1 //==- BlockFrequencyInfoImpl.h - Block Frequency Implementation --*- C++ -*-==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Shared implementation of BlockFrequency for IR and Machine Instructions. 10 // See the documentation below for BlockFrequencyInfoImpl for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 15 #define LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 16 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/GraphTraits.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/PostOrderIterator.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/ValueHandle.h" 28 #include "llvm/Support/BlockFrequency.h" 29 #include "llvm/Support/BranchProbability.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/DOTGraphTraits.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/ErrorHandling.h" 34 #include "llvm/Support/Format.h" 35 #include "llvm/Support/ScaledNumber.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <algorithm> 38 #include <cassert> 39 #include <cstddef> 40 #include <cstdint> 41 #include <deque> 42 #include <iterator> 43 #include <limits> 44 #include <list> 45 #include <string> 46 #include <utility> 47 #include <vector> 48 49 #define DEBUG_TYPE "block-freq" 50 51 namespace llvm { 52 extern llvm::cl::opt<bool> CheckBFIUnknownBlockQueries; 53 54 class BranchProbabilityInfo; 55 class Function; 56 class Loop; 57 class LoopInfo; 58 class MachineBasicBlock; 59 class MachineBranchProbabilityInfo; 60 class MachineFunction; 61 class MachineLoop; 62 class MachineLoopInfo; 63 64 namespace bfi_detail { 65 66 struct IrreducibleGraph; 67 68 // This is part of a workaround for a GCC 4.7 crash on lambdas. 69 template <class BT> struct BlockEdgesAdder; 70 71 /// Mass of a block. 72 /// 73 /// This class implements a sort of fixed-point fraction always between 0.0 and 74 /// 1.0. getMass() == std::numeric_limits<uint64_t>::max() indicates a value of 75 /// 1.0. 76 /// 77 /// Masses can be added and subtracted. Simple saturation arithmetic is used, 78 /// so arithmetic operations never overflow or underflow. 79 /// 80 /// Masses can be multiplied. Multiplication treats full mass as 1.0 and uses 81 /// an inexpensive floating-point algorithm that's off-by-one (almost, but not 82 /// quite, maximum precision). 83 /// 84 /// Masses can be scaled by \a BranchProbability at maximum precision. 85 class BlockMass { 86 uint64_t Mass = 0; 87 88 public: 89 BlockMass() = default; BlockMass(uint64_t Mass)90 explicit BlockMass(uint64_t Mass) : Mass(Mass) {} 91 getEmpty()92 static BlockMass getEmpty() { return BlockMass(); } 93 getFull()94 static BlockMass getFull() { 95 return BlockMass(std::numeric_limits<uint64_t>::max()); 96 } 97 getMass()98 uint64_t getMass() const { return Mass; } 99 isFull()100 bool isFull() const { return Mass == std::numeric_limits<uint64_t>::max(); } isEmpty()101 bool isEmpty() const { return !Mass; } 102 103 bool operator!() const { return isEmpty(); } 104 105 /// Add another mass. 106 /// 107 /// Adds another mass, saturating at \a isFull() rather than overflowing. 108 BlockMass &operator+=(BlockMass X) { 109 uint64_t Sum = Mass + X.Mass; 110 Mass = Sum < Mass ? std::numeric_limits<uint64_t>::max() : Sum; 111 return *this; 112 } 113 114 /// Subtract another mass. 115 /// 116 /// Subtracts another mass, saturating at \a isEmpty() rather than 117 /// undeflowing. 118 BlockMass &operator-=(BlockMass X) { 119 uint64_t Diff = Mass - X.Mass; 120 Mass = Diff > Mass ? 0 : Diff; 121 return *this; 122 } 123 124 BlockMass &operator*=(BranchProbability P) { 125 Mass = P.scale(Mass); 126 return *this; 127 } 128 129 bool operator==(BlockMass X) const { return Mass == X.Mass; } 130 bool operator!=(BlockMass X) const { return Mass != X.Mass; } 131 bool operator<=(BlockMass X) const { return Mass <= X.Mass; } 132 bool operator>=(BlockMass X) const { return Mass >= X.Mass; } 133 bool operator<(BlockMass X) const { return Mass < X.Mass; } 134 bool operator>(BlockMass X) const { return Mass > X.Mass; } 135 136 /// Convert to scaled number. 137 /// 138 /// Convert to \a ScaledNumber. \a isFull() gives 1.0, while \a isEmpty() 139 /// gives slightly above 0.0. 140 ScaledNumber<uint64_t> toScaled() const; 141 142 void dump() const; 143 raw_ostream &print(raw_ostream &OS) const; 144 }; 145 146 inline BlockMass operator+(BlockMass L, BlockMass R) { 147 return BlockMass(L) += R; 148 } 149 inline BlockMass operator-(BlockMass L, BlockMass R) { 150 return BlockMass(L) -= R; 151 } 152 inline BlockMass operator*(BlockMass L, BranchProbability R) { 153 return BlockMass(L) *= R; 154 } 155 inline BlockMass operator*(BranchProbability L, BlockMass R) { 156 return BlockMass(R) *= L; 157 } 158 159 inline raw_ostream &operator<<(raw_ostream &OS, BlockMass X) { 160 return X.print(OS); 161 } 162 163 } // end namespace bfi_detail 164 165 /// Base class for BlockFrequencyInfoImpl 166 /// 167 /// BlockFrequencyInfoImplBase has supporting data structures and some 168 /// algorithms for BlockFrequencyInfoImplBase. Only algorithms that depend on 169 /// the block type (or that call such algorithms) are skipped here. 170 /// 171 /// Nevertheless, the majority of the overall algorithm documentation lives with 172 /// BlockFrequencyInfoImpl. See there for details. 173 class BlockFrequencyInfoImplBase { 174 public: 175 using Scaled64 = ScaledNumber<uint64_t>; 176 using BlockMass = bfi_detail::BlockMass; 177 178 /// Representative of a block. 179 /// 180 /// This is a simple wrapper around an index into the reverse-post-order 181 /// traversal of the blocks. 182 /// 183 /// Unlike a block pointer, its order has meaning (location in the 184 /// topological sort) and it's class is the same regardless of block type. 185 struct BlockNode { 186 using IndexType = uint32_t; 187 188 IndexType Index; 189 BlockNodeBlockNode190 BlockNode() : Index(std::numeric_limits<uint32_t>::max()) {} BlockNodeBlockNode191 BlockNode(IndexType Index) : Index(Index) {} 192 193 bool operator==(const BlockNode &X) const { return Index == X.Index; } 194 bool operator!=(const BlockNode &X) const { return Index != X.Index; } 195 bool operator<=(const BlockNode &X) const { return Index <= X.Index; } 196 bool operator>=(const BlockNode &X) const { return Index >= X.Index; } 197 bool operator<(const BlockNode &X) const { return Index < X.Index; } 198 bool operator>(const BlockNode &X) const { return Index > X.Index; } 199 isValidBlockNode200 bool isValid() const { return Index <= getMaxIndex(); } 201 getMaxIndexBlockNode202 static size_t getMaxIndex() { 203 return std::numeric_limits<uint32_t>::max() - 1; 204 } 205 }; 206 207 /// Stats about a block itself. 208 struct FrequencyData { 209 Scaled64 Scaled; 210 uint64_t Integer; 211 }; 212 213 /// Data about a loop. 214 /// 215 /// Contains the data necessary to represent a loop as a pseudo-node once it's 216 /// packaged. 217 struct LoopData { 218 using ExitMap = SmallVector<std::pair<BlockNode, BlockMass>, 4>; 219 using NodeList = SmallVector<BlockNode, 4>; 220 using HeaderMassList = SmallVector<BlockMass, 1>; 221 222 LoopData *Parent; ///< The parent loop. 223 bool IsPackaged = false; ///< Whether this has been packaged. 