers() const;
860 
861 public:
862   //===--------------------------------------------------------------------===//
863   // BasicBlock iterator forwarding functions
864   //
865   iterator                begin()       { return BasicBlocks.begin(); }
866   const_iterator          begin() const { return BasicBlocks.begin(); }
867   iterator                end  ()       { return BasicBlocks.end();   }
868   const_iterator          end  () const { return BasicBlocks.end();   }
869 
870   size_t                   size() const { return BasicBlocks.size();  }
871   bool                    empty() const { return BasicBlocks.empty(); }
872   const BasicBlock       &front() const { return BasicBlocks.front(); }
873         BasicBlock       &front()       { return BasicBlocks.front(); }
874   const BasicBlock        &back() const { return BasicBlocks.back();  }
875         BasicBlock        &back()       { return BasicBlocks.back();  }
876 
877 /// @name Function Argument Iteration
878 /// @{
879 
880   arg_iterator arg_begin() {
881     CheckLazyArguments();
882     return Arguments;
883   }
884   const_arg_iterator arg_begin() const {
885     CheckLazyArguments();
886     return Arguments;
887   }
888 
889   arg_iterator arg_end() {
890     CheckLazyArguments();
891     return Arguments + NumArgs;
892   }
893   const_arg_iterator arg_end() const {
894     CheckLazyArguments();
895     return Arguments + NumArgs;
896   }
897 
898   Argument* getArg(unsigned i) const {
899     assert (i < NumArgs && "getArg() out of range!");
900     CheckLazyArguments();
901     return Arguments + i;
902   }
903 
904   iterator_range<arg_iterator> args() {
905     return make_range(arg_begin(), arg_end());
906   }
907   iterator_range<const_arg_iterator> args() const {
908     return make_range(arg_begin(), arg_end());
909   }
910 
911 /// @}
912 
913   size_t arg_size() const { return NumArgs; }
914   bool arg_empty() const { return arg_size() == 0; }
915 
916   /// Check whether this function has a personality function.
917   bool hasPersonalityFn() const {
918     return getSubclassDataFromValue() & (1<<3);
919   }
920 
921   /// Get the personality function associated with this function.
922   Constant *getPersonalityFn() const;
923   void setPersonalityFn(Constant *Fn);
924 
925   /// Check whether this function has prefix data.
926   bool hasPrefixData() const {
927     return getSubclassDataFromValue() & (1<<1);
928   }
929 
930   /// Get the prefix data associated with this function.
931   Constant *getPrefixData() const;
932   void setPrefixData(Constant *PrefixData);
933 
934   /// Check whether this function has prologue data.
935   bool hasPrologueData() const {
936     return getSubclassDataFromValue() & (1<<2);
937   }
938 
939   /// Get the prologue data associated with this function.
940   Constant *getPrologueData() const;
941   void setPrologueData(Constant *PrologueData);
942 
943   /// Print the function to an output stream with an optional
944   /// AssemblyAnnotationWriter.
945   void print(raw_ostream &OS, AssemblyAnnotationWriter *AAW = nullptr,
946              bool ShouldPreserveUseListOrder = false,
947              bool IsForDebug = false) const;
948 
949   /// viewCFG - This function is meant for use from the debugger.  You can just
950   /// say 'call F->viewCFG()' and a ghostview window should pop up from the
951   /// program, displaying the CFG of the current function with the code for each
952   /// basic block inside.  This depends on there being a 'dot' and 'gv' program
953   /// in your path.
954   ///
955   void viewCFG() const;
956 
957   /// viewCFG - This function is meant for use from the debugger. It works just
958   /// like viewCFG(), but generates the dot file with the given file name.
959   void viewCFG(const char *OutputFileName) const;
960 
961   /// Extended form to print edge weights.
962   void viewCFG(bool ViewCFGOnly, const BlockFrequencyInfo *BFI,
963                const BranchProbabilityInfo *BPI,
964                const char *OutputFileName = nullptr) const;
965 
966   /// viewCFGOnly - This function is meant for use from the debugger.  It works
967   /// just like viewCFG, but it does not include the contents of basic blocks
968   /// into the nodes, just the label.  If you are only interested in the CFG
969   /// this can make the graph smaller.
970   ///
971   void viewCFGOnly() const;
972 
973   /// viewCFG - This function is meant for use from the debugger. It works just
974   /// like viewCFGOnly(), but generates the dot file with the given file name.
