xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/Analysis/ScalarEvolution.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
10 // categorize scalar expressions in loops.  It specializes in recognizing
11 // general induction variables, representing them with the abstract and opaque
12 // SCEV class.  Given this analysis, trip counts of loops and other important
13 // properties can be obtained.
14 //
15 // This analysis is primarily useful for induction variable substitution and
16 // strength reduction.
17 //
18 //===----------------------------------------------------------------------===//
19 
20 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
21 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
22 
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/ArrayRef.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseMapInfo.h"
27 #include "llvm/ADT/FoldingSet.h"
28 #include "llvm/ADT/Hashing.h"
29 #include "llvm/ADT/Optional.h"
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/InstrTypes.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/ValueHandle.h"
41 #include "llvm/IR/ValueMap.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Allocator.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Compiler.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstdint>
49 #include <memory>
50 #include <utility>
51 
52 namespace llvm {
53 
54 class AssumptionCache;
55 class BasicBlock;
56 class Constant;
57 class ConstantInt;
58 class DataLayout;
59 class DominatorTree;
60 class GEPOperator;
61 class Instruction;
62 class LLVMContext;
63 class Loop;
64 class LoopInfo;
65 class raw_ostream;
66 class ScalarEvolution;
67 class SCEVAddRecExpr;
68 class SCEVUnknown;
69 class StructType;
70 class TargetLibraryInfo;
71 class Type;
72 class Value;
73 enum SCEVTypes : unsigned short;
74 
75 /// This class represents an analyzed expression in the program.  These are
76 /// opaque objects that the client is not allowed to do much with directly.
77 ///
78 class SCEV : public FoldingSetNode {
79   friend struct FoldingSetTrait<SCEV>;
80 
81   /// A reference to an Interned FoldingSetNodeID for this node.  The
82   /// ScalarEvolution's BumpPtrAllocator holds the data.
83   FoldingSetNodeIDRef FastID;
84 
85   // The SCEV baseclass this node corresponds to
86   const SCEVTypes SCEVType;
87 
88 protected:
89   // Estimated complexity of this node's expression tree size.
90   const unsigned short ExpressionSize;
91 
92   /// This field is initialized to zero and may be used in subclasses to store
93   /// miscellaneous information.
94   unsigned short SubclassData = 0;
95 
96 public:
97   /// NoWrapFlags are bitfield indices into SubclassData.
98   ///
99   /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
100   /// no-signed-wrap <NSW> properties, which are derived from the IR
101   /// operator. NSW is a misnomer that we use to mean no signed overflow or
102   /// underflow.
103   ///
104   /// AddRec expressions may have a no-self-wraparound <NW> property if, in
105   /// the integer domain, abs(step) * max-iteration(loop) <=
106   /// unsigned-max(bitwidth).  This means that the recurrence will never reach
107   /// its start value if the step is non-zero.  Computing the same value on
108   /// each iteration is not considered wrapping, and recurrences with step = 0
109   /// are trivially <NW>.  <NW> is independent of the sign of step and the
110   /// value the add recurrence starts with.
111   ///
112   /// Note that NUW and NSW are also valid properties of a recurrence, and
113   /// either implies NW. For convenience, NW will be set for a recurrence
114   /// whenever either NUW or NSW are set.
115   enum NoWrapFlags {
116     FlagAnyWrap = 0,    // No guarantee.
117     FlagNW = (1 << 0),  // No self-wrap.
118     FlagNUW = (1 << 1), // No unsigned wrap.
119     FlagNSW = (1 << 2), // No signed wrap.
120     NoWrapMask = (1 << 3) - 1
121   };
122 
123   explicit SCEV(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
124                 unsigned short ExpressionSize)
125       : FastID(ID), SCEVType(SCEVTy), ExpressionSize(ExpressionSize) {}
126   SCEV(const SCEV &) = delete;
127   SCEV &operator=(const SCEV &) = delete;
128 
129   SCEVTypes getSCEVType() const { return SCEVType; }
130 
131   /// Return the LLVM type of this SCEV expression.
132   Type *getType() const;
133 
134   /// Return true if the expression is a constant zero.
135   bool isZero() const;
136 
137   /// Return true if the expression is a constant one.
138   bool isOne() const;
139 
140   /// Return true if the expression is a constant all-ones value.
141   bool isAllOnesValue() const;
142 
143   /// Return true if the specified scev is negated, but not a constant.
144   bool isNonConstantNegative() const;
145 
146   // Returns estimated size of the mathematical expression represented by this
147   // SCEV. The rules of its calculation are following:
148   // 1) Size of a SCEV without operands (like constants and SCEVUnknown) is 1;
149   // 2) Size SCEV with operands Op1, Op2, ..., OpN is calculated by formula:
150   //    (1 + Size(Op1) + ... + Size(OpN)).
151   // This value gives us an estimation of time we need to traverse through this
152   // SCEV and all its operands recursively. We may use it to avoid performing
153   // heavy transformations on SCEVs of excessive size for sake of saving the
154   // compilation time.
155   unsigned short getExpressionSize() const {
156     return ExpressionSize;
157   }
158 
159   /// Print out the internal representation of this scalar to the specified
160   /// stream.  This should really only be used for debugging purposes.
161   void print(raw_ostream &OS) const;
162 
163   /// This method is used for debugging.
164   void dump() const;
165 };
166 
167 // Specialize FoldingSetTrait for SCEV to avoid needing to compute
168 // temporary FoldingSetNodeID values.
169 template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
170   static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
171 
172   static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
173                      FoldingSetNodeID &TempID) {
174     return ID == X.FastID;
175   }
176 
177   static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
178     return X.FastID.ComputeHash();
179   }
180 };
181 
182 inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
183   S.print(OS);
184   return OS;
185 }
186 
187 /// An object of this class is returned by queries that could not be answered.
188 /// For example, if you ask for the number of iterations of a linked-list
189 /// traversal loop, you will get one of these.  None of the standard SCEV
190 /// operations are valid on this class, it is just a marker.
191 struct SCEVCouldNotCompute : public SCEV {
192   SCEVCouldNotCompute();
193 
194   /// Methods for support type inquiry through isa, cast, and dyn_cast:
195   static bool classof(const SCEV *S);
196 };
197 
198 /// This class represents an assumption made using SCEV expressions which can
199 /// be checked at run-time.
200 class SCEVPredicate : public FoldingSetNode {
201   friend struct FoldingSetTrait<SCEVPredicate>;
202 
203   /// A reference to an Interned FoldingSetNodeID for this node.  The
204   /// ScalarEvolution's BumpPtrAllocator holds the data.
205   FoldingSetNodeIDRef FastID;
206 
207 public:
208   enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
209 
210 protected:
211   SCEVPredicateKind Kind;
212   ~SCEVPredicate() = default;
213   SCEVPredicate(const SCEVPredicate &) = default;
214   SCEVPredicate &operator=(const SCEVPredicate &) = default;
215 
216 public:
217   SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
218 
219   SCEVPredicateKind getKind() const { return Kind; }
220 
221   /// Returns the estimated complexity of this predicate.  This is roughly
222   /// measured in the number of run-time checks required.
223   virtual unsigned getComplexity() const { return 1; }
224 
225   /// Returns true if the predicate is always true. This means that no
226   /// assumptions were made and nothing needs to be checked at run-time.
227   virtual bool isAlwaysTrue() const = 0;
228 
229   /// Returns true if this predicate implies \p N.
230   virtual bool implies(const SCEVPredicate *N) const = 0;
231 
232   /// Prints a textual representation of this predicate with an indentation of
233   /// \p Depth.
234   virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
235 
236   /// Returns the SCEV to which this predicate applies, or nullptr if this is
237   /// a SCEVUnionPredicate.
238   virtual const SCEV *getExpr() const = 0;
239 };
240 
241 inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
242   P.print(OS);
243   return OS;
244 }
245 
246 // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
247 // temporary FoldingSetNodeID values.
248 template <>
249 struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
250   static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
251     ID = X.FastID;
252   }
253 
254   static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
255                      unsigned IDHash, FoldingSetNodeID &TempID) {
256     return ID == X.FastID;
257   }
258 
259   static unsigned ComputeHash(const SCEVPredicate &X,
260                               FoldingSetNodeID &TempID) {
261     return X.FastID.ComputeHash();
262   }
263 };
264 
265 /// This class represents an assumption that two SCEV expressions are equal,
266 /// and this can be checked at run-time.
267 class SCEVEqualPredicate final : public SCEVPredicate {
268   /// We assume that LHS == RHS.
269   const SCEV *LHS;
270   const SCEV *RHS;
271 
272 public:
273   SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEV *LHS,
274                      const SCEV *RHS);
275 
276   /// Implementation of the SCEVPredicate interface
277   bool implies(const SCEVPredicate *N) const override;
278   void print(raw_ostream &OS, unsigned Depth = 0) const override;
279   bool isAlwaysTrue() const override;
280   const SCEV *getExpr() const override;
281 
282   /// Returns the left hand side of the equality.
283   const SCEV *getLHS() const { return LHS; }
284 
285   /// Returns the right hand side of the equality.
286   const SCEV *getRHS() const { return RHS; }
287 
288   /// Methods for support type inquiry through isa, cast, and dyn_cast:
289   static bool classof(const SCEVPredicate *P) {
290     return P->getKind() == P_Equal;
291   }
292 };
293 
294 /// This class represents an assumption made on an AddRec expression. Given an
295 /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
296 /// flags (defined below) in the first X iterations of the loop, where X is a
297 /// SCEV expression returned by getPredicatedBackedgeTakenCount).
298 ///
299 /// Note that this does not imply that X is equal to the backedge taken
300 /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
301 /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
302 /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
303 /// have more than X iterations.
304 class SCEVWrapPredicate final : public SCEVPredicate {
305 public:
306   /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
307   /// for FlagNUSW. The increment is considered to be signed, and a + b
308   /// (where b is the increment) is considered to wrap if:
309   ///    zext(a + b) != zext(a) + sext(b)
310   ///
311   /// If Signed is a function that takes an n-bit tuple and maps to the
312   /// integer domain as the tuples value interpreted as twos complement,
313   /// and Unsigned a function that takes an n-bit tuple and maps to the
314   /// integer domain as as the base two value of input tuple, then a + b
315   /// has IncrementNUSW iff:
316   ///
317   /// 0 <= Unsigned(a) + Signed(b) < 2^n
318   ///
319   /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
320   ///
321   /// Note that the IncrementNUSW flag is not commutative: if base + inc
322   /// has IncrementNUSW, then inc + base doesn't neccessarily have this
323   /// property. The reason for this is that this is used for sign/zero
324   /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
325   /// assumed. A {base,+,inc} expression is already non-commutative with
326   /// regards to base and inc, since it is interpreted as:
327   ///     (((base + inc) + inc) + inc) ...
328   enum IncrementWrapFlags {
329     IncrementAnyWrap = 0,     // No guarantee.
330     IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
331     IncrementNSSW = (1 << 1), // No signed with signed increment wrap
332                               // (equivalent with SCEV::NSW)
333     IncrementNoWrapMask = (1 << 2) - 1
334   };
335 
336   /// Convenient IncrementWrapFlags manipulation methods.
