xref: /openbsd-src/gnu/llvm/llvm/include/llvm/Analysis/ScalarEvolution.h (revision d415bd752c734aee168c4ee86ff32e8cc249eb16)
1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
10 // categorize scalar expressions in loops.  It specializes in recognizing
11 // general induction variables, representing them with the abstract and opaque
12 // SCEV class.  Given this analysis, trip counts of loops and other important
13 // properties can be obtained.
14 //
15 // This analysis is primarily useful for induction variable substitution and
16 // strength reduction.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseMapInfo.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/PointerIntPair.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/IR/ConstantRange.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/PassManager.h"
36 #include "llvm/IR/ValueHandle.h"
37 #include "llvm/IR/ValueMap.h"
38 #include "llvm/Pass.h"
39 #include <cassert>
40 #include <cstdint>
41 #include <memory>
42 #include <optional>
43 #include <utility>
44 
45 namespace llvm {
46 
47 class OverflowingBinaryOperator;
48 class AssumptionCache;
49 class BasicBlock;
50 class Constant;
51 class ConstantInt;
52 class DataLayout;
53 class DominatorTree;
54 class Function;
55 class GEPOperator;
56 class Instruction;
57 class LLVMContext;
58 class Loop;
59 class LoopInfo;
60 class raw_ostream;
61 class ScalarEvolution;
62 class SCEVAddRecExpr;
63 class SCEVUnknown;
64 class StructType;
65 class TargetLibraryInfo;
66 class Type;
67 class Value;
68 enum SCEVTypes : unsigned short;
69 
70 extern bool VerifySCEV;
71 
72 /// This class represents an analyzed expression in the program.  These are
73 /// opaque objects that the client is not allowed to do much with directly.
74 ///
75 class SCEV : public FoldingSetNode {
76   friend struct FoldingSetTrait<SCEV>;
77 
78   /// A reference to an Interned FoldingSetNodeID for this node.  The
79   /// ScalarEvolution's BumpPtrAllocator holds the data.
80   FoldingSetNodeIDRef FastID;
81 
82   // The SCEV baseclass this node corresponds to
83   const SCEVTypes SCEVType;
84 
85 protected:
86   // Estimated complexity of this node's expression tree size.
87   const unsigned short ExpressionSize;
88 
89   /// This field is initialized to zero and may be used in subclasses to store
90   /// miscellaneous information.
91   unsigned short SubclassData = 0;
92 
93 public:
94   /// NoWrapFlags are bitfield indices into SubclassData.
95   ///
96   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
97   /// no-signed-wrap <NSW> properties, which are derived from the IR
98   /// operator. NSW is a misnomer that we use to mean no signed overflow or
99   /// underflow.
100   ///
101   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
102   /// the integer domain, abs(step) * max-iteration(loop) <=
103   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
104   /// its start value if the step is non-zero.  Computing the same value on
105   /// each iteration is not considered wrapping, and recurrences with step = 0
106   /// are trivially <NW>.  <NW> is independent of the sign of step and the
107   /// value the add recurrence starts with.
108   ///
109   /// Note that NUW and NSW are also valid properties of a recurrence, and
110   /// either implies NW. For convenience, NW will be set for a recurrence
111   /// whenever either NUW or NSW are set.
112   ///
113   /// We require that the flag on a SCEV apply to the entire scope in which
114   /// that SCEV is defined.  A SCEV's scope is set of locations dominated by
115   /// a defining location, which is in turn described by the following rules:
116   /// * A SCEVUnknown is at the point of definition of the Value.
117   /// * A SCEVConstant is defined at all points.
118   /// * A SCEVAddRec is defined starting with the header of the associated
119   ///   loop.
120   /// * All other SCEVs are defined at the earlest point all operands are
121   ///   defined.
122   ///
123   /// The above rules describe a maximally hoisted form (without regards to
124   /// potential control dependence).  A SCEV is defined anywhere a
125   /// corresponding instruction could be defined in said maximally hoisted
126   /// form.  Note that SCEVUDivExpr (currently the only expression type which
127   /// can trap) can be defined per these rules in regions where it would trap
128   /// at runtime.  A SCEV being defined does not require the existence of any
129   /// instruction within the defined scope.
130   enum NoWrapFlags {
131     FlagAnyWrap = 0,    // No guarantee.
132     FlagNW = (1 << 0),  // No self-wrap.
133     FlagNUW = (1 << 1), // No unsigned wrap.
134     FlagNSW = (1 << 2), // No signed wrap.
135     NoWrapMask = (1 << 3) - 1
136   };
137 
138   explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
139                 unsigned short ExpressionSize)
140       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
141   SCEV(const SCEV &) = delete;
142   SCEV &operator=(const SCEV &) = delete;
143 
144   SCEVTypes getSCEVType() const { return SCEVType; }
145 
146   /// Return the LLVM type of this SCEV expression.
147   Type *getType() const;
148 
149   /// Return operands of this SCEV expression.
150   ArrayRef<const SCEV *> operands() const;
151 
152   /// Return true if the expression is a constant zero.
153   bool isZero() const;
154 
155   /// Return true if the expression is a constant one.
156   bool isOne() const;
157 
158   /// Return true if the expression is a constant all-ones value.
159   bool isAllOnesValue() const;
160 
161   /// Return true if the specified scev is negated, but not a constant.
162   bool isNonConstantNegative() const;
163 
164   // Returns estimated size of the mathematical expression represented by this
165   // SCEV. The rules of its calculation are following:
166   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
167   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
168   //    (1 + Size(Op1) + ... + Size(OpN)).
169   // This value gives us an estimation of time we need to traverse through this
170   // SCEV and all its operands recursively. We may use it to avoid performing
171   // heavy transformations on SCEVs of excessive size for sake of saving the
172   // compilation time.
173   unsigned short getExpressionSize() const {
174     return ExpressionSize;
175   }
176 
177   /// Print out the internal representation of this scalar to the specified
178   /// stream.  This should really only be used for debugging purposes.
179   void print(raw_ostream &OS) const;
180 
181   /// This method is used for debugging.
182   void dump() const;
183 };
184 
185 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
186 // temporary FoldingSetNodeID values.
187 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
188   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
189 
190   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
191                      FoldingSetNodeID &TempID) {
192     return ID == X.FastID;
193   }
194 
195   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
196     return X.FastID.ComputeHash();
197   }
198 };
199 
200 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
201   S.print(OS);
202   return OS;
203 }
204 
205 /// An object of this class is returned by queries that could not be answered.
206 /// For example, if you ask for the number of iterations of a linked-list
207 /// traversal loop, you will get one of these.  None of the standard SCEV
208 /// operations are valid on this class, it is just a marker.
209 struct SCEVCouldNotCompute : public SCEV {
210   SCEVCouldNotCompute();
211 
212   /// Methods for support type inquiry through isa, cast, and dyn_cast:
213   static bool classof(const SCEV *S);
214 };
215 
216 /// This class represents an assumption made using SCEV expressions which can
217 /// be checked at run-time.
218 class SCEVPredicate : public FoldingSetNode {
219   friend struct FoldingSetTrait<SCEVPredicate>;
220 
221   /// A reference to an Interned FoldingSetNodeID for this node.  The
222   /// ScalarEvolution's BumpPtrAllocator holds the data.
223   FoldingSetNodeIDRef FastID;
224 
225 public:
226   enum SCEVPredicateKind { P_Union, P_Compare, P_Wrap };
227 
228 protected:
229   SCEVPredicateKind Kind;
230   ~SCEVPredicate() = default;
231   SCEVPredicate(const SCEVPredicate &) = default;
232   SCEVPredicate &operator=(const SCEVPredicate &) = default;
233 
234 public:
235   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
236 
237   SCEVPredicateKind getKind() const { return Kind; }
238 
239   /// Returns the estimated complexity of this predicate.  This is roughly
240   /// measured in the number of run-time checks required.
241   virtual unsigned getComplexity() const { return 1; }
242 
243   /// Returns true if the predicate is always true. This means that no
244   /// assumptions were made and nothing needs to be checked at run-time.
245   virtual bool isAlwaysTrue() const = 0;
246 
247   /// Returns true if this predicate implies \p N.
248   virtual bool implies(const SCEVPredicate *N) const = 0;
249 
250   /// Prints a textual representation of this predicate with an indentation of
251   /// \p Depth.
252   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
253 };
254 
255 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
256   P.print(OS);
257   return OS;
258 }
259 
260 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
261 // temporary FoldingSetNodeID values.
262 template <>
263 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
264   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
265     ID = X.FastID;
266   }
267 
268   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
269                      unsigned IDHash, FoldingSetNodeID &TempID) {
270     return ID == X.FastID;
271   }
272 
273   static unsigned ComputeHash(const SCEVPredicate &X,
274                               FoldingSetNodeID &TempID) {
275     return X.FastID.ComputeHash();
276   }
277 };
278 
279 /// This class represents an assumption that the expression LHS Pred RHS
280 /// evaluates to true, and this can be checked at run-time.
281 class SCEVComparePredicate final : public SCEVPredicate {
282   /// We assume that LHS Pred RHS is true.
283   const ICmpInst::Predicate Pred;
284   const SCEV *LHS;
285   const SCEV *RHS;
286 
287 public:
288   SCEVComparePredicate(const FoldingSetNodeIDRef ID,
289                        const ICmpInst::Predicate Pred,
290                        const SCEV *LHS, const SCEV *RHS);
291 
292   /// Implementation of the SCEVPredicate interface
293   bool implies(const SCEVPredicate *N) const override;
294   void print(raw_ostream &OS, unsigned Depth = 0) const override;
295   bool isAlwaysTrue() const override;
296 
297   ICmpInst::Predicate getPredicate() const { return Pred; }
298 
299   /// Returns the left hand side of the predicate.
300   const SCEV *getLHS() const { return LHS; }
301 
302   /// Returns the right hand side of the predicate.
303   const SCEV *getRHS() const { return RHS; }
304 
305   /// Methods for support type inquiry through isa, cast, and dyn_cast:
306   static bool classof(const SCEVPredicate *P) {
307     return P->getKind() == P_Compare;
308   }
309 };
310 
311 /// This class represents an assumption made on an AddRec expression. Given an
312 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
313 /// flags (defined below) in the first X iterations of the loop, where X is a
314 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
315 ///
316 /// Note that this does not imply that X is equal to the backedge taken
317 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
318 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
319 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
320 /// have more than X iterations.
321 class SCEVWrapPredicate final : public SCEVPredicate {
322 public:
323   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
324   /// for FlagNUSW. The increment is considered to be signed, and a + b
325   /// (where b is the increment) is considered to wrap if:
326   ///    zext(a + b) != zext(a) + sext(b)
327   ///
328   /// If Signed is a function that takes an n-bit tuple and maps to the
329   /// integer domain as the tuples value interpreted as twos complement,
330   /// and Unsigned a function that takes an n-bit tuple and maps to the
331   /// integer domain as as the base two value of input tuple, then a + b
332   /// has IncrementNUSW iff:
333   ///
334   /// 0 <= Unsigned(a) + Signed(b) < 2^n
335   ///
336   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
337   ///
338   /// Note that the IncrementNUSW flag is not commutative: if base + inc
339   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
340   /// property. The reason for this is that this is used for sign/zero
341   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
342   /// assumed. A {base,+,inc} expression is already non-commutative with
343   /// regards to base and inc, since it is interpreted as:
344   ///     (((base + inc) + inc) + inc) ...
