xref: /llvm-project/llvm/include/llvm/IR/Constants.h (revision a59e5d8115bce7d75330c5206b321ea88f183e09)
1 //===-- llvm/Constants.h - Constant class subclass definitions --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for the subclasses of Constant,
11 /// which represent the different flavors of constant values that live in LLVM.
12 /// Note that Constants are immutable (once created they never change) and are
13 /// fully shared by structural equivalence.  This means that two structurally
14 /// equivalent constants will always have the same address.  Constants are
15 /// created on demand as needed and never deleted: thus clients don't have to
16 /// worry about the lifetime of the objects.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_IR_CONSTANTS_H
21 #define LLVM_IR_CONSTANTS_H
22 
23 #include "llvm/ADT/APFloat.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/ArrayRef.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/ConstantRange.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GEPNoWrapFlags.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/OperandTraits.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/Compiler.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdint>
42 #include <optional>
43 
44 namespace llvm {
45 
46 template <class ConstantClass> struct ConstantAggrKeyType;
47 
48 /// Base class for constants with no operands.
49 ///
50 /// These constants have no operands; they represent their data directly.
51 /// Since they can be in use by unrelated modules (and are never based on
52 /// GlobalValues), it never makes sense to RAUW them.
53 class ConstantData : public Constant {
54   constexpr static IntrusiveOperandsAllocMarker AllocMarker{0};
55 
56   friend class Constant;
57 
58   Value *handleOperandChangeImpl(Value *From, Value *To) {
59     llvm_unreachable("Constant data does not have operands!");
60   }
61 
62 protected:
63   explicit ConstantData(Type *Ty, ValueTy VT) : Constant(Ty, VT, AllocMarker) {}
64 
65   void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
66 
67 public:
68   void operator delete(void *Ptr) { User::operator delete(Ptr); }
69 
70   ConstantData(const ConstantData &) = delete;
71 
72   /// Methods to support type inquiry through isa, cast, and dyn_cast.
73   static bool classof(const Value *V) {
74     return V->getValueID() >= ConstantDataFirstVal &&
75            V->getValueID() <= ConstantDataLastVal;
76   }
77 };
78 
79 //===----------------------------------------------------------------------===//
80 /// This is the shared class of boolean and integer constants. This class
81 /// represents both boolean and integral constants.
82 /// Class for constant integers.
83 class ConstantInt final : public ConstantData {
84   friend class Constant;
85   friend class ConstantVector;
86 
87   APInt Val;
88 
89   ConstantInt(Type *Ty, const APInt &V);
90 
91   void destroyConstantImpl();
92 
93   /// Return a ConstantInt with the specified value and an implied Type. The
94   /// type is the vector type whose integer element type corresponds to the bit
95   /// width of the value.
96   static ConstantInt *get(LLVMContext &Context, ElementCount EC,
97                           const APInt &V);
98 
99 public:
100   ConstantInt(const ConstantInt &) = delete;
101 
102   static ConstantInt *getTrue(LLVMContext &Context);
103   static ConstantInt *getFalse(LLVMContext &Context);
104   static ConstantInt *getBool(LLVMContext &Context, bool V);
105   static Constant *getTrue(Type *Ty);
106   static Constant *getFalse(Type *Ty);
107   static Constant *getBool(Type *Ty, bool V);
108 
109   /// If Ty is a vector type, return a Constant with a splat of the given
110   /// value. Otherwise return a ConstantInt for the given value.
111   static Constant *get(Type *Ty, uint64_t V, bool IsSigned = false);
112 
113   /// Return a ConstantInt with the specified integer value for the specified
114   /// type. If the type is wider than 64 bits, the value will be zero-extended
115   /// to fit the type, unless IsSigned is true, in which case the value will
116   /// be interpreted as a 64-bit signed integer and sign-extended to fit
117   /// the type.
118   /// Get a ConstantInt for a specific value.
119   static ConstantInt *get(IntegerType *Ty, uint64_t V, bool IsSigned = false);
120 
121   /// Return a ConstantInt with the specified value for the specified type. The
122   /// value V will be canonicalized to a an unsigned APInt. Accessing it with
123   /// either getSExtValue() or getZExtValue() will yield a correctly sized and
124   /// signed value for the type Ty.
125   /// Get a ConstantInt for a specific signed value.
126   static ConstantInt *getSigned(IntegerType *Ty, int64_t V) {
127     return get(Ty, V, true);
128   }
129   static Constant *getSigned(Type *Ty, int64_t V) {
130     return get(Ty, V, true);
131   }
132 
133   /// Return a ConstantInt with the specified value and an implied Type. The
134   /// type is the integer type that corresponds to the bit width of the value.
135   static ConstantInt *get(LLVMContext &Context, const APInt &V);
136 
137   /// Return a ConstantInt constructed from the string strStart with the given
138   /// radix.
139   static ConstantInt *get(IntegerType *Ty, StringRef Str, uint8_t Radix);
140 
141   /// If Ty is a vector type, return a Constant with a splat of the given
142   /// value. Otherwise return a ConstantInt for the given value.
143   static Constant *get(Type *Ty, const APInt &V);
144 
145   /// Return the constant as an APInt value reference. This allows clients to
146   /// obtain a full-precision copy of the value.
147   /// Return the constant's value.
148   inline const APInt &getValue() const { return Val; }
149 
150   /// getBitWidth - Return the scalar bitwidth of this constant.
151   unsigned getBitWidth() const { return Val.getBitWidth(); }
152 
153   /// Return the constant as a 64-bit unsigned integer value after it
154   /// has been zero extended as appropriate for the type of this constant. Note
155   /// that this method can assert if the value does not fit in 64 bits.
156   /// Return the zero extended value.
157   inline uint64_t getZExtValue() const { return Val.getZExtValue(); }
158 
159   /// Return the constant as a 64-bit integer value after it has been sign
160   /// extended as appropriate for the type of this constant. Note that
161   /// this method can assert if the value does not fit in 64 bits.
162   /// Return the sign extended value.
163   inline int64_t getSExtValue() const { return Val.getSExtValue(); }
164 
165   /// Return the constant as an llvm::MaybeAlign.
166   /// Note that this method can assert if the value does not fit in 64 bits or
167   /// is not a power of two.
168   inline MaybeAlign getMaybeAlignValue() const {
169     return MaybeAlign(getZExtValue());
170   }
171 
172   /// Return the constant as an llvm::Align, interpreting `0` as `Align(1)`.
173   /// Note that this method can assert if the value does not fit in 64 bits or
174   /// is not a power of two.
175   inline Align getAlignValue() const {
176     return getMaybeAlignValue().valueOrOne();
177   }
178 
179   /// A helper method that can be used to determine if the constant contained
180   /// within is equal to a constant.  This only works for very small values,
181   /// because this is all that can be represented with all types.
182   /// Determine if this constant's value is same as an unsigned char.
183   bool equalsInt(uint64_t V) const { return Val == V; }
184 
185   /// Variant of the getType() method to always return an IntegerType, which
186   /// reduces the amount of casting needed in parts of the compiler.
187   inline IntegerType *getIntegerType() const {
188     return cast<IntegerType>(Value::getType());
189   }
190 
191   /// This static method returns true if the type Ty is big enough to
192   /// represent the value V. This can be used to avoid having the get method
193   /// assert when V is larger than Ty can represent. Note that there are two
194   /// versions of this method, one for unsigned and one for signed integers.
195   /// Although ConstantInt canonicalizes everything to an unsigned integer,
196   /// the signed version avoids callers having to convert a signed quantity
197   /// to the appropriate unsigned type before calling the method.
198   /// @returns true if V is a valid value for type Ty
199   /// Determine if the value is in range for the given type.
