xref: /llvm-project/llvm/include/llvm/CodeGen/MachineFunction.h (revision de209fa11b5455155228bcdba012b6074388b917)
1 //===- llvm/CodeGen/MachineFunction.h ---------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code for a function.  This class contains a list of
10 // MachineBasicBlock instances that make up the current compiled function.
11 //
12 // This class also contains pointers to various classes which hold
13 // target-specific information about the generated code.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_CODEGEN_MACHINEFUNCTION_H
18 #define LLVM_CODEGEN_MACHINEFUNCTION_H
19 
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/GraphTraits.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/ilist.h"
25 #include "llvm/ADT/iterator.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/IR/EHPersonalities.h"
30 #include "llvm/Support/Allocator.h"
31 #include "llvm/Support/ArrayRecycler.h"
32 #include "llvm/Support/AtomicOrdering.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/Recycler.h"
35 #include "llvm/Target/TargetOptions.h"
36 #include <bitset>
37 #include <cassert>
38 #include <cstdint>
39 #include <memory>
40 #include <utility>
41 #include <variant>
42 #include <vector>
43 
44 namespace llvm {
45 
46 class BasicBlock;
47 class BlockAddress;
48 class DataLayout;
49 class DebugLoc;
50 struct DenormalMode;
51 class DIExpression;
52 class DILocalVariable;
53 class DILocation;
54 class Function;
55 class GISelChangeObserver;
56 class GlobalValue;
57 class TargetMachine;
58 class MachineConstantPool;
59 class MachineFrameInfo;
60 class MachineFunction;
61 class MachineJumpTableInfo;
62 class MachineRegisterInfo;
63 class MCContext;
64 class MCInstrDesc;
65 class MCSymbol;
66 class MCSection;
67 class Pass;
68 class PseudoSourceValueManager;
69 class raw_ostream;
70 class SlotIndexes;
71 class StringRef;
72 class TargetRegisterClass;
73 class TargetSubtargetInfo;
74 struct WasmEHFuncInfo;
75 struct WinEHFuncInfo;
76 
77 template <> struct ilist_alloc_traits<MachineBasicBlock> {
78   void deleteNode(MachineBasicBlock *MBB);
79 };
80 
81 template <> struct ilist_callback_traits<MachineBasicBlock> {
82   void addNodeToList(MachineBasicBlock* N);
83   void removeNodeFromList(MachineBasicBlock* N);
84 
85   template <class Iterator>
86   void transferNodesFromList(ilist_callback_traits &OldList, Iterator, Iterator) {
87     assert(this == &OldList && "never transfer MBBs between functions");
88   }
89 };
90 
91 // The hotness of static data tracked by a MachineFunction and not represented
92 // as a global object in the module IR / MIR. Typical examples are
93 // MachineJumpTableInfo and MachineConstantPool.
94 enum class MachineFunctionDataHotness {
95   Unknown,
96   Cold,
97   Hot,
98 };
99 
100 /// MachineFunctionInfo - This class can be derived from and used by targets to
101 /// hold private target-specific information for each MachineFunction.  Objects
102 /// of type are accessed/created with MF::getInfo and destroyed when the
103 /// MachineFunction is destroyed.
104 struct MachineFunctionInfo {
105   virtual ~MachineFunctionInfo();
106 
107   /// Factory function: default behavior is to call new using the
108   /// supplied allocator.
109   ///
110   /// This function can be overridden in a derive class.
111   template <typename FuncInfoTy, typename SubtargetTy = TargetSubtargetInfo>
112   static FuncInfoTy *create(BumpPtrAllocator &Allocator, const Function &F,
113                             const SubtargetTy *STI) {
114     return new (Allocator.Allocate<FuncInfoTy>()) FuncInfoTy(F, STI);
115   }
116 
117   template <typename Ty>
118   static Ty *create(BumpPtrAllocator &Allocator, const Ty &MFI) {
119     return new (Allocator.Allocate<Ty>()) Ty(MFI);
120   }
121 
122   /// Make a functionally equivalent copy of this MachineFunctionInfo in \p MF.
123   /// This requires remapping MachineBasicBlock references from the original
124   /// parent to values in the new function. Targets may assume that virtual
125   /// register and frame index values are preserved in the new function.
126   virtual MachineFunctionInfo *
127   clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF,
128         const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
129       const {
130     return nullptr;
131   }
132 };
133 
134 /// Properties which a MachineFunction may have at a given point in time.
135 /// Each of these has checking code in the MachineVerifier, and passes can
136 /// require that a property be set.
137 class MachineFunctionProperties {
138   // Possible TODO: Allow targets to extend this (perhaps by allowing the
139   // constructor to specify the size of the bit vector)
140   // Possible TODO: Allow requiring the negative (e.g. VRegsAllocated could be
141   // stated as the negative of "has vregs"
142 
143 public:
144   // The properties are stated in "positive" form; i.e. a pass could require
145   // that the property hold, but not that it does not hold.
146 
147   // Property descriptions:
148   // IsSSA: True when the machine function is in SSA form and virtual registers
149   //  have a single def.
150   // NoPHIs: The machine function does not contain any PHI instruction.
151   // TracksLiveness: True when tracking register liveness accurately.
152   //  While this property is set, register liveness information in basic block
153   //  live-in lists and machine instruction operands (e.g. implicit defs) is
154   //  accurate, kill flags are conservatively accurate (kill flag correctly
155   //  indicates the last use of a register, an operand without kill flag may or
156   //  may not be the last use of a register). This means it can be used to
157   //  change the code in ways that affect the values in registers, for example
158   //  by the register scavenger.
159   //  When this property is cleared at a very late time, liveness is no longer
160   //  reliable.
161   // NoVRegs: The machine function does not use any virtual registers.
162   // Legalized: In GlobalISel: the MachineLegalizer ran and all pre-isel generic
163   //  instructions have been legalized; i.e., all instructions are now one of:
164   //   - generic and always legal (e.g., COPY)
165   //   - target-specific
166   //   - legal pre-isel generic instructions.
167   // RegBankSelected: In GlobalISel: the RegBankSelect pass ran and all generic
168   //  virtual registers have been assigned to a register bank.
169   // Selected: In GlobalISel: the InstructionSelect pass ran and all pre-isel
170   //  generic instructions have been eliminated; i.e., all instructions are now
171   //  target-specific or non-pre-isel generic instructions (e.g., COPY).
172   //  Since only pre-isel generic instructions can have generic virtual register
173   //  operands, this also means that all generic virtual registers have been
174   //  constrained to virtual registers (assigned to register classes) and that
175   //  all sizes attached to them have been eliminated.
176   // TiedOpsRewritten: The twoaddressinstruction pass will set this flag, it
177   //  means that tied-def have been rewritten to meet the RegConstraint.
178   // FailsVerification: Means that the function is not expected to pass machine
179   //  verification. This can be set by passes that introduce known problems that
180   //  have not been fixed yet.
181   // TracksDebugUserValues: Without this property enabled, debug instructions
182   // such as DBG_VALUE are allowed to reference virtual registers even if those
183   // registers do not have a definition. With the property enabled virtual
184   // registers must only be used if they have a definition. This property
185   // allows earlier passes in the pipeline to skip updates of `DBG_VALUE`
186   // instructions to save compile time.
187   enum class Property : unsigned {
188     IsSSA,
189     NoPHIs,
190     TracksLiveness,
191     NoVRegs,
192     FailedISel,
193     Legalized,
194     RegBankSelected,
195     Selected,
196     TiedOpsRewritten,
197     FailsVerification,
198     FailedRegAlloc,
199     TracksDebugUserValues,
200     LastProperty = TracksDebugUserValues,
201   };
202 
203   bool hasProperty(Property P) const {
204     return Properties[static_cast<unsigned>(P)];
205   }
206 
207   MachineFunctionProperties &set(Property P) {
208     Properties.set(static_cast<unsigned>(P));
209     return *this;
210   }
211 
212   MachineFunctionProperties &reset(Property P) {
213     Properties.reset(static_cast<unsigned>(P));
214     return *this;
215   }
216 
217   /// Reset all the properties.