224 uint32_t NumHeaders = 1; ///< Number of headers. 225 ExitMap Exits; ///< Successor edges (and weights). 226 NodeList Nodes; ///< Header and the members of the loop. 227 HeaderMassList BackedgeMass; ///< Mass returned to each loop header. 228 BlockMass Mass; 229 Scaled64 Scale; 230 LoopDataLoopData231 LoopData(LoopData *Parent, const BlockNode &Header) 232 : Parent(Parent), Nodes(1, Header), BackedgeMass(1) {} 233 234 template <class It1, class It2> LoopDataLoopData235 LoopData(LoopData *Parent, It1 FirstHeader, It1 LastHeader, It2 FirstOther, 236 It2 LastOther) 237 : Parent(Parent), Nodes(FirstHeader, LastHeader) { 238 NumHeaders = Nodes.size(); 239 Nodes.insert(Nodes.end(), FirstOther, LastOther); 240 BackedgeMass.resize(NumHeaders); 241 } 242 isHeaderLoopData243 bool isHeader(const BlockNode &Node) const { 244 if (isIrreducible()) 245 return std::binary_search(Nodes.begin(), Nodes.begin() + NumHeaders, 246 Node); 247 return Node == Nodes[0]; 248 } 249 getHeaderLoopData250 BlockNode getHeader() const { return Nodes[0]; } isIrreducibleLoopData251 bool isIrreducible() const { return NumHeaders > 1; } 252 getHeaderIndexLoopData253 HeaderMassList::difference_type getHeaderIndex(const BlockNode &B) { 254 assert(isHeader(B) && "this is only valid on loop header blocks"); 255 if (isIrreducible()) 256 return std::lower_bound(Nodes.begin(), Nodes.begin() + NumHeaders, B) - 257 Nodes.begin(); 258 return 0; 259 } 260 members_beginLoopData261 NodeList::const_iterator members_begin() const { 262 return Nodes.begin() + NumHeaders; 263 } 264 members_endLoopData265 NodeList::const_iterator members_end() const { return Nodes.end(); } membersLoopData266 iterator_range<NodeList::const_iterator> members() const { 267 return make_range(members_begin(), members_end()); 268 } 269 }; 270 271 /// Index of loop information. 272 struct WorkingData { 273 BlockNode Node; ///< This node. 274 LoopData *Loop = nullptr; ///< The loop this block is inside. 275 BlockMass Mass; ///< Mass distribution from the entry block. 276 WorkingDataWorkingData277 WorkingData(const BlockNode &Node) : Node(Node) {} 278 isLoopHeaderWorkingData279 bool isLoopHeader() const { return Loop && Loop->isHeader(Node); } 280 isDoubleLoopHeaderWorkingData281 bool isDoubleLoopHeader() const { 282 return isLoopHeader() && Loop->Parent && Loop->Parent->isIrreducible() && 283 Loop->Parent->isHeader(Node); 284 } 285 getContainingLoopWorkingData286 LoopData *getContainingLoop() const { 287 if (!isLoopHeader()) 288 return Loop; 289 if (!isDoubleLoopHeader()) 290 return Loop->Parent; 291 return Loop->Parent->Parent; 292 } 293 294 /// Resolve a node to its representative. 295 /// 296 /// Get the node currently representing Node, which could be a containing 297 /// loop. 298 /// 299 /// This function should only be called when distributing mass. As long as 300 /// there are no irreducible edges to Node, then it will have complexity 301 /// O(1) in this context. 302 /// 303 /// In general, the complexity is O(L), where L is the number of loop 304 /// headers Node has been packaged into. Since this method is called in 305 /// the context of distributing mass, L will be the number of loop headers 306 /// an early exit edge jumps out of. getResolvedNodeWorkingData307 BlockNode getResolvedNode() const { 308 auto L = getPackagedLoop(); 309 return L ? L->getHeader() : Node; 310 } 311 getPackagedLoopWorkingData312 LoopData *getPackagedLoop() const { 313 if (!Loop || !Loop->IsPackaged) 314 return nullptr; 315 auto L = Loop; 316 while (L->Parent && L->Parent->IsPackaged) 317 L = L->Parent; 318 return L; 319 } 320 321 /// Get the appropriate mass for a node. 322 /// 323 /// Get appropriate mass for Node. If Node is a loop-header (whose loop 324 /// has been packaged), returns the mass of its pseudo-node. If it's a 325 /// node inside a packaged loop, it returns the loop's mass. getMassWorkingData326 BlockMass &getMass() { 327 if (!isAPackage()) 328 return Mass; 329 if (!isADoublePackage()) 330 return Loop->Mass; 331 return Loop->Parent->Mass; 332 } 333 334 /// Has ContainingLoop been packaged up? isPackagedWorkingData335 bool isPackaged() const { return getResolvedNode() != Node; } 336 337 /// Has Loop been packaged up? isAPackageWorkingData338 bool isAPackage() const { return isLoopHeader() && Loop->IsPackaged; } 339 340 /// Has Loop been packaged up twice? isADoublePackageWorkingData341 bool isADoublePackage() const { 342 return isDoubleLoopHeader() && Loop->Parent->IsPackaged; 343 } 344 }; 345 346 /// Unscaled probability weight. 347 /// 348 /// Probability weight for an edge in the graph (including the 349 /// successor/target node). 350 /// 351 /// All edges in the original function are 32-bit. However, exit edges from 352 /// loop packages are taken from 64-bit exit masses, so we need 64-bits of 353 /// space in general. 354 /// 355 /// In addition to the raw weight amount, Weight stores the type of the edge 356 /// in the current context (i.e., the context of the loop being processed). 357 /// Is this a local edge within the loop, an exit from the loop, or a 358 /// backedge to the loop header? 359 struct Weight { 360 enum DistType { Local, Exit, Backedge }; 361 DistType Type = Local; 362 BlockNode TargetNode; 363 uint64_t Amount = 0; 364 365 Weight() = default; WeightWeight366 Weight(DistType Type, BlockNode TargetNode, uint64_t Amount) 367 : Type(Type), TargetNode(TargetNode), Amount(Amount) {} 368 }; 369 370 /// Distribution of unscaled probability weight. 371 /// 372 /// Distribution of unscaled probability weight to a set of successors. 373 /// 374 /// This class collates the successor edge weights for later processing. 375 /// 376 /// \a DidOverflow indicates whether \a Total did overflow while adding to 377 /// the distribution. It should never overflow twice. 378 struct Distribution { 379 using WeightList = SmallVector<Weight, 4>; 380 381 WeightList Weights; ///< Individual successor weights. 382 uint64_t Total = 0; ///< Sum of all weights. 383 bool DidOverflow = false; ///< Whether \a Total did overflow. 384 385 Distribution() = default; 386 addLocalDistribution387 void addLocal(const BlockNode &Node, uint64_t Amount) { 388 add(Node, Amount, Weight::Local); 389 } 390 addExitDistribution391 void addExit(const BlockNode &Node, uint64_t Amount) { 392 add(Node, Amount, Weight::Exit); 393 } 394 addBackedgeDistribution395 void addBackedge(const BlockNode &Node, uint64_t Amount) { 396 add(Node, Amount, Weight::Backedge); 397 } 398 399 /// Normalize the distribution. 400 /// 401 /// Combines multiple edges to the same \a Weight::TargetNode and scales 402 /// down so that \a Total fits into 32-bits. 403 /// 404 /// This is linear in the size of \a Weights. For the vast majority of 405 /// cases, adjacent edge weights are combined by sorting WeightList and 406 /// combining adjacent weights. However, for very large edge lists an 407 /// auxiliary hash table is used. 408 void normalize(); 409 410 private: 411 void add(const BlockNode &Node, uint64_t Amount, Weight::DistType Type); 412 }; 413 414 /// Data about each block. This is used downstream. 415 std::vector<FrequencyData> Freqs; 416 417 /// Whether each block is an irreducible loop header. 