200   static bool isValueValidForType(Type *Ty, uint64_t V);
201   static bool isValueValidForType(Type *Ty, int64_t V);
202 
203   bool isNegative() const { return Val.isNegative(); }
204 
205   /// This is just a convenience method to make client code smaller for a
206   /// common code. It also correctly performs the comparison without the
207   /// potential for an assertion from getZExtValue().
208   bool isZero() const { return Val.isZero(); }
209 
210   /// This is just a convenience method to make client code smaller for a
211   /// common case. It also correctly performs the comparison without the
212   /// potential for an assertion from getZExtValue().
213   /// Determine if the value is one.
214   bool isOne() const { return Val.isOne(); }
215 
216   /// This function will return true iff every bit in this constant is set
217   /// to true.
218   /// @returns true iff this constant's bits are all set to true.
219   /// Determine if the value is all ones.
220   bool isMinusOne() const { return Val.isAllOnes(); }
221 
222   /// This function will return true iff this constant represents the largest
223   /// value that may be represented by the constant's type.
224   /// @returns true iff this is the largest value that may be represented
225   /// by this type.
226   /// Determine if the value is maximal.
227   bool isMaxValue(bool IsSigned) const {
228     if (IsSigned)
229       return Val.isMaxSignedValue();
230     else
231       return Val.isMaxValue();
232   }
233 
234   /// This function will return true iff this constant represents the smallest
235   /// value that may be represented by this constant's type.
236   /// @returns true if this is the smallest value that may be represented by
237   /// this type.
238   /// Determine if the value is minimal.
239   bool isMinValue(bool IsSigned) const {
240     if (IsSigned)
241       return Val.isMinSignedValue();
242     else
243       return Val.isMinValue();
244   }
245 
246   /// This function will return true iff this constant represents a value with
247   /// active bits bigger than 64 bits or a value greater than the given uint64_t
248   /// value.
249   /// @returns true iff this constant is greater or equal to the given number.
250   /// Determine if the value is greater or equal to the given number.
251   bool uge(uint64_t Num) const { return Val.uge(Num); }
252 
253   /// getLimitedValue - If the value is smaller than the specified limit,
254   /// return it, otherwise return the limit value.  This causes the value
255   /// to saturate to the limit.
256   /// @returns the min of the value of the constant and the specified value
257   /// Get the constant's value with a saturation limit
258   uint64_t getLimitedValue(uint64_t Limit = ~0ULL) const {
259     return Val.getLimitedValue(Limit);
260   }
261 
262   /// Methods to support type inquiry through isa, cast, and dyn_cast.
263   static bool classof(const Value *V) {
264     return V->getValueID() == ConstantIntVal;
265   }
266 };
267 
268 //===----------------------------------------------------------------------===//
269 /// ConstantFP - Floating Point Values [float, double]
270 ///
271 class ConstantFP final : public ConstantData {
272   friend class Constant;
273   friend class ConstantVector;
274 
275   APFloat Val;
276 
277   ConstantFP(Type *Ty, const APFloat &V);
278 
279   void destroyConstantImpl();
280 
281   /// Return a ConstantFP with the specified value and an implied Type. The
282   /// type is the vector type whose element type has the same floating point
283   /// semantics as the value.
284   static ConstantFP *get(LLVMContext &Context, ElementCount EC,
285                          const APFloat &V);
286 
287 public:
288   ConstantFP(const ConstantFP &) = delete;
289 
290   /// This returns a ConstantFP, or a vector containing a splat of a ConstantFP,
291   /// for the specified value in the specified type. This should only be used
292   /// for simple constant values like 2.0/1.0 etc, that are known-valid both as
293   /// host double and as the target format.
294   static Constant *get(Type *Ty, double V);
295 
296   /// If Ty is a vector type, return a Constant with a splat of the given
297   /// value. Otherwise return a ConstantFP for the given value.
298   static Constant *get(Type *Ty, const APFloat &V);
299 
300   static Constant *get(Type *Ty, StringRef Str);
301   static ConstantFP *get(LLVMContext &Context, const APFloat &V);
302   static Constant *getNaN(Type *Ty, bool Negative = false,
303                           uint64_t Payload = 0);
304   static Constant *getQNaN(Type *Ty, bool Negative = false,
305                            APInt *Payload = nullptr);
306   static Constant *getSNaN(Type *Ty, bool Negative = false,
307                            APInt *Payload = nullptr);
308   static Constant *getZero(Type *Ty, bool Negative = false);
309   static Constant *getNegativeZero(Type *Ty) { return getZero(Ty, true); }
310   static Constant *getInfinity(Type *Ty, bool Negative = false);
311 
312   /// Return true if Ty is big enough to represent V.
313   static bool isValueValidForType(Type *Ty, const APFloat &V);
314   inline const APFloat &getValueAPF() const { return Val; }
315   inline const APFloat &getValue() const { return Val; }
316 
317   /// Return true if the value is positive or negative zero.
318   bool isZero() const { return Val.isZero(); }
319 
320   /// Return true if the sign bit is set.
321   bool isNegative() const { return Val.isNegative(); }
322 
323   /// Return true if the value is infinity
324   bool isInfinity() const { return Val.isInfinity(); }
325 
326   /// Return true if the value is a NaN.
327   bool isNaN() const { return Val.isNaN(); }
328 
329   /// We don't rely on operator== working on double values, as it returns true
330   /// for things that are clearly not equal, like -0.0 and 0.0.
331   /// As such, this method can be used to do an exact bit-for-bit comparison of
332   /// two floating point values.  The version with a double operand is retained
333   /// because it's so convenient to write isExactlyValue(2.0), but please use
334   /// it only for simple constants.
335   bool isExactlyValue(const APFloat &V) const;
336 
337   bool isExactlyValue(double V) const {
338     bool ignored;
339     APFloat FV(V);
340     FV.convert(Val.getSemantics(), APFloat::rmNearestTiesToEven, &ignored);
341     return isExactlyValue(FV);
342   }
343 
344   /// Methods for support type inquiry through isa, cast, and dyn_cast:
345   static bool classof(const Value *V) {
346     return V->getValueID() == ConstantFPVal;
347   }
348 };
349 
350 //===----------------------------------------------------------------------===//
351 /// All zero aggregate value
352 ///
353 class ConstantAggregateZero final : public ConstantData {
354   friend class Constant;
355 
356   explicit ConstantAggregateZero(Type *Ty)
357       : ConstantData(Ty, ConstantAggregateZeroVal) {}
358 
359   void destroyConstantImpl();
360 
361 public:
362   ConstantAggregateZero(const ConstantAggregateZero &) = delete;
363 
364   static ConstantAggregateZero *get(Type *Ty);
365 
366   /// If this CAZ has array or vector type, return a zero with the right element
367   /// type.
368   Constant *getSequentialElement() const;
369 
370   /// If this CAZ has struct type, return a zero with the right element type for
371   /// the specified element.
372   Constant *getStructElement(unsigned Elt) const;
373 
374   /// Return a zero of the right value for the specified GEP index if we can,
375   /// otherwise return null (e.g. if C is a ConstantExpr).
376   Constant *getElementValue(Constant *C) const;
377 
378   /// Return a zero of the right value for the specified GEP index.
379   Constant *getElementValue(unsigned Idx) const;
380 
381   /// Return the number of elements in the array, vector, or struct.
382   ElementCount getElementCount() const;
383 
384   /// Methods for support type inquiry through isa, cast, and dyn_cast:
385   ///
386   static bool classof(const Value *V) {
387     return V->getValueID() == ConstantAggregateZeroVal;
388   }
389 };
390 
391 /// Base class for aggregate constants (with operands).
392 ///
393 /// These constants are aggregates of other constants, which are stored as
394 /// operands.