345   enum IncrementWrapFlags {
346     IncrementAnyWrap = 0,     // No guarantee.
347     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
348     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
349                               // (equivalent with SCEV::NSW)
350     IncrementNoWrapMask = (1 << 2) - 1
351   };
352 
353   /// Convenient IncrementWrapFlags manipulation methods.
354   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
355   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
356              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
357     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
358     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
359            "Invalid flags value!");
360     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
361   }
362 
363   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
364   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
365     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
366     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
367 
368     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
369   }
370 
371   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
372   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
373            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
374     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
375     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
376            "Invalid flags value!");
377 
378     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
379   }
380 
381   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
382   /// SCEVAddRecExpr.
383   [[nodiscard]] static SCEVWrapPredicate::IncrementWrapFlags
384   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
385 
386 private:
387   const SCEVAddRecExpr *AR;
388   IncrementWrapFlags Flags;
389 
390 public:
391   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
392                              const SCEVAddRecExpr *AR,
393                              IncrementWrapFlags Flags);
394 
395   /// Returns the set assumed no overflow flags.
396   IncrementWrapFlags getFlags() const { return Flags; }
397 
398   /// Implementation of the SCEVPredicate interface
399   const SCEVAddRecExpr *getExpr() const;
400   bool implies(const SCEVPredicate *N) const override;
401   void print(raw_ostream &OS, unsigned Depth = 0) const override;
402   bool isAlwaysTrue() const override;
403 
404   /// Methods for support type inquiry through isa, cast, and dyn_cast:
405   static bool classof(const SCEVPredicate *P) {
406     return P->getKind() == P_Wrap;
407   }
408 };
409 
410 /// This class represents a composition of other SCEV predicates, and is the
411 /// class that most clients will interact with.  This is equivalent to a
412 /// logical "AND" of all the predicates in the union.
413 ///
414 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
415 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
416 class SCEVUnionPredicate final : public SCEVPredicate {
417 private:
418   using PredicateMap =
419       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
420 
421   /// Vector with references to all predicates in this union.
422   SmallVector<const SCEVPredicate *, 16> Preds;
423 
424   /// Adds a predicate to this union.
425   void add(const SCEVPredicate *N);
426 
427 public:
428   SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds);
429 
430   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
431     return Preds;
432   }
433 
434   /// Implementation of the SCEVPredicate interface
435   bool isAlwaysTrue() const override;
436   bool implies(const SCEVPredicate *N) const override;
437   void print(raw_ostream &OS, unsigned Depth) const override;
438 
439   /// We estimate the complexity of a union predicate as the size number of
440   /// predicates in the union.
441   unsigned getComplexity() const override { return Preds.size(); }
442 
443   /// Methods for support type inquiry through isa, cast, and dyn_cast:
444   static bool classof(const SCEVPredicate *P) {
445     return P->getKind() == P_Union;
446   }
447 };
448 
449 /// The main scalar evolution driver. Because client code (intentionally)
450 /// can't do much with the SCEV objects directly, they must ask this class
451 /// for services.
452 class ScalarEvolution {
453   friend class ScalarEvolutionsTest;
454 
455 public:
456   /// An enum describing the relationship between a SCEV and a loop.
457   enum LoopDisposition {
458     LoopVariant,   ///< The SCEV is loop-variant (unknown).
459     LoopInvariant, ///< The SCEV is loop-invariant.
460     LoopComputable ///< The SCEV varies predictably with the loop.
461   };
462 
463   /// An enum describing the relationship between a SCEV and a basic block.
464   enum BlockDisposition {
465     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
466     DominatesBlock,        ///< The SCEV dominates the block.
467     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
468   };
469 
470   /// Convenient NoWrapFlags manipulation that hides enum casts and is
471   /// visible in the ScalarEvolution name space.
472   [[nodiscard]] static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
473                                                    int Mask) {
474     return (SCEV::NoWrapFlags)(Flags & Mask);
475   }
476   [[nodiscard]] static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
477                                                   SCEV::NoWrapFlags OnFlags) {
478     return (SCEV::NoWrapFlags)(Flags | OnFlags);
479   }
480   [[nodiscard]] static SCEV::NoWrapFlags
481   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
482     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
483   }
484   [[nodiscard]] static bool hasFlags(SCEV::NoWrapFlags Flags,
485                                      SCEV::NoWrapFlags TestFlags) {
486     return TestFlags == maskFlags(Flags, TestFlags);
487   };
488 
489   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
490                   DominatorTree &DT, LoopInfo &LI);
491   ScalarEvolution(ScalarEvolution &&Arg);
492   ~ScalarEvolution();
493 
494   LLVMContext &getContext() const { return F.getContext(); }
495 
496   /// Test if values of the given type are analyzable within the SCEV
497   /// framework. This primarily includes integer types, and it can optionally
498   /// include pointer types if the ScalarEvolution class has access to
499   /// target-specific information.
500   bool isSCEVable(Type *Ty) const;
501 
502   /// Return the size in bits of the specified type, for which isSCEVable must
503   /// return true.
504   uint64_t getTypeSizeInBits(Type *Ty) const;
505 
506   /// Return a type with the same bitwidth as the given type and which
507   /// represents how SCEV will treat the given type, for which isSCEVable must
508   /// return true. For pointer types, this is the pointer-sized integer type.
509   Type *getEffectiveSCEVType(Type *Ty) const;
510 
511   // Returns a wider type among {Ty1, Ty2}.
512   Type *getWiderType(Type *Ty1, Type *Ty2) const;
513 
514   /// Return true if there exists a point in the program at which both
515   /// A and B could be operands to the same instruction.
516   /// SCEV expressions are generally assumed to correspond to instructions
517   /// which could exists in IR.  In general, this requires that there exists
518   /// a use point in the program where all operands dominate the use.
519   ///
520   /// Example:
521   /// loop {
522   ///   if
523   ///     loop { v1 = load @global1; }
524   ///   else
525   ///     loop { v2 = load @global2; }
526   /// }
527   /// No SCEV with operand V1, and v2 can exist in this program.
528   bool instructionCouldExistWitthOperands(const SCEV *A, const SCEV *B);
529 
530   /// Return true if the SCEV is a scAddRecExpr or it contains
531   /// scAddRecExpr. The result will be cached in HasRecMap.
532   bool containsAddRecurrence(const SCEV *S);
533 
534   /// Is operation \p BinOp between \p LHS and \p RHS provably does not have
535   /// a signed/unsigned overflow (\p Signed)? If \p CtxI is specified, the
536   /// no-overflow fact should be true in the context of this instruction.
537   bool willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
538                        const SCEV *LHS, const SCEV *RHS,
539                        const Instruction *CtxI = nullptr);
540 
541   /// Parse NSW/NUW flags from add/sub/mul IR binary operation \p Op into
542   /// SCEV no-wrap flags, and deduce flag[s] that aren't known yet.
543   /// Does not mutate the original instruction. Returns std::nullopt if it could
544   /// not deduce more precise flags than the instruction already has, otherwise
545   /// returns proven flags.
546   std::optional<SCEV::NoWrapFlags>
547   getStrengthenedNoWrapFlagsFromBinOp(const OverflowingBinaryOperator *OBO);
548 
549   /// Notify this ScalarEvolution that \p User directly uses SCEVs in \p Ops.
550   void registerUser(const SCEV *User, ArrayRef<const SCEV *> Ops);
551 
552   /// Return true if the SCEV expression contains an undef value.
553   bool containsUndefs(const SCEV *S) const;
554 
555   /// Return true if the SCEV expression contains a Value that has been
556   /// optimised out and is now a nullptr.
557   bool containsErasedValue(const SCEV *S) const;
558 
559   /// Return a SCEV expression for the full generality of the specified
560   /// expression.
561   const SCEV *getSCEV(Value *V);
562 
563   const SCEV *getConstant(ConstantInt *V);
564   const SCEV *getConstant(const APInt &Val);
565   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
566   const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
567   const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
568   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
569   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
570   const SCEV *getZeroExtendExprImpl(const SCEV *Op, Type *Ty,
571                                     unsigned Depth = 0);
572   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
573   const SCEV *getSignExtendExprImpl(const SCEV *Op, Type *Ty,
574                                     unsigned Depth = 0);
575   const SCEV *getCastExpr(SCEVTypes Kind, const SCEV *Op, Type *Ty);
576   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
577   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
578                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
579                          unsigned Depth = 0);
580   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
581                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
582                          unsigned Depth = 0) {
583     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
584     return getAddExpr(Ops, Flags, Depth);
585   }
586   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
587                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
588                          unsigned Depth = 0) {
589     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
590     return getAddExpr(Ops, Flags, Depth);
591   }
592   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
593                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
594                          unsigned Depth = 0);
595   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
596                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
597                          unsigned Depth = 0) {
598     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
599     return getMulExpr(Ops, Flags, Depth);
600   }
601   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
602                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
603                          unsigned Depth = 0) {
604     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
605     return getMulExpr(Ops, Flags, Depth);
606   }
607   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
608   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
609   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
610   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
611                             SCEV::NoWrapFlags Flags);
612   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
613                             const Loop *L, SCEV::NoWrapFlags Flags);
614   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
615                             const Loop *L, SCEV::NoWrapFlags Flags) {
616     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
617     return getAddRecExpr(NewOp, L, Flags);
618   }
619 
620   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
621   /// Predicates. If successful return these <AddRecExpr, Predicates>;
622   /// The function is intended to be called from PSCEV (the caller will decide
623   /// whether to actually add the predicates and carry out the rewrites).
624   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
625   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
626 
627   /// Returns an expression for a GEP
628   ///
629   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
630   /// instead we use IndexExprs.
631   /// \p IndexExprs The expressions for the indices.
632   const SCEV *getGEPExpr(GEPOperator *GEP,
633                          const SmallVectorImpl<const SCEV *> &IndexExprs);
634   const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
635   const SCEV *getMinMaxExpr(SCEVTypes Kind,
636                             SmallVectorImpl<const SCEV *> &Operands);
637   const SCEV *getSequentialMinMaxExpr(SCEVTypes Kind,
638                                       SmallVectorImpl<const SCEV *> &Operands);
639   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
640   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
641   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
642   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
643   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
644   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
645   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS,
646                           bool Sequential = false);
647   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands,
648                           bool Sequential = false);
649   const SCEV *getUnknown(Value *V);
650   const SCEV *getCouldNotCompute();
651 
652   /// Return a SCEV for the constant 0 of a specific type.
653   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
654 
655   /// Return a SCEV for the constant 1 of a specific type.
656   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
657 
658   /// Return a SCEV for the constant -1 of a specific type.
659   const SCEV *getMinusOne(Type *Ty) {
660     return getConstant(Ty, -1, /*isSigned=*/true);
661   }
662 
663   /// Return an expression for sizeof ScalableTy that is type IntTy, where
664   /// ScalableTy is a scalable vector type.