218   MachineFunctionProperties &reset() {
219     Properties.reset();
220     return *this;
221   }
222 
223   MachineFunctionProperties &set(const MachineFunctionProperties &MFP) {
224     Properties |= MFP.Properties;
225     return *this;
226   }
227 
228   MachineFunctionProperties &reset(const MachineFunctionProperties &MFP) {
229     Properties &= ~MFP.Properties;
230     return *this;
231   }
232 
233   // Returns true if all properties set in V (i.e. required by a pass) are set
234   // in this.
235   bool verifyRequiredProperties(const MachineFunctionProperties &V) const {
236     return (Properties | ~V.Properties).all();
237   }
238 
239   /// Print the MachineFunctionProperties in human-readable form.
240   void print(raw_ostream &OS) const;
241 
242 private:
243   std::bitset<static_cast<unsigned>(Property::LastProperty) + 1> Properties;
244 };
245 
246 struct SEHHandler {
247   /// Filter or finally function. Null indicates a catch-all.
248   const Function *FilterOrFinally;
249 
250   /// Address of block to recover at. Null for a finally handler.
251   const BlockAddress *RecoverBA;
252 };
253 
254 /// This structure is used to retain landing pad info for the current function.
255 struct LandingPadInfo {
256   MachineBasicBlock *LandingPadBlock;      // Landing pad block.
257   SmallVector<MCSymbol *, 1> BeginLabels;  // Labels prior to invoke.
258   SmallVector<MCSymbol *, 1> EndLabels;    // Labels after invoke.
259   SmallVector<SEHHandler, 1> SEHHandlers;  // SEH handlers active at this lpad.
260   MCSymbol *LandingPadLabel = nullptr;     // Label at beginning of landing pad.
261   std::vector<int> TypeIds;                // List of type ids (filters negative).
262 
263   explicit LandingPadInfo(MachineBasicBlock *MBB)
264       : LandingPadBlock(MBB) {}
265 };
266 
267 class LLVM_ABI MachineFunction {
268   Function &F;
269   const TargetMachine &Target;
270   const TargetSubtargetInfo *STI;
271   MCContext &Ctx;
272 
273   // RegInfo - Information about each register in use in the function.
274   MachineRegisterInfo *RegInfo;
275 
276   // Used to keep track of target-specific per-machine-function information for
277   // the target implementation.
278   MachineFunctionInfo *MFInfo;
279 
280   // Keep track of objects allocated on the stack.
281   MachineFrameInfo *FrameInfo;
282 
283   // Keep track of constants which are spilled to memory
284   MachineConstantPool *ConstantPool;
285 
286   // Keep track of jump tables for switch instructions
287   MachineJumpTableInfo *JumpTableInfo;
288 
289   // Keep track of the function section.
290   MCSection *Section = nullptr;
291 
292   // Catchpad unwind destination info for wasm EH.
293   // Keeps track of Wasm exception handling related data. This will be null for
294   // functions that aren't using a wasm EH personality.
295   WasmEHFuncInfo *WasmEHInfo = nullptr;
296 
297   // Keeps track of Windows exception handling related data. This will be null
298   // for functions that aren't using a funclet-based EH personality.
299   WinEHFuncInfo *WinEHInfo = nullptr;
300 
301   // Function-level unique numbering for MachineBasicBlocks.  When a
302   // MachineBasicBlock is inserted into a MachineFunction is it automatically
303   // numbered and this vector keeps track of the mapping from ID's to MBB's.
304   std::vector<MachineBasicBlock*> MBBNumbering;
305 
306   // MBBNumbering epoch, incremented after renumbering to detect use of old
307   // block numbers.
308   unsigned MBBNumberingEpoch = 0;
309 
310   // Pool-allocate MachineFunction-lifetime and IR objects.
311   BumpPtrAllocator Allocator;
312 
313   // Allocation management for instructions in function.
314   Recycler<MachineInstr> InstructionRecycler;
315 
316   // Allocation management for operand arrays on instructions.
317   ArrayRecycler<MachineOperand> OperandRecycler;
318 
319   // Allocation management for basic blocks in function.
320   Recycler<MachineBasicBlock> BasicBlockRecycler;
321 
322   // List of machine basic blocks in function
323   using BasicBlockListType = ilist<MachineBasicBlock>;
324   BasicBlockListType BasicBlocks;
325 
326   /// FunctionNumber - This provides a unique ID for each function emitted in
327   /// this translation unit.
328   ///
329   unsigned FunctionNumber;
330 
331   /// Alignment - The alignment of the function.
332   Align Alignment;
333 
334   /// ExposesReturnsTwice - True if the function calls setjmp or related
335   /// functions with attribute "returns twice", but doesn't have
336   /// the attribute itself.
337   /// This is used to limit optimizations which cannot reason
338   /// about the control flow of such functions.
339   bool ExposesReturnsTwice = false;
340 
341   /// True if the function includes any inline assembly.
342   bool HasInlineAsm = false;
343 
344   /// True if any WinCFI instruction have been emitted in this function.
345   bool HasWinCFI = false;
346 
347   /// Current high-level properties of the IR of the function (e.g. is in SSA
348   /// form or whether registers have been allocated)
349   MachineFunctionProperties Properties;
350 
351   // Allocation management for pseudo source values.
352   std::unique_ptr<PseudoSourceValueManager> PSVManager;
353 
354   /// List of moves done by a function's prolog.  Used to construct frame maps
355   /// by debug and exception handling consumers.
356   std::vector<MCCFIInstruction> FrameInstructions;
357 
358   /// List of basic blocks immediately following calls to _setjmp. Used to
359   /// construct a table of valid longjmp targets for Windows Control Flow Guard.
360   std::vector<MCSymbol *> LongjmpTargets;
361 
362   /// List of basic blocks that are the target of catchrets. Used to construct
363   /// a table of valid targets for Windows EHCont Guard.
364   std::vector<MCSymbol *> CatchretTargets;
365 
366   /// \name Exception Handling
367   /// \{
368 
369   /// List of LandingPadInfo describing the landing pad information.
370   std::vector<LandingPadInfo> LandingPads;
371 
372   /// Map a landing pad's EH symbol to the call site indexes.
373   DenseMap<MCSymbol*, SmallVector<unsigned, 4>> LPadToCallSiteMap;
374 
375   /// Map a landing pad to its index.
376   DenseMap<const MachineBasicBlock *, unsigned> WasmLPadToIndexMap;
377 
378   /// Map of invoke call site index values to associated begin EH_LABEL.
379   DenseMap<MCSymbol*, unsigned> CallSiteMap;
380 
381   /// CodeView label annotations.
382   std::vector<std::pair<MCSymbol *, MDNode *>> CodeViewAnnotations;
383 
384   bool CallsEHReturn = false;
385   bool CallsUnwindInit = false;
386   bool HasEHCatchret = false;
387   bool HasEHScopes = false;
388   bool HasEHFunclets = false;
389   bool HasFakeUses = false;
390   bool IsOutlined = false;
391 
392   /// BBID to assign to the next basic block of this function.
393   unsigned NextBBID = 0;
394 
395   /// Section Type for basic blocks, only relevant with basic block sections.
396   BasicBlockSection BBSectionsType = BasicBlockSection::None;
397 
398   /// List of C++ TypeInfo used.
399   std::vector<const GlobalValue *> TypeInfos;
400 
401   /// List of typeids encoding filters used.
402   std::vector<unsigned> FilterIds;
403 
404   /// List of the indices in FilterIds corresponding to filter terminators.
405   std::vector<unsigned> FilterEnds;
406 
407   EHPersonality PersonalityTypeCache = EHPersonality::Unknown;
408 
409   /// \}
410 
411   /// Clear all the members of this MachineFunction, but the ones used to
412   /// initialize again the MachineFunction.  More specifically, this deallocates
413   /// all the dynamically allocated objects and get rids of all the XXXInfo data
414   /// structure, but keeps unchanged the references to Fn, Target, and
415   /// FunctionNumber.
416   void clear();
417   /// Allocate and initialize the different members.
418   /// In particular, the XXXInfo data structure.
419   /// \pre Fn, Target, and FunctionNumber are properly set.
420   void init();
421 
422 public:
423   /// Description of the location of a variable whose Address is valid and
424   /// unchanging during function execution. The Address may be:
425   /// * A stack index, which can be negative for fixed stack objects.