337   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
338   clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
339              SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
340     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
341     assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
342            "Invalid flags value!");
343     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
344   }
345 
346   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
347   maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
348     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
349     assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
350 
351     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
352   }
353 
354   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
355   setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
356            SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
357     assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
358     assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
359            "Invalid flags value!");
360 
361     return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
362   }
363 
364   /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
365   /// SCEVAddRecExpr.
366   LLVM_NODISCARD static SCEVWrapPredicate::IncrementWrapFlags
367   getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
368 
369 private:
370   const SCEVAddRecExpr *AR;
371   IncrementWrapFlags Flags;
372 
373 public:
374   explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
375                              const SCEVAddRecExpr *AR,
376                              IncrementWrapFlags Flags);
377 
378   /// Returns the set assumed no overflow flags.
379   IncrementWrapFlags getFlags() const { return Flags; }
380 
381   /// Implementation of the SCEVPredicate interface
382   const SCEV *getExpr() const override;
383   bool implies(const SCEVPredicate *N) const override;
384   void print(raw_ostream &OS, unsigned Depth = 0) const override;
385   bool isAlwaysTrue() const override;
386 
387   /// Methods for support type inquiry through isa, cast, and dyn_cast:
388   static bool classof(const SCEVPredicate *P) {
389     return P->getKind() == P_Wrap;
390   }
391 };
392 
393 /// This class represents a composition of other SCEV predicates, and is the
394 /// class that most clients will interact with.  This is equivalent to a
395 /// logical "AND" of all the predicates in the union.
396 ///
397 /// NB! Unlike other SCEVPredicate sub-classes this class does not live in the
398 /// ScalarEvolution::Preds folding set.  This is why the \c add function is sound.
399 class SCEVUnionPredicate final : public SCEVPredicate {
400 private:
401   using PredicateMap =
402       DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>;
403 
404   /// Vector with references to all predicates in this union.
405   SmallVector<const SCEVPredicate *, 16> Preds;
406 
407   /// Maps SCEVs to predicates for quick look-ups.
408   PredicateMap SCEVToPreds;
409 
410 public:
411   SCEVUnionPredicate();
412 
413   const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
414     return Preds;
415   }
416 
417   /// Adds a predicate to this union.
418   void add(const SCEVPredicate *N);
419 
420   /// Returns a reference to a vector containing all predicates which apply to
421   /// \p Expr.
422   ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
423 
424   /// Implementation of the SCEVPredicate interface
425   bool isAlwaysTrue() const override;
426   bool implies(const SCEVPredicate *N) const override;
427   void print(raw_ostream &OS, unsigned Depth) const override;
428   const SCEV *getExpr() const override;
429 
430   /// We estimate the complexity of a union predicate as the size number of
431   /// predicates in the union.
432   unsigned getComplexity() const override { return Preds.size(); }
433 
434   /// Methods for support type inquiry through isa, cast, and dyn_cast:
435   static bool classof(const SCEVPredicate *P) {
436     return P->getKind() == P_Union;
437   }
438 };
439 
440 /// The main scalar evolution driver. Because client code (intentionally)
441 /// can't do much with the SCEV objects directly, they must ask this class
442 /// for services.
443 class ScalarEvolution {
444   friend class ScalarEvolutionsTest;
445 
446 public:
447   /// An enum describing the relationship between a SCEV and a loop.
448   enum LoopDisposition {
449     LoopVariant,   ///< The SCEV is loop-variant (unknown).
450     LoopInvariant, ///< The SCEV is loop-invariant.
451     LoopComputable ///< The SCEV varies predictably with the loop.
452   };
453 
454   /// An enum describing the relationship between a SCEV and a basic block.
455   enum BlockDisposition {
456     DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
457     DominatesBlock,        ///< The SCEV dominates the block.
458     ProperlyDominatesBlock ///< The SCEV properly dominates the block.
459   };
460 
461   /// Convenient NoWrapFlags manipulation that hides enum casts and is
462   /// visible in the ScalarEvolution name space.
463   LLVM_NODISCARD static SCEV::NoWrapFlags maskFlags(SCEV::NoWrapFlags Flags,
464                                                     int Mask) {
465     return (SCEV::NoWrapFlags)(Flags & Mask);
466   }
467   LLVM_NODISCARD static SCEV::NoWrapFlags setFlags(SCEV::NoWrapFlags Flags,
468                                                    SCEV::NoWrapFlags OnFlags) {
469     return (SCEV::NoWrapFlags)(Flags | OnFlags);
470   }
471   LLVM_NODISCARD static SCEV::NoWrapFlags
472   clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
473     return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
474   }
475 
476   ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
477                   DominatorTree &DT, LoopInfo &LI);
478   ScalarEvolution(ScalarEvolution &&Arg);
479   ~ScalarEvolution();
480 
481   LLVMContext &getContext() const { return F.getContext(); }
482 
483   /// Test if values of the given type are analyzable within the SCEV
484   /// framework. This primarily includes integer types, and it can optionally
485   /// include pointer types if the ScalarEvolution class has access to
486   /// target-specific information.
487   bool isSCEVable(Type *Ty) const;
488 
489   /// Return the size in bits of the specified type, for which isSCEVable must
490   /// return true.
491   uint64_t getTypeSizeInBits(Type *Ty) const;
492 
493   /// Return a type with the same bitwidth as the given type and which
494   /// represents how SCEV will treat the given type, for which isSCEVable must
495   /// return true. For pointer types, this is the pointer-sized integer type.
496   Type *getEffectiveSCEVType(Type *Ty) const;
497 
498   // Returns a wider type among {Ty1, Ty2}.
499   Type *getWiderType(Type *Ty1, Type *Ty2) const;
500 
501   /// Return true if the SCEV is a scAddRecExpr or it contains
502   /// scAddRecExpr. The result will be cached in HasRecMap.
503   bool containsAddRecurrence(const SCEV *S);
504 
505   /// Erase Value from ValueExprMap and ExprValueMap.
506   void eraseValueFromMap(Value *V);
507 
508   /// Return a SCEV expression for the full generality of the specified
509   /// expression.
510   const SCEV *getSCEV(Value *V);
511 
512   const SCEV *getConstant(ConstantInt *V);
513   const SCEV *getConstant(const APInt &Val);
514   const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
515   const SCEV *getLosslessPtrToIntExpr(const SCEV *Op, unsigned Depth = 0);
516   const SCEV *getPtrToIntExpr(const SCEV *Op, Type *Ty);
517   const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
518   const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
519   const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth = 0);
520   const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
521   const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
522                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
523                          unsigned Depth = 0);
524   const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
525                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
526                          unsigned Depth = 0) {
527     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
528     return getAddExpr(Ops, Flags, Depth);
529   }
530   const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
531                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
532                          unsigned Depth = 0) {
533     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
534     return getAddExpr(Ops, Flags, Depth);
535   }
536   const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
537                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
538                          unsigned Depth = 0);
539   const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
540                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
541                          unsigned Depth = 0) {
542     SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
543     return getMulExpr(Ops, Flags, Depth);
544   }
545   const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
546                          SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
547                          unsigned Depth = 0) {
548     SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
549     return getMulExpr(Ops, Flags, Depth);
550   }
551   const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
552   const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
553   const SCEV *getURemExpr(const SCEV *LHS, const SCEV *RHS);
554   const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
555                             SCEV::NoWrapFlags Flags);
556   const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
557                             const Loop *L, SCEV::NoWrapFlags Flags);
558   const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
559                             const Loop *L, SCEV::NoWrapFlags Flags) {
560     SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
561     return getAddRecExpr(NewOp, L, Flags);
562   }
563 
564   /// Checks if \p SymbolicPHI can be rewritten as an AddRecExpr under some
565   /// Predicates. If successful return these <AddRecExpr, Predicates>;
566   /// The function is intended to be called from PSCEV (the caller will decide
567   /// whether to actually add the predicates and carry out the rewrites).
568   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
569   createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI);
570 
571   /// Returns an expression for a GEP
572   ///
573   /// \p GEP The GEP. The indices contained in the GEP itself are ignored,
574   /// instead we use IndexExprs.
575   /// \p IndexExprs The expressions for the indices.
576   const SCEV *getGEPExpr(GEPOperator *GEP,
577                          const SmallVectorImpl<const SCEV *> &IndexExprs);
578   const SCEV *getAbsExpr(const SCEV *Op, bool IsNSW);
579   const SCEV *getMinMaxExpr(SCEVTypes Kind,
580                             SmallVectorImpl<const SCEV *> &Operands);
581   const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
582   const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
583   const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
584   const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
585   const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
586   const SCEV *getSMinExpr(SmallVectorImpl<const SCEV *> &Operands);
587   const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
588   const SCEV *getUMinExpr(SmallVectorImpl<const SCEV *> &Operands);
589   const SCEV *getUnknown(Value *V);
590   const SCEV *getCouldNotCompute();
591 
592   /// Return a SCEV for the constant 0 of a specific type.
593   const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
594 
595   /// Return a SCEV for the constant 1 of a specific type.
596   const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
597 
598   /// Return a SCEV for the constant -1 of a specific type.
599   const SCEV *getMinusOne(Type *Ty) {
600     return getConstant(Ty, -1, /*isSigned=*/true);
601   }
602 
603   /// Return an expression for sizeof ScalableTy that is type IntTy, where
604   /// ScalableTy is a scalable vector type.
605   const SCEV *getSizeOfScalableVectorExpr(Type *IntTy,
606                                           ScalableVectorType *ScalableTy);
607 
608   /// Return an expression for the alloc size of AllocTy that is type IntTy
609   const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
610 
611   /// Return an expression for the store size of StoreTy that is type IntTy
612   const SCEV *getStoreSizeOfExpr(Type *IntTy, Type *StoreTy);
613 
614   /// Return an expression for offsetof on the given field with type IntTy
615   const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
616 
617   /// Return the SCEV object corresponding to -V.
618   const SCEV *getNegativeSCEV(const SCEV *V,
619                               SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
620 
621   /// Return the SCEV object corresponding to ~V.
622   const SCEV *getNotSCEV(const SCEV *V);
623 
624   /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
625   const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
626                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap,
627                            unsigned Depth = 0);
628 
629   /// Return a SCEV corresponding to a conversion of the input value to the
630   /// specified type.  If the type must be extended, it is zero extended.
631   const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
632                                       unsigned Depth = 0);
633 
634   /// Return a SCEV corresponding to a conversion of the input value to the
635   /// specified type.  If the type must be extended, it is sign extended.
636   const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty,
637                                       unsigned Depth = 0);
638 
639   /// Return a SCEV corresponding to a conversion of the input value to the
640   /// specified type.  If the type must be extended, it is zero extended.  The
641   /// conversion must not be narrowing.
642   const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
643 
644   /// Return a SCEV corresponding to a conversion of the input value to the
645   /// specified type.  If the type must be extended, it is sign extended.  The
646   /// conversion must not be narrowing.
647   const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
648 
649   /// Return a SCEV corresponding to a conversion of the input value to the
650   /// specified type. If the type must be extended, it is extended with
651   /// unspecified bits. The conversion must not be narrowing.
652   const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
653 
654   /// Return a SCEV corresponding to a conversion of the input value to the
655   /// specified type.  The conversion must not be widening.
656   const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
657 
658   /// Promote the operands to the wider of the types using zero-extension, and
659   /// then perform a umax operation with them.