665   const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
666                                           ScalableVectorType *ScalableTy);
667 
668   /// Return an expression for the alloc size of AllocTy that is type IntTy
669   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
670 
671   /// Return an expression for the store size of StoreTy that is type IntTy
672   const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
673 
674   /// Return an expression for offsetof on the given field with type IntTy
675   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
676 
677   /// Return the SCEV object corresponding to -V.
678   const SCEV *getNegativeSCEV(const SCEV *V,
679                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
680 
681   /// Return the SCEV object corresponding to ~V.
682   const SCEV *getNotSCEV(const SCEV *V);
683 
684   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
685   ///
686   /// If the LHS and RHS are pointers which don't share a common base
687   /// (according to getPointerBase()), this returns a SCEVCouldNotCompute.
688   /// To compute the difference between two unrelated pointers, you can
689   /// explicitly convert the arguments using getPtrToIntExpr(), for pointer
690   /// types that support it.
691   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
692                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
693                            unsigned Depth = 0);
694 
695   /// Compute ceil(N / D). N and D are treated as unsigned values.
696   ///
697   /// Since SCEV doesn't have native ceiling division, this generates a
698   /// SCEV expression of the following form:
699   ///
700   /// umin(N, 1) + floor((N - umin(N, 1)) / D)
701   ///
702   /// A denominator of zero or poison is handled the same way as getUDivExpr().
703   const SCEV *getUDivCeilSCEV(const SCEV *N, const SCEV *D);
704 
705   /// Return a SCEV corresponding to a conversion of the input value to the
706   /// specified type.  If the type must be extended, it is zero extended.
707   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
708                                       unsigned Depth = 0);
709 
710   /// Return a SCEV corresponding to a conversion of the input value to the
711   /// specified type.  If the type must be extended, it is sign extended.
712   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
713                                       unsigned Depth = 0);
714 
715   /// Return a SCEV corresponding to a conversion of the input value to the
716   /// specified type.  If the type must be extended, it is zero extended.  The
717   /// conversion must not be narrowing.
718   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
719 
720   /// Return a SCEV corresponding to a conversion of the input value to the
721   /// specified type.  If the type must be extended, it is sign extended.  The
722   /// conversion must not be narrowing.
723   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
724 
725   /// Return a SCEV corresponding to a conversion of the input value to the
726   /// specified type. If the type must be extended, it is extended with
727   /// unspecified bits. The conversion must not be narrowing.
728   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
729 
730   /// Return a SCEV corresponding to a conversion of the input value to the
731   /// specified type.  The conversion must not be widening.
732   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
733 
734   /// Promote the operands to the wider of the types using zero-extension, and
735   /// then perform a umax operation with them.
736   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
737 
738   /// Promote the operands to the wider of the types using zero-extension, and
739   /// then perform a umin operation with them.
740   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS,
741                                          bool Sequential = false);
742 
743   /// Promote the operands to the wider of the types using zero-extension, and
744   /// then perform a umin operation with them. N-ary function.
745   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
746                                          bool Sequential = false);
747 
748   /// Transitively follow the chain of pointer-type operands until reaching a
749   /// SCEV that does not have a single pointer operand. This returns a
750   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
751   /// cases do exist.
752   const SCEV *getPointerBase(const SCEV *V);
753 
754   /// Compute an expression equivalent to S - getPointerBase(S).
755   const SCEV *removePointerBase(const SCEV *S);
756 
757   /// Return a SCEV expression for the specified value at the specified scope
758   /// in the program.  The L value specifies a loop nest to evaluate the
759   /// expression at, where null is the top-level or a specified loop is
760   /// immediately inside of the loop.
761   ///
762   /// This method can be used to compute the exit value for a variable defined
763   /// in a loop by querying what the value will hold in the parent loop.
764   ///
765   /// In the case that a relevant loop exit value cannot be computed, the
766   /// original value V is returned.
767   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
768 
769   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
770   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
771 
772   /// Test whether entry to the loop is protected by a conditional between LHS
773   /// and RHS.  This is used to help avoid max expressions in loop trip
774   /// counts, and to eliminate casts.
775   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
776                                 const SCEV *LHS, const SCEV *RHS);
777 
778   /// Test whether entry to the basic block is protected by a conditional
779   /// between LHS and RHS.
780   bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
781                                       ICmpInst::Predicate Pred, const SCEV *LHS,
782                                       const SCEV *RHS);
783 
784   /// Test whether the backedge of the loop is protected by a conditional
785   /// between LHS and RHS.  This is used to eliminate casts.
786   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
787                                    const SCEV *LHS, const SCEV *RHS);
788 
789   /// Convert from an "exit count" (i.e. "backedge taken count") to a "trip
790   /// count".  A "trip count" is the number of times the header of the loop
791   /// will execute if an exit is taken after the specified number of backedges
792   /// have been taken.  (e.g. TripCount = ExitCount + 1).  Note that the
793   /// expression can overflow if ExitCount = UINT_MAX.  \p Extend controls
794   /// how potential overflow is handled.  If true, a wider result type is
795   /// returned. ex: EC = 255 (i8), TC = 256 (i9).  If false, result unsigned
796   /// wraps with 2s-complement semantics.  ex: EC = 255 (i8), TC = 0 (i8)
797   const SCEV *getTripCountFromExitCount(const SCEV *ExitCount,
798                                         bool Extend = true);
799 
800   /// Returns the exact trip count of the loop if we can compute it, and
801   /// the result is a small constant.  '0' is used to represent an unknown
802   /// or non-constant trip count.  Note that a trip count is simply one more
803   /// than the backedge taken count for the loop.
804   unsigned getSmallConstantTripCount(const Loop *L);
805 
806   /// Return the exact trip count for this loop if we exit through ExitingBlock.
807   /// '0' is used to represent an unknown or non-constant trip count.  Note
808   /// that a trip count is simply one more than the backedge taken count for
809   /// the same exit.
810   /// This "trip count" assumes that control exits via ExitingBlock. More
811   /// precisely, it is the number of times that control will reach ExitingBlock
812   /// before taking the branch. For loops with multiple exits, it may not be
813   /// the number times that the loop header executes if the loop exits
814   /// prematurely via another branch.
815   unsigned getSmallConstantTripCount(const Loop *L,
816                                      const BasicBlock *ExitingBlock);
817 
818   /// Returns the upper bound of the loop trip count as a normal unsigned
819   /// value.
820   /// Returns 0 if the trip count is unknown or not constant.
821   unsigned getSmallConstantMaxTripCount(const Loop *L);
822 
823   /// Returns the upper bound of the loop trip count infered from array size.
824   /// Can not access bytes starting outside the statically allocated size
825   /// without being immediate UB.
826   /// Returns SCEVCouldNotCompute if the trip count could not inferred
827   /// from array accesses.
828   const SCEV *getConstantMaxTripCountFromArray(const Loop *L);
829 
830   /// Returns the largest constant divisor of the trip count as a normal
831   /// unsigned value, if possible. This means that the actual trip count is
832   /// always a multiple of the returned value. Returns 1 if the trip count is
833   /// unknown or not guaranteed to be the multiple of a constant., Will also
834   /// return 1 if the trip count is very large (>= 2^32).
835   /// Note that the argument is an exit count for loop L, NOT a trip count.
836   unsigned getSmallConstantTripMultiple(const Loop *L,
837                                         const SCEV *ExitCount);
838 
839   /// Returns the largest constant divisor of the trip count of the
840   /// loop.  Will return 1 if no trip count could be computed, or if a
841   /// divisor could not be found.
842   unsigned getSmallConstantTripMultiple(const Loop *L);
843 
844   /// Returns the largest constant divisor of the trip count of this loop as a
845   /// normal unsigned value, if possible. This means that the actual trip
846   /// count is always a multiple of the returned value (don't forget the trip
847   /// count could very well be zero as well!). As explained in the comments
848   /// for getSmallConstantTripCount, this assumes that control exits the loop
849   /// via ExitingBlock.
850   unsigned getSmallConstantTripMultiple(const Loop *L,
851                                         const BasicBlock *ExitingBlock);
852 
853   /// The terms "backedge taken count" and "exit count" are used
854   /// interchangeably to refer to the number of times the backedge of a loop
855   /// has executed before the loop is exited.
856   enum ExitCountKind {
857     /// An expression exactly describing the number of times the backedge has
858     /// executed when a loop is exited.
859     Exact,
860     /// A constant which provides an upper bound on the exact trip count.
861     ConstantMaximum,
862     /// An expression which provides an upper bound on the exact trip count.
863     SymbolicMaximum,
864   };
865 
866   /// Return the number of times the backedge executes before the given exit
867   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
868   /// For a single exit loop, this value is equivelent to the result of
869   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
870   /// before the backedge is executed (ExitCount + 1) times.  Note that there
871   /// is no guarantee about *which* exit is taken on the exiting iteration.
872   const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
873                            ExitCountKind Kind = Exact);
874 
875   /// If the specified loop has a predictable backedge-taken count, return it,
876   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
877   /// the number of times the loop header will be branched to from within the
878   /// loop, assuming there are no abnormal exists like exception throws. This is
879   /// one less than the trip count of the loop, since it doesn't count the first
880   /// iteration, when the header is branched to from outside the loop.
881   ///
882   /// Note that it is not valid to call this method on a loop without a
883   /// loop-invariant backedge-taken count (see
884   /// hasLoopInvariantBackedgeTakenCount).
885   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
886 
887   /// Similar to getBackedgeTakenCount, except it will add a set of
888   /// SCEV predicates to Predicates that are required to be true in order for
889   /// the answer to be correct. Predicates can be checked with run-time
890   /// checks and can be used to perform loop versioning.
891   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
892                                               SmallVector<const SCEVPredicate *, 4> &Predicates);
893 
894   /// When successful, this returns a SCEVConstant that is greater than or equal
895   /// to (i.e. a "conservative over-approximation") of the value returend by
896   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
897   /// SCEVCouldNotCompute object.
898   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
899     return getBackedgeTakenCount(L, ConstantMaximum);
900   }
901 
902   /// When successful, this returns a SCEV that is greater than or equal
903   /// to (i.e. a "conservative over-approximation") of the value returend by
904   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
905   /// SCEVCouldNotCompute object.
906   const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
907     return getBackedgeTakenCount(L, SymbolicMaximum);
908   }
909 
910   /// Return true if the backedge taken count is either the value returned by
911   /// getConstantMaxBackedgeTakenCount or zero.
912   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
913 
914   /// Return true if the specified loop has an analyzable loop-invariant
915   /// backedge-taken count.
916   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
917 
918   // This method should be called by the client when it made any change that
919   // would invalidate SCEV's answers, and the client wants to remove all loop
920   // information held internally by ScalarEvolution. This is intended to be used
921   // when the alternative to forget a loop is too expensive (i.e. large loop
922   // bodies).
923   void forgetAllLoops();
924 
925   /// This method should be called by the client when it has changed a loop in
926   /// a way that may effect ScalarEvolution's ability to compute a trip count,
927   /// or if the loop is deleted.  This call is potentially expensive for large
928   /// loop bodies.
929   void forgetLoop(const Loop *L);
930 
931   // This method invokes forgetLoop for the outermost loop of the given loop
932   // \p L, making ScalarEvolution forget about all this subtree. This needs to
933   // be done whenever we make a transform that may affect the parameters of the
934   // outer loop, such as exit counts for branches.