418 /// This is used downstream. 419 SparseBitVector<> IsIrrLoopHeader; 420 421 /// Loop data: see initializeLoops(). 422 std::vector<WorkingData> Working; 423 424 /// Indexed information about loops. 425 std::list<LoopData> Loops; 426 427 /// Virtual destructor. 428 /// 429 /// Need a virtual destructor to mask the compiler warning about 430 /// getBlockName(). 431 virtual ~BlockFrequencyInfoImplBase() = default; 432 433 /// Add all edges out of a packaged loop to the distribution. 434 /// 435 /// Adds all edges from LocalLoopHead to Dist. Calls addToDist() to add each 436 /// successor edge. 437 /// 438 /// \return \c true unless there's an irreducible backedge. 439 bool addLoopSuccessorsToDist(const LoopData *OuterLoop, LoopData &Loop, 440 Distribution &Dist); 441 442 /// Add an edge to the distribution. 443 /// 444 /// Adds an edge to Succ to Dist. If \c LoopHead.isValid(), then whether the 445 /// edge is local/exit/backedge is in the context of LoopHead. Otherwise, 446 /// every edge should be a local edge (since all the loops are packaged up). 447 /// 448 /// \return \c true unless aborted due to an irreducible backedge. 449 bool addToDist(Distribution &Dist, const LoopData *OuterLoop, 450 const BlockNode &Pred, const BlockNode &Succ, uint64_t Weight); 451 getLoopPackage(const BlockNode & Head)452 LoopData &getLoopPackage(const BlockNode &Head) { 453 assert(Head.Index < Working.size()); 454 assert(Working[Head.Index].isLoopHeader()); 455 return *Working[Head.Index].Loop; 456 } 457 458 /// Analyze irreducible SCCs. 459 /// 460 /// Separate irreducible SCCs from \c G, which is an explicit graph of \c 461 /// OuterLoop (or the top-level function, if \c OuterLoop is \c nullptr). 462 /// Insert them into \a Loops before \c Insert. 463 /// 464 /// \return the \c LoopData nodes representing the irreducible SCCs. 465 iterator_range<std::list<LoopData>::iterator> 466 analyzeIrreducible(const bfi_detail::IrreducibleGraph &G, LoopData *OuterLoop, 467 std::list<LoopData>::iterator Insert); 468 469 /// Update a loop after packaging irreducible SCCs inside of it. 470 /// 471 /// Update \c OuterLoop. Before finding irreducible control flow, it was 472 /// partway through \a computeMassInLoop(), so \a LoopData::Exits and \a 473 /// LoopData::BackedgeMass need to be reset. Also, nodes that were packaged 474 /// up need to be removed from \a OuterLoop::Nodes. 475 void updateLoopWithIrreducible(LoopData &OuterLoop); 476 477 /// Distribute mass according to a distribution. 478 /// 479 /// Distributes the mass in Source according to Dist. If LoopHead.isValid(), 480 /// backedges and exits are stored in its entry in Loops. 481 /// 482 /// Mass is distributed in parallel from two copies of the source mass. 483 void distributeMass(const BlockNode &Source, LoopData *OuterLoop, 484 Distribution &Dist); 485 486 /// Compute the loop scale for a loop. 487 void computeLoopScale(LoopData &Loop); 488 489 /// Adjust the mass of all headers in an irreducible loop. 490 /// 491 /// Initially, irreducible loops are assumed to distribute their mass 492 /// equally among its headers. This can lead to wrong frequency estimates 493 /// since some headers may be executed more frequently than others. 494 /// 495 /// This adjusts header mass distribution so it matches the weights of 496 /// the backedges going into each of the loop headers. 497 void adjustLoopHeaderMass(LoopData &Loop); 498 499 void distributeIrrLoopHeaderMass(Distribution &Dist); 500 501 /// Package up a loop. 502 void packageLoop(LoopData &Loop); 503 504 /// Unwrap loops. 505 void unwrapLoops(); 506 507 /// Finalize frequency metrics. 508 /// 509 /// Calculates final frequencies and cleans up no-longer-needed data 510 /// structures. 511 void finalizeMetrics(); 512 513 /// Clear all memory. 514 void clear(); 515 516 virtual std::string getBlockName(const BlockNode &Node) const; 517 std::string getLoopName(const LoopData &Loop) const; 518 print(raw_ostream & OS)519 virtual raw_ostream &print(raw_ostream &OS) const { return OS; } dump()520 void dump() const { print(dbgs()); } 521 522 Scaled64 getFloatingBlockFreq(const BlockNode &Node) const; 523 524 BlockFrequency getBlockFreq(const BlockNode &Node) const; 525 Optional<uint64_t> getBlockProfileCount(const Function &F, 526 const BlockNode &Node, 527 bool AllowSynthetic = false) const; 528 Optional<uint64_t> getProfileCountFromFreq(const Function &F, 529 uint64_t Freq, 530 bool AllowSynthetic = false) const; 531 bool isIrrLoopHeader(const BlockNode &Node); 532 533 void setBlockFreq(const BlockNode &Node, uint64_t Freq); 534 535 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockNode &Node) const; 536 raw_ostream &printBlockFreq(raw_ostream &OS, 537 const BlockFrequency &Freq) const; 538 getEntryFreq()539 uint64_t getEntryFreq() const { 540 assert(!Freqs.empty()); 541 return Freqs[0].Integer; 542 } 543 }; 544 545 namespace bfi_detail { 546 547 template <class BlockT> struct TypeMap {}; 548 template <> struct TypeMap<BasicBlock> { 549 using BlockT = BasicBlock; 550 using BlockKeyT = AssertingVH<const BasicBlock>; 551 using FunctionT = Function; 552 using BranchProbabilityInfoT = BranchProbabilityInfo; 553 using LoopT = Loop; 554 using LoopInfoT = LoopInfo; 555 }; 556 template <> struct TypeMap<MachineBasicBlock> { 557 using BlockT = MachineBasicBlock; 558 using BlockKeyT = const MachineBasicBlock *; 559 using FunctionT = MachineFunction; 560 using BranchProbabilityInfoT = MachineBranchProbabilityInfo; 561 using LoopT = MachineLoop; 562 using LoopInfoT = MachineLoopInfo; 563 }; 564 565 template <class BlockT, class BFIImplT> 566 class BFICallbackVH; 567 568 /// Get the name of a MachineBasicBlock. 569 /// 570 /// Get the name of a MachineBasicBlock. It's templated so that including from 571 /// CodeGen is unnecessary (that would be a layering issue). 572 /// 573 /// This is used mainly for debug output. The name is similar to 574 /// MachineBasicBlock::getFullName(), but skips the name of the function. 575 template <class BlockT> std::string getBlockName(const BlockT *BB) { 576 assert(BB && "Unexpected nullptr"); 577 auto MachineName = "BB" + Twine(BB->getNumber()); 578 if (BB->getBasicBlock()) 579 return (MachineName + "[" + BB->getName() + "]").str(); 580 return MachineName.str(); 581 } 582 /// Get the name of a BasicBlock. 583 template <> inline std::string getBlockName(const BasicBlock *BB) { 584 assert(BB && "Unexpected nullptr"); 585 return BB->getName().str(); 586 } 587 588 /// Graph of irreducible control flow. 589 /// 590 /// This graph is used for determining the SCCs in a loop (or top-level 591 /// function) that has irreducible control flow. 592 /// 593 /// During the block frequency algorithm, the local graphs are defined in a 594 /// light-weight way, deferring to the \a BasicBlock or \a MachineBasicBlock 595 /// graphs for most edges, but getting others from \a LoopData::ExitMap. The 596 /// latter only has successor information. 