426   /// * A MCRegister, whose entry value contains the address of the variable.
427   class VariableDbgInfo {
428     std::variant<int, MCRegister> Address;
429 
430   public:
431     const DILocalVariable *Var;
432     const DIExpression *Expr;
433     const DILocation *Loc;
434 
435     VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
436                     int Slot, const DILocation *Loc)
437         : Address(Slot), Var(Var), Expr(Expr), Loc(Loc) {}
438 
439     VariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
440                     MCRegister EntryValReg, const DILocation *Loc)
441         : Address(EntryValReg), Var(Var), Expr(Expr), Loc(Loc) {}
442 
443     /// Return true if this variable is in a stack slot.
444     bool inStackSlot() const { return std::holds_alternative<int>(Address); }
445 
446     /// Return true if this variable is in the entry value of a register.
447     bool inEntryValueRegister() const {
448       return std::holds_alternative<MCRegister>(Address);
449     }
450 
451     /// Returns the stack slot of this variable, assuming `inStackSlot()` is
452     /// true.
453     int getStackSlot() const { return std::get<int>(Address); }
454 
455     /// Returns the MCRegister of this variable, assuming
456     /// `inEntryValueRegister()` is true.
457     MCRegister getEntryValueRegister() const {
458       return std::get<MCRegister>(Address);
459     }
460 
461     /// Updates the stack slot of this variable, assuming `inStackSlot()` is
462     /// true.
463     void updateStackSlot(int NewSlot) {
464       assert(inStackSlot());
465       Address = NewSlot;
466     }
467   };
468 
469   class Delegate {
470     virtual void anchor();
471 
472   public:
473     virtual ~Delegate() = default;
474     /// Callback after an insertion. This should not modify the MI directly.
475     virtual void MF_HandleInsertion(MachineInstr &MI) = 0;
476     /// Callback before a removal. This should not modify the MI directly.
477     virtual void MF_HandleRemoval(MachineInstr &MI) = 0;
478     /// Callback before changing MCInstrDesc. This should not modify the MI
479     /// directly.
480     virtual void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) {
481     }
482   };
483 
484   /// Structure used to represent pair of argument number after call lowering
485   /// and register used to transfer that argument.
486   /// For now we support only cases when argument is transferred through one
487   /// register.
488   struct ArgRegPair {
489     Register Reg;
490     uint16_t ArgNo;
491     ArgRegPair(Register R, unsigned Arg) : Reg(R), ArgNo(Arg) {
492       assert(Arg < (1 << 16) && "Arg out of range");
493     }
494   };
495 
496   struct CallSiteInfo {
497     /// Vector of call argument and its forwarding register.
498     SmallVector<ArgRegPair, 1> ArgRegPairs;
499   };
500 
501   struct CalledGlobalInfo {
502     const GlobalValue *Callee;
503     unsigned TargetFlags;
504   };
505 
506 private:
507   Delegate *TheDelegate = nullptr;
508   GISelChangeObserver *Observer = nullptr;
509 
510   using CallSiteInfoMap = DenseMap<const MachineInstr *, CallSiteInfo>;
511   /// Map a call instruction to call site arguments forwarding info.
512   CallSiteInfoMap CallSitesInfo;
513 
514   /// A helper function that returns call site info for a give call
515   /// instruction if debug entry value support is enabled.
516   CallSiteInfoMap::iterator getCallSiteInfo(const MachineInstr *MI);
517 
518   using CalledGlobalsMap = DenseMap<const MachineInstr *, CalledGlobalInfo>;
519   /// Mapping of call instruction to the global value and target flags that it
520   /// calls, if applicable.
521   CalledGlobalsMap CalledGlobalsInfo;
522 
523   // Callbacks for insertion and removal.
524   void handleInsertion(MachineInstr &MI);
525   void handleRemoval(MachineInstr &MI);
526   friend struct ilist_traits<MachineInstr>;
527 
528 public:
529   // Need to be accessed from MachineInstr::setDesc.
530   void handleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID);
531 
532   using VariableDbgInfoMapTy = SmallVector<VariableDbgInfo, 4>;
533   VariableDbgInfoMapTy VariableDbgInfos;
534 
535   /// A count of how many instructions in the function have had numbers
536   /// assigned to them. Used for debug value tracking, to determine the
537   /// next instruction number.
538   unsigned DebugInstrNumberingCount = 0;
539 
540   /// Set value of DebugInstrNumberingCount field. Avoid using this unless
541   /// you're deserializing this data.
542   void setDebugInstrNumberingCount(unsigned Num);
543 
544   /// Pair of instruction number and operand number.
545   using DebugInstrOperandPair = std::pair<unsigned, unsigned>;
546 
547   /// Replacement definition for a debug instruction reference. Made up of a
548   /// source instruction / operand pair, destination pair, and a qualifying
549   /// subregister indicating what bits in the operand make up the substitution.
550   // For example, a debug user
551   /// of %1:
552   ///    %0:gr32 = someinst, debug-instr-number 1
553   ///    %1:gr16 = %0.some_16_bit_subreg, debug-instr-number 2
554   /// Would receive the substitution {{2, 0}, {1, 0}, $subreg}, where $subreg is
555   /// the subregister number for some_16_bit_subreg.
556   class DebugSubstitution {
557   public:
558     DebugInstrOperandPair Src;  ///< Source instruction / operand pair.
559     DebugInstrOperandPair Dest; ///< Replacement instruction / operand pair.
560     unsigned Subreg;            ///< Qualifier for which part of Dest is read.
561 
562     DebugSubstitution(const DebugInstrOperandPair &Src,
563                       const DebugInstrOperandPair &Dest, unsigned Subreg)
564         : Src(Src), Dest(Dest), Subreg(Subreg) {}
565 
566     /// Order only by source instruction / operand pair: there should never
567     /// be duplicate entries for the same source in any collection.
568     bool operator<(const DebugSubstitution &Other) const {
569       return Src < Other.Src;
570     }
571   };
572 
573   /// Debug value substitutions: a collection of DebugSubstitution objects,
574   /// recording changes in where a value is defined. For example, when one
575   /// instruction is substituted for another. Keeping a record allows recovery
576   /// of variable locations after compilation finishes.
577   SmallVector<DebugSubstitution, 8> DebugValueSubstitutions;
578 
579   /// Location of a PHI instruction that is also a debug-info variable value,
580   /// for the duration of register allocation. Loaded by the PHI-elimination
581   /// pass, and emitted as DBG_PHI instructions during VirtRegRewriter, with
582   /// maintenance applied by intermediate passes that edit registers (such as
583   /// coalescing and the allocator passes).
584   class DebugPHIRegallocPos {
585   public:
586     MachineBasicBlock *MBB; ///< Block where this PHI was originally located.
587     Register Reg;           ///< VReg where the control-flow-merge happens.
588     unsigned SubReg;        ///< Optional subreg qualifier within Reg.
589     DebugPHIRegallocPos(MachineBasicBlock *MBB, Register Reg, unsigned SubReg)
590         : MBB(MBB), Reg(Reg), SubReg(SubReg) {}
591   };
592 
593   /// Map of debug instruction numbers to the position of their PHI instructions
594   /// during register allocation. See DebugPHIRegallocPos.
595   DenseMap<unsigned, DebugPHIRegallocPos> DebugPHIPositions;
596 
597   /// Flag for whether this function contains DBG_VALUEs (false) or
598   /// DBG_INSTR_REF (true).
599   bool UseDebugInstrRef = false;
600 
601   /// Create a substitution between one <instr,operand> value to a different,
602   /// new value.
603   void makeDebugValueSubstitution(DebugInstrOperandPair, DebugInstrOperandPair,
604                                   unsigned SubReg = 0);
605 
606   /// Create substitutions for any tracked values in \p Old, to point at
607   /// \p New. Needed when we re-create an instruction during optimization,
608   /// which has the same signature (i.e., def operands in the same place) but
609   /// a modified instruction type, flags, or otherwise. An example: X86 moves
610   /// are sometimes transformed into equivalent LEAs.
611   /// If the two instructions are not the same opcode, limit which operands to
612   /// examine for substitutions to the first N operands by setting
613   /// \p MaxOperand.