935   void forgetTopmostLoop(const Loop *L);
936 
937   /// This method should be called by the client when it has changed a value
938   /// in a way that may effect its value, or which may disconnect it from a
939   /// def-use chain linking it to a loop.
940   void forgetValue(Value *V);
941 
942   /// Called when the client has changed the disposition of values in
943   /// this loop.
944   ///
945   /// We don't have a way to invalidate per-loop dispositions. Clear and
946   /// recompute is simpler.
947   void forgetLoopDispositions();
948 
949   /// Called when the client has changed the disposition of values in
950   /// a loop or block.
951   ///
952   /// We don't have a way to invalidate per-loop/per-block dispositions. Clear
953   /// and recompute is simpler.
954   void forgetBlockAndLoopDispositions(Value *V = nullptr);
955 
956   /// Determine the minimum number of zero bits that S is guaranteed to end in
957   /// (at every loop iteration).  It is, at the same time, the minimum number
958   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
959   /// If S is guaranteed to be 0, it returns the bitwidth of S.
960   uint32_t GetMinTrailingZeros(const SCEV *S);
961 
962   /// Determine the unsigned range for a particular SCEV.
963   /// NOTE: This returns a copy of the reference returned by getRangeRef.
964   ConstantRange getUnsignedRange(const SCEV *S) {
965     return getRangeRef(S, HINT_RANGE_UNSIGNED);
966   }
967 
968   /// Determine the min of the unsigned range for a particular SCEV.
969   APInt getUnsignedRangeMin(const SCEV *S) {
970     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
971   }
972 
973   /// Determine the max of the unsigned range for a particular SCEV.
974   APInt getUnsignedRangeMax(const SCEV *S) {
975     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
976   }
977 
978   /// Determine the signed range for a particular SCEV.
979   /// NOTE: This returns a copy of the reference returned by getRangeRef.
980   ConstantRange getSignedRange(const SCEV *S) {
981     return getRangeRef(S, HINT_RANGE_SIGNED);
982   }
983 
984   /// Determine the min of the signed range for a particular SCEV.
985   APInt getSignedRangeMin(const SCEV *S) {
986     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
987   }
988 
989   /// Determine the max of the signed range for a particular SCEV.
990   APInt getSignedRangeMax(const SCEV *S) {
991     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
992   }
993 
994   /// Test if the given expression is known to be negative.
995   bool isKnownNegative(const SCEV *S);
996 
997   /// Test if the given expression is known to be positive.
998   bool isKnownPositive(const SCEV *S);
999 
1000   /// Test if the given expression is known to be non-negative.
1001   bool isKnownNonNegative(const SCEV *S);
1002 
1003   /// Test if the given expression is known to be non-positive.
1004   bool isKnownNonPositive(const SCEV *S);
1005 
1006   /// Test if the given expression is known to be non-zero.
1007   bool isKnownNonZero(const SCEV *S);
1008 
1009   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
1010   /// \p S by substitution of all AddRec sub-expression related to loop \p L
1011   /// with initial value of that SCEV. The second is obtained from \p S by
1012   /// substitution of all AddRec sub-expressions related to loop \p L with post
1013   /// increment of this AddRec in the loop \p L. In both cases all other AddRec
1014   /// sub-expressions (not related to \p L) remain the same.
1015   /// If the \p S contains non-invariant unknown SCEV the function returns
1016   /// CouldNotCompute SCEV in both values of std::pair.
1017   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
1018   /// the function returns pair:
1019   /// first = {0, +, 1}<L2>
1020   /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
1021   /// We can see that for the first AddRec sub-expression it was replaced with
1022   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
1023   /// increment value) for the second one. In both cases AddRec expression
1024   /// related to L2 remains the same.
1025   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
1026                                                                 const SCEV *S);
1027 
1028   /// We'd like to check the predicate on every iteration of the most dominated
1029   /// loop between loops used in LHS and RHS.
1030   /// To do this we use the following list of steps:
1031   /// 1. Collect set S all loops on which either LHS or RHS depend.
1032   /// 2. If S is non-empty
1033   /// a. Let PD be the element of S which is dominated by all other elements.
1034   /// b. Let E(LHS) be value of LHS on entry of PD.
1035   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
1036   ///    attached to PD on with their entry values.
1037   ///    Define E(RHS) in the same way.
1038   /// c. Let B(LHS) be value of L on backedge of PD.
1039   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
1040   ///    attached to PD on with their backedge values.
1041   ///    Define B(RHS) in the same way.
1042   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
1043   ///    so we can assert on that.
1044   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
1045   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
1046   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
1047                            const SCEV *RHS);
1048 
1049   /// Test if the given expression is known to satisfy the condition described
1050   /// by Pred, LHS, and RHS.
1051   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1052                         const SCEV *RHS);
1053 
1054   /// Check whether the condition described by Pred, LHS, and RHS is true or
1055   /// false. If we know it, return the evaluation of this condition. If neither
1056   /// is proved, return std::nullopt.
1057   std::optional<bool> evaluatePredicate(ICmpInst::Predicate Pred,
1058                                         const SCEV *LHS, const SCEV *RHS);
1059 
1060   /// Test if the given expression is known to satisfy the condition described
1061   /// by Pred, LHS, and RHS in the given Context.
1062   bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
1063                           const SCEV *RHS, const Instruction *CtxI);
1064 
1065   /// Check whether the condition described by Pred, LHS, and RHS is true or
1066   /// false in the given \p Context. If we know it, return the evaluation of
1067   /// this condition. If neither is proved, return std::nullopt.
1068   std::optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred,
1069                                           const SCEV *LHS, const SCEV *RHS,
1070                                           const Instruction *CtxI);
1071 
1072   /// Test if the condition described by Pred, LHS, RHS is known to be true on
1073   /// every iteration of the loop of the recurrency LHS.
1074   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
1075                                const SCEVAddRecExpr *LHS, const SCEV *RHS);
1076 
1077   /// Information about the number of loop iterations for which a loop exit's
1078   /// branch condition evaluates to the not-taken path.  This is a temporary
1079   /// pair of exact and max expressions that are eventually summarized in
1080   /// ExitNotTakenInfo and BackedgeTakenInfo.
1081   struct ExitLimit {
1082     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1083     const SCEV *ConstantMaxNotTaken; // The exit is not taken at most this many
1084                                      // times
1085     const SCEV *SymbolicMaxNotTaken;
1086 
1087     // Not taken either exactly ConstantMaxNotTaken or zero times
1088     bool MaxOrZero = false;
1089 
1090     /// A set of predicate guards for this ExitLimit. The result is only valid
1091     /// if all of the predicates in \c Predicates evaluate to 'true' at
1092     /// run-time.
1093     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1094 
1095     void addPredicate(const SCEVPredicate *P) {
1096       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1097       Predicates.insert(P);
1098     }
1099 
1100     /// Construct either an exact exit limit from a constant, or an unknown
1101     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1102     /// as arguments and asserts enforce that internally.
1103     /*implicit*/ ExitLimit(const SCEV *E);
1104 
1105     ExitLimit(
1106         const SCEV *E, const SCEV *ConstantMaxNotTaken,
1107         const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1108         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList =
1109             std::nullopt);
1110 
1111     ExitLimit(const SCEV *E, const SCEV *ConstantMaxNotTaken,
1112               const SCEV *SymbolicMaxNotTaken, bool MaxOrZero,
1113               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1114 
1115     /// Test whether this ExitLimit contains any computed information, or
1116     /// whether it's all SCEVCouldNotCompute values.
1117     bool hasAnyInfo() const {
1118       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1119              !isa<SCEVCouldNotCompute>(ConstantMaxNotTaken);
1120     }
1121 
1122     /// Test whether this ExitLimit contains all information.
1123     bool hasFullInfo() const {
1124       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1125     }
1126   };
1127 
1128   /// Compute the number of times the backedge of the specified loop will
1129   /// execute if its exit condition were a conditional branch of ExitCond.
1130   ///
1131   /// \p ControlsExit is true if ExitCond directly controls the exit
1132   /// branch. In this case, we can assume that the loop exits only if the
1133   /// condition is true and can infer that failing to meet the condition prior
1134   /// to integer wraparound results in undefined behavior.
1135   ///
1136   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1137   /// SCEV predicates in order to return an exact answer.
1138   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1139                                      bool ExitIfTrue, bool ControlsExit,
1140                                      bool AllowPredicates = false);
1141 
1142   /// A predicate is said to be monotonically increasing if may go from being
1143   /// false to being true as the loop iterates, but never the other way
1144   /// around.  A predicate is said to be monotonically decreasing if may go
1145   /// from being true to being false as the loop iterates, but never the other
1146   /// way around.
1147   enum MonotonicPredicateType {
1148     MonotonicallyIncreasing,
1149     MonotonicallyDecreasing
1150   };
1151 
1152   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
1153   /// monotonically increasing or decreasing, returns
1154   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
1155   /// respectively. If we could not prove either of these facts, returns
1156   /// std::nullopt.
1157   std::optional<MonotonicPredicateType>
1158   getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
1159                             ICmpInst::Predicate Pred);
1160 
1161   struct LoopInvariantPredicate {
1162     ICmpInst::Predicate Pred;
1163     const SCEV *LHS;
1164     const SCEV *RHS;
1165 
1166     LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1167                            const SCEV *RHS)
1168         : Pred(Pred), LHS(LHS), RHS(RHS) {}
1169   };
1170   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1171   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
1172   /// invariants, available at L's entry. Otherwise, return std::nullopt.
1173   std::optional<LoopInvariantPredicate>
1174   getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
1175                             const SCEV *RHS, const Loop *L,
1176                             const Instruction *CtxI = nullptr);
1177 
1178   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
1179   /// respect to L at given Context during at least first MaxIter iterations,
1180   /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1181   /// available at L's entry. Otherwise, return std::nullopt. The predicate
1182   /// should be the loop's exit condition.
1183   std::optional<LoopInvariantPredicate>
1184   getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1185                                                 const SCEV *LHS,
1186                                                 const SCEV *RHS, const Loop *L,
1187                                                 const Instruction *CtxI,
1188                                                 const SCEV *MaxIter);
1189 
1190   std::optional<LoopInvariantPredicate>
1191   getLoopInvariantExitCondDuringFirstIterationsImpl(
1192       ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
1193       const Instruction *CtxI, const SCEV *MaxIter);
1194 
1195   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1196   /// iff any changes were made. If the operands are provably equal or
1197   /// unequal, LHS and RHS are set to the same value and Pred is set to either
1198   /// ICMP_EQ or ICMP_NE. ControllingFiniteLoop is set if this comparison
1199   /// controls the exit of a loop known to have a finite number of iterations.
1200   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1201                             const SCEV *&RHS, unsigned Depth = 0,
1202                             bool ControllingFiniteLoop = false);
1203 
1204   /// Return the "disposition" of the given SCEV with respect to the given
1205   /// loop.
1206   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1207 
1208   /// Return true if the value of the given SCEV is unchanging in the
1209   /// specified loop.
1210   bool isLoopInvariant(const SCEV *S, const Loop *L);
1211 
1212   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1213   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1214   /// the header of loop L.