395 ///
396 /// Subclasses are \a ConstantStruct, \a ConstantArray, and \a
397 /// ConstantVector.
398 ///
399 /// \note Some subclasses of \a ConstantData are semantically aggregates --
400 /// such as \a ConstantDataArray -- but are not subclasses of this because they
401 /// use operands.
402 class ConstantAggregate : public Constant {
403 protected:
404   ConstantAggregate(Type *T, ValueTy VT, ArrayRef<Constant *> V,
405                     AllocInfo AllocInfo);
406 
407 public:
408   /// Transparently provide more efficient getOperand methods.
409   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
410 
411   /// Methods for support type inquiry through isa, cast, and dyn_cast:
412   static bool classof(const Value *V) {
413     return V->getValueID() >= ConstantAggregateFirstVal &&
414            V->getValueID() <= ConstantAggregateLastVal;
415   }
416 };
417 
418 template <>
419 struct OperandTraits<ConstantAggregate>
420     : public VariadicOperandTraits<ConstantAggregate> {};
421 
422 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantAggregate, Constant)
423 
424 //===----------------------------------------------------------------------===//
425 /// ConstantArray - Constant Array Declarations
426 ///
427 class ConstantArray final : public ConstantAggregate {
428   friend struct ConstantAggrKeyType<ConstantArray>;
429   friend class Constant;
430 
431   ConstantArray(ArrayType *T, ArrayRef<Constant *> Val, AllocInfo AllocInfo);
432 
433   void destroyConstantImpl();
434   Value *handleOperandChangeImpl(Value *From, Value *To);
435 
436 public:
437   // ConstantArray accessors
438   static Constant *get(ArrayType *T, ArrayRef<Constant *> V);
439 
440 private:
441   static Constant *getImpl(ArrayType *T, ArrayRef<Constant *> V);
442 
443 public:
444   /// Specialize the getType() method to always return an ArrayType,
445   /// which reduces the amount of casting needed in parts of the compiler.
446   inline ArrayType *getType() const {
447     return cast<ArrayType>(Value::getType());
448   }
449 
450   /// Methods for support type inquiry through isa, cast, and dyn_cast:
451   static bool classof(const Value *V) {
452     return V->getValueID() == ConstantArrayVal;
453   }
454 };
455 
456 //===----------------------------------------------------------------------===//
457 // Constant Struct Declarations
458 //
459 class ConstantStruct final : public ConstantAggregate {
460   friend struct ConstantAggrKeyType<ConstantStruct>;
461   friend class Constant;
462 
463   ConstantStruct(StructType *T, ArrayRef<Constant *> Val, AllocInfo AllocInfo);
464 
465   void destroyConstantImpl();
466   Value *handleOperandChangeImpl(Value *From, Value *To);
467 
468 public:
469   // ConstantStruct accessors
470   static Constant *get(StructType *T, ArrayRef<Constant *> V);
471 
472   template <typename... Csts>
473   static std::enable_if_t<are_base_of<Constant, Csts...>::value, Constant *>
474   get(StructType *T, Csts *...Vs) {
475     return get(T, ArrayRef<Constant *>({Vs...}));
476   }
477 
478   /// Return an anonymous struct that has the specified elements.
479   /// If the struct is possibly empty, then you must specify a context.
480   static Constant *getAnon(ArrayRef<Constant *> V, bool Packed = false) {
481     return get(getTypeForElements(V, Packed), V);
482   }
483   static Constant *getAnon(LLVMContext &Ctx, ArrayRef<Constant *> V,
484                            bool Packed = false) {
485     return get(getTypeForElements(Ctx, V, Packed), V);
486   }
487 
488   /// Return an anonymous struct type to use for a constant with the specified
489   /// set of elements. The list must not be empty.
490   static StructType *getTypeForElements(ArrayRef<Constant *> V,
491                                         bool Packed = false);
492   /// This version of the method allows an empty list.
493   static StructType *getTypeForElements(LLVMContext &Ctx,
494                                         ArrayRef<Constant *> V,
495                                         bool Packed = false);
496 
497   /// Specialization - reduce amount of casting.
498   inline StructType *getType() const {
499     return cast<StructType>(Value::getType());
500   }
501 
502   /// Methods for support type inquiry through isa, cast, and dyn_cast:
503   static bool classof(const Value *V) {
504     return V->getValueID() == ConstantStructVal;
505   }
506 };
507 
508 //===----------------------------------------------------------------------===//
509 /// Constant Vector Declarations
510 ///
511 class ConstantVector final : public ConstantAggregate {
512   friend struct ConstantAggrKeyType<ConstantVector>;
513   friend class Constant;
514 
515   ConstantVector(VectorType *T, ArrayRef<Constant *> Val, AllocInfo AllocInfo);
516 
517   void destroyConstantImpl();
518   Value *handleOperandChangeImpl(Value *From, Value *To);
519 
520 public:
521   // ConstantVector accessors
522   static Constant *get(ArrayRef<Constant *> V);
523 
524 private:
525   static Constant *getImpl(ArrayRef<Constant *> V);
526 
527 public:
528   /// Return a ConstantVector with the specified constant in each element.
529   /// Note that this might not return an instance of ConstantVector
530   static Constant *getSplat(ElementCount EC, Constant *Elt);
531 
532   /// Specialize the getType() method to always return a FixedVectorType,
533   /// which reduces the amount of casting needed in parts of the compiler.
534   inline FixedVectorType *getType() const {
535     return cast<FixedVectorType>(Value::getType());
536   }
537 
538   /// If all elements of the vector constant have the same value, return that
539   /// value. Otherwise, return nullptr. Ignore poison elements by setting
540   /// AllowPoison to true.
541   Constant *getSplatValue(bool AllowPoison = false) const;
542 
543   /// Methods for support type inquiry through isa, cast, and dyn_cast:
544   static bool classof(const Value *V) {
545     return V->getValueID() == ConstantVectorVal;
546   }
547 };
548 
549 //===----------------------------------------------------------------------===//
550 /// A constant pointer value that points to null
551 ///
552 class ConstantPointerNull final : public ConstantData {
553   friend class Constant;
554 
555   explicit ConstantPointerNull(PointerType *T)
556       : ConstantData(T, Value::ConstantPointerNullVal) {}
557 
558   void destroyConstantImpl();
559 
560 public:
561   ConstantPointerNull(const ConstantPointerNull &) = delete;
562 
563   /// Static factory methods - Return objects of the specified value
564   static ConstantPointerNull *get(PointerType *T);
565 
566   /// Specialize the getType() method to always return an PointerType,
567   /// which reduces the amount of casting needed in parts of the compiler.
568   inline PointerType *getType() const {
569     return cast<PointerType>(Value::getType());
570   }
571 
572   /// Methods for support type inquiry through isa, cast, and dyn_cast:
573   static bool classof(const Value *V) {
574     return V->getValueID() == ConstantPointerNullVal;
575   }
576 };
577 
578 //===----------------------------------------------------------------------===//
579 /// ConstantDataSequential - A vector or array constant whose element type is a
580 /// simple 1/2/4/8-byte integer or half/bfloat/float/double, and whose elements
581 /// are just simple data values (i.e. ConstantInt/ConstantFP).  This Constant
582 /// node has no operands because it stores all of the elements of the constant
583 /// as densely packed data, instead of as Value*'s.
584 ///
585 /// This is the common base class of ConstantDataArray and ConstantDataVector.
586 ///
587 class ConstantDataSequential : public ConstantData {
588   friend class LLVMContextImpl;
589   friend class Constant;
590 
591   /// A pointer to the bytes underlying this constant (which is owned by the
592   /// uniquing StringMap).