614   void substituteDebugValuesForInst(const MachineInstr &Old, MachineInstr &New,
615                                     unsigned MaxOperand = UINT_MAX);
616 
617   /// Find the underlying  defining instruction / operand for a COPY instruction
618   /// while in SSA form. Copies do not actually define values -- they move them
619   /// between registers. Labelling a COPY-like instruction with an instruction
620   /// number is to be avoided as it makes value numbers non-unique later in
621   /// compilation. This method follows the definition chain for any sequence of
622   /// COPY-like instructions to find whatever non-COPY-like instruction defines
623   /// the copied value; or for parameters, creates a DBG_PHI on entry.
624   /// May insert instructions into the entry block!
625   /// \p MI The copy-like instruction to salvage.
626   /// \p DbgPHICache A container to cache already-solved COPYs.
627   /// \returns An instruction/operand pair identifying the defining value.
628   DebugInstrOperandPair
629   salvageCopySSA(MachineInstr &MI,
630                  DenseMap<Register, DebugInstrOperandPair> &DbgPHICache);
631 
632   DebugInstrOperandPair salvageCopySSAImpl(MachineInstr &MI);
633 
634   /// Finalise any partially emitted debug instructions. These are DBG_INSTR_REF
635   /// instructions where we only knew the vreg of the value they use, not the
636   /// instruction that defines that vreg. Once isel finishes, we should have
637   /// enough information for every DBG_INSTR_REF to point at an instruction
638   /// (or DBG_PHI).
639   void finalizeDebugInstrRefs();
640 
641   /// Determine whether, in the current machine configuration, we should use
642   /// instruction referencing or not.
643   bool shouldUseDebugInstrRef() const;
644 
645   /// Returns true if the function's variable locations are tracked with
646   /// instruction referencing.
647   bool useDebugInstrRef() const;
648 
649   /// Set whether this function will use instruction referencing or not.
650   void setUseDebugInstrRef(bool UseInstrRef);
651 
652   /// A reserved operand number representing the instructions memory operand,
653   /// for instructions that have a stack spill fused into them.
654   const static unsigned int DebugOperandMemNumber;
655 
656   MachineFunction(Function &F, const TargetMachine &Target,
657                   const TargetSubtargetInfo &STI, MCContext &Ctx,
658                   unsigned FunctionNum);
659   MachineFunction(const MachineFunction &) = delete;
660   MachineFunction &operator=(const MachineFunction &) = delete;
661   ~MachineFunction();
662 
663   /// Reset the instance as if it was just created.
664   void reset() {
665     clear();
666     init();
667   }
668 
669   /// Reset the currently registered delegate - otherwise assert.
670   void resetDelegate(Delegate *delegate) {
671     assert(TheDelegate == delegate &&
672            "Only the current delegate can perform reset!");
673     TheDelegate = nullptr;
674   }
675 
676   /// Set the delegate. resetDelegate must be called before attempting
677   /// to set.
678   void setDelegate(Delegate *delegate) {
679     assert(delegate && !TheDelegate &&
680            "Attempted to set delegate to null, or to change it without "
681            "first resetting it!");
682 
683     TheDelegate = delegate;
684   }
685 
686   void setObserver(GISelChangeObserver *O) { Observer = O; }
687 
688   GISelChangeObserver *getObserver() const { return Observer; }
689 
690   MCContext &getContext() const { return Ctx; }
691 
692   /// Returns the Section this function belongs to.
693   MCSection *getSection() const { return Section; }
694 
695   /// Indicates the Section this function belongs to.
696   void setSection(MCSection *S) { Section = S; }
697 
698   PseudoSourceValueManager &getPSVManager() const { return *PSVManager; }
699 
700   /// Return the DataLayout attached to the Module associated to this MF.
701   const DataLayout &getDataLayout() const;
702 
703   /// Return the LLVM function that this machine code represents
704   Function &getFunction() { return F; }
705 
706   /// Return the LLVM function that this machine code represents
707   const Function &getFunction() const { return F; }
708 
709   /// getName - Return the name of the corresponding LLVM function.
710   StringRef getName() const;
711 
712   /// getFunctionNumber - Return a unique ID for the current function.
713   unsigned getFunctionNumber() const { return FunctionNumber; }
714 
715   /// Returns true if this function has basic block sections enabled.
716   bool hasBBSections() const {
717     return (BBSectionsType == BasicBlockSection::All ||
718             BBSectionsType == BasicBlockSection::List ||
719             BBSectionsType == BasicBlockSection::Preset);
720   }
721 
722   void setBBSectionsType(BasicBlockSection V) { BBSectionsType = V; }
723 
724   /// Assign IsBeginSection IsEndSection fields for basic blocks in this
725   /// function.
726   void assignBeginEndSections();
727 
728   /// getTarget - Return the target machine this machine code is compiled with
729   const TargetMachine &getTarget() const { return Target; }
730 
731   /// getSubtarget - Return the subtarget for which this machine code is being
732   /// compiled.
733   const TargetSubtargetInfo &getSubtarget() const { return *STI; }
734 
735   /// getSubtarget - This method returns a pointer to the specified type of
736   /// TargetSubtargetInfo.  In debug builds, it verifies that the object being
737   /// returned is of the correct type.
738   template<typename STC> const STC &getSubtarget() const {
739     return *static_cast<const STC *>(STI);
740   }
741 
742   /// getRegInfo - Return information about the registers currently in use.
743   MachineRegisterInfo &getRegInfo() { return *RegInfo; }
744   const MachineRegisterInfo &getRegInfo() const { return *RegInfo; }
745 
746   /// getFrameInfo - Return the frame info object for the current function.
747   /// This object contains information about objects allocated on the stack
748   /// frame of the current function in an abstract way.
749   MachineFrameInfo &getFrameInfo() { return *FrameInfo; }
750   const MachineFrameInfo &getFrameInfo() const { return *FrameInfo; }
751 
752   /// getJumpTableInfo - Return the jump table info object for the current
753   /// function.  This object contains information about jump tables in the
754   /// current function.  If the current function has no jump tables, this will
755   /// return null.
756   const MachineJumpTableInfo *getJumpTableInfo() const { return JumpTableInfo; }
757   MachineJumpTableInfo *getJumpTableInfo() { return JumpTableInfo; }
758 
759   /// getOrCreateJumpTableInfo - Get the JumpTableInfo for this function, if it
760   /// does already exist, allocate one.
761   MachineJumpTableInfo *getOrCreateJumpTableInfo(unsigned JTEntryKind);
762 
763   /// getConstantPool - Return the constant pool object for the current
764   /// function.
765   MachineConstantPool *getConstantPool() { return ConstantPool; }
766   const MachineConstantPool *getConstantPool() const { return ConstantPool; }
767 
768   /// getWasmEHFuncInfo - Return information about how the current function uses
769   /// Wasm exception handling. Returns null for functions that don't use wasm
770   /// exception handling.
771   const WasmEHFuncInfo *getWasmEHFuncInfo() const { return WasmEHInfo; }
772   WasmEHFuncInfo *getWasmEHFuncInfo() { return WasmEHInfo; }
773 
774   /// getWinEHFuncInfo - Return information about how the current function uses
775   /// Windows exception handling. Returns null for functions that don't use
776   /// funclets for exception handling.
777   const WinEHFuncInfo *getWinEHFuncInfo() const { return WinEHInfo; }
778   WinEHFuncInfo *getWinEHFuncInfo() { return WinEHInfo; }
779 
780   /// getAlignment - Return the alignment of the function.
781   Align getAlignment() const { return Alignment; }
782 
783   /// setAlignment - Set the alignment of the function.
784   void setAlignment(Align A) { Alignment = A; }
785 
786   /// ensureAlignment - Make sure the function is at least A bytes aligned.
787   void ensureAlignment(Align A) {
788     if (Alignment < A)
789       Alignment = A;
790   }
791 
792   /// exposesReturnsTwice - Returns true if the function calls setjmp or
793   /// any other similar functions with attribute "returns twice" without
794   /// having the attribute itself.