1215   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1216 
1217   /// Return true if the given SCEV changes value in a known way in the
1218   /// specified loop.  This property being true implies that the value is
1219   /// variant in the loop AND that we can emit an expression to compute the
1220   /// value of the expression at any particular loop iteration.
1221   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1222 
1223   /// Return the "disposition" of the given SCEV with respect to the given
1224   /// block.
1225   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1226 
1227   /// Return true if elements that makes up the given SCEV dominate the
1228   /// specified basic block.
1229   bool dominates(const SCEV *S, const BasicBlock *BB);
1230 
1231   /// Return true if elements that makes up the given SCEV properly dominate
1232   /// the specified basic block.
1233   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1234 
1235   /// Test whether the given SCEV has Op as a direct or indirect operand.
1236   bool hasOperand(const SCEV *S, const SCEV *Op) const;
1237 
1238   /// Return the size of an element read or written by Inst.
1239   const SCEV *getElementSize(Instruction *Inst);
1240 
1241   void print(raw_ostream &OS) const;
1242   void verify() const;
1243   bool invalidate(Function &F, const PreservedAnalyses &PA,
1244                   FunctionAnalysisManager::Invalidator &Inv);
1245 
1246   /// Return the DataLayout associated with the module this SCEV instance is
1247   /// operating on.
1248   const DataLayout &getDataLayout() const {
1249     return F.getParent()->getDataLayout();
1250   }
1251 
1252   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1253   const SCEVPredicate *getComparePredicate(ICmpInst::Predicate Pred,
1254                                            const SCEV *LHS, const SCEV *RHS);
1255 
1256   const SCEVPredicate *
1257   getWrapPredicate(const SCEVAddRecExpr *AR,
1258                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1259 
1260   /// Re-writes the SCEV according to the Predicates in \p A.
1261   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1262                                     const SCEVPredicate &A);
1263   /// Tries to convert the \p S expression to an AddRec expression,
1264   /// adding additional predicates to \p Preds as required.
1265   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1266       const SCEV *S, const Loop *L,
1267       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1268 
1269   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1270   /// constant, and std::nullopt if it isn't.
1271   ///
1272   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1273   /// frugal here since we just bail out of actually constructing and
1274   /// canonicalizing an expression in the cases where the result isn't going
1275   /// to be a constant.
1276   std::optional<APInt> computeConstantDifference(const SCEV *LHS,
1277                                                  const SCEV *RHS);
1278 
1279   /// Update no-wrap flags of an AddRec. This may drop the cached info about
1280   /// this AddRec (such as range info) in case if new flags may potentially
1281   /// sharpen it.
1282   void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1283 
1284   /// Try to apply information from loop guards for \p L to \p Expr.
1285   const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1286 
1287   /// Return true if the loop has no abnormal exits. That is, if the loop
1288   /// is not infinite, it must exit through an explicit edge in the CFG.
1289   /// (As opposed to either a) throwing out of the function or b) entering a
1290   /// well defined infinite loop in some callee.)
1291   bool loopHasNoAbnormalExits(const Loop *L) {
1292     return getLoopProperties(L).HasNoAbnormalExits;
1293   }
1294 
1295   /// Return true if this loop is finite by assumption.  That is,
1296   /// to be infinite, it must also be undefined.
1297   bool loopIsFiniteByAssumption(const Loop *L);
1298 
1299   class FoldID {
1300     SmallVector<unsigned, 5> Bits;
1301 
1302   public:
1303     void addInteger(unsigned long I) {
1304       if (sizeof(long) == sizeof(int))
1305         addInteger(unsigned(I));
1306       else if (sizeof(long) == sizeof(long long))
1307         addInteger((unsigned long long)I);
1308       else
1309         llvm_unreachable("unexpected sizeof(long)");
1310     }
1311     void addInteger(unsigned I) { Bits.push_back(I); }
1312     void addInteger(int I) { Bits.push_back(I); }
1313 
1314     void addInteger(unsigned long long I) {
1315       addInteger(unsigned(I));
1316       addInteger(unsigned(I >> 32));
1317     }
1318 
1319     void addPointer(const void *Ptr) {
1320       // Note: this adds pointers to the hash using sizes and endianness that
1321       // depend on the host. It doesn't matter, however, because hashing on
1322       // pointer values is inherently unstable. Nothing should depend on the
1323       // ordering of nodes in the folding set.
1324       static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
1325                     "unexpected pointer size");
1326       addInteger(reinterpret_cast<uintptr_t>(Ptr));
1327     }
1328 
1329     unsigned computeHash() const {
1330       unsigned Hash = Bits.size();
1331       for (unsigned I = 0; I != Bits.size(); ++I)
1332         Hash = detail::combineHashValue(Hash, Bits[I]);
1333       return Hash;
1334     }
1335     bool operator==(const FoldID &RHS) const {
1336       if (Bits.size() != RHS.Bits.size())
1337         return false;
1338       for (unsigned I = 0; I != Bits.size(); ++I)
1339         if (Bits[I] != RHS.Bits[I])
1340           return false;
1341       return true;
1342     }
1343   };
1344 
1345 private:
1346   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1347   /// Value is deleted.
1348   class SCEVCallbackVH final : public CallbackVH {
1349     ScalarEvolution *SE;
1350 
1351     void deleted() override;
1352     void allUsesReplacedWith(Value *New) override;
1353 
1354   public:
1355     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1356   };
1357 
1358   friend class SCEVCallbackVH;
1359   friend class SCEVExpander;
1360   friend class SCEVUnknown;
1361 
1362   /// The function we are analyzing.
1363   Function &F;
1364 
1365   /// Does the module have any calls to the llvm.experimental.guard intrinsic
1366   /// at all?  If this is false, we avoid doing work that will only help if
1367   /// thare are guards present in the IR.
1368   bool HasGuards;
1369 
1370   /// The target library information for the target we are targeting.
1371   TargetLibraryInfo &TLI;
1372 
1373   /// The tracker for \@llvm.assume intrinsics in this function.
1374   AssumptionCache &AC;
1375 
1376   /// The dominator tree.
1377   DominatorTree &DT;
1378 
1379   /// The loop information for the function we are currently analyzing.
1380   LoopInfo &LI;
1381 
1382   /// This SCEV is used to represent unknown trip counts and things.
1383   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1384 
1385   /// The type for HasRecMap.
1386   using HasRecMapType = DenseMap<const SCEV *, bool>;
1387 
1388   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1389   HasRecMapType HasRecMap;
1390 
1391   /// The type for ExprValueMap.
1392   using ValueSetVector = SmallSetVector<Value *, 4>;
1393   using ExprValueMapType = DenseMap<const SCEV *, ValueSetVector>;
1394 
1395   /// ExprValueMap -- This map records the original values from which
1396   /// the SCEV expr is generated from.
1397   ExprValueMapType ExprValueMap;
1398 
1399   /// The type for ValueExprMap.
1400   using ValueExprMapType =
1401       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1402 
1403   /// This is a cache of the values we have analyzed so far.
1404   ValueExprMapType ValueExprMap;
1405 
1406   /// This is a cache for expressions that got folded to a different existing
1407   /// SCEV.
1408   DenseMap<FoldID, const SCEV *> FoldCache;
1409   DenseMap<const SCEV *, SmallVector<FoldID, 2>> FoldCacheUser;
1410 
1411   /// Mark predicate values currently being processed by isImpliedCond.
1412   SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1413 
1414   /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1415   SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1416 
1417   /// Mark SCEVUnknown Phis currently being processed by getRangeRefIter.
1418   SmallPtrSet<const PHINode *, 6> PendingPhiRangesIter;
1419 
1420   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1421   SmallPtrSet<const PHINode *, 6> PendingMerges;
1422 
1423   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1424   /// conditions dominating the backedge of a loop.
1425   bool WalkingBEDominatingConds = false;
1426 
1427   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1428   /// predicate by splitting it into a set of independent predicates.
1429   bool ProvingSplitPredicate = false;
1430 
1431   /// Memoized values for the GetMinTrailingZeros
1432   DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
1433 
1434   /// Return the Value set from which the SCEV expr is generated.
1435   ArrayRef<Value *> getSCEVValues(const SCEV *S);
1436 
1437   /// Private helper method for the GetMinTrailingZeros method
1438   uint32_t GetMinTrailingZerosImpl(const SCEV *S);
1439 
1440   /// Information about the number of times a particular loop exit may be
1441   /// reached before exiting the loop.
1442   struct ExitNotTakenInfo {
1443     PoisoningVH<BasicBlock> ExitingBlock;
1444     const SCEV *ExactNotTaken;
1445     const SCEV *ConstantMaxNotTaken;
1446     const SCEV *SymbolicMaxNotTaken;
1447     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1448 
1449     explicit ExitNotTakenInfo(
1450         PoisoningVH<BasicBlock> ExitingBlock, const SCEV *ExactNotTaken,
1451         const SCEV *ConstantMaxNotTaken, const SCEV *SymbolicMaxNotTaken,
1452         const SmallPtrSet<const SCEVPredicate *, 4> &Predicates)
1453         : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1454           ConstantMaxNotTaken(ConstantMaxNotTaken),
1455           SymbolicMaxNotTaken(SymbolicMaxNotTaken), Predicates(Predicates) {}
1456 
1457     bool hasAlwaysTruePredicate() const {
1458       return Predicates.empty();
1459     }
1460   };
1461 
1462   /// Information about the backedge-taken count of a loop. This currently
1463   /// includes an exact count and a maximum count.
1464   ///
1465   class BackedgeTakenInfo {
1466     friend class ScalarEvolution;
1467 
1468     /// A list of computable exits and their not-taken counts.  Loops almost
1469     /// never have more than one computable exit.
1470     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1471 
1472     /// Expression indicating the least constant maximum backedge-taken count of
1473     /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1474     /// only valid if the redicates associated with all loop exits are true.
1475     const SCEV *ConstantMax = nullptr;
1476 
1477     /// Indicating if \c ExitNotTaken has an element for every exiting block in
1478     /// the loop.
1479     bool IsComplete = false;
1480 
1481     /// Expression indicating the least maximum backedge-taken count of the loop
1482     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1483     const SCEV *SymbolicMax = nullptr;
1484 
1485     /// True iff the backedge is taken either exactly Max or zero times.
1486     bool MaxOrZero = false;
1487 
1488     bool isComplete() const { return IsComplete; }
1489     const SCEV *getConstantMax() const { return ConstantMax; }
1490 
1491   public:
1492     BackedgeTakenInfo() = default;
1493     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1494     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1495 
1496     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1497 
1498     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1499     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1500                       const SCEV *ConstantMax, bool MaxOrZero);
1501 
1502     /// Test whether this BackedgeTakenInfo contains any computed information,
1503     /// or whether it's all SCEVCouldNotCompute values.
1504     bool hasAnyInfo() const {
1505       return !ExitNotTaken.empty() ||
1506              !isa<SCEVCouldNotCompute>(getConstantMax());
1507     }
1508 
1509     /// Test whether this BackedgeTakenInfo contains complete information.
1510     bool hasFullInfo() const { return isComplete(); }
1511 
1512     /// Return an expression indicating the exact *backedge-taken*
1513     /// count of the loop if it is known or SCEVCouldNotCompute
1514     /// otherwise.  If execution makes it to the backedge on every
1515     /// iteration (i.e. there are no abnormal exists like exception
1516     /// throws and thread exits) then this is the number of times the
1517     /// loop header will execute minus one.