660   const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
661 
662   /// Promote the operands to the wider of the types using zero-extension, and
663   /// then perform a umin operation with them.
664   const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
665 
666   /// Promote the operands to the wider of the types using zero-extension, and
667   /// then perform a umin operation with them. N-ary function.
668   const SCEV *getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops);
669 
670   /// Transitively follow the chain of pointer-type operands until reaching a
671   /// SCEV that does not have a single pointer operand. This returns a
672   /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
673   /// cases do exist.
674   const SCEV *getPointerBase(const SCEV *V);
675 
676   /// Return a SCEV expression for the specified value at the specified scope
677   /// in the program.  The L value specifies a loop nest to evaluate the
678   /// expression at, where null is the top-level or a specified loop is
679   /// immediately inside of the loop.
680   ///
681   /// This method can be used to compute the exit value for a variable defined
682   /// in a loop by querying what the value will hold in the parent loop.
683   ///
684   /// In the case that a relevant loop exit value cannot be computed, the
685   /// original value V is returned.
686   const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
687 
688   /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
689   const SCEV *getSCEVAtScope(Value *V, const Loop *L);
690 
691   /// Test whether entry to the loop is protected by a conditional between LHS
692   /// and RHS.  This is used to help avoid max expressions in loop trip
693   /// counts, and to eliminate casts.
694   bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
695                                 const SCEV *LHS, const SCEV *RHS);
696 
697   /// Test whether entry to the basic block is protected by a conditional
698   /// between LHS and RHS.
699   bool isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
700                                       ICmpInst::Predicate Pred, const SCEV *LHS,
701                                       const SCEV *RHS);
702 
703   /// Test whether the backedge of the loop is protected by a conditional
704   /// between LHS and RHS.  This is used to eliminate casts.
705   bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
706                                    const SCEV *LHS, const SCEV *RHS);
707 
708   /// Returns the maximum trip count of the loop if it is a single-exit
709   /// loop and we can compute a small maximum for that loop.
710   ///
711   /// Implemented in terms of the \c getSmallConstantTripCount overload with
712   /// the single exiting block passed to it. See that routine for details.
713   unsigned getSmallConstantTripCount(const Loop *L);
714 
715   /// Returns the maximum trip count of this loop as a normal unsigned
716   /// value. Returns 0 if the trip count is unknown or not constant. This
717   /// "trip count" assumes that control exits via ExitingBlock. More
718   /// precisely, it is the number of times that control may reach ExitingBlock
719   /// before taking the branch. For loops with multiple exits, it may not be
720   /// the number times that the loop header executes if the loop exits
721   /// prematurely via another branch.
722   unsigned getSmallConstantTripCount(const Loop *L,
723                                      const BasicBlock *ExitingBlock);
724 
725   /// Returns the upper bound of the loop trip count as a normal unsigned
726   /// value.
727   /// Returns 0 if the trip count is unknown or not constant.
728   unsigned getSmallConstantMaxTripCount(const Loop *L);
729 
730   /// Returns the largest constant divisor of the trip count of the
731   /// loop if it is a single-exit loop and we can compute a small maximum for
732   /// that loop.
733   ///
734   /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
735   /// the single exiting block passed to it. See that routine for details.
736   unsigned getSmallConstantTripMultiple(const Loop *L);
737 
738   /// Returns the largest constant divisor of the trip count of this loop as a
739   /// normal unsigned value, if possible. This means that the actual trip
740   /// count is always a multiple of the returned value (don't forget the trip
741   /// count could very well be zero as well!). As explained in the comments
742   /// for getSmallConstantTripCount, this assumes that control exits the loop
743   /// via ExitingBlock.
744   unsigned getSmallConstantTripMultiple(const Loop *L,
745                                         const BasicBlock *ExitingBlock);
746 
747   /// The terms "backedge taken count" and "exit count" are used
748   /// interchangeably to refer to the number of times the backedge of a loop
749   /// has executed before the loop is exited.
750   enum ExitCountKind {
751     /// An expression exactly describing the number of times the backedge has
752     /// executed when a loop is exited.
753     Exact,
754     /// A constant which provides an upper bound on the exact trip count.
755     ConstantMaximum,
756     /// An expression which provides an upper bound on the exact trip count.
757     SymbolicMaximum,
758   };
759 
760   /// Return the number of times the backedge executes before the given exit
761   /// would be taken; if not exactly computable, return SCEVCouldNotCompute.
762   /// For a single exit loop, this value is equivelent to the result of
763   /// getBackedgeTakenCount.  The loop is guaranteed to exit (via *some* exit)
764   /// before the backedge is executed (ExitCount + 1) times.  Note that there
765   /// is no guarantee about *which* exit is taken on the exiting iteration.
766   const SCEV *getExitCount(const Loop *L, const BasicBlock *ExitingBlock,
767                            ExitCountKind Kind = Exact);
768 
769   /// If the specified loop has a predictable backedge-taken count, return it,
770   /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count is
771   /// the number of times the loop header will be branched to from within the
772   /// loop, assuming there are no abnormal exists like exception throws. This is
773   /// one less than the trip count of the loop, since it doesn't count the first
774   /// iteration, when the header is branched to from outside the loop.
775   ///
776   /// Note that it is not valid to call this method on a loop without a
777   /// loop-invariant backedge-taken count (see
778   /// hasLoopInvariantBackedgeTakenCount).
779   const SCEV *getBackedgeTakenCount(const Loop *L, ExitCountKind Kind = Exact);
780 
781   /// Similar to getBackedgeTakenCount, except it will add a set of
782   /// SCEV predicates to Predicates that are required to be true in order for
783   /// the answer to be correct. Predicates can be checked with run-time
784   /// checks and can be used to perform loop versioning.
785   const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
786                                               SCEVUnionPredicate &Predicates);
787 
788   /// When successful, this returns a SCEVConstant that is greater than or equal
789   /// to (i.e. a "conservative over-approximation") of the value returend by
790   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
791   /// SCEVCouldNotCompute object.
792   const SCEV *getConstantMaxBackedgeTakenCount(const Loop *L) {
793     return getBackedgeTakenCount(L, ConstantMaximum);
794   }
795 
796   /// When successful, this returns a SCEV that is greater than or equal
797   /// to (i.e. a "conservative over-approximation") of the value returend by
798   /// getBackedgeTakenCount.  If such a value cannot be computed, it returns the
799   /// SCEVCouldNotCompute object.
800   const SCEV *getSymbolicMaxBackedgeTakenCount(const Loop *L) {
801     return getBackedgeTakenCount(L, SymbolicMaximum);
802   }
803 
804   /// Return true if the backedge taken count is either the value returned by
805   /// getConstantMaxBackedgeTakenCount or zero.
806   bool isBackedgeTakenCountMaxOrZero(const Loop *L);
807 
808   /// Return true if the specified loop has an analyzable loop-invariant
809   /// backedge-taken count.
810   bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
811 
812   // This method should be called by the client when it made any change that
813   // would invalidate SCEV's answers, and the client wants to remove all loop
814   // information held internally by ScalarEvolution. This is intended to be used
815   // when the alternative to forget a loop is too expensive (i.e. large loop
816   // bodies).
817   void forgetAllLoops();
818 
819   /// This method should be called by the client when it has changed a loop in
820   /// a way that may effect ScalarEvolution's ability to compute a trip count,
821   /// or if the loop is deleted.  This call is potentially expensive for large
822   /// loop bodies.
823   void forgetLoop(const Loop *L);
824 
825   // This method invokes forgetLoop for the outermost loop of the given loop
826   // \p L, making ScalarEvolution forget about all this subtree. This needs to
827   // be done whenever we make a transform that may affect the parameters of the
828   // outer loop, such as exit counts for branches.
829   void forgetTopmostLoop(const Loop *L);
830 
831   /// This method should be called by the client when it has changed a value
832   /// in a way that may effect its value, or which may disconnect it from a
833   /// def-use chain linking it to a loop.
834   void forgetValue(Value *V);
835 
836   /// Called when the client has changed the disposition of values in
837   /// this loop.
838   ///
839   /// We don't have a way to invalidate per-loop dispositions. Clear and
840   /// recompute is simpler.
841   void forgetLoopDispositions(const Loop *L);
842 
843   /// Determine the minimum number of zero bits that S is guaranteed to end in
844   /// (at every loop iteration).  It is, at the same time, the minimum number
845   /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
846   /// If S is guaranteed to be 0, it returns the bitwidth of S.
847   uint32_t GetMinTrailingZeros(const SCEV *S);
848 
849   /// Determine the unsigned range for a particular SCEV.
850   /// NOTE: This returns a copy of the reference returned by getRangeRef.
851   ConstantRange getUnsignedRange(const SCEV *S) {
852     return getRangeRef(S, HINT_RANGE_UNSIGNED);
853   }
854 
855   /// Determine the min of the unsigned range for a particular SCEV.
856   APInt getUnsignedRangeMin(const SCEV *S) {
857     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMin();
858   }
859 
860   /// Determine the max of the unsigned range for a particular SCEV.
861   APInt getUnsignedRangeMax(const SCEV *S) {
862     return getRangeRef(S, HINT_RANGE_UNSIGNED).getUnsignedMax();
863   }
864 
865   /// Determine the signed range for a particular SCEV.
866   /// NOTE: This returns a copy of the reference returned by getRangeRef.
867   ConstantRange getSignedRange(const SCEV *S) {
868     return getRangeRef(S, HINT_RANGE_SIGNED);
869   }
870 
871   /// Determine the min of the signed range for a particular SCEV.
872   APInt getSignedRangeMin(const SCEV *S) {
873     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMin();
874   }
875 
876   /// Determine the max of the signed range for a particular SCEV.
877   APInt getSignedRangeMax(const SCEV *S) {
878     return getRangeRef(S, HINT_RANGE_SIGNED).getSignedMax();
879   }
880 
881   /// Test if the given expression is known to be negative.
882   bool isKnownNegative(const SCEV *S);
883 
884   /// Test if the given expression is known to be positive.
885   bool isKnownPositive(const SCEV *S);
886 
887   /// Test if the given expression is known to be non-negative.
888   bool isKnownNonNegative(const SCEV *S);
889 
890   /// Test if the given expression is known to be non-positive.
891   bool isKnownNonPositive(const SCEV *S);
892 
893   /// Test if the given expression is known to be non-zero.
894   bool isKnownNonZero(const SCEV *S);
895 
896   /// Splits SCEV expression \p S into two SCEVs. One of them is obtained from
897   /// \p S by substitution of all AddRec sub-expression related to loop \p L
898   /// with initial value of that SCEV. The second is obtained from \p S by
899   /// substitution of all AddRec sub-expressions related to loop \p L with post
900   /// increment of this AddRec in the loop \p L. In both cases all other AddRec
901   /// sub-expressions (not related to \p L) remain the same.
902   /// If the \p S contains non-invariant unknown SCEV the function returns
903   /// CouldNotCompute SCEV in both values of std::pair.
904   /// For example, for SCEV S={0, +, 1}<L1> + {0, +, 1}<L2> and loop L=L1
905   /// the function returns pair:
906   /// first = {0, +, 1}<L2>
907   /// second = {1, +, 1}<L1> + {0, +, 1}<L2>
908   /// We can see that for the first AddRec sub-expression it was replaced with
909   /// 0 (initial value) for the first element and to {1, +, 1}<L1> (post
910   /// increment value) for the second one. In both cases AddRec expression
911   /// related to L2 remains the same.