593   const char *DataElements;
594 
595   /// This forms a link list of ConstantDataSequential nodes that have
596   /// the same value but different type.  For example, 0,0,0,1 could be a 4
597   /// element array of i8, or a 1-element array of i32.  They'll both end up in
598   /// the same StringMap bucket, linked up.
599   std::unique_ptr<ConstantDataSequential> Next;
600 
601   void destroyConstantImpl();
602 
603 protected:
604   explicit ConstantDataSequential(Type *ty, ValueTy VT, const char *Data)
605       : ConstantData(ty, VT), DataElements(Data) {}
606 
607   static Constant *getImpl(StringRef Bytes, Type *Ty);
608 
609 public:
610   ConstantDataSequential(const ConstantDataSequential &) = delete;
611 
612   /// Return true if a ConstantDataSequential can be formed with a vector or
613   /// array of the specified element type.
614   /// ConstantDataArray only works with normal float and int types that are
615   /// stored densely in memory, not with things like i42 or x86_f80.
616   static bool isElementTypeCompatible(Type *Ty);
617 
618   /// If this is a sequential container of integers (of any size), return the
619   /// specified element in the low bits of a uint64_t.
620   uint64_t getElementAsInteger(unsigned i) const;
621 
622   /// If this is a sequential container of integers (of any size), return the
623   /// specified element as an APInt.
624   APInt getElementAsAPInt(unsigned i) const;
625 
626   /// If this is a sequential container of floating point type, return the
627   /// specified element as an APFloat.
628   APFloat getElementAsAPFloat(unsigned i) const;
629 
630   /// If this is an sequential container of floats, return the specified element
631   /// as a float.
632   float getElementAsFloat(unsigned i) const;
633 
634   /// If this is an sequential container of doubles, return the specified
635   /// element as a double.
636   double getElementAsDouble(unsigned i) const;
637 
638   /// Return a Constant for a specified index's element.
639   /// Note that this has to compute a new constant to return, so it isn't as
640   /// efficient as getElementAsInteger/Float/Double.
641   Constant *getElementAsConstant(unsigned i) const;
642 
643   /// Return the element type of the array/vector.
644   Type *getElementType() const;
645 
646   /// Return the number of elements in the array or vector.
647   unsigned getNumElements() const;
648 
649   /// Return the size (in bytes) of each element in the array/vector.
650   /// The size of the elements is known to be a multiple of one byte.
651   uint64_t getElementByteSize() const;
652 
653   /// This method returns true if this is an array of \p CharSize integers.
654   bool isString(unsigned CharSize = 8) const;
655 
656   /// This method returns true if the array "isString", ends with a null byte,
657   /// and does not contains any other null bytes.
658   bool isCString() const;
659 
660   /// If this array is isString(), then this method returns the array as a
661   /// StringRef. Otherwise, it asserts out.
662   StringRef getAsString() const {
663     assert(isString() && "Not a string");
664     return getRawDataValues();
665   }
666 
667   /// If this array is isCString(), then this method returns the array (without
668   /// the trailing null byte) as a StringRef. Otherwise, it asserts out.
669   StringRef getAsCString() const {
670     assert(isCString() && "Isn't a C string");
671     StringRef Str = getAsString();
672     return Str.substr(0, Str.size() - 1);
673   }
674 
675   /// Return the raw, underlying, bytes of this data. Note that this is an
676   /// extremely tricky thing to work with, as it exposes the host endianness of
677   /// the data elements.
678   StringRef getRawDataValues() const;
679 
680   /// Methods for support type inquiry through isa, cast, and dyn_cast:
681   static bool classof(const Value *V) {
682     return V->getValueID() == ConstantDataArrayVal ||
683            V->getValueID() == ConstantDataVectorVal;
684   }
685 
686 private:
687   const char *getElementPointer(unsigned Elt) const;
688 };
689 
690 //===----------------------------------------------------------------------===//
691 /// An array constant whose element type is a simple 1/2/4/8-byte integer or
692 /// float/double, and whose elements are just simple data values
693 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
694 /// stores all of the elements of the constant as densely packed data, instead
695 /// of as Value*'s.
696 class ConstantDataArray final : public ConstantDataSequential {
697   friend class ConstantDataSequential;
698 
699   explicit ConstantDataArray(Type *ty, const char *Data)
700       : ConstantDataSequential(ty, ConstantDataArrayVal, Data) {}
701 
702 public:
703   ConstantDataArray(const ConstantDataArray &) = delete;
704 
705   /// get() constructor - Return a constant with array type with an element
706   /// count and element type matching the ArrayRef passed in.  Note that this
707   /// can return a ConstantAggregateZero object.
708   template <typename ElementTy>
709   static Constant *get(LLVMContext &Context, ArrayRef<ElementTy> Elts) {
710     const char *Data = reinterpret_cast<const char *>(Elts.data());
711     return getRaw(StringRef(Data, Elts.size() * sizeof(ElementTy)), Elts.size(),
712                   Type::getScalarTy<ElementTy>(Context));
713   }
714 
715   /// get() constructor - ArrayTy needs to be compatible with
716   /// ArrayRef<ElementTy>. Calls get(LLVMContext, ArrayRef<ElementTy>).
717   template <typename ArrayTy>
718   static Constant *get(LLVMContext &Context, ArrayTy &Elts) {
719     return ConstantDataArray::get(Context, ArrayRef(Elts));
720   }
721 
722   /// getRaw() constructor - Return a constant with array type with an element
723   /// count and element type matching the NumElements and ElementTy parameters
724   /// passed in. Note that this can return a ConstantAggregateZero object.
725   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
726   /// the buffer containing the elements. Be careful to make sure Data uses the
727   /// right endianness, the buffer will be used as-is.
728   static Constant *getRaw(StringRef Data, uint64_t NumElements,
729                           Type *ElementTy) {
730     Type *Ty = ArrayType::get(ElementTy, NumElements);
731     return getImpl(Data, Ty);
732   }
733 
734   /// getFP() constructors - Return a constant of array type with a float
735   /// element type taken from argument `ElementType', and count taken from
736   /// argument `Elts'.  The amount of bits of the contained type must match the
737   /// number of bits of the type contained in the passed in ArrayRef.
738   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
739   /// that this can return a ConstantAggregateZero object.
740   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
741   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
742   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
743 
744   /// This method constructs a CDS and initializes it with a text string.
745   /// The default behavior (AddNull==true) causes a null terminator to
746   /// be placed at the end of the array (increasing the length of the string by
747   /// one more than the StringRef would normally indicate.  Pass AddNull=false
748   /// to disable this behavior.
749   static Constant *getString(LLVMContext &Context, StringRef Initializer,
750                              bool AddNull = true);
751 
752   /// Specialize the getType() method to always return an ArrayType,
753   /// which reduces the amount of casting needed in parts of the compiler.
754   inline ArrayType *getType() const {
755     return cast<ArrayType>(Value::getType());
756   }
757 
758   /// Methods for support type inquiry through isa, cast, and dyn_cast:
759   static bool classof(const Value *V) {
760     return V->getValueID() == ConstantDataArrayVal;
761   }
762 };
763 
764 //===----------------------------------------------------------------------===//
765 /// A vector constant whose element type is a simple 1/2/4/8-byte integer or
766 /// float/double, and whose elements are just simple data values
767 /// (i.e. ConstantInt/ConstantFP). This Constant node has no operands because it
768 /// stores all of the elements of the constant as densely packed data, instead
769 /// of as Value*'s.
770 class ConstantDataVector final : public ConstantDataSequential {
771   friend class ConstantDataSequential;
772 
773   explicit ConstantDataVector(Type *ty, const char *Data)
774       : ConstantDataSequential(ty, ConstantDataVectorVal, Data),
775         IsSplatSet(false) {}
776   // Cache whether or not the constant is a splat.