795   bool exposesReturnsTwice() const {
796     return ExposesReturnsTwice;
797   }
798 
799   /// setCallsSetJmp - Set a flag that indicates if there's a call to
800   /// a "returns twice" function.
801   void setExposesReturnsTwice(bool B) {
802     ExposesReturnsTwice = B;
803   }
804 
805   /// Returns true if the function contains any inline assembly.
806   bool hasInlineAsm() const {
807     return HasInlineAsm;
808   }
809 
810   /// Set a flag that indicates that the function contains inline assembly.
811   void setHasInlineAsm(bool B) {
812     HasInlineAsm = B;
813   }
814 
815   bool hasWinCFI() const {
816     return HasWinCFI;
817   }
818   void setHasWinCFI(bool v) { HasWinCFI = v; }
819 
820   /// True if this function needs frame moves for debug or exceptions.
821   bool needsFrameMoves() const;
822 
823   /// Get the function properties
824   const MachineFunctionProperties &getProperties() const { return Properties; }
825   MachineFunctionProperties &getProperties() { return Properties; }
826 
827   /// getInfo - Keep track of various per-function pieces of information for
828   /// backends that would like to do so.
829   ///
830   template<typename Ty>
831   Ty *getInfo() {
832     return static_cast<Ty*>(MFInfo);
833   }
834 
835   template<typename Ty>
836   const Ty *getInfo() const {
837     return static_cast<const Ty *>(MFInfo);
838   }
839 
840   template <typename Ty> Ty *cloneInfo(const Ty &Old) {
841     assert(!MFInfo);
842     MFInfo = Ty::template create<Ty>(Allocator, Old);
843     return static_cast<Ty *>(MFInfo);
844   }
845 
846   /// Initialize the target specific MachineFunctionInfo
847   void initTargetMachineFunctionInfo(const TargetSubtargetInfo &STI);
848 
849   MachineFunctionInfo *cloneInfoFrom(
850       const MachineFunction &OrigMF,
851       const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB) {
852     assert(!MFInfo && "new function already has MachineFunctionInfo");
853     if (!OrigMF.MFInfo)
854       return nullptr;
855     return OrigMF.MFInfo->clone(Allocator, *this, Src2DstMBB);
856   }
857 
858   /// Returns the denormal handling type for the default rounding mode of the
859   /// function.
860   DenormalMode getDenormalMode(const fltSemantics &FPType) const;
861 
862   /// getBlockNumbered - MachineBasicBlocks are automatically numbered when they
863   /// are inserted into the machine function.  The block number for a machine
864   /// basic block can be found by using the MBB::getNumber method, this method
865   /// provides the inverse mapping.
866   MachineBasicBlock *getBlockNumbered(unsigned N) const {
867     assert(N < MBBNumbering.size() && "Illegal block number");
868     assert(MBBNumbering[N] && "Block was removed from the machine function!");
869     return MBBNumbering[N];
870   }
871 
872   /// Should we be emitting segmented stack stuff for the function
873   bool shouldSplitStack() const;
874 
875   /// getNumBlockIDs - Return the number of MBB ID's allocated.
876   unsigned getNumBlockIDs() const { return (unsigned)MBBNumbering.size(); }
877 
878   /// Return the numbering "epoch" of block numbers, incremented after each
879   /// numbering. Intended for asserting that no renumbering was performed when
880   /// used by, e.g., preserved analyses.
881   unsigned getBlockNumberEpoch() const { return MBBNumberingEpoch; }
882 
883   /// RenumberBlocks - This discards all of the MachineBasicBlock numbers and
884   /// recomputes them.  This guarantees that the MBB numbers are sequential,
885   /// dense, and match the ordering of the blocks within the function.  If a
886   /// specific MachineBasicBlock is specified, only that block and those after
887   /// it are renumbered.
888   void RenumberBlocks(MachineBasicBlock *MBBFrom = nullptr);
889 
890   /// Return an estimate of the function's code size,
891   /// taking into account block and function alignment
892   int64_t estimateFunctionSizeInBytes();
893 
894   /// print - Print out the MachineFunction in a format suitable for debugging
895   /// to the specified stream.
896   void print(raw_ostream &OS, const SlotIndexes* = nullptr) const;
897 
898   /// viewCFG - This function is meant for use from the debugger.  You can just
899   /// say 'call F->viewCFG()' and a ghostview window should pop up from the
900   /// program, displaying the CFG of the current function with the code for each
901   /// basic block inside.  This depends on there being a 'dot' and 'gv' program
902   /// in your path.
903   void viewCFG() const;
904 
905   /// viewCFGOnly - This function is meant for use from the debugger.  It works
906   /// just like viewCFG, but it does not include the contents of basic blocks
907   /// into the nodes, just the label.  If you are only interested in the CFG
908   /// this can make the graph smaller.
909   ///
910   void viewCFGOnly() const;
911 
912   /// dump - Print the current MachineFunction to cerr, useful for debugger use.
913   void dump() const;
914 
915   /// Run the current MachineFunction through the machine code verifier, useful
916   /// for debugger use.
917   /// \returns true if no problems were found.
918   bool verify(Pass *p = nullptr, const char *Banner = nullptr,
919               raw_ostream *OS = nullptr, bool AbortOnError = true) const;
920 
921   /// Run the current MachineFunction through the machine code verifier, useful
922   /// for debugger use.
923   /// \returns true if no problems were found.
924   bool verify(LiveIntervals *LiveInts, SlotIndexes *Indexes,
925               const char *Banner = nullptr, raw_ostream *OS = nullptr,
926               bool AbortOnError = true) const;
927 
928   // Provide accessors for the MachineBasicBlock list...
929   using iterator = BasicBlockListType::iterator;
930   using const_iterator = BasicBlockListType::const_iterator;
931   using const_reverse_iterator = BasicBlockListType::const_reverse_iterator;
932   using reverse_iterator = BasicBlockListType::reverse_iterator;
933 
934   /// Support for MachineBasicBlock::getNextNode().
935   static BasicBlockListType MachineFunction::*
936   getSublistAccess(MachineBasicBlock *) {
937     return &MachineFunction::BasicBlocks;
938   }
939 
940   /// addLiveIn - Add the specified physical register as a live-in value and
941   /// create a corresponding virtual register for it.
942   Register addLiveIn(MCRegister PReg, const TargetRegisterClass *RC);
943 
944   //===--------------------------------------------------------------------===//
945   // BasicBlock accessor functions.
946   //
947   iterator                 begin()       { return BasicBlocks.begin(); }
948   const_iterator           begin() const { return BasicBlocks.begin(); }
949   iterator                 end  ()       { return BasicBlocks.end();   }
950   const_iterator           end  () const { return BasicBlocks.end();   }
951 
952   reverse_iterator        rbegin()       { return BasicBlocks.rbegin(); }
953   const_reverse_iterator  rbegin() const { return BasicBlocks.rbegin(); }
954   reverse_iterator        rend  ()       { return BasicBlocks.rend();   }
955   const_reverse_iterator  rend  () const { return BasicBlocks.rend();   }
956 
957   unsigned                  size() const { return (unsigned)BasicBlocks.size();}
958   bool                     empty() const { return BasicBlocks.empty(); }
959   const MachineBasicBlock &front() const { return BasicBlocks.front(); }
960         MachineBasicBlock &front()       { return BasicBlocks.front(); }
961   const MachineBasicBlock & back() const { return BasicBlocks.back(); }
962         MachineBasicBlock & back()       { return BasicBlocks.back(); }
963 
964   void push_back (MachineBasicBlock *MBB) { BasicBlocks.push_back (MBB); }
965   void push_front(MachineBasicBlock *MBB) { BasicBlocks.push_front(MBB); }
966   void insert(iterator MBBI, MachineBasicBlock *MBB) {
967     BasicBlocks.insert(MBBI, MBB);
968   }
969   void splice(iterator InsertPt, iterator MBBI) {
970     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI);
971   }
972   void splice(iterator InsertPt, MachineBasicBlock *MBB) {
973     BasicBlocks.splice(InsertPt, BasicBlocks, MBB);
974   }
975   void splice(iterator InsertPt, iterator MBBI, iterator MBBE) {
976     BasicBlocks.splice(InsertPt, BasicBlocks, MBBI, MBBE);
977   }
978 
979   void remove(iterator MBBI) { BasicBlocks.remove(MBBI); }
980   void remove(MachineBasicBlock *MBBI) { BasicBlocks.remove(MBBI); }
981   void erase(iterator MBBI) { BasicBlocks.erase(MBBI); }
982   void erase(MachineBasicBlock *MBBI) { BasicBlocks.erase(MBBI); }
983 
984   template <typename Comp>
985   void sort(Comp comp) {
986     BasicBlocks.sort(comp);
987   }
988 
989   /// Return the number of \p MachineInstrs in this \p MachineFunction.