912   std::pair<const SCEV *, const SCEV *> SplitIntoInitAndPostInc(const Loop *L,
913                                                                 const SCEV *S);
914 
915   /// We'd like to check the predicate on every iteration of the most dominated
916   /// loop between loops used in LHS and RHS.
917   /// To do this we use the following list of steps:
918   /// 1. Collect set S all loops on which either LHS or RHS depend.
919   /// 2. If S is non-empty
920   /// a. Let PD be the element of S which is dominated by all other elements.
921   /// b. Let E(LHS) be value of LHS on entry of PD.
922   ///    To get E(LHS), we should just take LHS and replace all AddRecs that are
923   ///    attached to PD on with their entry values.
924   ///    Define E(RHS) in the same way.
925   /// c. Let B(LHS) be value of L on backedge of PD.
926   ///    To get B(LHS), we should just take LHS and replace all AddRecs that are
927   ///    attached to PD on with their backedge values.
928   ///    Define B(RHS) in the same way.
929   /// d. Note that E(LHS) and E(RHS) are automatically available on entry of PD,
930   ///    so we can assert on that.
931   /// e. Return true if isLoopEntryGuardedByCond(Pred, E(LHS), E(RHS)) &&
932   ///                   isLoopBackedgeGuardedByCond(Pred, B(LHS), B(RHS))
933   bool isKnownViaInduction(ICmpInst::Predicate Pred, const SCEV *LHS,
934                            const SCEV *RHS);
935 
936   /// Test if the given expression is known to satisfy the condition described
937   /// by Pred, LHS, and RHS.
938   bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
939                         const SCEV *RHS);
940 
941   /// Check whether the condition described by Pred, LHS, and RHS is true or
942   /// false. If we know it, return the evaluation of this condition. If neither
943   /// is proved, return None.
944   Optional<bool> evaluatePredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
945                                    const SCEV *RHS);
946 
947   /// Test if the given expression is known to satisfy the condition described
948   /// by Pred, LHS, and RHS in the given Context.
949   bool isKnownPredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
950                         const SCEV *RHS, const Instruction *Context);
951 
952   /// Check whether the condition described by Pred, LHS, and RHS is true or
953   /// false in the given \p Context. If we know it, return the evaluation of
954   /// this condition. If neither is proved, return None.
955   Optional<bool> evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
956                                      const SCEV *RHS,
957                                      const Instruction *Context);
958 
959   /// Test if the condition described by Pred, LHS, RHS is known to be true on
960   /// every iteration of the loop of the recurrency LHS.
961   bool isKnownOnEveryIteration(ICmpInst::Predicate Pred,
962                                const SCEVAddRecExpr *LHS, const SCEV *RHS);
963 
964   /// A predicate is said to be monotonically increasing if may go from being
965   /// false to being true as the loop iterates, but never the other way
966   /// around.  A predicate is said to be monotonically decreasing if may go
967   /// from being true to being false as the loop iterates, but never the other
968   /// way around.
969   enum MonotonicPredicateType {
970     MonotonicallyIncreasing,
971     MonotonicallyDecreasing
972   };
973 
974   /// If, for all loop invariant X, the predicate "LHS `Pred` X" is
975   /// monotonically increasing or decreasing, returns
976   /// Some(MonotonicallyIncreasing) and Some(MonotonicallyDecreasing)
977   /// respectively. If we could not prove either of these facts, returns None.
978   Optional<MonotonicPredicateType>
979   getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
980                             ICmpInst::Predicate Pred);
981 
982   struct LoopInvariantPredicate {
983     ICmpInst::Predicate Pred;
984     const SCEV *LHS;
985     const SCEV *RHS;
986 
987     LoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
988                            const SCEV *RHS)
989         : Pred(Pred), LHS(LHS), RHS(RHS) {}
990   };
991   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
992   /// respect to L, return a LoopInvariantPredicate with LHS and RHS being
993   /// invariants, available at L's entry. Otherwise, return None.
994   Optional<LoopInvariantPredicate>
995   getLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
996                             const SCEV *RHS, const Loop *L);
997 
998   /// If the result of the predicate LHS `Pred` RHS is loop invariant with
999   /// respect to L at given Context during at least first MaxIter iterations,
1000   /// return a LoopInvariantPredicate with LHS and RHS being invariants,
1001   /// available at L's entry. Otherwise, return None. The predicate should be
1002   /// the loop's exit condition.
1003   Optional<LoopInvariantPredicate>
1004   getLoopInvariantExitCondDuringFirstIterations(ICmpInst::Predicate Pred,
1005                                                 const SCEV *LHS,
1006                                                 const SCEV *RHS, const Loop *L,
1007                                                 const Instruction *Context,
1008                                                 const SCEV *MaxIter);
1009 
1010   /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
1011   /// iff any changes were made. If the operands are provably equal or
1012   /// unequal, LHS and RHS are set to the same value and Pred is set to either
1013   /// ICMP_EQ or ICMP_NE.
1014   bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
1015                             const SCEV *&RHS, unsigned Depth = 0);
1016 
1017   /// Return the "disposition" of the given SCEV with respect to the given
1018   /// loop.
1019   LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
1020 
1021   /// Return true if the value of the given SCEV is unchanging in the
1022   /// specified loop.
1023   bool isLoopInvariant(const SCEV *S, const Loop *L);
1024 
1025   /// Determine if the SCEV can be evaluated at loop's entry. It is true if it
1026   /// doesn't depend on a SCEVUnknown of an instruction which is dominated by
1027   /// the header of loop L.
1028   bool isAvailableAtLoopEntry(const SCEV *S, const Loop *L);
1029 
1030   /// Return true if the given SCEV changes value in a known way in the
1031   /// specified loop.  This property being true implies that the value is
1032   /// variant in the loop AND that we can emit an expression to compute the
1033   /// value of the expression at any particular loop iteration.
1034   bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
1035 
1036   /// Return the "disposition" of the given SCEV with respect to the given
1037   /// block.
1038   BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
1039 
1040   /// Return true if elements that makes up the given SCEV dominate the
1041   /// specified basic block.
1042   bool dominates(const SCEV *S, const BasicBlock *BB);
1043 
1044   /// Return true if elements that makes up the given SCEV properly dominate
1045   /// the specified basic block.
1046   bool properlyDominates(const SCEV *S, const BasicBlock *BB);
1047 
1048   /// Test whether the given SCEV has Op as a direct or indirect operand.
1049   bool hasOperand(const SCEV *S, const SCEV *Op) const;
1050 
1051   /// Return the size of an element read or written by Inst.
1052   const SCEV *getElementSize(Instruction *Inst);
1053 
1054   /// Compute the array dimensions Sizes from the set of Terms extracted from
1055   /// the memory access function of this SCEVAddRecExpr (second step of
1056   /// delinearization).
1057   void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
1058                            SmallVectorImpl<const SCEV *> &Sizes,
1059                            const SCEV *ElementSize);
1060 
1061   void print(raw_ostream &OS) const;
1062   void verify() const;
1063   bool invalidate(Function &F, const PreservedAnalyses &PA,
1064                   FunctionAnalysisManager::Invalidator &Inv);
1065 
1066   /// Collect parametric terms occurring in step expressions (first step of
1067   /// delinearization).
1068   void collectParametricTerms(const SCEV *Expr,
1069                               SmallVectorImpl<const SCEV *> &Terms);
1070 
1071   /// Return in Subscripts the access functions for each dimension in Sizes
1072   /// (third step of delinearization).
1073   void computeAccessFunctions(const SCEV *Expr,
1074                               SmallVectorImpl<const SCEV *> &Subscripts,
1075                               SmallVectorImpl<const SCEV *> &Sizes);
1076 
1077   /// Gathers the individual index expressions from a GEP instruction.
1078   ///
1079   /// This function optimistically assumes the GEP references into a fixed size
1080   /// array. If this is actually true, this function returns a list of array
1081   /// subscript expressions in \p Subscripts and a list of integers describing
1082   /// the size of the individual array dimensions in \p Sizes. Both lists have
1083   /// either equal length or the size list is one element shorter in case there
1084   /// is no known size available for the outermost array dimension. Returns true
1085   /// if successful and false otherwise.
1086   bool getIndexExpressionsFromGEP(const GetElementPtrInst *GEP,
1087                                   SmallVectorImpl<const SCEV *> &Subscripts,
1088                                   SmallVectorImpl<int> &Sizes);
1089 
1090   /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
1091   /// subscripts and sizes of an array access.
1092   ///
1093   /// The delinearization is a 3 step process: the first two steps compute the
1094   /// sizes of each subscript and the third step computes the access functions
1095   /// for the delinearized array:
1096   ///
1097   /// 1. Find the terms in the step functions
1098   /// 2. Compute the array size
1099   /// 3. Compute the access function: divide the SCEV by the array size
1100   ///    starting with the innermost dimensions found in step 2. The Quotient
1101   ///    is the SCEV to be divided in the next step of the recursion. The
1102   ///    Remainder is the subscript of the innermost dimension. Loop over all
1103   ///    array dimensions computed in step 2.
1104   ///
1105   /// To compute a uniform array size for several memory accesses to the same
1106   /// object, one can collect in step 1 all the step terms for all the memory
1107   /// accesses, and compute in step 2 a unique array shape. This guarantees
1108   /// that the array shape will be the same across all memory accesses.
1109   ///
1110   /// FIXME: We could derive the result of steps 1 and 2 from a description of
1111   /// the array shape given in metadata.
1112   ///
1113   /// Example:
1114   ///
1115   /// A[][n][m]
1116   ///
1117   /// for i
1118   ///   for j
1119   ///     for k
1120   ///       A[j+k][2i][5i] =
1121   ///
1122   /// The initial SCEV:
1123   ///
1124   /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
1125   ///
1126   /// 1. Find the different terms in the step functions:
1127   /// -> [2*m, 5, n*m, n*m]
1128   ///
1129   /// 2. Compute the array size: sort and unique them
1130   /// -> [n*m, 2*m, 5]
1131   /// find the GCD of all the terms = 1
1132   /// divide by the GCD and erase constant terms
1133   /// -> [n*m, 2*m]
1134   /// GCD = m
1135   /// divide by GCD -> [n, 2]
1136   /// remove constant terms
1137   /// -> [n]
1138   /// size of the array is A[unknown][n][m]
1139   ///
1140   /// 3. Compute the access function
1141   /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
1142   /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
1143   /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
1144   /// The remainder is the subscript of the innermost array dimension: [5i].
1145   ///
1146   /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
1147   /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
1148   /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
1149   /// The Remainder is the subscript of the next array dimension: [2i].
1150   ///
1151   /// The subscript of the outermost dimension is the Quotient: [j+k].
1152   ///
1153   /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
1154   void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
1155                    SmallVectorImpl<const SCEV *> &Sizes,
1156                    const SCEV *ElementSize);
1157 
1158   /// Return the DataLayout associated with the module this SCEV instance is
1159   /// operating on.
1160   const DataLayout &getDataLayout() const {
1161     return F.getParent()->getDataLayout();
1162   }
1163 
1164   const SCEVPredicate *getEqualPredicate(const SCEV *LHS, const SCEV *RHS);
1165 
1166   const SCEVPredicate *
1167   getWrapPredicate(const SCEVAddRecExpr *AR,
1168                    SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
1169 
1170   /// Re-writes the SCEV according to the Predicates in \p A.