1518     ///
1519     /// If the SCEV predicate associated with the answer can be different
1520     /// from AlwaysTrue, we must add a (non null) Predicates argument.
1521     /// The SCEV predicate associated with the answer will be added to
1522     /// Predicates. A run-time check needs to be emitted for the SCEV
1523     /// predicate in order for the answer to be valid.
1524     ///
1525     /// Note that we should always know if we need to pass a predicate
1526     /// argument or not from the way the ExitCounts vector was computed.
1527     /// If we allowed SCEV predicates to be generated when populating this
1528     /// vector, this information can contain them and therefore a
1529     /// SCEVPredicate argument should be added to getExact.
1530     const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1531                          SmallVector<const SCEVPredicate *, 4> *Predicates = nullptr) const;
1532 
1533     /// Return the number of times this loop exit may fall through to the back
1534     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1535     /// this block before this number of iterations, but may exit via another
1536     /// block.
1537     const SCEV *getExact(const BasicBlock *ExitingBlock,
1538                          ScalarEvolution *SE) const;
1539 
1540     /// Get the constant max backedge taken count for the loop.
1541     const SCEV *getConstantMax(ScalarEvolution *SE) const;
1542 
1543     /// Get the constant max backedge taken count for the particular loop exit.
1544     const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1545                                ScalarEvolution *SE) const;
1546 
1547     /// Get the symbolic max backedge taken count for the loop.
1548     const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
1549 
1550     /// Get the symbolic max backedge taken count for the particular loop exit.
1551     const SCEV *getSymbolicMax(const BasicBlock *ExitingBlock,
1552                                ScalarEvolution *SE) const;
1553 
1554     /// Return true if the number of times this backedge is taken is either the
1555     /// value returned by getConstantMax or zero.
1556     bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1557   };
1558 
1559   /// Cache the backedge-taken count of the loops for this function as they
1560   /// are computed.
1561   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1562 
1563   /// Cache the predicated backedge-taken count of the loops for this
1564   /// function as they are computed.
1565   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1566 
1567   /// Loops whose backedge taken counts directly use this non-constant SCEV.
1568   DenseMap<const SCEV *, SmallPtrSet<PointerIntPair<const Loop *, 1, bool>, 4>>
1569       BECountUsers;
1570 
1571   /// This map contains entries for all of the PHI instructions that we
1572   /// attempt to compute constant evolutions for.  This allows us to avoid
1573   /// potentially expensive recomputation of these properties.  An instruction
1574   /// maps to null if we are unable to compute its exit value.
1575   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1576 
1577   /// This map contains entries for all the expressions that we attempt to
1578   /// compute getSCEVAtScope information for, which can be expensive in
1579   /// extreme cases.
1580   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1581       ValuesAtScopes;
1582 
1583   /// Reverse map for invalidation purposes: Stores of which SCEV and which
1584   /// loop this is the value-at-scope of.
1585   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1586       ValuesAtScopesUsers;
1587 
1588   /// Memoized computeLoopDisposition results.
1589   DenseMap<const SCEV *,
1590            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1591       LoopDispositions;
1592 
1593   struct LoopProperties {
1594     /// Set to true if the loop contains no instruction that can abnormally exit
1595     /// the loop (i.e. via throwing an exception, by terminating the thread
1596     /// cleanly or by infinite looping in a called function).  Strictly
1597     /// speaking, the last one is not leaving the loop, but is identical to
1598     /// leaving the loop for reasoning about undefined behavior.
1599     bool HasNoAbnormalExits;
1600 
1601     /// Set to true if the loop contains no instruction that can have side
1602     /// effects (i.e. via throwing an exception, volatile or atomic access).
1603     bool HasNoSideEffects;
1604   };
1605 
1606   /// Cache for \c getLoopProperties.
1607   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1608 
1609   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1610   LoopProperties getLoopProperties(const Loop *L);
1611 
1612   bool loopHasNoSideEffects(const Loop *L) {
1613     return getLoopProperties(L).HasNoSideEffects;
1614   }
1615 
1616   /// Compute a LoopDisposition value.
1617   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1618 
1619   /// Memoized computeBlockDisposition results.
1620   DenseMap<
1621       const SCEV *,
1622       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1623       BlockDispositions;
1624 
1625   /// Compute a BlockDisposition value.
1626   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1627 
1628   /// Stores all SCEV that use a given SCEV as its direct operand.
1629   DenseMap<const SCEV *, SmallPtrSet<const SCEV *, 8> > SCEVUsers;
1630 
1631   /// Memoized results from getRange
1632   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1633 
1634   /// Memoized results from getRange
1635   DenseMap<const SCEV *, ConstantRange> SignedRanges;
1636 
1637   /// Used to parameterize getRange
1638   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1639 
1640   /// Set the memoized range for the given SCEV.
1641   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1642                                 ConstantRange CR) {
1643     DenseMap<const SCEV *, ConstantRange> &Cache =
1644         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1645 
1646     auto Pair = Cache.try_emplace(S, std::move(CR));
1647     if (!Pair.second)
1648       Pair.first->second = std::move(CR);
1649     return Pair.first->second;
1650   }
1651 
1652   /// Determine the range for a particular SCEV.
1653   /// NOTE: This returns a reference to an entry in a cache. It must be
1654   /// copied if its needed for longer.
1655   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint,
1656                                    unsigned Depth = 0);
1657 
1658   /// Determine the range for a particular SCEV, but evaluates ranges for
1659   /// operands iteratively first.
1660   const ConstantRange &getRangeRefIter(const SCEV *S, RangeSignHint Hint);
1661 
1662   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Step}.
1663   /// Helper for \c getRange.
1664   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Step,
1665                                     const SCEV *MaxBECount, unsigned BitWidth);
1666 
1667   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1668   /// Start,+,\p Step}<nw>.
1669   ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1670                                                   const SCEV *MaxBECount,
1671                                                   unsigned BitWidth,
1672                                                   RangeSignHint SignHint);
1673 
1674   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1675   /// Step} by "factoring out" a ternary expression from the add recurrence.
1676   /// Helper called by \c getRange.
1677   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Step,
1678                                      const SCEV *MaxBECount, unsigned BitWidth);
1679 
1680   /// If the unknown expression U corresponds to a simple recurrence, return
1681   /// a constant range which represents the entire recurrence.  Note that
1682   /// *add* recurrences with loop invariant steps aren't represented by
1683   /// SCEVUnknowns and thus don't use this mechanism.
1684   ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1685 
1686   /// We know that there is no SCEV for the specified value.  Analyze the
1687   /// expression recursively.
1688   const SCEV *createSCEV(Value *V);
1689 
1690   /// We know that there is no SCEV for the specified value. Create a new SCEV
1691   /// for \p V iteratively.
1692   const SCEV *createSCEVIter(Value *V);
1693   /// Collect operands of \p V for which SCEV expressions should be constructed
1694   /// first. Returns a SCEV directly if it can be constructed trivially for \p
1695   /// V.
1696   const SCEV *getOperandsToCreate(Value *V, SmallVectorImpl<Value *> &Ops);
1697 
1698   /// Provide the special handling we need to analyze PHI SCEVs.
1699   const SCEV *createNodeForPHI(PHINode *PN);
1700 
1701   /// Helper function called from createNodeForPHI.
1702   const SCEV *createAddRecFromPHI(PHINode *PN);
1703 
1704   /// A helper function for createAddRecFromPHI to handle simple cases.
1705   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1706                                             Value *StartValueV);
1707 
1708   /// Helper function called from createNodeForPHI.
1709   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1710 
1711   /// Provide special handling for a select-like instruction (currently this
1712   /// is either a select instruction or a phi node).  \p Ty is the type of the
1713   /// instruction being processed, that is assumed equivalent to
1714   /// "Cond ? TrueVal : FalseVal".
1715   std::optional<const SCEV *>
1716   createNodeForSelectOrPHIInstWithICmpInstCond(Type *Ty, ICmpInst *Cond,
1717                                                Value *TrueVal, Value *FalseVal);
1718 
1719   /// See if we can model this select-like instruction via umin_seq expression.
1720   const SCEV *createNodeForSelectOrPHIViaUMinSeq(Value *I, Value *Cond,
1721                                                  Value *TrueVal,
1722                                                  Value *FalseVal);
1723 
1724   /// Given a value \p V, which is a select-like instruction (currently this is
1725   /// either a select instruction or a phi node), which is assumed equivalent to
1726   ///   Cond ? TrueVal : FalseVal
1727   /// see if we can model it as a SCEV expression.
1728   const SCEV *createNodeForSelectOrPHI(Value *V, Value *Cond, Value *TrueVal,
1729                                        Value *FalseVal);
1730 
1731   /// Provide the special handling we need to analyze GEP SCEVs.
1732   const SCEV *createNodeForGEP(GEPOperator *GEP);
1733 
1734   /// Implementation code for getSCEVAtScope; called at most once for each
1735   /// SCEV+Loop pair.
1736   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1737 
1738   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1739   /// values if the loop hasn't been analyzed yet. The returned result is
1740   /// guaranteed not to be predicated.
1741   BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1742 
1743   /// Similar to getBackedgeTakenInfo, but will add predicates as required
1744   /// with the purpose of returning complete information.
1745   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1746 
1747   /// Compute the number of times the specified loop will iterate.
1748   /// If AllowPredicates is set, we will create new SCEV predicates as
1749   /// necessary in order to return an exact answer.
1750   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1751                                               bool AllowPredicates = false);
1752 
1753   /// Compute the number of times the backedge of the specified loop will
1754   /// execute if it exits via the specified block. If AllowPredicates is set,
1755   /// this call will try to use a minimal set of SCEV predicates in order to
1756   /// return an exact answer.
1757   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1758                              bool AllowPredicates = false);
1759 
1760   /// Return a symbolic upper bound for the backedge taken count of the loop.
1761   /// This is more general than getConstantMaxBackedgeTakenCount as it returns
1762   /// an arbitrary expression as opposed to only constants.
1763   const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
1764 
1765   // Helper functions for computeExitLimitFromCond to avoid exponential time
1766   // complexity.
1767 
1768   class ExitLimitCache {
1769     // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
1770     // AllowPredicates) tuple, but recursive calls to
1771     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1772     // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
1773     // initial values of the other values to assert our assumption.
1774     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1775 
1776     const Loop *L;
1777     bool ExitIfTrue;
1778     bool AllowPredicates;
1779 
1780   public:
1781     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1782         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1783 
1784     std::optional<ExitLimit> find(const Loop *L, Value *ExitCond,
1785                                   bool ExitIfTrue, bool ControlsExit,
1786                                   bool AllowPredicates);
1787 
1788     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1789                 bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
1790   };
1791 
1792   using ExitLimitCacheTy = ExitLimitCache;
1793 
1794   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1795                                            const Loop *L, Value *ExitCond,
1796                                            bool ExitIfTrue,
1797                                            bool ControlsExit,
1798                                            bool AllowPredicates);
1799   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1800                                          Value *ExitCond, bool ExitIfTrue,
1801                                          bool ControlsExit,
1802                                          bool AllowPredicates);
1803   std::optional<ScalarEvolution::ExitLimit>
1804   computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
1805                                     Value *ExitCond, bool ExitIfTrue,
1806                                     bool ControlsExit, bool AllowPredicates);
1807 
1808   /// Compute the number of times the backedge of the specified loop will
1809   /// execute if its exit condition were a conditional branch of the ICmpInst
1810   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1811   /// to use a minimal set of SCEV predicates in order to return an exact
1812   /// answer.