975   void viewCFGOnly(const char *OutputFileName) const;
976 
977   /// Extended form to print edge weights.
978   void viewCFGOnly(const BlockFrequencyInfo *BFI,
979                    const BranchProbabilityInfo *BPI) const;
980 
981   /// Methods for support type inquiry through isa, cast, and dyn_cast:
982   static bool classof(const Value *V) {
983     return V->getValueID() == Value::FunctionVal;
984   }
985 
986   /// dropAllReferences() - This method causes all the subinstructions to "let
987   /// go" of all references that they are maintaining.  This allows one to
988   /// 'delete' a whole module at a time, even though there may be circular
989   /// references... first all references are dropped, and all use counts go to
990   /// zero.  Then everything is deleted for real.  Note that no operations are
991   /// valid on an object that has "dropped all references", except operator
992   /// delete.
993   ///
994   /// Since no other object in the module can have references into the body of a
995   /// function, dropping all references deletes the entire body of the function,
996   /// including any contained basic blocks.
997   ///
998   void dropAllReferences() {
999     deleteBodyImpl(/*ShouldDrop=*/true);
1000   }
1001 
1002   /// hasAddressTaken - returns true if there are any uses of this function
1003   /// other than direct calls or invokes to it, or blockaddress expressions.
1004   /// Optionally passes back an offending user for diagnostic purposes,
1005   /// ignores callback uses, assume like pointer annotation calls, references in
1006   /// llvm.used and llvm.compiler.used variables, operand bundle
1007   /// "clang.arc.attachedcall", and direct calls with a different call site
1008   /// signature (the function is implicitly casted).
1009   bool hasAddressTaken(const User ** = nullptr, bool IgnoreCallbackUses = false,
1010                        bool IgnoreAssumeLikeCalls = true,
1011                        bool IngoreLLVMUsed = false,
1012                        bool IgnoreARCAttachedCall = false,
1013                        bool IgnoreCastedDirectCall = false) const;
1014 
1015   /// isDefTriviallyDead - Return true if it is trivially safe to remove
1016   /// this function definition from the module (because it isn't externally
1017   /// visible, does not have its address taken, and has no callers).  To make
1018   /// this more accurate, call removeDeadConstantUsers first.
1019   bool isDefTriviallyDead() const;
1020 
1021   /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1022   /// setjmp or other function that gcc recognizes as "returning twice".
1023   bool callsFunctionThatReturnsTwice() const;
1024 
1025   /// Set the attached subprogram.
1026   ///
1027   /// Calls \a setMetadata() with \a LLVMContext::MD_dbg.
1028   void setSubprogram(DISubprogram *SP);
1029 
1030   /// Get the attached subprogram.
1031   ///
1032   /// Calls \a getMetadata() with \a LLVMContext::MD_dbg and casts the result
1033   /// to \a DISubprogram.
1034   DISubprogram *getSubprogram() const;
1035 
1036   /// Returns true if we should emit debug info for profiling.
1037   bool shouldEmitDebugInfoForProfiling() const;
1038 
1039   /// Check if null pointer dereferencing is considered undefined behavior for
1040   /// the function.
1041   /// Return value: false => null pointer dereference is undefined.
1042   /// Return value: true =>  null pointer dereference is not undefined.
1043   bool nullPointerIsDefined() const;
1044 
1045 private:
1046   void allocHungoffUselist();
1047   template<int Idx> void setHungoffOperand(Constant *C);
1048 
1049   /// Shadow Value::setValueSubclassData with a private forwarding method so
1050   /// that subclasses cannot accidentally use it.
1051   void setValueSubclassData(unsigned short D) {
1052     Value::setValueSubclassData(D);
1053   }
1054   void setValueSubclassDataBit(unsigned Bit, bool On);
1055 };
1056 
1057 /// Check whether null pointer dereferencing is considered undefined behavior
1058 /// for a given function or an address space.
1059 /// Null pointer access in non-zero address space is not considered undefined.
1060 /// Return value: false => null pointer dereference is undefined.
1061 /// Return value: true =>  null pointer dereference is not undefined.
1062 bool NullPointerIsDefined(const Function *F, unsigned AS = 0);
1063 
1064 template <> struct OperandTraits<Function> : public HungoffOperandTraits {};
1065 
1066 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(Function, Value)
1067 
1068 } // end namespace llvm
1069 
1070 #endif // LLVM_IR_FUNCTION_H
1071