1171   const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
1172                                     SCEVUnionPredicate &A);
1173   /// Tries to convert the \p S expression to an AddRec expression,
1174   /// adding additional predicates to \p Preds as required.
1175   const SCEVAddRecExpr *convertSCEVToAddRecWithPredicates(
1176       const SCEV *S, const Loop *L,
1177       SmallPtrSetImpl<const SCEVPredicate *> &Preds);
1178 
1179   /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
1180   /// constant, and None if it isn't.
1181   ///
1182   /// This is intended to be a cheaper version of getMinusSCEV.  We can be
1183   /// frugal here since we just bail out of actually constructing and
1184   /// canonicalizing an expression in the cases where the result isn't going
1185   /// to be a constant.
1186   Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
1187 
1188   /// Update no-wrap flags of an AddRec. This may drop the cached info about
1189   /// this AddRec (such as range info) in case if new flags may potentially
1190   /// sharpen it.
1191   void setNoWrapFlags(SCEVAddRecExpr *AddRec, SCEV::NoWrapFlags Flags);
1192 
1193   /// Try to apply information from loop guards for \p L to \p Expr.
1194   const SCEV *applyLoopGuards(const SCEV *Expr, const Loop *L);
1195 
1196 private:
1197   /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
1198   /// Value is deleted.
1199   class SCEVCallbackVH final : public CallbackVH {
1200     ScalarEvolution *SE;
1201 
1202     void deleted() override;
1203     void allUsesReplacedWith(Value *New) override;
1204 
1205   public:
1206     SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
1207   };
1208 
1209   friend class SCEVCallbackVH;
1210   friend class SCEVExpander;
1211   friend class SCEVUnknown;
1212 
1213   /// The function we are analyzing.
1214   Function &F;
1215 
1216   /// Does the module have any calls to the llvm.experimental.guard intrinsic
1217   /// at all?  If this is false, we avoid doing work that will only help if
1218   /// thare are guards present in the IR.
1219   bool HasGuards;
1220 
1221   /// The target library information for the target we are targeting.
1222   TargetLibraryInfo &TLI;
1223 
1224   /// The tracker for \@llvm.assume intrinsics in this function.
1225   AssumptionCache &AC;
1226 
1227   /// The dominator tree.
1228   DominatorTree &DT;
1229 
1230   /// The loop information for the function we are currently analyzing.
1231   LoopInfo &LI;
1232 
1233   /// This SCEV is used to represent unknown trip counts and things.
1234   std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
1235 
1236   /// The type for HasRecMap.
1237   using HasRecMapType = DenseMap<const SCEV *, bool>;
1238 
1239   /// This is a cache to record whether a SCEV contains any scAddRecExpr.
1240   HasRecMapType HasRecMap;
1241 
1242   /// The type for ExprValueMap.
1243   using ValueOffsetPair = std::pair<Value *, ConstantInt *>;
1244   using ExprValueMapType = DenseMap<const SCEV *, SetVector<ValueOffsetPair>>;
1245 
1246   /// ExprValueMap -- This map records the original values from which
1247   /// the SCEV expr is generated from.
1248   ///
1249   /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
1250   /// of SCEV -> Value:
1251   /// Suppose we know S1 expands to V1, and
1252   ///  S1 = S2 + C_a
1253   ///  S3 = S2 + C_b
1254   /// where C_a and C_b are different SCEVConstants. Then we'd like to
1255   /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
1256   /// It is helpful when S2 is a complex SCEV expr.
1257   ///
1258   /// In order to do that, we represent ExprValueMap as a mapping from
1259   /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
1260   /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
1261   /// is expanded, it will first expand S2 to V1 - C_a because of
1262   /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
1263   ///
1264   /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
1265   /// to V - Offset.
1266   ExprValueMapType ExprValueMap;
1267 
1268   /// The type for ValueExprMap.
1269   using ValueExprMapType =
1270       DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>;
1271 
1272   /// This is a cache of the values we have analyzed so far.
1273   ValueExprMapType ValueExprMap;
1274 
1275   /// Mark predicate values currently being processed by isImpliedCond.
1276   SmallPtrSet<const Value *, 6> PendingLoopPredicates;
1277 
1278   /// Mark SCEVUnknown Phis currently being processed by getRangeRef.
1279   SmallPtrSet<const PHINode *, 6> PendingPhiRanges;
1280 
1281   // Mark SCEVUnknown Phis currently being processed by isImpliedViaMerge.
1282   SmallPtrSet<const PHINode *, 6> PendingMerges;
1283 
1284   /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
1285   /// conditions dominating the backedge of a loop.
1286   bool WalkingBEDominatingConds = false;
1287 
1288   /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
1289   /// predicate by splitting it into a set of independent predicates.
1290   bool ProvingSplitPredicate = false;
1291 
1292   /// Memoized values for the GetMinTrailingZeros
1293   DenseMap<const SCEV *, uint32_t> MinTrailingZerosCache;
1294 
1295   /// Return the Value set from which the SCEV expr is generated.
1296   SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S);
1297 
1298   /// Private helper method for the GetMinTrailingZeros method
1299   uint32_t GetMinTrailingZerosImpl(const SCEV *S);
1300 
1301   /// Information about the number of loop iterations for which a loop exit's
1302   /// branch condition evaluates to the not-taken path.  This is a temporary
1303   /// pair of exact and max expressions that are eventually summarized in
1304   /// ExitNotTakenInfo and BackedgeTakenInfo.
1305   struct ExitLimit {
1306     const SCEV *ExactNotTaken; // The exit is not taken exactly this many times
1307     const SCEV *MaxNotTaken; // The exit is not taken at most this many times
1308 
1309     // Not taken either exactly MaxNotTaken or zero times
1310     bool MaxOrZero = false;
1311 
1312     /// A set of predicate guards for this ExitLimit. The result is only valid
1313     /// if all of the predicates in \c Predicates evaluate to 'true' at
1314     /// run-time.
1315     SmallPtrSet<const SCEVPredicate *, 4> Predicates;
1316 
1317     void addPredicate(const SCEVPredicate *P) {
1318       assert(!isa<SCEVUnionPredicate>(P) && "Only add leaf predicates here!");
1319       Predicates.insert(P);
1320     }
1321 
1322     /// Construct either an exact exit limit from a constant, or an unknown
1323     /// one from a SCEVCouldNotCompute.  No other types of SCEVs are allowed
1324     /// as arguments and asserts enforce that internally.
1325     /*implicit*/ ExitLimit(const SCEV *E);
1326 
1327     ExitLimit(
1328         const SCEV *E, const SCEV *M, bool MaxOrZero,
1329         ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList);
1330 
1331     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero,
1332               const SmallPtrSetImpl<const SCEVPredicate *> &PredSet);
1333 
1334     ExitLimit(const SCEV *E, const SCEV *M, bool MaxOrZero);
1335 
1336     /// Test whether this ExitLimit contains any computed information, or
1337     /// whether it's all SCEVCouldNotCompute values.
1338     bool hasAnyInfo() const {
1339       return !isa<SCEVCouldNotCompute>(ExactNotTaken) ||
1340              !isa<SCEVCouldNotCompute>(MaxNotTaken);
1341     }
1342 
1343     /// Test whether this ExitLimit contains all information.
1344     bool hasFullInfo() const {
1345       return !isa<SCEVCouldNotCompute>(ExactNotTaken);
1346     }
1347   };
1348 
1349   /// Information about the number of times a particular loop exit may be
1350   /// reached before exiting the loop.
1351   struct ExitNotTakenInfo {
1352     PoisoningVH<BasicBlock> ExitingBlock;
1353     const SCEV *ExactNotTaken;
1354     const SCEV *MaxNotTaken;
1355     std::unique_ptr<SCEVUnionPredicate> Predicate;
1356 
1357     explicit ExitNotTakenInfo(PoisoningVH<BasicBlock> ExitingBlock,
1358                               const SCEV *ExactNotTaken,
1359                               const SCEV *MaxNotTaken,
1360                               std::unique_ptr<SCEVUnionPredicate> Predicate)
1361       : ExitingBlock(ExitingBlock), ExactNotTaken(ExactNotTaken),
1362         MaxNotTaken(ExactNotTaken), Predicate(std::move(Predicate)) {}
1363 
1364     bool hasAlwaysTruePredicate() const {
1365       return !Predicate || Predicate->isAlwaysTrue();
1366     }
1367   };
1368 
1369   /// Information about the backedge-taken count of a loop. This currently
1370   /// includes an exact count and a maximum count.
1371   ///
1372   class BackedgeTakenInfo {
1373     /// A list of computable exits and their not-taken counts.  Loops almost
1374     /// never have more than one computable exit.
1375     SmallVector<ExitNotTakenInfo, 1> ExitNotTaken;
1376 
1377     /// Expression indicating the least constant maximum backedge-taken count of
1378     /// the loop that is known, or a SCEVCouldNotCompute. This expression is
1379     /// only valid if the redicates associated with all loop exits are true.
1380     const SCEV *ConstantMax;
1381 
1382     /// Indicating if \c ExitNotTaken has an element for every exiting block in
1383     /// the loop.
1384     bool IsComplete;
1385 
1386     /// Expression indicating the least maximum backedge-taken count of the loop
1387     /// that is known, or a SCEVCouldNotCompute. Lazily computed on first query.
1388     const SCEV *SymbolicMax = nullptr;
1389 
1390     /// True iff the backedge is taken either exactly Max or zero times.
1391     bool MaxOrZero = false;
1392 
1393     bool isComplete() const { return IsComplete; }
1394     const SCEV *getConstantMax() const { return ConstantMax; }
1395 
1396   public:
1397     BackedgeTakenInfo() : ConstantMax(nullptr), IsComplete(false) {}
1398     BackedgeTakenInfo(BackedgeTakenInfo &&) = default;
1399     BackedgeTakenInfo &operator=(BackedgeTakenInfo &&) = default;
1400 
1401     using EdgeExitInfo = std::pair<BasicBlock *, ExitLimit>;
1402 
1403     /// Initialize BackedgeTakenInfo from a list of exact exit counts.
1404     BackedgeTakenInfo(ArrayRef<EdgeExitInfo> ExitCounts, bool IsComplete,
1405                       const SCEV *ConstantMax, bool MaxOrZero);
1406 
1407     /// Test whether this BackedgeTakenInfo contains any computed information,
1408     /// or whether it's all SCEVCouldNotCompute values.
1409     bool hasAnyInfo() const {
1410       return !ExitNotTaken.empty() ||
1411              !isa<SCEVCouldNotCompute>(getConstantMax());
1412     }
1413 
1414     /// Test whether this BackedgeTakenInfo contains complete information.
1415     bool hasFullInfo() const { return isComplete(); }
1416 
1417     /// Return an expression indicating the exact *backedge-taken*
1418     /// count of the loop if it is known or SCEVCouldNotCompute
1419     /// otherwise.  If execution makes it to the backedge on every
1420     /// iteration (i.e. there are no abnormal exists like exception
1421     /// throws and thread exits) then this is the number of times the
1422     /// loop header will execute minus one.
1423     ///
1424     /// If the SCEV predicate associated with the answer can be different
1425     /// from AlwaysTrue, we must add a (non null) Predicates argument.