1813   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1814                                      bool ExitIfTrue,
1815                                      bool IsSubExpr,
1816                                      bool AllowPredicates = false);
1817 
1818   /// Variant of previous which takes the components representing an ICmp
1819   /// as opposed to the ICmpInst itself.  Note that the prior version can
1820   /// return more precise results in some cases and is preferred when caller
1821   /// has a materialized ICmp.
1822   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst::Predicate Pred,
1823                                      const SCEV *LHS, const SCEV *RHS,
1824                                      bool IsSubExpr,
1825                                      bool AllowPredicates = false);
1826 
1827   /// Compute the number of times the backedge of the specified loop will
1828   /// execute if its exit condition were a switch with a single exiting case
1829   /// to ExitingBB.
1830   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1831                                                  SwitchInst *Switch,
1832                                                  BasicBlock *ExitingBB,
1833                                                  bool IsSubExpr);
1834 
1835   /// Compute the exit limit of a loop that is controlled by a
1836   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1837   /// count in these cases (since SCEV has no way of expressing them), but we
1838   /// can still sometimes compute an upper bound.
1839   ///
1840   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1841   /// RHS`.
1842   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1843                                          ICmpInst::Predicate Pred);
1844 
1845   /// If the loop is known to execute a constant number of times (the
1846   /// condition evolves only from constants), try to evaluate a few iterations
1847   /// of the loop until we get the exit condition gets a value of ExitWhen
1848   /// (true or false).  If we cannot evaluate the exit count of the loop,
1849   /// return CouldNotCompute.
1850   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1851                                            bool ExitWhen);
1852 
1853   /// Return the number of times an exit condition comparing the specified
1854   /// value to zero will execute.  If not computable, return CouldNotCompute.
1855   /// If AllowPredicates is set, this call will try to use a minimal set of
1856   /// SCEV predicates in order to return an exact answer.
1857   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1858                          bool AllowPredicates = false);
1859 
1860   /// Return the number of times an exit condition checking the specified
1861   /// value for nonzero will execute.  If not computable, return
1862   /// CouldNotCompute.
1863   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1864 
1865   /// Return the number of times an exit condition containing the specified
1866   /// less-than comparison will execute.  If not computable, return
1867   /// CouldNotCompute.
1868   ///
1869   /// \p isSigned specifies whether the less-than is signed.
1870   ///
1871   /// \p ControlsExit is true when the LHS < RHS condition directly controls
1872   /// the branch (loops exits only if condition is true). In this case, we can
1873   /// use NoWrapFlags to skip overflow checks.
1874   ///
1875   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1876   /// SCEV predicates in order to return an exact answer.
1877   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1878                              bool isSigned, bool ControlsExit,
1879                              bool AllowPredicates = false);
1880 
1881   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1882                                 bool isSigned, bool IsSubExpr,
1883                                 bool AllowPredicates = false);
1884 
1885   /// Return a predecessor of BB (which may not be an immediate predecessor)
1886   /// which has exactly one successor from which BB is reachable, or null if
1887   /// no such block is found.
1888   std::pair<const BasicBlock *, const BasicBlock *>
1889   getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1890 
1891   /// Test whether the condition described by Pred, LHS, and RHS is true
1892   /// whenever the given FoundCondValue value evaluates to true in given
1893   /// Context. If Context is nullptr, then the found predicate is true
1894   /// everywhere. LHS and FoundLHS may have different type width.
1895   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1896                      const Value *FoundCondValue, bool Inverse,
1897                      const Instruction *Context = nullptr);
1898 
1899   /// Test whether the condition described by Pred, LHS, and RHS is true
1900   /// whenever the given FoundCondValue value evaluates to true in given
1901   /// Context. If Context is nullptr, then the found predicate is true
1902   /// everywhere. LHS and FoundLHS must have same type width.
1903   bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1904                                   const SCEV *RHS,
1905                                   ICmpInst::Predicate FoundPred,
1906                                   const SCEV *FoundLHS, const SCEV *FoundRHS,
1907                                   const Instruction *CtxI);
1908 
1909   /// Test whether the condition described by Pred, LHS, and RHS is true
1910   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1911   /// true in given Context. If Context is nullptr, then the found predicate is
1912   /// true everywhere.
1913   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1914                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1915                      const SCEV *FoundRHS,
1916                      const Instruction *Context = nullptr);
1917 
1918   /// Test whether the condition described by Pred, LHS, and RHS is true
1919   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1920   /// true in given Context. If Context is nullptr, then the found predicate is
1921   /// true everywhere.
1922   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1923                              const SCEV *RHS, const SCEV *FoundLHS,
1924                              const SCEV *FoundRHS,
1925                              const Instruction *Context = nullptr);
1926 
1927   /// Test whether the condition described by Pred, LHS, and RHS is true
1928   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1929   /// true. Here LHS is an operation that includes FoundLHS as one of its
1930   /// arguments.
1931   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1932                               const SCEV *LHS, const SCEV *RHS,
1933                               const SCEV *FoundLHS, const SCEV *FoundRHS,
1934                               unsigned Depth = 0);
1935 
1936   /// Test whether the condition described by Pred, LHS, and RHS is true.
1937   /// Use only simple non-recursive types of checks, such as range analysis etc.
1938   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1939                                        const SCEV *LHS, const SCEV *RHS);
1940 
1941   /// Test whether the condition described by Pred, LHS, and RHS is true
1942   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1943   /// true.
1944   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1945                                    const SCEV *RHS, const SCEV *FoundLHS,
1946                                    const SCEV *FoundRHS);
1947 
1948   /// Test whether the condition described by Pred, LHS, and RHS is true
1949   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1950   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1951   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1952   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1953                                       const SCEV *RHS, const SCEV *FoundLHS,
1954                                       const SCEV *FoundRHS);
1955 
1956   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1957   /// by a call to @llvm.experimental.guard in \p BB.
1958   bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1959                          const SCEV *LHS, const SCEV *RHS);
1960 
1961   /// Test whether the condition described by Pred, LHS, and RHS is true
1962   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1963   /// true.
1964   ///
1965   /// This routine tries to rule out certain kinds of integer overflow, and
1966   /// then tries to reason about arithmetic properties of the predicates.
1967   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1968                                           const SCEV *LHS, const SCEV *RHS,
1969                                           const SCEV *FoundLHS,
1970                                           const SCEV *FoundRHS);
1971 
1972   /// Test whether the condition described by Pred, LHS, and RHS is true
1973   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1974   /// true.
1975   ///
1976   /// This routine tries to weaken the known condition basing on fact that
1977   /// FoundLHS is an AddRec.
1978   bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
1979                                            const SCEV *LHS, const SCEV *RHS,
1980                                            const SCEV *FoundLHS,
1981                                            const SCEV *FoundRHS,
1982                                            const Instruction *CtxI);
1983 
1984   /// Test whether the condition described by Pred, LHS, and RHS is true
1985   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1986   /// true.
1987   ///
1988   /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1989   /// if it is true for every possible incoming value from their respective
1990   /// basic blocks.
1991   bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1992                          const SCEV *LHS, const SCEV *RHS,
1993                          const SCEV *FoundLHS, const SCEV *FoundRHS,
1994                          unsigned Depth);
1995 
1996   /// Test whether the condition described by Pred, LHS, and RHS is true
1997   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1998   /// true.
1999   ///
2000   /// This routine tries to reason about shifts.
2001   bool isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, const SCEV *LHS,
2002                                      const SCEV *RHS, const SCEV *FoundLHS,
2003                                      const SCEV *FoundRHS);
2004 
2005   /// If we know that the specified Phi is in the header of its containing
2006   /// loop, we know the loop executes a constant number of times, and the PHI
2007   /// node is just a recurrence involving constants, fold it.
2008   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
2009                                               const Loop *L);
2010 
2011   /// Test if the given expression is known to satisfy the condition described
2012   /// by Pred and the known constant ranges of LHS and RHS.
2013   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
2014                                          const SCEV *LHS, const SCEV *RHS);
2015 
2016   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
2017   /// integer overflow.
2018   ///
2019   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
2020   /// positive.
2021   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
2022                                      const SCEV *RHS);
2023 
2024   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
2025   /// prove them individually.
2026   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
2027                                     const SCEV *RHS);
2028 
2029   /// Try to match the Expr as "(L + R)<Flags>".
2030   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
2031                       SCEV::NoWrapFlags &Flags);
2032 
2033   /// Forget predicated/non-predicated backedge taken counts for the given loop.
2034   void forgetBackedgeTakenCounts(const Loop *L, bool Predicated);
2035 
2036   /// Drop memoized information for all \p SCEVs.
2037   void forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs);
2038 
2039   /// Helper for forgetMemoizedResults.
2040   void forgetMemoizedResultsImpl(const SCEV *S);
2041 
2042   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
2043   const SCEV *getExistingSCEV(Value *V);
2044 
2045   /// Erase Value from ValueExprMap and ExprValueMap.
2046   void eraseValueFromMap(Value *V);
2047 
2048   /// Insert V to S mapping into ValueExprMap and ExprValueMap.
2049   void insertValueToMap(Value *V, const SCEV *S);
2050 
2051   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
2052   /// pointer.
2053   bool checkValidity(const SCEV *S) const;
2054 
2055   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
2056   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
2057   /// equivalent to proving no signed (resp. unsigned) wrap in
2058   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
2059   /// (resp. `SCEVZeroExtendExpr`).
2060   template <typename ExtendOpTy>
2061   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
2062                                  const Loop *L);
2063 
2064   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
2065   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
2066 
2067   /// Try to prove NSW on \p AR by proving facts about conditions known  on
2068   /// entry and backedge.
2069   SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
2070 
2071   /// Try to prove NUW on \p AR by proving facts about conditions known on
2072   /// entry and backedge.
2073   SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
2074 
2075   std::optional<MonotonicPredicateType>
2076   getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
2077                                 ICmpInst::Predicate Pred);
2078 
2079   /// Return SCEV no-wrap flags that can be proven based on reasoning about
2080   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
2081   /// would trigger undefined behavior on overflow.
2082   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
2083 
2084   /// Return a scope which provides an upper bound on the defining scope of
2085   /// 'S'. Specifically, return the first instruction in said bounding scope.
2086   /// Return nullptr if the scope is trivial (function entry).
2087   /// (See scope definition rules associated with flag discussion above)
2088   const Instruction *getNonTrivialDefiningScopeBound(const SCEV *S);
2089 
2090   /// Return a scope which provides an upper bound on the defining scope for
2091   /// a SCEV with the operands in Ops.  The outparam Precise is set if the
2092   /// bound found is a precise bound (i.e. must be the defining scope.)
2093   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
2094                                            bool &Precise);
2095 
2096   /// Wrapper around the above for cases which don't care if the bound
2097   /// is precise.