597 /// 598 /// \a IrreducibleGraph makes this graph explicit. It's in a form that can use 599 /// \a GraphTraits (so that \a analyzeIrreducible() can use \a scc_iterator), 600 /// and it explicitly lists predecessors and successors. The initialization 601 /// that relies on \c MachineBasicBlock is defined in the header. 602 struct IrreducibleGraph { 603 using BFIBase = BlockFrequencyInfoImplBase; 604 605 BFIBase &BFI; 606 607 using BlockNode = BFIBase::BlockNode; 608 struct IrrNode { 609 BlockNode Node; 610 unsigned NumIn = 0; 611 std::deque<const IrrNode *> Edges; 612 613 IrrNode(const BlockNode &Node) : Node(Node) {} 614 615 using iterator = std::deque<const IrrNode *>::const_iterator; 616 617 iterator pred_begin() const { return Edges.begin(); } 618 iterator succ_begin() const { return Edges.begin() + NumIn; } 619 iterator pred_end() const { return succ_begin(); } 620 iterator succ_end() const { return Edges.end(); } 621 }; 622 BlockNode Start; 623 const IrrNode *StartIrr = nullptr; 624 std::vector<IrrNode> Nodes; 625 SmallDenseMap<uint32_t, IrrNode *, 4> Lookup; 626 627 /// Construct an explicit graph containing irreducible control flow. 628 /// 629 /// Construct an explicit graph of the control flow in \c OuterLoop (or the 630 /// top-level function, if \c OuterLoop is \c nullptr). Uses \c 631 /// addBlockEdges to add block successors that have not been packaged into 632 /// loops. 633 /// 634 /// \a BlockFrequencyInfoImpl::computeIrreducibleMass() is the only expected 635 /// user of this. 636 template <class BlockEdgesAdder> 637 IrreducibleGraph(BFIBase &BFI, const BFIBase::LoopData *OuterLoop, 638 BlockEdgesAdder addBlockEdges) : BFI(BFI) { 639 initialize(OuterLoop, addBlockEdges); 640 } 641 642 template <class BlockEdgesAdder> 643 void initialize(const BFIBase::LoopData *OuterLoop, 644 BlockEdgesAdder addBlockEdges); 645 void addNodesInLoop(const BFIBase::LoopData &OuterLoop); 646 void addNodesInFunction(); 647 648 void addNode(const BlockNode &Node) { 649 Nodes.emplace_back(Node); 650 BFI.Working[Node.Index].getMass() = BlockMass::getEmpty(); 651 } 652 653 void indexNodes(); 654 template <class BlockEdgesAdder> 655 void addEdges(const BlockNode &Node, const BFIBase::LoopData *OuterLoop, 656 BlockEdgesAdder addBlockEdges); 657 void addEdge(IrrNode &Irr, const BlockNode &Succ, 658 const BFIBase::LoopData *OuterLoop); 659 }; 660 661 template <class BlockEdgesAdder> 662 void IrreducibleGraph::initialize(const BFIBase::LoopData *OuterLoop, 663 BlockEdgesAdder addBlockEdges) { 664 if (OuterLoop) { 665 addNodesInLoop(*OuterLoop); 666 for (auto N : OuterLoop->Nodes) 667 addEdges(N, OuterLoop, addBlockEdges); 668 } else { 669 addNodesInFunction(); 670 for (uint32_t Index = 0; Index < BFI.Working.size(); ++Index) 671 addEdges(Index, OuterLoop, addBlockEdges); 672 } 673 StartIrr = Lookup[Start.Index]; 674 } 675 676 template <class BlockEdgesAdder> 677 void IrreducibleGraph::addEdges(const BlockNode &Node, 678 const BFIBase::LoopData *OuterLoop, 679 BlockEdgesAdder addBlockEdges) { 680 auto L = Lookup.find(Node.Index); 681 if (L == Lookup.end()) 682 return; 683 IrrNode &Irr = *L->second; 684 const auto &Working = BFI.Working[Node.Index]; 685 686 if (Working.isAPackage()) 687 for (const auto &I : Working.Loop->Exits) 688 addEdge(Irr, I.first, OuterLoop); 689 else 690 addBlockEdges(*this, Irr, OuterLoop); 691 } 692 693 } // end namespace bfi_detail 694 695 /// Shared implementation for block frequency analysis. 696 /// 697 /// This is a shared implementation of BlockFrequencyInfo and 698 /// MachineBlockFrequencyInfo, and calculates the relative frequencies of 699 /// blocks. 700 /// 701 /// LoopInfo defines a loop as a "non-trivial" SCC dominated by a single block, 702 /// which is called the header. A given loop, L, can have sub-loops, which are 703 /// loops within the subgraph of L that exclude its header. (A "trivial" SCC 704 /// consists of a single block that does not have a self-edge.) 705 /// 706 /// In addition to loops, this algorithm has limited support for irreducible 707 /// SCCs, which are SCCs with multiple entry blocks. Irreducible SCCs are 708 /// discovered on the fly, and modelled as loops with multiple headers. 709 /// 710 /// The headers of irreducible sub-SCCs consist of its entry blocks and all 711 /// nodes that are targets of a backedge within it (excluding backedges within 712 /// true sub-loops). Block frequency calculations act as if a block is 713 /// inserted that intercepts all the edges to the headers. All backedges and 714 /// entries point to this block. Its successors are the headers, which split 715 /// the frequency evenly. 716 /// 717 /// This algorithm leverages BlockMass and ScaledNumber to maintain precision, 718 /// separates mass distribution from loop scaling, and dithers to eliminate 719 /// probability mass loss. 720 /// 721 /// The implementation is split between BlockFrequencyInfoImpl, which knows the 722 /// type of graph being modelled (BasicBlock vs. MachineBasicBlock), and 723 /// BlockFrequencyInfoImplBase, which doesn't. The base class uses \a 724 /// BlockNode, a wrapper around a uint32_t. BlockNode is numbered from 0 in 725 /// reverse-post order. This gives two advantages: it's easy to compare the 726 /// relative ordering of two nodes, and maps keyed on BlockT can be represented 727 /// by vectors. 728 /// 729 /// This algorithm is O(V+E), unless there is irreducible control flow, in 730 /// which case it's O(V*E) in the worst case. 731 /// 732 /// These are the main stages: 733 /// 734 /// 0. Reverse post-order traversal (\a initializeRPOT()). 735 /// 736 /// Run a single post-order traversal and save it (in reverse) in RPOT. 737 /// All other stages make use of this ordering. Save a lookup from BlockT 738 /// to BlockNode (the index into RPOT) in Nodes. 739 /// 740 /// 1. Loop initialization (\a initializeLoops()). 741 /// 742 /// Translate LoopInfo/MachineLoopInfo into a form suitable for the rest of 743 /// the algorithm. In particular, store the immediate members of each loop 744 /// in reverse post-order. 745 /// 746 /// 2. Calculate mass and scale in loops (\a computeMassInLoops()). 747 /// 748 /// For each loop (bottom-up), distribute mass through the DAG resulting 749 /// from ignoring backedges and treating sub-loops as a single pseudo-node. 750 /// Track the backedge mass distributed to the loop header, and use it to 751 /// calculate the loop scale (number of loop iterations). Immediate 752 /// members that represent sub-loops will already have been visited and 753 /// packaged into a pseudo-node. 754 /// 755 /// Distributing mass in a loop is a reverse-post-order traversal through 756 /// the loop. Start by assigning full mass to the Loop header. For each 757 /// node in the loop: 758 /// 759 /// - Fetch and categorize the weight distribution for its successors. 760 /// If this is a packaged-subloop, the weight distribution is stored 761 /// in \a LoopData::Exits. Otherwise, fetch it from 762 /// BranchProbabilityInfo. 763 /// 764 /// - Each successor is categorized as \a Weight::Local, a local edge 765 /// within the current loop, \a Weight::Backedge, a backedge to the 766 /// loop header, or \a Weight::Exit, any successor outside the loop. 767 /// The weight, the successor, and its category are stored in \a 768 /// Distribution. There can be multiple edges to each successor. 