1426     /// The SCEV predicate associated with the answer will be added to
1427     /// Predicates. A run-time check needs to be emitted for the SCEV
1428     /// predicate in order for the answer to be valid.
1429     ///
1430     /// Note that we should always know if we need to pass a predicate
1431     /// argument or not from the way the ExitCounts vector was computed.
1432     /// If we allowed SCEV predicates to be generated when populating this
1433     /// vector, this information can contain them and therefore a
1434     /// SCEVPredicate argument should be added to getExact.
1435     const SCEV *getExact(const Loop *L, ScalarEvolution *SE,
1436                          SCEVUnionPredicate *Predicates = nullptr) const;
1437 
1438     /// Return the number of times this loop exit may fall through to the back
1439     /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
1440     /// this block before this number of iterations, but may exit via another
1441     /// block.
1442     const SCEV *getExact(const BasicBlock *ExitingBlock,
1443                          ScalarEvolution *SE) const;
1444 
1445     /// Get the constant max backedge taken count for the loop.
1446     const SCEV *getConstantMax(ScalarEvolution *SE) const;
1447 
1448     /// Get the constant max backedge taken count for the particular loop exit.
1449     const SCEV *getConstantMax(const BasicBlock *ExitingBlock,
1450                                ScalarEvolution *SE) const;
1451 
1452     /// Get the symbolic max backedge taken count for the loop.
1453     const SCEV *getSymbolicMax(const Loop *L, ScalarEvolution *SE);
1454 
1455     /// Return true if the number of times this backedge is taken is either the
1456     /// value returned by getConstantMax or zero.
1457     bool isConstantMaxOrZero(ScalarEvolution *SE) const;
1458 
1459     /// Return true if any backedge taken count expressions refer to the given
1460     /// subexpression.
1461     bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
1462   };
1463 
1464   /// Cache the backedge-taken count of the loops for this function as they
1465   /// are computed.
1466   DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
1467 
1468   /// Cache the predicated backedge-taken count of the loops for this
1469   /// function as they are computed.
1470   DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
1471 
1472   /// This map contains entries for all of the PHI instructions that we
1473   /// attempt to compute constant evolutions for.  This allows us to avoid
1474   /// potentially expensive recomputation of these properties.  An instruction
1475   /// maps to null if we are unable to compute its exit value.
1476   DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
1477 
1478   /// This map contains entries for all the expressions that we attempt to
1479   /// compute getSCEVAtScope information for, which can be expensive in
1480   /// extreme cases.
1481   DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
1482       ValuesAtScopes;
1483 
1484   /// Memoized computeLoopDisposition results.
1485   DenseMap<const SCEV *,
1486            SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
1487       LoopDispositions;
1488 
1489   struct LoopProperties {
1490     /// Set to true if the loop contains no instruction that can have side
1491     /// effects (i.e. via throwing an exception, volatile or atomic access).
1492     bool HasNoAbnormalExits;
1493 
1494     /// Set to true if the loop contains no instruction that can abnormally exit
1495     /// the loop (i.e. via throwing an exception, by terminating the thread
1496     /// cleanly or by infinite looping in a called function).  Strictly
1497     /// speaking, the last one is not leaving the loop, but is identical to
1498     /// leaving the loop for reasoning about undefined behavior.
1499     bool HasNoSideEffects;
1500   };
1501 
1502   /// Cache for \c getLoopProperties.
1503   DenseMap<const Loop *, LoopProperties> LoopPropertiesCache;
1504 
1505   /// Return a \c LoopProperties instance for \p L, creating one if necessary.
1506   LoopProperties getLoopProperties(const Loop *L);
1507 
1508   bool loopHasNoSideEffects(const Loop *L) {
1509     return getLoopProperties(L).HasNoSideEffects;
1510   }
1511 
1512   bool loopHasNoAbnormalExits(const Loop *L) {
1513     return getLoopProperties(L).HasNoAbnormalExits;
1514   }
1515 
1516   /// Compute a LoopDisposition value.
1517   LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
1518 
1519   /// Memoized computeBlockDisposition results.
1520   DenseMap<
1521       const SCEV *,
1522       SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
1523       BlockDispositions;
1524 
1525   /// Compute a BlockDisposition value.
1526   BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
1527 
1528   /// Memoized results from getRange
1529   DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
1530 
1531   /// Memoized results from getRange
1532   DenseMap<const SCEV *, ConstantRange> SignedRanges;
1533 
1534   /// Used to parameterize getRange
1535   enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
1536 
1537   /// Set the memoized range for the given SCEV.
1538   const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
1539                                 ConstantRange CR) {
1540     DenseMap<const SCEV *, ConstantRange> &Cache =
1541         Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
1542 
1543     auto Pair = Cache.try_emplace(S, std::move(CR));
1544     if (!Pair.second)
1545       Pair.first->second = std::move(CR);
1546     return Pair.first->second;
1547   }
1548 
1549   /// Determine the range for a particular SCEV.
1550   /// NOTE: This returns a reference to an entry in a cache. It must be
1551   /// copied if its needed for longer.
1552   const ConstantRange &getRangeRef(const SCEV *S, RangeSignHint Hint);
1553 
1554   /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
1555   /// Helper for \c getRange.
1556   ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
1557                                     const SCEV *MaxBECount, unsigned BitWidth);
1558 
1559   /// Determines the range for the affine non-self-wrapping SCEVAddRecExpr {\p
1560   /// Start,+,\p Stop}<nw>.
1561   ConstantRange getRangeForAffineNoSelfWrappingAR(const SCEVAddRecExpr *AddRec,
1562                                                   const SCEV *MaxBECount,
1563                                                   unsigned BitWidth,
1564                                                   RangeSignHint SignHint);
1565 
1566   /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
1567   /// Stop} by "factoring out" a ternary expression from the add recurrence.
1568   /// Helper called by \c getRange.
1569   ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
1570                                      const SCEV *MaxBECount, unsigned BitWidth);
1571 
1572   /// If the unknown expression U corresponds to a simple recurrence, return
1573   /// a constant range which represents the entire recurrence.  Note that
1574   /// *add* recurrences with loop invariant steps aren't represented by
1575   /// SCEVUnknowns and thus don't use this mechanism.
1576   ConstantRange getRangeForUnknownRecurrence(const SCEVUnknown *U);
1577 
1578   /// We know that there is no SCEV for the specified value.  Analyze the
1579   /// expression.
1580   const SCEV *createSCEV(Value *V);
1581 
1582   /// Provide the special handling we need to analyze PHI SCEVs.
1583   const SCEV *createNodeForPHI(PHINode *PN);
1584 
1585   /// Helper function called from createNodeForPHI.
1586   const SCEV *createAddRecFromPHI(PHINode *PN);
1587 
1588   /// A helper function for createAddRecFromPHI to handle simple cases.
1589   const SCEV *createSimpleAffineAddRec(PHINode *PN, Value *BEValueV,
1590                                             Value *StartValueV);
1591 
1592   /// Helper function called from createNodeForPHI.
1593   const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
1594 
1595   /// Provide special handling for a select-like instruction (currently this
1596   /// is either a select instruction or a phi node).  \p I is the instruction
1597   /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
1598   /// FalseVal".
1599   const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
1600                                        Value *TrueVal, Value *FalseVal);
1601 
1602   /// Provide the special handling we need to analyze GEP SCEVs.
1603   const SCEV *createNodeForGEP(GEPOperator *GEP);
1604 
1605   /// Implementation code for getSCEVAtScope; called at most once for each
1606   /// SCEV+Loop pair.
1607   const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
1608 
1609   /// This looks up computed SCEV values for all instructions that depend on
1610   /// the given instruction and removes them from the ValueExprMap map if they
1611   /// reference SymName. This is used during PHI resolution.
1612   void forgetSymbolicName(Instruction *I, const SCEV *SymName);
1613 
1614   /// Return the BackedgeTakenInfo for the given loop, lazily computing new
1615   /// values if the loop hasn't been analyzed yet. The returned result is
1616   /// guaranteed not to be predicated.
1617   BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
1618 
1619   /// Similar to getBackedgeTakenInfo, but will add predicates as required
1620   /// with the purpose of returning complete information.
1621   const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
1622 
1623   /// Compute the number of times the specified loop will iterate.
1624   /// If AllowPredicates is set, we will create new SCEV predicates as
1625   /// necessary in order to return an exact answer.
1626   BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
1627                                               bool AllowPredicates = false);
1628 
1629   /// Compute the number of times the backedge of the specified loop will
1630   /// execute if it exits via the specified block. If AllowPredicates is set,
1631   /// this call will try to use a minimal set of SCEV predicates in order to
1632   /// return an exact answer.
1633   ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
1634                              bool AllowPredicates = false);
1635 
1636   /// Compute the number of times the backedge of the specified loop will
1637   /// execute if its exit condition were a conditional branch of ExitCond.
1638   ///
1639   /// \p ControlsExit is true if ExitCond directly controls the exit
1640   /// branch. In this case, we can assume that the loop exits only if the
1641   /// condition is true and can infer that failing to meet the condition prior
1642   /// to integer wraparound results in undefined behavior.
1643   ///
1644   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1645   /// SCEV predicates in order to return an exact answer.
1646   ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
1647                                      bool ExitIfTrue, bool ControlsExit,
1648                                      bool AllowPredicates = false);
1649 
1650   /// Return a symbolic upper bound for the backedge taken count of the loop.
1651   /// This is more general than getConstantMaxBackedgeTakenCount as it returns
1652   /// an arbitrary expression as opposed to only constants.
1653   const SCEV *computeSymbolicMaxBackedgeTakenCount(const Loop *L);
1654 
1655   // Helper functions for computeExitLimitFromCond to avoid exponential time
1656   // complexity.
1657 
1658   class ExitLimitCache {
1659     // It may look like we need key on the whole (L, ExitIfTrue, ControlsExit,
1660     // AllowPredicates) tuple, but recursive calls to
1661     // computeExitLimitFromCondCached from computeExitLimitFromCondImpl only
1662     // vary the in \c ExitCond and \c ControlsExit parameters.  We remember the
1663     // initial values of the other values to assert our assumption.
1664     SmallDenseMap<PointerIntPair<Value *, 1>, ExitLimit> TripCountMap;
1665 
1666     const Loop *L;
1667     bool ExitIfTrue;
1668     bool AllowPredicates;
1669 
1670   public:
1671     ExitLimitCache(const Loop *L, bool ExitIfTrue, bool AllowPredicates)
1672         : L(L), ExitIfTrue(ExitIfTrue), AllowPredicates(AllowPredicates) {}
1673 
1674     Optional<ExitLimit> find(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1675                              bool ControlsExit, bool AllowPredicates);
1676 
1677     void insert(const Loop *L, Value *ExitCond, bool ExitIfTrue,
1678                 bool ControlsExit, bool AllowPredicates, const ExitLimit &EL);
1679   };
1680 
1681   using ExitLimitCacheTy = ExitLimitCache;
1682 
1683   ExitLimit computeExitLimitFromCondCached(ExitLimitCacheTy &Cache,
1684                                            const Loop *L, Value *ExitCond,
1685                                            bool ExitIfTrue,
1686                                            bool ControlsExit,
1687                                            bool AllowPredicates);
1688   ExitLimit computeExitLimitFromCondImpl(ExitLimitCacheTy &Cache, const Loop *L,
1689                                          Value *ExitCond, bool ExitIfTrue,
1690                                          bool ControlsExit,
1691                                          bool AllowPredicates);
1692   Optional<ScalarEvolution::ExitLimit>
1693   computeExitLimitFromCondFromBinOp(ExitLimitCacheTy &Cache, const Loop *L,
1694                                     Value *ExitCond, bool ExitIfTrue,
1695                                     bool ControlsExit, bool AllowPredicates);
1696 
1697   /// Compute the number of times the backedge of the specified loop will
1698   /// execute if its exit condition were a conditional branch of the ICmpInst
1699   /// ExitCond and ExitIfTrue. If AllowPredicates is set, this call will try
1700   /// to use a minimal set of SCEV predicates in order to return an exact
1701   /// answer.