777   mutable bool IsSplatSet : 1;
778   mutable bool IsSplat : 1;
779   bool isSplatData() const;
780 
781 public:
782   ConstantDataVector(const ConstantDataVector &) = delete;
783 
784   /// get() constructors - Return a constant with vector type with an element
785   /// count and element type matching the ArrayRef passed in.  Note that this
786   /// can return a ConstantAggregateZero object.
787   static Constant *get(LLVMContext &Context, ArrayRef<uint8_t> Elts);
788   static Constant *get(LLVMContext &Context, ArrayRef<uint16_t> Elts);
789   static Constant *get(LLVMContext &Context, ArrayRef<uint32_t> Elts);
790   static Constant *get(LLVMContext &Context, ArrayRef<uint64_t> Elts);
791   static Constant *get(LLVMContext &Context, ArrayRef<float> Elts);
792   static Constant *get(LLVMContext &Context, ArrayRef<double> Elts);
793 
794   /// getRaw() constructor - Return a constant with vector type with an element
795   /// count and element type matching the NumElements and ElementTy parameters
796   /// passed in. Note that this can return a ConstantAggregateZero object.
797   /// ElementTy must be one of i8/i16/i32/i64/half/bfloat/float/double. Data is
798   /// the buffer containing the elements. Be careful to make sure Data uses the
799   /// right endianness, the buffer will be used as-is.
800   static Constant *getRaw(StringRef Data, uint64_t NumElements,
801                           Type *ElementTy) {
802     Type *Ty = VectorType::get(ElementTy, ElementCount::getFixed(NumElements));
803     return getImpl(Data, Ty);
804   }
805 
806   /// getFP() constructors - Return a constant of vector type with a float
807   /// element type taken from argument `ElementType', and count taken from
808   /// argument `Elts'.  The amount of bits of the contained type must match the
809   /// number of bits of the type contained in the passed in ArrayRef.
810   /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
811   /// that this can return a ConstantAggregateZero object.
812   static Constant *getFP(Type *ElementType, ArrayRef<uint16_t> Elts);
813   static Constant *getFP(Type *ElementType, ArrayRef<uint32_t> Elts);
814   static Constant *getFP(Type *ElementType, ArrayRef<uint64_t> Elts);
815 
816   /// Return a ConstantVector with the specified constant in each element.
817   /// The specified constant has to be a of a compatible type (i8/i16/
818   /// i32/i64/half/bfloat/float/double) and must be a ConstantFP or ConstantInt.
819   static Constant *getSplat(unsigned NumElts, Constant *Elt);
820 
821   /// Returns true if this is a splat constant, meaning that all elements have
822   /// the same value.
823   bool isSplat() const;
824 
825   /// If this is a splat constant, meaning that all of the elements have the
826   /// same value, return that value. Otherwise return NULL.
827   Constant *getSplatValue() const;
828 
829   /// Specialize the getType() method to always return a FixedVectorType,
830   /// which reduces the amount of casting needed in parts of the compiler.
831   inline FixedVectorType *getType() const {
832     return cast<FixedVectorType>(Value::getType());
833   }
834 
835   /// Methods for support type inquiry through isa, cast, and dyn_cast:
836   static bool classof(const Value *V) {
837     return V->getValueID() == ConstantDataVectorVal;
838   }
839 };
840 
841 //===----------------------------------------------------------------------===//
842 /// A constant token which is empty
843 ///
844 class ConstantTokenNone final : public ConstantData {
845   friend class Constant;
846 
847   explicit ConstantTokenNone(LLVMContext &Context)
848       : ConstantData(Type::getTokenTy(Context), ConstantTokenNoneVal) {}
849 
850   void destroyConstantImpl();
851 
852 public:
853   ConstantTokenNone(const ConstantTokenNone &) = delete;
854 
855   /// Return the ConstantTokenNone.
856   static ConstantTokenNone *get(LLVMContext &Context);
857 
858   /// Methods to support type inquiry through isa, cast, and dyn_cast.
859   static bool classof(const Value *V) {
860     return V->getValueID() == ConstantTokenNoneVal;
861   }
862 };
863 
864 /// A constant target extension type default initializer
865 class ConstantTargetNone final : public ConstantData {
866   friend class Constant;
867 
868   explicit ConstantTargetNone(TargetExtType *T)
869       : ConstantData(T, Value::ConstantTargetNoneVal) {}
870 
871   void destroyConstantImpl();
872 
873 public:
874   ConstantTargetNone(const ConstantTargetNone &) = delete;
875 
876   /// Static factory methods - Return objects of the specified value.
877   static ConstantTargetNone *get(TargetExtType *T);
878 
879   /// Specialize the getType() method to always return an TargetExtType,
880   /// which reduces the amount of casting needed in parts of the compiler.
881   inline TargetExtType *getType() const {
882     return cast<TargetExtType>(Value::getType());
883   }
884 
885   /// Methods for support type inquiry through isa, cast, and dyn_cast.
886   static bool classof(const Value *V) {
887     return V->getValueID() == ConstantTargetNoneVal;
888   }
889 };
890 
891 /// The address of a basic block.
892 ///
893 class BlockAddress final : public Constant {
894   friend class Constant;
895 
896   constexpr static IntrusiveOperandsAllocMarker AllocMarker{2};
897 
898   BlockAddress(Function *F, BasicBlock *BB);
899 
900   void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
901 
902   void destroyConstantImpl();
903   Value *handleOperandChangeImpl(Value *From, Value *To);
904 
905 public:
906   void operator delete(void *Ptr) { User::operator delete(Ptr); }
907 
908   /// Return a BlockAddress for the specified function and basic block.
909   static BlockAddress *get(Function *F, BasicBlock *BB);
910 
911   /// Return a BlockAddress for the specified basic block.  The basic
912   /// block must be embedded into a function.
913   static BlockAddress *get(BasicBlock *BB);
914 
915   /// Lookup an existing \c BlockAddress constant for the given BasicBlock.
916   ///
917   /// \returns 0 if \c !BB->hasAddressTaken(), otherwise the \c BlockAddress.
918   static BlockAddress *lookup(const BasicBlock *BB);
919 
920   /// Transparently provide more efficient getOperand methods.
921   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
922 
923   Function *getFunction() const { return (Function *)Op<0>().get(); }
924   BasicBlock *getBasicBlock() const { return (BasicBlock *)Op<1>().get(); }
925 
926   /// Methods for support type inquiry through isa, cast, and dyn_cast:
927   static bool classof(const Value *V) {
928     return V->getValueID() == BlockAddressVal;
929   }
930 };
931 
932 template <>
933 struct OperandTraits<BlockAddress>
934     : public FixedNumOperandTraits<BlockAddress, 2> {};
935 
936 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BlockAddress, Value)
937 
938 /// Wrapper for a function that represents a value that
939 /// functionally represents the original function. This can be a function,
940 /// global alias to a function, or an ifunc.
941 class DSOLocalEquivalent final : public Constant {
942   friend class Constant;
943 
944   constexpr static IntrusiveOperandsAllocMarker AllocMarker{1};
945 
946   DSOLocalEquivalent(GlobalValue *GV);
947 
948   void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
949 
950   void destroyConstantImpl();
951   Value *handleOperandChangeImpl(Value *From, Value *To);
952 
953 public:
954   void operator delete(void *Ptr) { User::operator delete(Ptr); }
955 
956   /// Return a DSOLocalEquivalent for the specified global value.
957   static DSOLocalEquivalent *get(GlobalValue *GV);
958 
959   /// Transparently provide more efficient getOperand methods.