769 /// 770 /// - If there's a backedge to a non-header, there's an irreducible SCC. 771 /// The usual flow is temporarily aborted. \a 772 /// computeIrreducibleMass() finds the irreducible SCCs within the 773 /// loop, packages them up, and restarts the flow. 774 /// 775 /// - Normalize the distribution: scale weights down so that their sum 776 /// is 32-bits, and coalesce multiple edges to the same node. 777 /// 778 /// - Distribute the mass accordingly, dithering to minimize mass loss, 779 /// as described in \a distributeMass(). 780 /// 781 /// In the case of irreducible loops, instead of a single loop header, 782 /// there will be several. The computation of backedge masses is similar 783 /// but instead of having a single backedge mass, there will be one 784 /// backedge per loop header. In these cases, each backedge will carry 785 /// a mass proportional to the edge weights along the corresponding 786 /// path. 787 /// 788 /// At the end of propagation, the full mass assigned to the loop will be 789 /// distributed among the loop headers proportionally according to the 790 /// mass flowing through their backedges. 791 /// 792 /// Finally, calculate the loop scale from the accumulated backedge mass. 793 /// 794 /// 3. Distribute mass in the function (\a computeMassInFunction()). 795 /// 796 /// Finally, distribute mass through the DAG resulting from packaging all 797 /// loops in the function. This uses the same algorithm as distributing 798 /// mass in a loop, except that there are no exit or backedge edges. 799 /// 800 /// 4. Unpackage loops (\a unwrapLoops()). 801 /// 802 /// Initialize each block's frequency to a floating point representation of 803 /// its mass. 804 /// 805 /// Visit loops top-down, scaling the frequencies of its immediate members 806 /// by the loop's pseudo-node's frequency. 807 /// 808 /// 5. Convert frequencies to a 64-bit range (\a finalizeMetrics()). 809 /// 810 /// Using the min and max frequencies as a guide, translate floating point 811 /// frequencies to an appropriate range in uint64_t. 812 /// 813 /// It has some known flaws. 814 /// 815 /// - The model of irreducible control flow is a rough approximation. 816 /// 817 /// Modelling irreducible control flow exactly involves setting up and 818 /// solving a group of infinite geometric series. Such precision is 819 /// unlikely to be worthwhile, since most of our algorithms give up on 820 /// irreducible control flow anyway. 821 /// 822 /// Nevertheless, we might find that we need to get closer. Here's a sort 823 /// of TODO list for the model with diminishing returns, to be completed as 824 /// necessary. 825 /// 826 /// - The headers for the \a LoopData representing an irreducible SCC 827 /// include non-entry blocks. When these extra blocks exist, they 828 /// indicate a self-contained irreducible sub-SCC. We could treat them 829 /// as sub-loops, rather than arbitrarily shoving the problematic 830 /// blocks into the headers of the main irreducible SCC. 831 /// 832 /// - Entry frequencies are assumed to be evenly split between the 833 /// headers of a given irreducible SCC, which is the only option if we 834 /// need to compute mass in the SCC before its parent loop. Instead, 835 /// we could partially compute mass in the parent loop, and stop when 836 /// we get to the SCC. Here, we have the correct ratio of entry 837 /// masses, which we can use to adjust their relative frequencies. 838 /// Compute mass in the SCC, and then continue propagation in the 839 /// parent. 840 /// 841 /// - We can propagate mass iteratively through the SCC, for some fixed 842 /// number of iterations. Each iteration starts by assigning the entry 843 /// blocks their backedge mass from the prior iteration. The final 844 /// mass for each block (and each exit, and the total backedge mass 845 /// used for computing loop scale) is the sum of all iterations. 846 /// (Running this until fixed point would "solve" the geometric 847 /// series by simulation.) 848 template <class BT> class BlockFrequencyInfoImpl : BlockFrequencyInfoImplBase { 849 // This is part of a workaround for a GCC 4.7 crash on lambdas. 850 friend struct bfi_detail::BlockEdgesAdder<BT>; 851 852 using BlockT = typename bfi_detail::TypeMap<BT>::BlockT; 853 using BlockKeyT = typename bfi_detail::TypeMap<BT>::BlockKeyT; 854 using FunctionT = typename bfi_detail::TypeMap<BT>::FunctionT; 855 using BranchProbabilityInfoT = 856 typename bfi_detail::TypeMap<BT>::BranchProbabilityInfoT; 857 using LoopT = typename bfi_detail::TypeMap<BT>::LoopT; 858 using LoopInfoT = typename bfi_detail::TypeMap<BT>::LoopInfoT; 859 using Successor = GraphTraits<const BlockT *>; 860 using Predecessor = GraphTraits<Inverse<const BlockT *>>; 861 using BFICallbackVH = 862 bfi_detail::BFICallbackVH<BlockT, BlockFrequencyInfoImpl>; 863 864 const BranchProbabilityInfoT *BPI = nullptr; 865 const LoopInfoT *LI = nullptr; 866 const FunctionT *F = nullptr; 867 868 // All blocks in reverse postorder. 869 std::vector<const BlockT *> RPOT; 870 DenseMap<BlockKeyT, std::pair<BlockNode, BFICallbackVH>> Nodes; 871 872 using rpot_iterator = typename std::vector<const BlockT *>::const_iterator; 873 874 rpot_iterator rpot_begin() const { return RPOT.begin(); } 875 rpot_iterator rpot_end() const { return RPOT.end(); } 876 877 size_t getIndex(const rpot_iterator &I) const { return I - rpot_begin(); } 878 879 BlockNode getNode(const rpot_iterator &I) const { 880 return BlockNode(getIndex(I)); 881 } 882 883 BlockNode getNode(const BlockT *BB) const { return Nodes.lookup(BB).first; } 884 885 const BlockT *getBlock(const BlockNode &Node) const { 886 assert(Node.Index < RPOT.size()); 887 return RPOT[Node.Index]; 888 } 889 890 /// Run (and save) a post-order traversal. 891 /// 892 /// Saves a reverse post-order traversal of all the nodes in \a F. 893 void initializeRPOT(); 894 895 /// Initialize loop data. 896 /// 897 /// Build up \a Loops using \a LoopInfo. \a LoopInfo gives us a mapping from 898 /// each block to the deepest loop it's in, but we need the inverse. For each 899 /// loop, we store in reverse post-order its "immediate" members, defined as 900 /// the header, the headers of immediate sub-loops, and all other blocks in 901 /// the loop that are not in sub-loops. 902 void initializeLoops(); 903 904 /// Propagate to a block's successors. 905 /// 906 /// In the context of distributing mass through \c OuterLoop, divide the mass 907 /// currently assigned to \c Node between its successors. 908 /// 909 /// \return \c true unless there's an irreducible backedge. 910 bool propagateMassToSuccessors(LoopData *OuterLoop, const BlockNode &Node); 911 912 /// Compute mass in a particular loop. 913 /// 914 /// Assign mass to \c Loop's header, and then for each block in \c Loop in 915 /// reverse post-order, distribute mass to its successors. Only visits nodes 916 /// that have not been packaged into sub-loops. 917 /// 918 /// \pre \a computeMassInLoop() has been called for each subloop of \c Loop. 919 /// \return \c true unless there's an irreducible backedge. 