2098   const Instruction *getDefiningScopeBound(ArrayRef<const SCEV *> Ops);
2099 
2100   /// Given two instructions in the same function, return true if we can
2101   /// prove B must execute given A executes.
2102   bool isGuaranteedToTransferExecutionTo(const Instruction *A,
2103                                          const Instruction *B);
2104 
2105   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
2106   /// this is more complex than proving that just \p I is never poison, since
2107   /// SCEV commons expressions across control flow, and you can have cases
2108   /// like:
2109   ///
2110   ///   idx0 = a + b;
2111   ///   ptr[idx0] = 100;
2112   ///   if (<condition>) {
2113   ///     idx1 = a +nsw b;
2114   ///     ptr[idx1] = 200;
2115   ///   }
2116   ///
2117   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
2118   /// hence not sign-overflow) only if "<condition>" is true.  Since both
2119   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
2120   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
2121   bool isSCEVExprNeverPoison(const Instruction *I);
2122 
2123   /// This is like \c isSCEVExprNeverPoison but it specifically works for
2124   /// instructions that will get mapped to SCEV add recurrences.  Return true
2125   /// if \p I will never generate poison under the assumption that \p I is an
2126   /// add recurrence on the loop \p L.
2127   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
2128 
2129   /// Similar to createAddRecFromPHI, but with the additional flexibility of
2130   /// suggesting runtime overflow checks in case casts are encountered.
2131   /// If successful, the analysis records that for this loop, \p SymbolicPHI,
2132   /// which is the UnknownSCEV currently representing the PHI, can be rewritten
2133   /// into an AddRec, assuming some predicates; The function then returns the
2134   /// AddRec and the predicates as a pair, and caches this pair in
2135   /// PredicatedSCEVRewrites.
2136   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
2137   /// itself (with no predicates) is recorded, and a nullptr with an empty
2138   /// predicates vector is returned as a pair.
2139   std::optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2140   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
2141 
2142   /// Compute the maximum backedge count based on the range of values
2143   /// permitted by Start, End, and Stride. This is for loops of the form
2144   /// {Start, +, Stride} LT End.
2145   ///
2146   /// Preconditions:
2147   /// * the induction variable is known to be positive.
2148   /// * the induction variable is assumed not to overflow (i.e. either it
2149   ///   actually doesn't, or we'd have to immediately execute UB)
2150   /// We *don't* assert these preconditions so please be careful.
2151   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
2152                                      const SCEV *End, unsigned BitWidth,
2153                                      bool IsSigned);
2154 
2155   /// Verify if an linear IV with positive stride can overflow when in a
2156   /// less-than comparison, knowing the invariant term of the comparison,
2157   /// the stride.
2158   bool canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2159 
2160   /// Verify if an linear IV with negative stride can overflow when in a
2161   /// greater-than comparison, knowing the invariant term of the comparison,
2162   /// the stride.
2163   bool canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned);
2164 
2165   /// Get add expr already created or create a new one.
2166   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2167                                  SCEV::NoWrapFlags Flags);
2168 
2169   /// Get mul expr already created or create a new one.
2170   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2171                                  SCEV::NoWrapFlags Flags);
2172 
2173   // Get addrec expr already created or create a new one.
2174   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2175                                     const Loop *L, SCEV::NoWrapFlags Flags);
2176 
2177   /// Return x if \p Val is f(x) where f is a 1-1 function.
2178   const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2179 
2180   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2181   /// A loop is considered "used" by an expression if it contains
2182   /// an add rec on said loop.
2183   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2184 
2185   /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2186   /// Assign A and B to LHS and RHS, respectively.
2187   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2188 
2189   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2190   /// `UniqueSCEVs`.  Return if found, else nullptr.
2191   SCEV *findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2192 
2193   /// Get reachable blocks in this function, making limited use of SCEV
2194   /// reasoning about conditions.
2195   void getReachableBlocks(SmallPtrSetImpl<BasicBlock *> &Reachable,
2196                           Function &F);
2197 
2198   FoldingSet<SCEV> UniqueSCEVs;
2199   FoldingSet<SCEVPredicate> UniquePreds;
2200   BumpPtrAllocator SCEVAllocator;
2201 
2202   /// This maps loops to a list of addrecs that directly use said loop.
2203   DenseMap<const Loop *, SmallVector<const SCEVAddRecExpr *, 4>> LoopUsers;
2204 
2205   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2206   /// they can be rewritten into under certain predicates.
2207   DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2208            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2209       PredicatedSCEVRewrites;
2210 
2211   /// Set of AddRecs for which proving NUW via an induction has already been
2212   /// tried.
2213   SmallPtrSet<const SCEVAddRecExpr *, 16> UnsignedWrapViaInductionTried;
2214 
2215   /// Set of AddRecs for which proving NSW via an induction has already been
2216   /// tried.
2217   SmallPtrSet<const SCEVAddRecExpr *, 16> SignedWrapViaInductionTried;
2218 
2219   /// The head of a linked list of all SCEVUnknown values that have been
2220   /// allocated. This is used by releaseMemory to locate them all and call
2221   /// their destructors.
2222   SCEVUnknown *FirstUnknown = nullptr;
2223 };
2224 
2225 /// Analysis pass that exposes the \c ScalarEvolution for a function.
2226 class ScalarEvolutionAnalysis
2227     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2228   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2229 
2230   static AnalysisKey Key;
2231 
2232 public:
2233   using Result = ScalarEvolution;
2234 
2235   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2236 };
2237 
2238 /// Verifier pass for the \c ScalarEvolutionAnalysis results.
2239 class ScalarEvolutionVerifierPass
2240     : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2241 public:
2242   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2243 };
2244 
2245 /// Printer pass for the \c ScalarEvolutionAnalysis results.
2246 class ScalarEvolutionPrinterPass
2247     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2248   raw_ostream &OS;
2249 
2250 public:
2251   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2252 
2253   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2254 };
2255 
2256 class ScalarEvolutionWrapperPass : public FunctionPass {
2257   std::unique_ptr<ScalarEvolution> SE;
2258 
2259 public:
2260   static char ID;
2261 
2262   ScalarEvolutionWrapperPass();
2263 
2264   ScalarEvolution &getSE() { return *SE; }
2265   const ScalarEvolution &getSE() const { return *SE; }
2266 
2267   bool runOnFunction(Function &F) override;
2268   void releaseMemory() override;
2269   void getAnalysisUsage(AnalysisUsage &AU) const override;
2270   void print(raw_ostream &OS, const Module * = nullptr) const override;
2271   void verifyAnalysis() const override;
2272 };
2273 
2274 /// An interface layer with SCEV used to manage how we see SCEV expressions
2275 /// for values in the context of existing predicates. We can add new
2276 /// predicates, but we cannot remove them.
2277 ///
2278 /// This layer has multiple purposes:
2279 ///   - provides a simple interface for SCEV versioning.
2280 ///   - guarantees that the order of transformations applied on a SCEV
2281 ///     expression for a single Value is consistent across two different
2282 ///     getSCEV calls. This means that, for example, once we've obtained
2283 ///     an AddRec expression for a certain value through expression
2284 ///     rewriting, we will continue to get an AddRec expression for that
2285 ///     Value.
2286 ///   - lowers the number of expression rewrites.
2287 class PredicatedScalarEvolution {
2288 public:
2289   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2290 
2291   const SCEVPredicate &getPredicate() const;
2292 
2293   /// Returns the SCEV expression of V, in the context of the current SCEV
2294   /// predicate.  The order of transformations applied on the expression of V
2295   /// returned by ScalarEvolution is guaranteed to be preserved, even when
2296   /// adding new predicates.
2297   const SCEV *getSCEV(Value *V);
2298 
2299   /// Get the (predicated) backedge count for the analyzed loop.
2300   const SCEV *getBackedgeTakenCount();
2301 
2302   /// Adds a new predicate.
2303   void addPredicate(const SCEVPredicate &Pred);
2304 
2305   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2306   /// predicates. If we can't transform the expression into an AddRecExpr we
2307   /// return nullptr and not add additional SCEV predicates to the current
2308   /// context.
2309   const SCEVAddRecExpr *getAsAddRec(Value *V);
2310 
2311   /// Proves that V doesn't overflow by adding SCEV predicate.
2312   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2313 
2314   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2315   /// predicate.
2316   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2317 
2318   /// Returns the ScalarEvolution analysis used.
2319   ScalarEvolution *getSE() const { return &SE; }
2320 
2321   /// We need to explicitly define the copy constructor because of FlagsMap.
2322   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2323 
2324   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2325   /// The printed text is indented by \p Depth.
2326   void print(raw_ostream &OS, unsigned Depth) const;
2327 
2328   /// Check if \p AR1 and \p AR2 are equal, while taking into account
2329   /// Equal predicates in Preds.
2330   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2331                                 const SCEVAddRecExpr *AR2) const;
2332 
2333 private:
2334   /// Increments the version number of the predicate.  This needs to be called
2335   /// every time the SCEV predicate changes.
2336   void updateGeneration();
2337 
2338   /// Holds a SCEV and the version number of the SCEV predicate used to
2339   /// perform the rewrite of the expression.
2340   using RewriteEntry = std::pair<unsigned, const SCEV *>;
2341 
2342   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2343   /// number. If this number doesn't match the current Generation, we will
2344   /// need to do a rewrite. To preserve the transformation order of previous
2345   /// rewrites, we will rewrite the previous result instead of the original
2346   /// SCEV.
2347   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2348 
2349   /// Records what NoWrap flags we've added to a Value *.
2350   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2351 
2352   /// The ScalarEvolution analysis.
2353   ScalarEvolution &SE;
2354 
2355   /// The analyzed Loop.
2356   const Loop &L;
2357 
2358   /// The SCEVPredicate that forms our context. We will rewrite all
2359   /// expressions assuming that this predicate true.
2360   std::unique_ptr<SCEVUnionPredicate> Preds;
2361 
2362   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2363   /// expression we mark it with the version of the predicate. We use this to
2364   /// figure out if the predicate has changed from the last rewrite of the
2365   /// SCEV. If so, we need to perform a new rewrite.
2366   unsigned Generation = 0;
2367 
2368   /// The backedge taken count.
2369   const SCEV *BackedgeCount = nullptr;
2370 };
2371 
2372 template <> struct DenseMapInfo<ScalarEvolution::FoldID> {
2373   static inline ScalarEvolution::FoldID getEmptyKey() {
2374     ScalarEvolution::FoldID ID;
2375     ID.addInteger(~0ULL);
2376     return ID;
2377   }
2378   static inline ScalarEvolution::FoldID getTombstoneKey() {
2379     ScalarEvolution::FoldID ID;
2380     ID.addInteger(~0ULL - 1ULL);
2381     return ID;
2382   }
2383 
2384   static unsigned getHashValue(const ScalarEvolution::FoldID &Val) {
2385     return Val.computeHash();
2386   }
2387 
2388   static bool isEqual(const ScalarEvolution::FoldID &LHS,
2389                       const ScalarEvolution::FoldID &RHS) {
2390     return LHS == RHS;
2391   }
2392 };
2393 
2394 } // end namespace llvm
2395 
2396 #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2397