990   unsigned getInstructionCount() const {
991     unsigned InstrCount = 0;
992     for (const MachineBasicBlock &MBB : BasicBlocks)
993       InstrCount += MBB.size();
994     return InstrCount;
995   }
996 
997   //===--------------------------------------------------------------------===//
998   // Internal functions used to automatically number MachineBasicBlocks
999 
1000   /// Adds the MBB to the internal numbering. Returns the unique number
1001   /// assigned to the MBB.
1002   unsigned addToMBBNumbering(MachineBasicBlock *MBB) {
1003     MBBNumbering.push_back(MBB);
1004     return (unsigned)MBBNumbering.size()-1;
1005   }
1006 
1007   /// removeFromMBBNumbering - Remove the specific machine basic block from our
1008   /// tracker, this is only really to be used by the MachineBasicBlock
1009   /// implementation.
1010   void removeFromMBBNumbering(unsigned N) {
1011     assert(N < MBBNumbering.size() && "Illegal basic block #");
1012     MBBNumbering[N] = nullptr;
1013   }
1014 
1015   /// CreateMachineInstr - Allocate a new MachineInstr. Use this instead
1016   /// of `new MachineInstr'.
1017   MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID, DebugLoc DL,
1018                                    bool NoImplicit = false);
1019 
1020   /// Create a new MachineInstr which is a copy of \p Orig, identical in all
1021   /// ways except the instruction has no parent, prev, or next. Bundling flags
1022   /// are reset.
1023   ///
1024   /// Note: Clones a single instruction, not whole instruction bundles.
1025   /// Does not perform target specific adjustments; consider using
1026   /// TargetInstrInfo::duplicate() instead.
1027   MachineInstr *CloneMachineInstr(const MachineInstr *Orig);
1028 
1029   /// Clones instruction or the whole instruction bundle \p Orig and insert
1030   /// into \p MBB before \p InsertBefore.
1031   ///
1032   /// Note: Does not perform target specific adjustments; consider using
1033   /// TargetInstrInfo::duplicate() instead.
1034   MachineInstr &
1035   cloneMachineInstrBundle(MachineBasicBlock &MBB,
1036                           MachineBasicBlock::iterator InsertBefore,
1037                           const MachineInstr &Orig);
1038 
1039   /// DeleteMachineInstr - Delete the given MachineInstr.
1040   void deleteMachineInstr(MachineInstr *MI);
1041 
1042   /// CreateMachineBasicBlock - Allocate a new MachineBasicBlock. Use this
1043   /// instead of `new MachineBasicBlock'. Sets `MachineBasicBlock::BBID` if
1044   /// basic-block-sections is enabled for the function.
1045   MachineBasicBlock *
1046   CreateMachineBasicBlock(const BasicBlock *BB = nullptr,
1047                           std::optional<UniqueBBID> BBID = std::nullopt);
1048 
1049   /// DeleteMachineBasicBlock - Delete the given MachineBasicBlock.
1050   void deleteMachineBasicBlock(MachineBasicBlock *MBB);
1051 
1052   /// getMachineMemOperand - Allocate a new MachineMemOperand.
1053   /// MachineMemOperands are owned by the MachineFunction and need not be
1054   /// explicitly deallocated.
1055   MachineMemOperand *getMachineMemOperand(
1056       MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
1057       Align base_alignment, const AAMDNodes &AAInfo = AAMDNodes(),
1058       const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
1059       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
1060       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
1061   MachineMemOperand *getMachineMemOperand(
1062       MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, LocationSize Size,
1063       Align BaseAlignment, const AAMDNodes &AAInfo = AAMDNodes(),
1064       const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
1065       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
1066       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic);
1067   MachineMemOperand *getMachineMemOperand(
1068       MachinePointerInfo PtrInfo, MachineMemOperand::Flags F, uint64_t Size,
1069       Align BaseAlignment, const AAMDNodes &AAInfo = AAMDNodes(),
1070       const MDNode *Ranges = nullptr, SyncScope::ID SSID = SyncScope::System,
1071       AtomicOrdering Ordering = AtomicOrdering::NotAtomic,
1072       AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic) {
1073     return getMachineMemOperand(PtrInfo, F, LocationSize::precise(Size),
1074                                 BaseAlignment, AAInfo, Ranges, SSID, Ordering,
1075                                 FailureOrdering);
1076   }
1077 
1078   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
1079   /// an existing one, adjusting by an offset and using the given size.
1080   /// MachineMemOperands are owned by the MachineFunction and need not be
1081   /// explicitly deallocated.
1082   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1083                                           int64_t Offset, LLT Ty);
1084   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1085                                           int64_t Offset, LocationSize Size) {
1086     return getMachineMemOperand(
1087         MMO, Offset,
1088         !Size.hasValue() ? LLT()
1089         : Size.isScalable()
1090             ? LLT::scalable_vector(1, 8 * Size.getValue().getKnownMinValue())
1091             : LLT::scalar(8 * Size.getValue().getKnownMinValue()));
1092   }
1093   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1094                                           int64_t Offset, uint64_t Size) {
1095     return getMachineMemOperand(MMO, Offset, LocationSize::precise(Size));
1096   }
1097 
1098   /// getMachineMemOperand - Allocate a new MachineMemOperand by copying
1099   /// an existing one, replacing only the MachinePointerInfo and size.
1100   /// MachineMemOperands are owned by the MachineFunction and need not be
1101   /// explicitly deallocated.
1102   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1103                                           const MachinePointerInfo &PtrInfo,
1104                                           LocationSize Size);
1105   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1106                                           const MachinePointerInfo &PtrInfo,
1107                                           LLT Ty);
1108   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1109                                           const MachinePointerInfo &PtrInfo,
1110                                           uint64_t Size) {
1111     return getMachineMemOperand(MMO, PtrInfo, LocationSize::precise(Size));
1112   }
1113 
1114   /// Allocate a new MachineMemOperand by copying an existing one,
1115   /// replacing only AliasAnalysis information. MachineMemOperands are owned
1116   /// by the MachineFunction and need not be explicitly deallocated.
1117   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1118                                           const AAMDNodes &AAInfo);
1119 
1120   /// Allocate a new MachineMemOperand by copying an existing one,
1121   /// replacing the flags. MachineMemOperands are owned
1122   /// by the MachineFunction and need not be explicitly deallocated.
1123   MachineMemOperand *getMachineMemOperand(const MachineMemOperand *MMO,
1124                                           MachineMemOperand::Flags Flags);
1125 
1126   using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
1127 
1128   /// Allocate an array of MachineOperands. This is only intended for use by
1129   /// internal MachineInstr functions.
1130   MachineOperand *allocateOperandArray(OperandCapacity Cap) {
1131     return OperandRecycler.allocate(Cap, Allocator);
1132   }
1133 
1134   /// Dellocate an array of MachineOperands and recycle the memory. This is
1135   /// only intended for use by internal MachineInstr functions.
1136   /// Cap must be the same capacity that was used to allocate the array.
1137   void deallocateOperandArray(OperandCapacity Cap, MachineOperand *Array) {
1138     OperandRecycler.deallocate(Cap, Array);
1139   }
1140 
1141   /// Allocate and initialize a register mask with @p NumRegister bits.
1142   uint32_t *allocateRegMask();
1143 
1144   ArrayRef<int> allocateShuffleMask(ArrayRef<int> Mask);
1145 
1146   /// Allocate and construct an extra info structure for a `MachineInstr`.
1147   ///
1148   /// This is allocated on the function's allocator and so lives the life of
1149   /// the function.