920 bool computeMassInLoop(LoopData &Loop); 921 922 /// Try to compute mass in the top-level function. 923 /// 924 /// Assign mass to the entry block, and then for each block in reverse 925 /// post-order, distribute mass to its successors. Skips nodes that have 926 /// been packaged into loops. 927 /// 928 /// \pre \a computeMassInLoops() has been called. 929 /// \return \c true unless there's an irreducible backedge. 930 bool tryToComputeMassInFunction(); 931 932 /// Compute mass in (and package up) irreducible SCCs. 933 /// 934 /// Find the irreducible SCCs in \c OuterLoop, add them to \a Loops (in front 935 /// of \c Insert), and call \a computeMassInLoop() on each of them. 936 /// 937 /// If \c OuterLoop is \c nullptr, it refers to the top-level function. 938 /// 939 /// \pre \a computeMassInLoop() has been called for each subloop of \c 940 /// OuterLoop. 941 /// \pre \c Insert points at the last loop successfully processed by \a 942 /// computeMassInLoop(). 943 /// \pre \c OuterLoop has irreducible SCCs. 944 void computeIrreducibleMass(LoopData *OuterLoop, 945 std::list<LoopData>::iterator Insert); 946 947 /// Compute mass in all loops. 948 /// 949 /// For each loop bottom-up, call \a computeMassInLoop(). 950 /// 951 /// \a computeMassInLoop() aborts (and returns \c false) on loops that 952 /// contain a irreducible sub-SCCs. Use \a computeIrreducibleMass() and then 953 /// re-enter \a computeMassInLoop(). 954 /// 955 /// \post \a computeMassInLoop() has returned \c true for every loop. 956 void computeMassInLoops(); 957 958 /// Compute mass in the top-level function. 959 /// 960 /// Uses \a tryToComputeMassInFunction() and \a computeIrreducibleMass() to 961 /// compute mass in the top-level function. 962 /// 963 /// \post \a tryToComputeMassInFunction() has returned \c true. 964 void computeMassInFunction(); 965 966 std::string getBlockName(const BlockNode &Node) const override { 967 return bfi_detail::getBlockName(getBlock(Node)); 968 } 969 970 public: 971 BlockFrequencyInfoImpl() = default; 972 973 const FunctionT *getFunction() const { return F; } 974 975 void calculate(const FunctionT &F, const BranchProbabilityInfoT &BPI, 976 const LoopInfoT &LI); 977 978 using BlockFrequencyInfoImplBase::getEntryFreq; 979 980 BlockFrequency getBlockFreq(const BlockT *BB) const { 981 return BlockFrequencyInfoImplBase::getBlockFreq(getNode(BB)); 982 } 983 984 Optional<uint64_t> getBlockProfileCount(const Function &F, 985 const BlockT *BB, 986 bool AllowSynthetic = false) const { 987 return BlockFrequencyInfoImplBase::getBlockProfileCount(F, getNode(BB), 988 AllowSynthetic); 989 } 990 991 Optional<uint64_t> getProfileCountFromFreq(const Function &F, 992 uint64_t Freq, 993 bool AllowSynthetic = false) const { 994 return BlockFrequencyInfoImplBase::getProfileCountFromFreq(F, Freq, 995 AllowSynthetic); 996 } 997 998 bool isIrrLoopHeader(const BlockT *BB) { 999 return BlockFrequencyInfoImplBase::isIrrLoopHeader(getNode(BB)); 1000 } 1001 1002 void setBlockFreq(const BlockT *BB, uint64_t Freq); 1003 1004 void forgetBlock(const BlockT *BB) { 1005 // We don't erase corresponding items from `Freqs`, `RPOT` and other to 1006 // avoid invalidating indices. Doing so would have saved some memory, but 1007 // it's not worth it. 1008 Nodes.erase(BB); 1009 } 1010 1011 Scaled64 getFloatingBlockFreq(const BlockT *BB) const { 1012 return BlockFrequencyInfoImplBase::getFloatingBlockFreq(getNode(BB)); 1013 } 1014 1015 const BranchProbabilityInfoT &getBPI() const { return *BPI; } 1016 1017 /// Print the frequencies for the current function. 1018 /// 1019 /// Prints the frequencies for the blocks in the current function. 1020 /// 1021 /// Blocks are printed in the natural iteration order of the function, rather 1022 /// than reverse post-order. This provides two advantages: writing -analyze 1023 /// tests is easier (since blocks come out in source order), and even 1024 /// unreachable blocks are printed. 1025 /// 1026 /// \a BlockFrequencyInfoImplBase::print() only knows reverse post-order, so 1027 /// we need to override it here. 1028 raw_ostream &print(raw_ostream &OS) const override; 1029 1030 using BlockFrequencyInfoImplBase::dump; 1031 using BlockFrequencyInfoImplBase::printBlockFreq; 1032 1033 raw_ostream &printBlockFreq(raw_ostream &OS, const BlockT *BB) const { 1034 return BlockFrequencyInfoImplBase::printBlockFreq(OS, getNode(BB)); 1035 } 1036 1037 void verifyMatch(BlockFrequencyInfoImpl<BT> &Other) const; 1038 }; 1039 1040 namespace bfi_detail { 1041 1042 template <class BFIImplT> 1043 class BFICallbackVH<BasicBlock, BFIImplT> : public CallbackVH { 1044 BFIImplT *BFIImpl; 1045 1046 public: 1047 BFICallbackVH() = default; 1048 1049 BFICallbackVH(const BasicBlock *BB, BFIImplT *BFIImpl) 1050 : CallbackVH(BB), BFIImpl(BFIImpl) {} 1051 1052 virtual ~BFICallbackVH() = default; 1053 1054 void deleted() override { 1055 BFIImpl->forgetBlock(cast<BasicBlock>(getValPtr())); 1056 } 1057 }; 1058 1059 /// Dummy implementation since MachineBasicBlocks aren't Values, so ValueHandles 1060 /// don't apply to them. 1061 template <class BFIImplT> 1062 class BFICallbackVH<MachineBasicBlock, BFIImplT> { 1063 public: 1064 BFICallbackVH() = default; 1065 BFICallbackVH(const MachineBasicBlock *, BFIImplT *) {} 1066 }; 1067 1068 } // end namespace bfi_detail 1069 1070 template <class BT> 1071 void BlockFrequencyInfoImpl<BT>::calculate(const FunctionT &F, 1072 const BranchProbabilityInfoT &BPI, 1073 const LoopInfoT &LI) { 1074 // Save the parameters. 1075 this->BPI = &BPI; 1076 this->LI = &LI; 1077 this->F = &F; 1078 1079 // Clean up left-over data structures. 1080 BlockFrequencyInfoImplBase::clear(); 1081 RPOT.clear(); 1082 Nodes.clear(); 1083 1084 // Initialize. 1085 LLVM_DEBUG(dbgs() << "\nblock-frequency: " << F.getName() 1086 << "\n=================" 1087 << std::string(F.getName().size(), '=') << "\n"); 1088 initializeRPOT(); 1089 initializeLoops(); 1090 1091 // Visit loops in post-order to find the local mass distribution, and then do 1092 // the full function. 1093 computeMassInLoops(); 1094 computeMassInFunction(); 1095 unwrapLoops(); 1096 finalizeMetrics(); 1097 1098 if (CheckBFIUnknownBlockQueries) { 1099 // To detect BFI queries for unknown blocks, add entries for unreachable 1100 // blocks, if any. This is to distinguish between known/existing unreachable 1101 // blocks and unknown blocks. 1102 for (const BlockT &BB : F) 1103 if (!Nodes.count(&BB)) 1104 setBlockFreq(&BB, 0); 1105 } 1106 } 1107 1108 template <class BT> 1109 void BlockFrequencyInfoImpl<BT>::setBlockFreq(const BlockT *BB, uint64_t Freq) { 1110 if (Nodes.count(BB)) 1111 BlockFrequencyInfoImplBase::setBlockFreq(getNode(BB), Freq); 1112 else { 1113 // If BB is a newly added block after BFI is done, we need to create a new 1114 // BlockNode for it assigned with a new index. The index can be determined 1115 // by the size of Freqs. 