960   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
961 
962   GlobalValue *getGlobalValue() const {
963     return cast<GlobalValue>(Op<0>().get());
964   }
965 
966   /// Methods for support type inquiry through isa, cast, and dyn_cast:
967   static bool classof(const Value *V) {
968     return V->getValueID() == DSOLocalEquivalentVal;
969   }
970 };
971 
972 template <>
973 struct OperandTraits<DSOLocalEquivalent>
974     : public FixedNumOperandTraits<DSOLocalEquivalent, 1> {};
975 
976 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(DSOLocalEquivalent, Value)
977 
978 /// Wrapper for a value that won't be replaced with a CFI jump table
979 /// pointer in LowerTypeTestsModule.
980 class NoCFIValue final : public Constant {
981   friend class Constant;
982 
983   constexpr static IntrusiveOperandsAllocMarker AllocMarker{1};
984 
985   NoCFIValue(GlobalValue *GV);
986 
987   void *operator new(size_t S) { return User::operator new(S, AllocMarker); }
988 
989   void destroyConstantImpl();
990   Value *handleOperandChangeImpl(Value *From, Value *To);
991 
992 public:
993   /// Return a NoCFIValue for the specified function.
994   static NoCFIValue *get(GlobalValue *GV);
995 
996   /// Transparently provide more efficient getOperand methods.
997   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
998 
999   GlobalValue *getGlobalValue() const {
1000     return cast<GlobalValue>(Op<0>().get());
1001   }
1002 
1003   /// NoCFIValue is always a pointer.
1004   PointerType *getType() const {
1005     return cast<PointerType>(Value::getType());
1006   }
1007 
1008   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1009   static bool classof(const Value *V) {
1010     return V->getValueID() == NoCFIValueVal;
1011   }
1012 };
1013 
1014 template <>
1015 struct OperandTraits<NoCFIValue> : public FixedNumOperandTraits<NoCFIValue, 1> {
1016 };
1017 
1018 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(NoCFIValue, Value)
1019 
1020 /// A signed pointer, in the ptrauth sense.
1021 class ConstantPtrAuth final : public Constant {
1022   friend struct ConstantPtrAuthKeyType;
1023   friend class Constant;
1024 
1025   constexpr static IntrusiveOperandsAllocMarker AllocMarker{4};
1026 
1027   ConstantPtrAuth(Constant *Ptr, ConstantInt *Key, ConstantInt *Disc,
1028                   Constant *AddrDisc);
1029 
1030   void *operator new(size_t s) { return User::operator new(s, AllocMarker); }
1031 
1032   void destroyConstantImpl();
1033   Value *handleOperandChangeImpl(Value *From, Value *To);
1034 
1035 public:
1036   /// Return a pointer signed with the specified parameters.
1037   static ConstantPtrAuth *get(Constant *Ptr, ConstantInt *Key,
1038                               ConstantInt *Disc, Constant *AddrDisc);
1039 
1040   /// Produce a new ptrauth expression signing the given value using
1041   /// the same schema as is stored in one.
1042   ConstantPtrAuth *getWithSameSchema(Constant *Pointer) const;
1043 
1044   /// Transparently provide more efficient getOperand methods.
1045   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1046 
1047   /// The pointer that is signed in this ptrauth signed pointer.
1048   Constant *getPointer() const { return cast<Constant>(Op<0>().get()); }
1049 
1050   /// The Key ID, an i32 constant.
1051   ConstantInt *getKey() const { return cast<ConstantInt>(Op<1>().get()); }
1052 
1053   /// The integer discriminator, an i64 constant, or 0.
1054   ConstantInt *getDiscriminator() const {
1055     return cast<ConstantInt>(Op<2>().get());
1056   }
1057 
1058   /// The address discriminator if any, or the null constant.
1059   /// If present, this must be a value equivalent to the storage location of
1060   /// the only global-initializer user of the ptrauth signed pointer.
1061   Constant *getAddrDiscriminator() const {
1062     return cast<Constant>(Op<3>().get());
1063   }
1064 
1065   /// Whether there is any non-null address discriminator.
1066   bool hasAddressDiscriminator() const {
1067     return !getAddrDiscriminator()->isNullValue();
1068   }
1069 
1070   /// A constant value for the address discriminator which has special
1071   /// significance to ctors/dtors lowering. Regular address discrimination can't
1072   /// be applied for them since uses of llvm.global_{c|d}tors are disallowed
1073   /// (see Verifier::visitGlobalVariable) and we can't emit getelementptr
1074   /// expressions referencing these special arrays.
1075   enum { AddrDiscriminator_CtorsDtors = 1 };
1076 
1077   /// Whether the address uses a special address discriminator.
1078   /// These discriminators can't be used in real pointer-auth values; they
1079   /// can only be used in "prototype" values that indicate how some real
1080   /// schema is supposed to be produced.
1081   bool hasSpecialAddressDiscriminator(uint64_t Value) const;
1082 
1083   /// Check whether an authentication operation with key \p Key and (possibly
1084   /// blended) discriminator \p Discriminator is known to be compatible with
1085   /// this ptrauth signed pointer.
1086   bool isKnownCompatibleWith(const Value *Key, const Value *Discriminator,
1087                              const DataLayout &DL) const;
1088 
1089   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1090   static bool classof(const Value *V) {
1091     return V->getValueID() == ConstantPtrAuthVal;
1092   }
1093 };
1094 
1095 template <>
1096 struct OperandTraits<ConstantPtrAuth>
1097     : public FixedNumOperandTraits<ConstantPtrAuth, 4> {};
1098 
1099 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPtrAuth, Constant)
1100 
1101 //===----------------------------------------------------------------------===//
1102 /// A constant value that is initialized with an expression using
1103 /// other constant values.
1104 ///
1105 /// This class uses the standard Instruction opcodes to define the various
1106 /// constant expressions.  The Opcode field for the ConstantExpr class is
1107 /// maintained in the Value::SubclassData field.
1108 class ConstantExpr : public Constant {
1109   friend struct ConstantExprKeyType;
1110   friend class Constant;
1111 
1112   void destroyConstantImpl();
1113   Value *handleOperandChangeImpl(Value *From, Value *To);
1114 
1115 protected:
1116   ConstantExpr(Type *ty, unsigned Opcode, AllocInfo AllocInfo)
1117       : Constant(ty, ConstantExprVal, AllocInfo) {
1118     // Operation type (an Instruction opcode) is stored as the SubclassData.
1119     setValueSubclassData(Opcode);
1120   }
1121 
1122   ~ConstantExpr() = default;
1123 
1124 public:
1125   // Static methods to construct a ConstantExpr of different kinds.  Note that
1126   // these methods may return a object that is not an instance of the
1127   // ConstantExpr class, because they will attempt to fold the constant
1128   // expression into something simpler if possible.
1129 
1130   /// getAlignOf constant expr - computes the alignment of a type in a target
1131   /// independent way (Note: the return type is an i64).
1132   static Constant *getAlignOf(Type *Ty);
1133 
1134   /// getSizeOf constant expr - computes the (alloc) size of a type (in
1135   /// address-units, not bits) in a target independent way (Note: the return
1136   /// type is an i64).