1150   MachineInstr::ExtraInfo *createMIExtraInfo(
1151       ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol = nullptr,
1152       MCSymbol *PostInstrSymbol = nullptr, MDNode *HeapAllocMarker = nullptr,
1153       MDNode *PCSections = nullptr, uint32_t CFIType = 0,
1154       MDNode *MMRAs = nullptr);
1155 
1156   /// Allocate a string and populate it with the given external symbol name.
1157   const char *createExternalSymbolName(StringRef Name);
1158 
1159   //===--------------------------------------------------------------------===//
1160   // Label Manipulation.
1161 
1162   /// getJTISymbol - Return the MCSymbol for the specified non-empty jump table.
1163   /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
1164   /// normal 'L' label is returned.
1165   MCSymbol *getJTISymbol(unsigned JTI, MCContext &Ctx,
1166                          bool isLinkerPrivate = false) const;
1167 
1168   /// getPICBaseSymbol - Return a function-local symbol to represent the PIC
1169   /// base.
1170   MCSymbol *getPICBaseSymbol() const;
1171 
1172   /// Returns a reference to a list of cfi instructions in the function's
1173   /// prologue.  Used to construct frame maps for debug and exception handling
1174   /// comsumers.
1175   const std::vector<MCCFIInstruction> &getFrameInstructions() const {
1176     return FrameInstructions;
1177   }
1178 
1179   [[nodiscard]] unsigned addFrameInst(const MCCFIInstruction &Inst);
1180 
1181   /// Returns a reference to a list of symbols immediately following calls to
1182   /// _setjmp in the function. Used to construct the longjmp target table used
1183   /// by Windows Control Flow Guard.
1184   const std::vector<MCSymbol *> &getLongjmpTargets() const {
1185     return LongjmpTargets;
1186   }
1187 
1188   /// Add the specified symbol to the list of valid longjmp targets for Windows
1189   /// Control Flow Guard.
1190   void addLongjmpTarget(MCSymbol *Target) { LongjmpTargets.push_back(Target); }
1191 
1192   /// Returns a reference to a list of symbols that we have catchrets.
1193   /// Used to construct the catchret target table used by Windows EHCont Guard.
1194   const std::vector<MCSymbol *> &getCatchretTargets() const {
1195     return CatchretTargets;
1196   }
1197 
1198   /// Add the specified symbol to the list of valid catchret targets for Windows
1199   /// EHCont Guard.
1200   void addCatchretTarget(MCSymbol *Target) {
1201     CatchretTargets.push_back(Target);
1202   }
1203 
1204   /// Tries to get the global and target flags for a call site, if the
1205   /// instruction is a call to a global.
1206   CalledGlobalInfo tryGetCalledGlobal(const MachineInstr *MI) const {
1207     return CalledGlobalsInfo.lookup(MI);
1208   }
1209 
1210   /// Notes the global and target flags for a call site.
1211   void addCalledGlobal(const MachineInstr *MI, CalledGlobalInfo Details) {
1212     assert(MI && "MI must not be null");
1213     assert(Details.Callee && "Global must not be null");
1214     CalledGlobalsInfo.insert({MI, Details});
1215   }
1216 
1217   /// Iterates over the full set of call sites and their associated globals.
1218   auto getCalledGlobals() const {
1219     return llvm::make_range(CalledGlobalsInfo.begin(), CalledGlobalsInfo.end());
1220   }
1221 
1222   /// \name Exception Handling
1223   /// \{
1224 
1225   bool callsEHReturn() const { return CallsEHReturn; }
1226   void setCallsEHReturn(bool b) { CallsEHReturn = b; }
1227 
1228   bool callsUnwindInit() const { return CallsUnwindInit; }
1229   void setCallsUnwindInit(bool b) { CallsUnwindInit = b; }
1230 
1231   bool hasEHCatchret() const { return HasEHCatchret; }
1232   void setHasEHCatchret(bool V) { HasEHCatchret = V; }
1233 
1234   bool hasEHScopes() const { return HasEHScopes; }
1235   void setHasEHScopes(bool V) { HasEHScopes = V; }
1236 
1237   bool hasEHFunclets() const { return HasEHFunclets; }
1238   void setHasEHFunclets(bool V) { HasEHFunclets = V; }
1239 
1240   bool hasFakeUses() const { return HasFakeUses; }
1241   void setHasFakeUses(bool V) { HasFakeUses = V; }
1242 
1243   bool isOutlined() const { return IsOutlined; }
1244   void setIsOutlined(bool V) { IsOutlined = V; }
1245 
1246   /// Find or create an LandingPadInfo for the specified MachineBasicBlock.
1247   LandingPadInfo &getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad);
1248 
1249   /// Return a reference to the landing pad info for the current function.
1250   const std::vector<LandingPadInfo> &getLandingPads() const {
1251     return LandingPads;
1252   }
1253 
1254   /// Provide the begin and end labels of an invoke style call and associate it
1255   /// with a try landing pad block.
1256   void addInvoke(MachineBasicBlock *LandingPad,
1257                  MCSymbol *BeginLabel, MCSymbol *EndLabel);
1258 
1259   /// Add a new panding pad, and extract the exception handling information from
1260   /// the landingpad instruction. Returns the label ID for the landing pad
1261   /// entry.
1262   MCSymbol *addLandingPad(MachineBasicBlock *LandingPad);
1263 
1264   /// Return the type id for the specified typeinfo.  This is function wide.
1265   unsigned getTypeIDFor(const GlobalValue *TI);
1266 
1267   /// Return the id of the filter encoded by TyIds.  This is function wide.
1268   int getFilterIDFor(ArrayRef<unsigned> TyIds);
1269 
1270   /// Map the landing pad's EH symbol to the call site indexes.
1271   void setCallSiteLandingPad(MCSymbol *Sym, ArrayRef<unsigned> Sites);
1272 
1273   /// Return if there is any wasm exception handling.
1274   bool hasAnyWasmLandingPadIndex() const {
1275     return !WasmLPadToIndexMap.empty();
1276   }
1277 
1278   /// Map the landing pad to its index. Used for Wasm exception handling.
1279   void setWasmLandingPadIndex(const MachineBasicBlock *LPad, unsigned Index) {
1280     WasmLPadToIndexMap[LPad] = Index;
1281   }
1282 
1283   /// Returns true if the landing pad has an associate index in wasm EH.
1284   bool hasWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1285     return WasmLPadToIndexMap.count(LPad);
1286   }
1287 
1288   /// Get the index in wasm EH for a given landing pad.
1289   unsigned getWasmLandingPadIndex(const MachineBasicBlock *LPad) const {
1290     assert(hasWasmLandingPadIndex(LPad));
1291     return WasmLPadToIndexMap.lookup(LPad);
1292   }
1293 
1294   bool hasAnyCallSiteLandingPad() const {
1295     return !LPadToCallSiteMap.empty();
1296   }
1297 
1298   /// Get the call site indexes for a landing pad EH symbol.
1299   SmallVectorImpl<unsigned> &getCallSiteLandingPad(MCSymbol *Sym) {
1300     assert(hasCallSiteLandingPad(Sym) &&
1301            "missing call site number for landing pad!");
1302     return LPadToCallSiteMap[Sym];
1303   }
1304 
1305   /// Return true if the landing pad Eh symbol has an associated call site.
1306   bool hasCallSiteLandingPad(MCSymbol *Sym) {
1307     return !LPadToCallSiteMap[Sym].empty();
1308   }
1309 
1310   bool hasAnyCallSiteLabel() const {
1311     return !CallSiteMap.empty();
1312   }
1313 
1314   /// Map the begin label for a call site.
1315   void setCallSiteBeginLabel(MCSymbol *BeginLabel, unsigned Site) {
1316     CallSiteMap[BeginLabel] = Site;
1317   }
1318 
1319   /// Get the call site number for a begin label.
1320   unsigned getCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1321     assert(hasCallSiteBeginLabel(BeginLabel) &&
1322            "Missing call site number for EH_LABEL!");
1323     return CallSiteMap.lookup(BeginLabel);
1324   }
1325 
1326   /// Return true if the begin label has a call site number associated with it.
1327   bool hasCallSiteBeginLabel(MCSymbol *BeginLabel) const {
1328     return CallSiteMap.count(BeginLabel);
1329   }
1330 
1331   /// Record annotations associated with a particular label.