1702   ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
1703                                      bool ExitIfTrue,
1704                                      bool IsSubExpr,
1705                                      bool AllowPredicates = false);
1706 
1707   /// Compute the number of times the backedge of the specified loop will
1708   /// execute if its exit condition were a switch with a single exiting case
1709   /// to ExitingBB.
1710   ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
1711                                                  SwitchInst *Switch,
1712                                                  BasicBlock *ExitingBB,
1713                                                  bool IsSubExpr);
1714 
1715   /// Given an exit condition of 'icmp op load X, cst', try to see if we can
1716   /// compute the backedge-taken count.
1717   ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS,
1718                                                 const Loop *L,
1719                                                 ICmpInst::Predicate p);
1720 
1721   /// Compute the exit limit of a loop that is controlled by a
1722   /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
1723   /// count in these cases (since SCEV has no way of expressing them), but we
1724   /// can still sometimes compute an upper bound.
1725   ///
1726   /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
1727   /// RHS`.
1728   ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
1729                                          ICmpInst::Predicate Pred);
1730 
1731   /// If the loop is known to execute a constant number of times (the
1732   /// condition evolves only from constants), try to evaluate a few iterations
1733   /// of the loop until we get the exit condition gets a value of ExitWhen
1734   /// (true or false).  If we cannot evaluate the exit count of the loop,
1735   /// return CouldNotCompute.
1736   const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
1737                                            bool ExitWhen);
1738 
1739   /// Return the number of times an exit condition comparing the specified
1740   /// value to zero will execute.  If not computable, return CouldNotCompute.
1741   /// If AllowPredicates is set, this call will try to use a minimal set of
1742   /// SCEV predicates in order to return an exact answer.
1743   ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
1744                          bool AllowPredicates = false);
1745 
1746   /// Return the number of times an exit condition checking the specified
1747   /// value for nonzero will execute.  If not computable, return
1748   /// CouldNotCompute.
1749   ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
1750 
1751   /// Return the number of times an exit condition containing the specified
1752   /// less-than comparison will execute.  If not computable, return
1753   /// CouldNotCompute.
1754   ///
1755   /// \p isSigned specifies whether the less-than is signed.
1756   ///
1757   /// \p ControlsExit is true when the LHS < RHS condition directly controls
1758   /// the branch (loops exits only if condition is true). In this case, we can
1759   /// use NoWrapFlags to skip overflow checks.
1760   ///
1761   /// If \p AllowPredicates is set, this call will try to use a minimal set of
1762   /// SCEV predicates in order to return an exact answer.
1763   ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1764                              bool isSigned, bool ControlsExit,
1765                              bool AllowPredicates = false);
1766 
1767   ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
1768                                 bool isSigned, bool IsSubExpr,
1769                                 bool AllowPredicates = false);
1770 
1771   /// Return a predecessor of BB (which may not be an immediate predecessor)
1772   /// which has exactly one successor from which BB is reachable, or null if
1773   /// no such block is found.
1774   std::pair<const BasicBlock *, const BasicBlock *>
1775   getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) const;
1776 
1777   /// Test whether the condition described by Pred, LHS, and RHS is true
1778   /// whenever the given FoundCondValue value evaluates to true in given
1779   /// Context. If Context is nullptr, then the found predicate is true
1780   /// everywhere. LHS and FoundLHS may have different type width.
1781   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1782                      const Value *FoundCondValue, bool Inverse,
1783                      const Instruction *Context = nullptr);
1784 
1785   /// Test whether the condition described by Pred, LHS, and RHS is true
1786   /// whenever the given FoundCondValue value evaluates to true in given
1787   /// Context. If Context is nullptr, then the found predicate is true
1788   /// everywhere. LHS and FoundLHS must have same type width.
1789   bool isImpliedCondBalancedTypes(ICmpInst::Predicate Pred, const SCEV *LHS,
1790                                   const SCEV *RHS,
1791                                   ICmpInst::Predicate FoundPred,
1792                                   const SCEV *FoundLHS, const SCEV *FoundRHS,
1793                                   const Instruction *Context);
1794 
1795   /// Test whether the condition described by Pred, LHS, and RHS is true
1796   /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
1797   /// true in given Context. If Context is nullptr, then the found predicate is
1798   /// true everywhere.
1799   bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
1800                      ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
1801                      const SCEV *FoundRHS,
1802                      const Instruction *Context = nullptr);
1803 
1804   /// Test whether the condition described by Pred, LHS, and RHS is true
1805   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1806   /// true in given Context. If Context is nullptr, then the found predicate is
1807   /// true everywhere.
1808   bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
1809                              const SCEV *RHS, const SCEV *FoundLHS,
1810                              const SCEV *FoundRHS,
1811                              const Instruction *Context = nullptr);
1812 
1813   /// Test whether the condition described by Pred, LHS, and RHS is true
1814   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1815   /// true. Here LHS is an operation that includes FoundLHS as one of its
1816   /// arguments.
1817   bool isImpliedViaOperations(ICmpInst::Predicate Pred,
1818                               const SCEV *LHS, const SCEV *RHS,
1819                               const SCEV *FoundLHS, const SCEV *FoundRHS,
1820                               unsigned Depth = 0);
1821 
1822   /// Test whether the condition described by Pred, LHS, and RHS is true.
1823   /// Use only simple non-recursive types of checks, such as range analysis etc.
1824   bool isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
1825                                        const SCEV *LHS, const SCEV *RHS);
1826 
1827   /// Test whether the condition described by Pred, LHS, and RHS is true
1828   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1829   /// true.
1830   bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
1831                                    const SCEV *RHS, const SCEV *FoundLHS,
1832                                    const SCEV *FoundRHS);
1833 
1834   /// Test whether the condition described by Pred, LHS, and RHS is true
1835   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1836   /// true.  Utility function used by isImpliedCondOperands.  Tries to get
1837   /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
1838   bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
1839                                       const SCEV *RHS, const SCEV *FoundLHS,
1840                                       const SCEV *FoundRHS);
1841 
1842   /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
1843   /// by a call to @llvm.experimental.guard in \p BB.
1844   bool isImpliedViaGuard(const BasicBlock *BB, ICmpInst::Predicate Pred,
1845                          const SCEV *LHS, const SCEV *RHS);
1846 
1847   /// Test whether the condition described by Pred, LHS, and RHS is true
1848   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1849   /// true.
1850   ///
1851   /// This routine tries to rule out certain kinds of integer overflow, and
1852   /// then tries to reason about arithmetic properties of the predicates.
1853   bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
1854                                           const SCEV *LHS, const SCEV *RHS,
1855                                           const SCEV *FoundLHS,
1856                                           const SCEV *FoundRHS);
1857 
1858   /// Test whether the condition described by Pred, LHS, and RHS is true
1859   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1860   /// true.
1861   ///
1862   /// This routine tries to weaken the known condition basing on fact that
1863   /// FoundLHS is an AddRec.
1864   bool isImpliedCondOperandsViaAddRecStart(ICmpInst::Predicate Pred,
1865                                            const SCEV *LHS, const SCEV *RHS,
1866                                            const SCEV *FoundLHS,
1867                                            const SCEV *FoundRHS,
1868                                            const Instruction *Context);
1869 
1870   /// Test whether the condition described by Pred, LHS, and RHS is true
1871   /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
1872   /// true.
1873   ///
1874   /// This routine tries to figure out predicate for Phis which are SCEVUnknown
1875   /// if it is true for every possible incoming value from their respective
1876   /// basic blocks.
1877   bool isImpliedViaMerge(ICmpInst::Predicate Pred,
1878                          const SCEV *LHS, const SCEV *RHS,
1879                          const SCEV *FoundLHS, const SCEV *FoundRHS,
1880                          unsigned Depth);
1881 
1882   /// If we know that the specified Phi is in the header of its containing
1883   /// loop, we know the loop executes a constant number of times, and the PHI
1884   /// node is just a recurrence involving constants, fold it.
1885   Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
1886                                               const Loop *L);
1887 
1888   /// Test if the given expression is known to satisfy the condition described
1889   /// by Pred and the known constant ranges of LHS and RHS.
1890   bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
1891                                          const SCEV *LHS, const SCEV *RHS);
1892 
1893   /// Try to prove the condition described by "LHS Pred RHS" by ruling out
1894   /// integer overflow.
1895   ///
1896   /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
1897   /// positive.
1898   bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
1899                                      const SCEV *RHS);
1900 
1901   /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
1902   /// prove them individually.
1903   bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
1904                                     const SCEV *RHS);
1905 
1906   /// Try to match the Expr as "(L + R)<Flags>".
1907   bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
1908                       SCEV::NoWrapFlags &Flags);
1909 
1910   /// Drop memoized information computed for S.
1911   void forgetMemoizedResults(const SCEV *S);
1912 
1913   /// Return an existing SCEV for V if there is one, otherwise return nullptr.
1914   const SCEV *getExistingSCEV(Value *V);
1915 
1916   /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
1917   /// pointer.
1918   bool checkValidity(const SCEV *S) const;
1919 
1920   /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
1921   /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
1922   /// equivalent to proving no signed (resp. unsigned) wrap in
1923   /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
1924   /// (resp. `SCEVZeroExtendExpr`).
1925   template <typename ExtendOpTy>
1926   bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
1927                                  const Loop *L);
1928 
1929   /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
1930   SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
1931 
1932   /// Try to prove NSW on \p AR by proving facts about conditions known  on
1933   /// entry and backedge.
1934   SCEV::NoWrapFlags proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR);
1935 
1936   /// Try to prove NUW on \p AR by proving facts about conditions known on
1937   /// entry and backedge.
1938   SCEV::NoWrapFlags proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR);
1939 
1940   Optional<MonotonicPredicateType>
1941   getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
1942                                 ICmpInst::Predicate Pred);
1943 
1944   /// Return SCEV no-wrap flags that can be proven based on reasoning about
1945   /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
1946   /// would trigger undefined behavior on overflow.
1947   SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
1948 
1949   /// Return true if the SCEV corresponding to \p I is never poison.  Proving
1950   /// this is more complex than proving that just \p I is never poison, since
1951   /// SCEV commons expressions across control flow, and you can have cases
1952   /// like:
1953   ///
1954   ///   idx0 = a + b;
1955   ///   ptr[idx0] = 100;
1956   ///   if (<condition>) {
1957   ///     idx1 = a +nsw b;
1958   ///     ptr[idx1] = 200;
1959   ///   }
1960   ///
1961   /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
1962   /// hence not sign-overflow) only if "<condition>" is true.  Since both
1963   /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
1964   /// it is not okay to annotate (+ a b) with <nsw> in the above example.