1137   ///
1138   static Constant *getSizeOf(Type *Ty);
1139 
1140   static Constant *getNeg(Constant *C, bool HasNSW = false);
1141   static Constant *getNot(Constant *C);
1142   static Constant *getAdd(Constant *C1, Constant *C2, bool HasNUW = false,
1143                           bool HasNSW = false);
1144   static Constant *getSub(Constant *C1, Constant *C2, bool HasNUW = false,
1145                           bool HasNSW = false);
1146   static Constant *getMul(Constant *C1, Constant *C2, bool HasNUW = false,
1147                           bool HasNSW = false);
1148   static Constant *getXor(Constant *C1, Constant *C2);
1149   static Constant *getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced = false);
1150   static Constant *getPtrToInt(Constant *C, Type *Ty,
1151                                bool OnlyIfReduced = false);
1152   static Constant *getIntToPtr(Constant *C, Type *Ty,
1153                                bool OnlyIfReduced = false);
1154   static Constant *getBitCast(Constant *C, Type *Ty,
1155                               bool OnlyIfReduced = false);
1156   static Constant *getAddrSpaceCast(Constant *C, Type *Ty,
1157                                     bool OnlyIfReduced = false);
1158 
1159   static Constant *getNSWNeg(Constant *C) { return getNeg(C, /*HasNSW=*/true); }
1160 
1161   static Constant *getNSWAdd(Constant *C1, Constant *C2) {
1162     return getAdd(C1, C2, false, true);
1163   }
1164 
1165   static Constant *getNUWAdd(Constant *C1, Constant *C2) {
1166     return getAdd(C1, C2, true, false);
1167   }
1168 
1169   static Constant *getNSWSub(Constant *C1, Constant *C2) {
1170     return getSub(C1, C2, false, true);
1171   }
1172 
1173   static Constant *getNUWSub(Constant *C1, Constant *C2) {
1174     return getSub(C1, C2, true, false);
1175   }
1176 
1177   static Constant *getNSWMul(Constant *C1, Constant *C2) {
1178     return getMul(C1, C2, false, true);
1179   }
1180 
1181   static Constant *getNUWMul(Constant *C1, Constant *C2) {
1182     return getMul(C1, C2, true, false);
1183   }
1184 
1185   /// If C is a scalar/fixed width vector of known powers of 2, then this
1186   /// function returns a new scalar/fixed width vector obtained from logBase2
1187   /// of C. Undef vector elements are set to zero.
1188   /// Return a null pointer otherwise.
1189   static Constant *getExactLogBase2(Constant *C);
1190 
1191   /// Return the identity constant for a binary opcode.
1192   /// If the binop is not commutative, callers can acquire the operand 1
1193   /// identity constant by setting AllowRHSConstant to true. For example, any
1194   /// shift has a zero identity constant for operand 1: X shift 0 = X. If this
1195   /// is a fadd/fsub operation and we don't care about signed zeros, then
1196   /// setting NSZ to true returns the identity +0.0 instead of -0.0. Return
1197   /// nullptr if the operator does not have an identity constant.
1198   static Constant *getBinOpIdentity(unsigned Opcode, Type *Ty,
1199                                     bool AllowRHSConstant = false,
1200                                     bool NSZ = false);
1201 
1202   static Constant *getIntrinsicIdentity(Intrinsic::ID, Type *Ty);
1203 
1204   /// Return the identity constant for a binary or intrinsic Instruction.
1205   /// The identity constant C is defined as X op C = X and C op X = X where C
1206   /// and X are the first two operands, and the operation is commutative.
1207   static Constant *getIdentity(Instruction *I, Type *Ty,
1208                                bool AllowRHSConstant = false, bool NSZ = false);
1209 
1210   /// Return the absorbing element for the given binary
1211   /// operation, i.e. a constant C such that X op C = C and C op X = C for
1212   /// every X.  For example, this returns zero for integer multiplication.
1213   /// If AllowLHSConstant is true, the LHS operand is a constant C that must be
1214   /// defined as C op X = C. It returns null if the operator doesn't have
1215   /// an absorbing element.
1216   static Constant *getBinOpAbsorber(unsigned Opcode, Type *Ty,
1217                                     bool AllowLHSConstant = false);
1218 
1219   /// Transparently provide more efficient getOperand methods.
1220   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Constant);
1221 
1222   /// Convenience function for getting a Cast operation.
1223   ///
1224   /// \param ops The opcode for the conversion
1225   /// \param C  The constant to be converted
1226   /// \param Ty The type to which the constant is converted
1227   /// \param OnlyIfReduced see \a getWithOperands() docs.
1228   static Constant *getCast(unsigned ops, Constant *C, Type *Ty,
1229                            bool OnlyIfReduced = false);
1230 
1231   // Create a Trunc or BitCast cast constant expression
1232   static Constant *
1233   getTruncOrBitCast(Constant *C, ///< The constant to trunc or bitcast
1234                     Type *Ty     ///< The type to trunc or bitcast C to
1235   );
1236 
1237   /// Create a BitCast, AddrSpaceCast, or a PtrToInt cast constant
1238   /// expression.
1239   static Constant *
1240   getPointerCast(Constant *C, ///< The pointer value to be casted (operand 0)
1241                  Type *Ty     ///< The type to which cast should be made
1242   );
1243 
1244   /// Create a BitCast or AddrSpaceCast for a pointer type depending on
1245   /// the address space.
1246   static Constant *getPointerBitCastOrAddrSpaceCast(
1247       Constant *C, ///< The constant to addrspacecast or bitcast
1248       Type *Ty     ///< The type to bitcast or addrspacecast C to
1249   );
1250 
1251   /// Return true if this is a convert constant expression
1252   bool isCast() const;
1253 
1254   /// get - Return a binary or shift operator constant expression,
1255   /// folding if possible.
1256   ///
1257   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1258   static Constant *get(unsigned Opcode, Constant *C1, Constant *C2,
1259                        unsigned Flags = 0, Type *OnlyIfReducedTy = nullptr);
1260 
1261   /// Getelementptr form.  Value* is only accepted for convenience;
1262   /// all elements must be Constants.
1263   ///
1264   /// \param InRange the inrange range if present or std::nullopt.
1265   /// \param OnlyIfReducedTy see \a getWithOperands() docs.
1266   static Constant *
1267   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Constant *> IdxList,
1268                    GEPNoWrapFlags NW = GEPNoWrapFlags::none(),
1269                    std::optional<ConstantRange> InRange = std::nullopt,
1270                    Type *OnlyIfReducedTy = nullptr) {
1271     return getGetElementPtr(
1272         Ty, C, ArrayRef((Value *const *)IdxList.data(), IdxList.size()), NW,
1273         InRange, OnlyIfReducedTy);
1274   }
1275   static Constant *
1276   getGetElementPtr(Type *Ty, Constant *C, Constant *Idx,
1277                    GEPNoWrapFlags NW = GEPNoWrapFlags::none(),
1278                    std::optional<ConstantRange> InRange = std::nullopt,
1279                    Type *OnlyIfReducedTy = nullptr) {
1280     // This form of the function only exists to avoid ambiguous overload
1281     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1282     // ArrayRef<Value *>.
1283     return getGetElementPtr(Ty, C, cast<Value>(Idx), NW, InRange,
1284                             OnlyIfReducedTy);
1285   }
1286   static Constant *
1287   getGetElementPtr(Type *Ty, Constant *C, ArrayRef<Value *> IdxList,
1288                    GEPNoWrapFlags NW = GEPNoWrapFlags::none(),
1289                    std::optional<ConstantRange> InRange = std::nullopt,
1290                    Type *OnlyIfReducedTy = nullptr);
1291 
1292   /// Create an "inbounds" getelementptr. See the documentation for the
1293   /// "inbounds" flag in LangRef.html for details.
1294   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1295                                             ArrayRef<Constant *> IdxList) {
1296     return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds());
1297   }
1298   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1299                                             Constant *Idx) {
1300     // This form of the function only exists to avoid ambiguous overload
1301     // warnings about whether to convert Idx to ArrayRef<Constant *> or
1302     // ArrayRef<Value *>.