1332   void addCodeViewAnnotation(MCSymbol *Label, MDNode *MD) {
1333     CodeViewAnnotations.push_back({Label, MD});
1334   }
1335 
1336   ArrayRef<std::pair<MCSymbol *, MDNode *>> getCodeViewAnnotations() const {
1337     return CodeViewAnnotations;
1338   }
1339 
1340   /// Return a reference to the C++ typeinfo for the current function.
1341   const std::vector<const GlobalValue *> &getTypeInfos() const {
1342     return TypeInfos;
1343   }
1344 
1345   /// Return a reference to the typeids encoding filters used in the current
1346   /// function.
1347   const std::vector<unsigned> &getFilterIds() const {
1348     return FilterIds;
1349   }
1350 
1351   /// \}
1352 
1353   /// Collect information used to emit debugging information of a variable in a
1354   /// stack slot.
1355   void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
1356                           int Slot, const DILocation *Loc) {
1357     VariableDbgInfos.emplace_back(Var, Expr, Slot, Loc);
1358   }
1359 
1360   /// Collect information used to emit debugging information of a variable in
1361   /// the entry value of a register.
1362   void setVariableDbgInfo(const DILocalVariable *Var, const DIExpression *Expr,
1363                           MCRegister Reg, const DILocation *Loc) {
1364     VariableDbgInfos.emplace_back(Var, Expr, Reg, Loc);
1365   }
1366 
1367   VariableDbgInfoMapTy &getVariableDbgInfo() { return VariableDbgInfos; }
1368   const VariableDbgInfoMapTy &getVariableDbgInfo() const {
1369     return VariableDbgInfos;
1370   }
1371 
1372   /// Returns the collection of variables for which we have debug info and that
1373   /// have been assigned a stack slot.
1374   auto getInStackSlotVariableDbgInfo() {
1375     return make_filter_range(getVariableDbgInfo(), [](auto &VarInfo) {
1376       return VarInfo.inStackSlot();
1377     });
1378   }
1379 
1380   /// Returns the collection of variables for which we have debug info and that
1381   /// have been assigned a stack slot.
1382   auto getInStackSlotVariableDbgInfo() const {
1383     return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) {
1384       return VarInfo.inStackSlot();
1385     });
1386   }
1387 
1388   /// Returns the collection of variables for which we have debug info and that
1389   /// have been assigned an entry value register.
1390   auto getEntryValueVariableDbgInfo() const {
1391     return make_filter_range(getVariableDbgInfo(), [](const auto &VarInfo) {
1392       return VarInfo.inEntryValueRegister();
1393     });
1394   }
1395 
1396   /// Start tracking the arguments passed to the call \p CallI.
1397   void addCallSiteInfo(const MachineInstr *CallI, CallSiteInfo &&CallInfo) {
1398     assert(CallI->isCandidateForAdditionalCallInfo());
1399     bool Inserted =
1400         CallSitesInfo.try_emplace(CallI, std::move(CallInfo)).second;
1401     (void)Inserted;
1402     assert(Inserted && "Call site info not unique");
1403   }
1404 
1405   const CallSiteInfoMap &getCallSitesInfo() const {
1406     return CallSitesInfo;
1407   }
1408 
1409   /// Following functions update call site info. They should be called before
1410   /// removing, replacing or copying call instruction.
1411 
1412   /// Erase the call site info for \p MI. It is used to remove a call
1413   /// instruction from the instruction stream.
1414   void eraseAdditionalCallInfo(const MachineInstr *MI);
1415   /// Copy the call site info from \p Old to \ New. Its usage is when we are
1416   /// making a copy of the instruction that will be inserted at different point
1417   /// of the instruction stream.
1418   void copyAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New);
1419 
1420   /// Move the call site info from \p Old to \New call site info. This function
1421   /// is used when we are replacing one call instruction with another one to
1422   /// the same callee.
1423   void moveAdditionalCallInfo(const MachineInstr *Old, const MachineInstr *New);
1424 
1425   unsigned getNewDebugInstrNum() {
1426     return ++DebugInstrNumberingCount;
1427   }
1428 };
1429 
1430 //===--------------------------------------------------------------------===//
1431 // GraphTraits specializations for function basic block graphs (CFGs)
1432 //===--------------------------------------------------------------------===//
1433 
1434 // Provide specializations of GraphTraits to be able to treat a
1435 // machine function as a graph of machine basic blocks... these are
1436 // the same as the machine basic block iterators, except that the root
1437 // node is implicitly the first node of the function.
1438 //
1439 template <> struct GraphTraits<MachineFunction*> :
1440   public GraphTraits<MachineBasicBlock*> {
1441   static NodeRef getEntryNode(MachineFunction *F) { return &F->front(); }
1442 
1443   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1444   using nodes_iterator = pointer_iterator<MachineFunction::iterator>;
1445 
1446   static nodes_iterator nodes_begin(MachineFunction *F) {
1447     return nodes_iterator(F->begin());
1448   }
1449 
1450   static nodes_iterator nodes_end(MachineFunction *F) {
1451     return nodes_iterator(F->end());
1452   }
1453 
1454   static unsigned       size       (MachineFunction *F) { return F->size(); }
1455 
1456   static unsigned getMaxNumber(MachineFunction *F) {
1457     return F->getNumBlockIDs();
1458   }
1459   static unsigned getNumberEpoch(MachineFunction *F) {
1460     return F->getBlockNumberEpoch();
1461   }
1462 };
1463 template <> struct GraphTraits<const MachineFunction*> :
1464   public GraphTraits<const MachineBasicBlock*> {
1465   static NodeRef getEntryNode(const MachineFunction *F) { return &F->front(); }
1466 
1467   // nodes_iterator/begin/end - Allow iteration over all nodes in the graph
1468   using nodes_iterator = pointer_iterator<MachineFunction::const_iterator>;
1469 
1470   static nodes_iterator nodes_begin(const MachineFunction *F) {
1471     return nodes_iterator(F->begin());
1472   }
1473 
1474   static nodes_iterator nodes_end  (const MachineFunction *F) {
1475     return nodes_iterator(F->end());
1476   }
1477 
1478   static unsigned       size       (const MachineFunction *F)  {
1479     return F->size();
1480   }
1481 
1482   static unsigned getMaxNumber(const MachineFunction *F) {
1483     return F->getNumBlockIDs();
1484   }
1485   static unsigned getNumberEpoch(const MachineFunction *F) {
1486     return F->getBlockNumberEpoch();
1487   }
1488 };
1489 
1490 // Provide specializations of GraphTraits to be able to treat a function as a
1491 // graph of basic blocks... and to walk it in inverse order.  Inverse order for
1492 // a function is considered to be when traversing the predecessor edges of a BB
1493 // instead of the successor edges.
1494 //
1495 template <> struct GraphTraits<Inverse<MachineFunction*>> :
1496   public GraphTraits<Inverse<MachineBasicBlock*>> {
1497   static NodeRef getEntryNode(Inverse<MachineFunction *> G) {
1498     return &G.Graph->front();
1499   }
1500 
1501   static unsigned getMaxNumber(MachineFunction *F) {
1502     return F->getNumBlockIDs();
1503   }
1504   static unsigned getNumberEpoch(MachineFunction *F) {
1505     return F->getBlockNumberEpoch();
1506   }
1507 };
1508 template <> struct GraphTraits<Inverse<const MachineFunction*>> :
1509   public GraphTraits<Inverse<const MachineBasicBlock*>> {
1510   static NodeRef getEntryNode(Inverse<const MachineFunction *> G) {
1511     return &G.Graph->front();
1512   }
1513 
1514   static unsigned getMaxNumber(const MachineFunction *F) {
1515     return F->getNumBlockIDs();
1516   }
1517   static unsigned getNumberEpoch(const MachineFunction *F) {
1518     return F->getBlockNumberEpoch();
1519   }
1520 };
1521 
1522 void verifyMachineFunction(const std::string &Banner,
1523                            const MachineFunction &MF);
1524 
1525 } // end namespace llvm
1526 
1527 #endif // LLVM_CODEGEN_MACHINEFUNCTION_H
1528