1965   bool isSCEVExprNeverPoison(const Instruction *I);
1966 
1967   /// This is like \c isSCEVExprNeverPoison but it specifically works for
1968   /// instructions that will get mapped to SCEV add recurrences.  Return true
1969   /// if \p I will never generate poison under the assumption that \p I is an
1970   /// add recurrence on the loop \p L.
1971   bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
1972 
1973   /// Similar to createAddRecFromPHI, but with the additional flexibility of
1974   /// suggesting runtime overflow checks in case casts are encountered.
1975   /// If successful, the analysis records that for this loop, \p SymbolicPHI,
1976   /// which is the UnknownSCEV currently representing the PHI, can be rewritten
1977   /// into an AddRec, assuming some predicates; The function then returns the
1978   /// AddRec and the predicates as a pair, and caches this pair in
1979   /// PredicatedSCEVRewrites.
1980   /// If the analysis is not successful, a mapping from the \p SymbolicPHI to
1981   /// itself (with no predicates) is recorded, and a nullptr with an empty
1982   /// predicates vector is returned as a pair.
1983   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
1984   createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI);
1985 
1986   /// Compute the backedge taken count knowing the interval difference, the
1987   /// stride and presence of the equality in the comparison.
1988   const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
1989                              bool Equality);
1990 
1991   /// Compute the maximum backedge count based on the range of values
1992   /// permitted by Start, End, and Stride. This is for loops of the form
1993   /// {Start, +, Stride} LT End.
1994   ///
1995   /// Precondition: the induction variable is known to be positive.  We *don't*
1996   /// assert these preconditions so please be careful.
1997   const SCEV *computeMaxBECountForLT(const SCEV *Start, const SCEV *Stride,
1998                                      const SCEV *End, unsigned BitWidth,
1999                                      bool IsSigned);
2000 
2001   /// Verify if an linear IV with positive stride can overflow when in a
2002   /// less-than comparison, knowing the invariant term of the comparison,
2003   /// the stride and the knowledge of NSW/NUW flags on the recurrence.
2004   bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
2005                           bool NoWrap);
2006 
2007   /// Verify if an linear IV with negative stride can overflow when in a
2008   /// greater-than comparison, knowing the invariant term of the comparison,
2009   /// the stride and the knowledge of NSW/NUW flags on the recurrence.
2010   bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
2011                           bool NoWrap);
2012 
2013   /// Get add expr already created or create a new one.
2014   const SCEV *getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2015                                  SCEV::NoWrapFlags Flags);
2016 
2017   /// Get mul expr already created or create a new one.
2018   const SCEV *getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2019                                  SCEV::NoWrapFlags Flags);
2020 
2021   // Get addrec expr already created or create a new one.
2022   const SCEV *getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2023                                     const Loop *L, SCEV::NoWrapFlags Flags);
2024 
2025   /// Return x if \p Val is f(x) where f is a 1-1 function.
2026   const SCEV *stripInjectiveFunctions(const SCEV *Val) const;
2027 
2028   /// Find all of the loops transitively used in \p S, and fill \p LoopsUsed.
2029   /// A loop is considered "used" by an expression if it contains
2030   /// an add rec on said loop.
2031   void getUsedLoops(const SCEV *S, SmallPtrSetImpl<const Loop *> &LoopsUsed);
2032 
2033   /// Find all of the loops transitively used in \p S, and update \c LoopUsers
2034   /// accordingly.
2035   void addToLoopUseLists(const SCEV *S);
2036 
2037   /// Try to match the pattern generated by getURemExpr(A, B). If successful,
2038   /// Assign A and B to LHS and RHS, respectively.
2039   bool matchURem(const SCEV *Expr, const SCEV *&LHS, const SCEV *&RHS);
2040 
2041   /// Look for a SCEV expression with type `SCEVType` and operands `Ops` in
2042   /// `UniqueSCEVs`.
2043   ///
2044   /// The first component of the returned tuple is the SCEV if found and null
2045   /// otherwise.  The second component is the `FoldingSetNodeID` that was
2046   /// constructed to look up the SCEV and the third component is the insertion
2047   /// point.
2048   std::tuple<SCEV *, FoldingSetNodeID, void *>
2049   findExistingSCEVInCache(SCEVTypes SCEVType, ArrayRef<const SCEV *> Ops);
2050 
2051   FoldingSet<SCEV> UniqueSCEVs;
2052   FoldingSet<SCEVPredicate> UniquePreds;
2053   BumpPtrAllocator SCEVAllocator;
2054 
2055   /// This maps loops to a list of SCEV expressions that (transitively) use said
2056   /// loop.
2057   DenseMap<const Loop *, SmallVector<const SCEV *, 4>> LoopUsers;
2058 
2059   /// Cache tentative mappings from UnknownSCEVs in a Loop, to a SCEV expression
2060   /// they can be rewritten into under certain predicates.
2061   DenseMap<std::pair<const SCEVUnknown *, const Loop *>,
2062            std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
2063       PredicatedSCEVRewrites;
2064 
2065   /// The head of a linked list of all SCEVUnknown values that have been
2066   /// allocated. This is used by releaseMemory to locate them all and call
2067   /// their destructors.
2068   SCEVUnknown *FirstUnknown = nullptr;
2069 };
2070 
2071 /// Analysis pass that exposes the \c ScalarEvolution for a function.
2072 class ScalarEvolutionAnalysis
2073     : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
2074   friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
2075 
2076   static AnalysisKey Key;
2077 
2078 public:
2079   using Result = ScalarEvolution;
2080 
2081   ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
2082 };
2083 
2084 /// Verifier pass for the \c ScalarEvolutionAnalysis results.
2085 class ScalarEvolutionVerifierPass
2086     : public PassInfoMixin<ScalarEvolutionVerifierPass> {
2087 public:
2088   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2089 };
2090 
2091 /// Printer pass for the \c ScalarEvolutionAnalysis results.
2092 class ScalarEvolutionPrinterPass
2093     : public PassInfoMixin<ScalarEvolutionPrinterPass> {
2094   raw_ostream &OS;
2095 
2096 public:
2097   explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
2098 
2099   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
2100 };
2101 
2102 class ScalarEvolutionWrapperPass : public FunctionPass {
2103   std::unique_ptr<ScalarEvolution> SE;
2104 
2105 public:
2106   static char ID;
2107 
2108   ScalarEvolutionWrapperPass();
2109 
2110   ScalarEvolution &getSE() { return *SE; }
2111   const ScalarEvolution &getSE() const { return *SE; }
2112 
2113   bool runOnFunction(Function &F) override;
2114   void releaseMemory() override;
2115   void getAnalysisUsage(AnalysisUsage &AU) const override;
2116   void print(raw_ostream &OS, const Module * = nullptr) const override;
2117   void verifyAnalysis() const override;
2118 };
2119 
2120 /// An interface layer with SCEV used to manage how we see SCEV expressions
2121 /// for values in the context of existing predicates. We can add new
2122 /// predicates, but we cannot remove them.
2123 ///
2124 /// This layer has multiple purposes:
2125 ///   - provides a simple interface for SCEV versioning.
2126 ///   - guarantees that the order of transformations applied on a SCEV
2127 ///     expression for a single Value is consistent across two different
2128 ///     getSCEV calls. This means that, for example, once we've obtained
2129 ///     an AddRec expression for a certain value through expression
2130 ///     rewriting, we will continue to get an AddRec expression for that
2131 ///     Value.
2132 ///   - lowers the number of expression rewrites.
2133 class PredicatedScalarEvolution {
2134 public:
2135   PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
2136 
2137   const SCEVUnionPredicate &getUnionPredicate() const;
2138 
2139   /// Returns the SCEV expression of V, in the context of the current SCEV
2140   /// predicate.  The order of transformations applied on the expression of V
2141   /// returned by ScalarEvolution is guaranteed to be preserved, even when
2142   /// adding new predicates.
2143   const SCEV *getSCEV(Value *V);
2144 
2145   /// Get the (predicated) backedge count for the analyzed loop.
2146   const SCEV *getBackedgeTakenCount();
2147 
2148   /// Adds a new predicate.
2149   void addPredicate(const SCEVPredicate &Pred);
2150 
2151   /// Attempts to produce an AddRecExpr for V by adding additional SCEV
2152   /// predicates. If we can't transform the expression into an AddRecExpr we
2153   /// return nullptr and not add additional SCEV predicates to the current
2154   /// context.
2155   const SCEVAddRecExpr *getAsAddRec(Value *V);
2156 
2157   /// Proves that V doesn't overflow by adding SCEV predicate.
2158   void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2159 
2160   /// Returns true if we've proved that V doesn't wrap by means of a SCEV
2161   /// predicate.
2162   bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
2163 
2164   /// Returns the ScalarEvolution analysis used.
2165   ScalarEvolution *getSE() const { return &SE; }
2166 
2167   /// We need to explicitly define the copy constructor because of FlagsMap.
2168   PredicatedScalarEvolution(const PredicatedScalarEvolution &);
2169 
2170   /// Print the SCEV mappings done by the Predicated Scalar Evolution.
2171   /// The printed text is indented by \p Depth.
2172   void print(raw_ostream &OS, unsigned Depth) const;
2173 
2174   /// Check if \p AR1 and \p AR2 are equal, while taking into account
2175   /// Equal predicates in Preds.
2176   bool areAddRecsEqualWithPreds(const SCEVAddRecExpr *AR1,
2177                                 const SCEVAddRecExpr *AR2) const;
2178 
2179 private:
2180   /// Increments the version number of the predicate.  This needs to be called
2181   /// every time the SCEV predicate changes.
2182   void updateGeneration();
2183 
2184   /// Holds a SCEV and the version number of the SCEV predicate used to
2185   /// perform the rewrite of the expression.
2186   using RewriteEntry = std::pair<unsigned, const SCEV *>;
2187 
2188   /// Maps a SCEV to the rewrite result of that SCEV at a certain version
2189   /// number. If this number doesn't match the current Generation, we will
2190   /// need to do a rewrite. To preserve the transformation order of previous
2191   /// rewrites, we will rewrite the previous result instead of the original
2192   /// SCEV.
2193   DenseMap<const SCEV *, RewriteEntry> RewriteMap;
2194 
2195   /// Records what NoWrap flags we've added to a Value *.
2196   ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
2197 
2198   /// The ScalarEvolution analysis.
2199   ScalarEvolution &SE;
2200 
2201   /// The analyzed Loop.
2202   const Loop &L;
2203 
2204   /// The SCEVPredicate that forms our context. We will rewrite all
2205   /// expressions assuming that this predicate true.
2206   SCEVUnionPredicate Preds;
2207 
2208   /// Marks the version of the SCEV predicate used. When rewriting a SCEV
2209   /// expression we mark it with the version of the predicate. We use this to
2210   /// figure out if the predicate has changed from the last rewrite of the
2211   /// SCEV. If so, we need to perform a new rewrite.
2212   unsigned Generation = 0;
2213 
2214   /// The backedge taken count.
2215   const SCEV *BackedgeCount = nullptr;
2216 };
2217 
2218 } // end namespace llvm
2219 
2220 #endif // LLVM_ANALYSIS_SCALAREVOLUTION_H
2221