1303     return getGetElementPtr(Ty, C, Idx, GEPNoWrapFlags::inBounds());
1304   }
1305   static Constant *getInBoundsGetElementPtr(Type *Ty, Constant *C,
1306                                             ArrayRef<Value *> IdxList) {
1307     return getGetElementPtr(Ty, C, IdxList, GEPNoWrapFlags::inBounds());
1308   }
1309 
1310   static Constant *getExtractElement(Constant *Vec, Constant *Idx,
1311                                      Type *OnlyIfReducedTy = nullptr);
1312   static Constant *getInsertElement(Constant *Vec, Constant *Elt, Constant *Idx,
1313                                     Type *OnlyIfReducedTy = nullptr);
1314   static Constant *getShuffleVector(Constant *V1, Constant *V2,
1315                                     ArrayRef<int> Mask,
1316                                     Type *OnlyIfReducedTy = nullptr);
1317 
1318   /// Return the opcode at the root of this constant expression
1319   unsigned getOpcode() const { return getSubclassDataFromValue(); }
1320 
1321   /// Assert that this is a shufflevector and return the mask. See class
1322   /// ShuffleVectorInst for a description of the mask representation.
1323   ArrayRef<int> getShuffleMask() const;
1324 
1325   /// Assert that this is a shufflevector and return the mask.
1326   ///
1327   /// TODO: This is a temporary hack until we update the bitcode format for
1328   /// shufflevector.
1329   Constant *getShuffleMaskForBitcode() const;
1330 
1331   /// Return a string representation for an opcode.
1332   const char *getOpcodeName() const;
1333 
1334   /// This returns the current constant expression with the operands replaced
1335   /// with the specified values. The specified array must have the same number
1336   /// of operands as our current one.
1337   Constant *getWithOperands(ArrayRef<Constant *> Ops) const {
1338     return getWithOperands(Ops, getType());
1339   }
1340 
1341   /// Get the current expression with the operands replaced.
1342   ///
1343   /// Return the current constant expression with the operands replaced with \c
1344   /// Ops and the type with \c Ty.  The new operands must have the same number
1345   /// as the current ones.
1346   ///
1347   /// If \c OnlyIfReduced is \c true, nullptr will be returned unless something
1348   /// gets constant-folded, the type changes, or the expression is otherwise
1349   /// canonicalized.  This parameter should almost always be \c false.
1350   Constant *getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1351                             bool OnlyIfReduced = false,
1352                             Type *SrcTy = nullptr) const;
1353 
1354   /// Returns an Instruction which implements the same operation as this
1355   /// ConstantExpr. It is not inserted into any basic block.
1356   ///
1357   /// A better approach to this could be to have a constructor for Instruction
1358   /// which would take a ConstantExpr parameter, but that would have spread
1359   /// implementation details of ConstantExpr outside of Constants.cpp, which
1360   /// would make it harder to remove ConstantExprs altogether.
1361   Instruction *getAsInstruction() const;
1362 
1363   /// Whether creating a constant expression for this binary operator is
1364   /// desirable.
1365   static bool isDesirableBinOp(unsigned Opcode);
1366 
1367   /// Whether creating a constant expression for this binary operator is
1368   /// supported.
1369   static bool isSupportedBinOp(unsigned Opcode);
1370 
1371   /// Whether creating a constant expression for this cast is desirable.
1372   static bool isDesirableCastOp(unsigned Opcode);
1373 
1374   /// Whether creating a constant expression for this cast is supported.
1375   static bool isSupportedCastOp(unsigned Opcode);
1376 
1377   /// Whether creating a constant expression for this getelementptr type is
1378   /// supported.
1379   static bool isSupportedGetElementPtr(const Type *SrcElemTy) {
1380     return !SrcElemTy->isScalableTy();
1381   }
1382 
1383   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1384   static bool classof(const Value *V) {
1385     return V->getValueID() == ConstantExprVal;
1386   }
1387 
1388 private:
1389   // Shadow Value::setValueSubclassData with a private forwarding method so that
1390   // subclasses cannot accidentally use it.
1391   void setValueSubclassData(unsigned short D) {
1392     Value::setValueSubclassData(D);
1393   }
1394 };
1395 
1396 template <>
1397 struct OperandTraits<ConstantExpr>
1398     : public VariadicOperandTraits<ConstantExpr> {};
1399 
1400 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantExpr, Constant)
1401 
1402 //===----------------------------------------------------------------------===//
1403 /// 'undef' values are things that do not have specified contents.
1404 /// These are used for a variety of purposes, including global variable
1405 /// initializers and operands to instructions.  'undef' values can occur with
1406 /// any first-class type.
1407 ///
1408 /// Undef values aren't exactly constants; if they have multiple uses, they
1409 /// can appear to have different bit patterns at each use. See
1410 /// LangRef.html#undefvalues for details.
1411 ///
1412 class UndefValue : public ConstantData {
1413   friend class Constant;
1414 
1415   explicit UndefValue(Type *T) : ConstantData(T, UndefValueVal) {}
1416 
1417   void destroyConstantImpl();
1418 
1419 protected:
1420   explicit UndefValue(Type *T, ValueTy vty) : ConstantData(T, vty) {}
1421 
1422 public:
1423   UndefValue(const UndefValue &) = delete;
1424 
1425   /// Static factory methods - Return an 'undef' object of the specified type.
1426   static UndefValue *get(Type *T);
1427 
1428   /// If this Undef has array or vector type, return a undef with the right
1429   /// element type.
1430   UndefValue *getSequentialElement() const;
1431 
1432   /// If this undef has struct type, return a undef with the right element type
1433   /// for the specified element.
1434   UndefValue *getStructElement(unsigned Elt) const;
1435 
1436   /// Return an undef of the right value for the specified GEP index if we can,
1437   /// otherwise return null (e.g. if C is a ConstantExpr).
1438   UndefValue *getElementValue(Constant *C) const;
1439 
1440   /// Return an undef of the right value for the specified GEP index.
1441   UndefValue *getElementValue(unsigned Idx) const;
1442 
1443   /// Return the number of elements in the array, vector, or struct.
1444   unsigned getNumElements() const;
1445 
1446   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1447   static bool classof(const Value *V) {
1448     return V->getValueID() == UndefValueVal ||
1449            V->getValueID() == PoisonValueVal;
1450   }
1451 };
1452 
1453 //===----------------------------------------------------------------------===//
1454 /// In order to facilitate speculative execution, many instructions do not
1455 /// invoke immediate undefined behavior when provided with illegal operands,
1456 /// and return a poison value instead.
1457 ///
1458 /// see LangRef.html#poisonvalues for details.
1459 ///
1460 class PoisonValue final : public UndefValue {
1461   friend class Constant;
1462 
1463   explicit PoisonValue(Type *T) : UndefValue(T, PoisonValueVal) {}
1464 
1465   void destroyConstantImpl();
1466 
1467 public:
1468   PoisonValue(const PoisonValue &) = delete;
1469 
1470   /// Static factory methods - Return an 'poison' object of the specified type.
1471   static PoisonValue *get(Type *T);
1472 
1473   /// If this poison has array or vector type, return a poison with the right
1474   /// element type.
1475   PoisonValue *getSequentialElement() const;
1476 
1477   /// If this poison has struct type, return a poison with the right element
1478   /// type for the specified element.
1479   PoisonValue *getStructElement(unsigned Elt) const;
1480 
1481   /// Return an poison of the right value for the specified GEP index if we can,
1482   /// otherwise return null (e.g. if C is a ConstantExpr).
1483   PoisonValue *getElementValue(Constant *C) const;
1484 
1485   /// Return an poison of the right value for the specified GEP index.
1486   PoisonValue *getElementValue(unsigned Idx) const;
1487 
1488   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1489   static bool classof(const Value *V) {
1490     return V->getValueID() == PoisonValueVal;
1491   }
1492 };
1493 
1494 } // end namespace llvm
1495 
1496 #endif // LLVM_IR_CONSTANTS_H
1497