1116 BlockNode NewNode(Freqs.size()); 1117 Nodes[BB] = {NewNode, BFICallbackVH(BB, this)}; 1118 Freqs.emplace_back(); 1119 BlockFrequencyInfoImplBase::setBlockFreq(NewNode, Freq); 1120 } 1121 } 1122 1123 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeRPOT() { 1124 const BlockT *Entry = &F->front(); 1125 RPOT.reserve(F->size()); 1126 std::copy(po_begin(Entry), po_end(Entry), std::back_inserter(RPOT)); 1127 std::reverse(RPOT.begin(), RPOT.end()); 1128 1129 assert(RPOT.size() - 1 <= BlockNode::getMaxIndex() && 1130 "More nodes in function than Block Frequency Info supports"); 1131 1132 LLVM_DEBUG(dbgs() << "reverse-post-order-traversal\n"); 1133 for (rpot_iterator I = rpot_begin(), E = rpot_end(); I != E; ++I) { 1134 BlockNode Node = getNode(I); 1135 LLVM_DEBUG(dbgs() << " - " << getIndex(I) << ": " << getBlockName(Node) 1136 << "\n"); 1137 Nodes[*I] = {Node, BFICallbackVH(*I, this)}; 1138 } 1139 1140 Working.reserve(RPOT.size()); 1141 for (size_t Index = 0; Index < RPOT.size(); ++Index) 1142 Working.emplace_back(Index); 1143 Freqs.resize(RPOT.size()); 1144 } 1145 1146 template <class BT> void BlockFrequencyInfoImpl<BT>::initializeLoops() { 1147 LLVM_DEBUG(dbgs() << "loop-detection\n"); 1148 if (LI->empty()) 1149 return; 1150 1151 // Visit loops top down and assign them an index. 1152 std::deque<std::pair<const LoopT *, LoopData *>> Q; 1153 for (const LoopT *L : *LI) 1154 Q.emplace_back(L, nullptr); 1155 while (!Q.empty()) { 1156 const LoopT *Loop = Q.front().first; 1157 LoopData *Parent = Q.front().second; 1158 Q.pop_front(); 1159 1160 BlockNode Header = getNode(Loop->getHeader()); 1161 assert(Header.isValid()); 1162 1163 Loops.emplace_back(Parent, Header); 1164 Working[Header.Index].Loop = &Loops.back(); 1165 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) << "\n"); 1166 1167 for (const LoopT *L : *Loop) 1168 Q.emplace_back(L, &Loops.back()); 1169 } 1170 1171 // Visit nodes in reverse post-order and add them to their deepest containing 1172 // loop. 1173 for (size_t Index = 0; Index < RPOT.size(); ++Index) { 1174 // Loop headers have already been mostly mapped. 1175 if (Working[Index].isLoopHeader()) { 1176 LoopData *ContainingLoop = Working[Index].getContainingLoop(); 1177 if (ContainingLoop) 1178 ContainingLoop->Nodes.push_back(Index); 1179 continue; 1180 } 1181 1182 const LoopT *Loop = LI->getLoopFor(RPOT[Index]); 1183 if (!Loop) 1184 continue; 1185 1186 // Add this node to its containing loop's member list. 1187 BlockNode Header = getNode(Loop->getHeader()); 1188 assert(Header.isValid()); 1189 const auto &HeaderData = Working[Header.Index]; 1190 assert(HeaderData.isLoopHeader()); 1191 1192 Working[Index].Loop = HeaderData.Loop; 1193 HeaderData.Loop->Nodes.push_back(Index); 1194 LLVM_DEBUG(dbgs() << " - loop = " << getBlockName(Header) 1195 << ": member = " << getBlockName(Index) << "\n"); 1196 } 1197 } 1198 1199 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInLoops() { 1200 // Visit loops with the deepest first, and the top-level loops last. 1201 for (auto L = Loops.rbegin(), E = Loops.rend(); L != E; ++L) { 1202 if (computeMassInLoop(*L)) 1203 continue; 1204 auto Next = std::next(L); 1205 computeIrreducibleMass(&*L, L.base()); 1206 L = std::prev(Next); 1207 if (computeMassInLoop(*L)) 1208 continue; 1209 llvm_unreachable("unhandled irreducible control flow"); 1210 } 1211 } 1212 1213 template <class BT> 1214 bool BlockFrequencyInfoImpl<BT>::computeMassInLoop(LoopData &Loop) { 1215 // Compute mass in loop. 1216 LLVM_DEBUG(dbgs() << "compute-mass-in-loop: " << getLoopName(Loop) << "\n"); 1217 1218 if (Loop.isIrreducible()) { 1219 LLVM_DEBUG(dbgs() << "isIrreducible = true\n"); 1220 Distribution Dist; 1221 unsigned NumHeadersWithWeight = 0; 1222 Optional<uint64_t> MinHeaderWeight; 1223 DenseSet<uint32_t> HeadersWithoutWeight; 1224 HeadersWithoutWeight.reserve(Loop.NumHeaders); 1225 for (uint32_t H = 0; H < Loop.NumHeaders; ++H) { 1226 auto &HeaderNode = Loop.Nodes[H]; 1227 const BlockT *Block = getBlock(HeaderNode); 1228 IsIrrLoopHeader.set(Loop.Nodes[H].Index); 1229 Optional<uint64_t> HeaderWeight = Block->getIrrLoopHeaderWeight(); 1230 if (!HeaderWeight) { 1231 LLVM_DEBUG(dbgs() << "Missing irr loop header metadata on " 1232 << getBlockName(HeaderNode) << "\n"); 1233 HeadersWithoutWeight.insert(H); 1234 continue; 1235 } 1236 LLVM_DEBUG(dbgs() << getBlockName(HeaderNode) 1237 << " has irr loop header weight " 1238 << HeaderWeight.getValue() << "\n"); 1239 NumHeadersWithWeight++; 1240 uint64_t HeaderWeightValue = HeaderWeight.getValue(); 1241 if (!MinHeaderWeight || HeaderWeightValue < MinHeaderWeight) 1242 MinHeaderWeight = HeaderWeightValue; 1243 if (HeaderWeightValue) { 1244 Dist.addLocal(HeaderNode, HeaderWeightValue); 1245 } 1246 } 1247 // As a heuristic, if some headers don't have a weight, give them the 1248 // minimum weight seen (not to disrupt the existing trends too much by 1249 // using a weight that's in the general range of the other headers' weights, 1250 // and the minimum seems to perform better than the average.) 1251 // FIXME: better update in the passes that drop the header weight. 1252 // If no headers have a weight, give them even weight (use weight 1). 1253 if (!MinHeaderWeight) 1254 MinHeaderWeight = 1; 1255 for (uint32_t H : HeadersWithoutWeight) { 1256 auto &HeaderNode = Loop.Nodes[H]; 1257 assert(!getBlock(HeaderNode)->getIrrLoopHeaderWeight() && 1258 "Shouldn't have a weight metadata"); 1259 uint64_t MinWeight = MinHeaderWeight.getValue(); 1260 LLVM_DEBUG(dbgs() << "Giving weight " << MinWeight << " to " 1261 << getBlockName(HeaderNode) << "\n"); 1262 if (MinWeight) 1263 Dist.addLocal(HeaderNode, MinWeight); 1264 } 1265 distributeIrrLoopHeaderMass(Dist); 1266 for (const BlockNode &M : Loop.Nodes) 1267 if (!propagateMassToSuccessors(&Loop, M)) 1268 llvm_unreachable("unhandled irreducible control flow"); 1269 if (NumHeadersWithWeight == 0) 1270 // No headers have a metadata. Adjust header mass. 1271 adjustLoopHeaderMass(Loop); 1272 } else { 1273 Working[Loop.getHeader().Index].getMass() = BlockMass::getFull(); 1274 if (!propagateMassToSuccessors(&Loop, Loop.getHeader())) 1275 llvm_unreachable("irreducible control flow to loop header!?"); 1276 for (const BlockNode &M : Loop.members()) 1277 if (!propagateMassToSuccessors(&Loop, M)) 1278 // Irreducible backedge. 1279 return false; 1280 } 1281 1282 computeLoopScale(Loop); 1283 packageLoop(Loop); 1284 return true; 1285 } 1286 1287 template <class BT> 1288 bool BlockFrequencyInfoImpl<BT>::tryToComputeMassInFunction() { 1289 // Compute mass in function. 1290 LLVM_DEBUG(dbgs() << "compute-mass-in-function\n"); 1291 assert(!Working.empty() && "no blocks in function"); 1292 assert(!Working[0].isLoopHeader() && "entry block is a loop header"); 1293 1294 Working[0].getMass() = BlockMass::getFull(); 1295 for (rpot_iterator I = rpot_begin(), IE = rpot_end(); I != IE; ++I) { 1296 // Check for nodes that have been packaged. 1297 BlockNode Node = getNode(I); 1298 if (Working[Node.Index].isPackaged()) 1299 continue; 1300 1301 if (!propagateMassToSuccessors(nullptr, Node)) 1302 return false; 1303 } 1304 return true; 1305 } 1306 1307 template <class BT> void BlockFrequencyInfoImpl<BT>::computeMassInFunction() { 1308 if (tryToComputeMassInFunction()) 1309 return; 1310 computeIrreducibleMass(nullptr, Loops.begin()); 1311 if (tryToComputeMassInFunction()) 1312 return; 1313 llvm_unreachable("unhandled irreducible control flow"); 1314 } 1315 1316 /// \note This should be a lambda, but that crashes GCC 4.7. 1317 namespace bfi_detail { 1318 1319 template <class BT> struct BlockEdgesAdder { 1320 using BlockT = BT; 1321 using LoopData = BlockFrequencyInfoImplBase::LoopData; 1322 using Successor = GraphTraits<const BlockT *>; 1323 1324 const BlockFrequencyInfoImpl<BT> &BFI; 1325 1326 explicit BlockEdgesAdder(const BlockFrequencyInfoImpl<BT> &BFI) 1327 : BFI(BFI) {} 1328 1329 void operator()(IrreducibleGraph &G, IrreducibleGraph::IrrNode &Irr, 1330 const LoopData *OuterLoop) { 1331 const BlockT *BB = BFI.RPOT[Irr.Node.Index]; 1332 for (const auto Succ : children<const BlockT *>(BB)) 1333 G.addEdge(Irr, BFI.getNode(Succ), OuterLoop); 1334 } 1335 }; 1336 1337 } // end namespace bfi_detail 1338 1339 template <class BT> 1340 void BlockFrequencyInfoImpl<BT>::computeIrreducibleMass( 1341 LoopData *OuterLoop, std::list<LoopData>::iterator Insert) { 1342 LLVM_DEBUG(dbgs() << "analyze-irreducible-in-"; 1343 if (OuterLoop) dbgs() 1344 << "loop: " << getLoopName(*OuterLoop) << "\n"; 1345 else dbgs() << "function\n"); 1346 1347 using namespace bfi_detail; 1348 1349 // Ideally, addBlockEdges() would be declared here as a lambda, but that 1350 // crashes GCC 4.7. 1351 BlockEdgesAdder<BT> addBlockEdges(*this); 1352 IrreducibleGraph G(*this, OuterLoop, addBlockEdges); 1353 1354 for (auto &L : analyzeIrreducible(G, OuterLoop, Insert)) 1355 computeMassInLoop(L); 1356 1357 if (!OuterLoop) 1358 return; 1359 updateLoopWithIrreducible(*OuterLoop); 1360 } 1361 1362 // A helper function that converts a branch probability into weight. 1363 inline uint32_t getWeightFromBranchProb(const BranchProbability Prob) { 1364 return Prob.getNumerator(); 1365 } 1366 1367 template <class BT> 1368 bool 1369 BlockFrequencyInfoImpl<BT>::propagateMassToSuccessors(LoopData *OuterLoop, 1370 const BlockNode &Node) { 1371 LLVM_DEBUG(dbgs() << " - node: " << getBlockName(Node) << "\n"); 1372 // Calculate probability for successors. 1373 Distribution Dist; 1374 if (auto *Loop = Working[Node.Index].getPackagedLoop()) { 1375 assert(Loop != OuterLoop && "Cannot propagate mass in a packaged loop"); 1376 if (!addLoopSuccessorsToDist(OuterLoop, *Loop, Dist)) 1377 // Irreducible backedge. 1378 return false; 1379 } else { 1380 const BlockT *BB = getBlock(Node); 1381 for (auto SI = GraphTraits<const BlockT *>::child_begin(BB), 1382 SE = GraphTraits<const BlockT *>::child_end(BB); 1383 SI != SE; ++SI) 1384 if (!addToDist( 1385 Dist, OuterLoop, Node, getNode(*SI), 1386 getWeightFromBranchProb(BPI->getEdgeProbability(BB, SI)))) 1387 // Irreducible backedge. 1388 return false; 1389 } 1390 1391 // Distribute mass to successors, saving exit and backedge data in the 1392 // loop header. 1393 distributeMass(Node, OuterLoop, Dist); 1394 return true; 1395 } 1396 1397 template <class BT> 1398 raw_ostream &BlockFrequencyInfoImpl<BT>::print(raw_ostream &OS) const { 1399 if (!F) 1400 return OS; 1401 OS << "block-frequency-info: " << F->getName() << "\n"; 1402 for (const BlockT &BB : *F) { 1403 OS << " - " << bfi_detail::getBlockName(&BB) << ": float = "; 1404 getFloatingBlockFreq(&BB).print(OS, 5) 1405 << ", int = " << getBlockFreq(&BB).getFrequency(); 1406 if (Optional<uint64_t> ProfileCount = 1407 BlockFrequencyInfoImplBase::getBlockProfileCount( 1408 F->getFunction(), getNode(&BB))) 1409 OS << ", count = " << ProfileCount.getValue(); 1410 if (Optional<uint64_t> IrrLoopHeaderWeight = 1411 BB.getIrrLoopHeaderWeight()) 1412 OS << ", irr_loop_header_weight = " << IrrLoopHeaderWeight.getValue(); 1413 OS << "\n"; 1414 } 1415 1416 // Add an extra newline for readability. 1417 OS << "\n"; 1418 return OS; 1419 } 1420 1421 template <class BT> 1422 void BlockFrequencyInfoImpl<BT>::verifyMatch( 1423 BlockFrequencyInfoImpl<BT> &Other) const { 1424 bool Match = true; 1425 DenseMap<const BlockT *, BlockNode> ValidNodes; 1426 DenseMap<const BlockT *, BlockNode> OtherValidNodes; 1427 for (auto &Entry : Nodes) { 1428 const BlockT *BB = Entry.first; 1429 if (BB) { 1430 ValidNodes[BB] = Entry.second.first; 1431 } 1432 } 1433 for (auto &Entry : Other.Nodes) { 1434 const BlockT *BB = Entry.first; 1435 if (BB) { 1436 OtherValidNodes[BB] = Entry.second.first; 1437 } 1438 } 1439 unsigned NumValidNodes = ValidNodes.size(); 1440 unsigned NumOtherValidNodes = OtherValidNodes.size(); 1441 if (NumValidNodes != NumOtherValidNodes) { 1442 Match = false; 1443 dbgs() << "Number of blocks mismatch: " << NumValidNodes << " vs " 1444 << NumOtherValidNodes << "\n"; 1445 } else { 1446 for (auto &Entry : ValidNodes) { 1447 const BlockT *BB = Entry.first; 1448 BlockNode Node = Entry.second; 1449 if (OtherValidNodes.count(BB)) { 1450 BlockNode OtherNode = OtherValidNodes[BB]; 1451 const auto &Freq = Freqs[Node.Index]; 1452 const auto &OtherFreq = Other.Freqs[OtherNode.Index]; 1453 if (Freq.Integer != OtherFreq.Integer) { 1454 Match = false; 1455 dbgs() << "Freq mismatch: " << bfi_detail::getBlockName(BB) << " " 1456 << Freq.Integer << " vs " << OtherFreq.Integer << "\n"; 1457 } 1458 } else { 1459 Match = false; 1460 dbgs() << "Block " << bfi_detail::getBlockName(BB) << " index " 1461 << Node.Index << " does not exist in Other.\n"; 1462 } 1463 } 1464 // If there's a valid node in OtherValidNodes that's not in ValidNodes, 1465 // either the above num check or the check on OtherValidNodes will fail. 1466 } 1467 if (!Match) { 1468 dbgs() << "This\n"; 1469 print(dbgs()); 1470 dbgs() << "Other\n"; 1471 Other.print(dbgs()); 1472 } 1473 assert(Match && "BFI mismatch"); 1474 } 1475 1476 // Graph trait base class for block frequency information graph 1477 // viewer. 1478 1479 enum GVDAGType { GVDT_None, GVDT_Fraction, GVDT_Integer, GVDT_Count }; 1480 1481 template <class BlockFrequencyInfoT, class BranchProbabilityInfoT> 1482 struct BFIDOTGraphTraitsBase : public DefaultDOTGraphTraits { 1483 using GTraits = GraphTraits<BlockFrequencyInfoT *>; 1484 using NodeRef = typename GTraits::NodeRef; 1485 using EdgeIter = typename GTraits::ChildIteratorType; 1486 using NodeIter = typename GTraits::nodes_iterator; 1487 1488 uint64_t MaxFrequency = 0; 1489 1490 explicit BFIDOTGraphTraitsBase(bool isSimple = false) 1491 : DefaultDOTGraphTraits(isSimple) {} 1492 1493 static StringRef getGraphName(const BlockFrequencyInfoT *G) { 1494 return G->getFunction()->getName(); 1495 } 1496 1497 std::string getNodeAttributes(NodeRef Node, const BlockFrequencyInfoT *Graph, 1498 unsigned HotPercentThreshold = 0) { 1499 std::string Result; 1500 if (!HotPercentThreshold) 1501 return Result; 1502 1503 // Compute MaxFrequency on the fly: 1504 if (!MaxFrequency) { 1505 for (NodeIter I = GTraits::nodes_begin(Graph), 1506 E = GTraits::nodes_end(Graph); 1507 I != E; ++I) { 1508 NodeRef N = *I; 1509 MaxFrequency = 1510 std::max(MaxFrequency, Graph->getBlockFreq(N).getFrequency()); 1511 } 1512 } 1513 BlockFrequency Freq = Graph->getBlockFreq(Node); 1514 BlockFrequency HotFreq = 1515 (BlockFrequency(MaxFrequency) * 1516 BranchProbability::getBranchProbability(HotPercentThreshold, 100)); 1517 1518 if (Freq < HotFreq) 1519 return Result; 1520 1521 raw_string_ostream OS(Result); 1522 OS << "color=\"red\""; 1523 OS.flush(); 1524 return Result; 1525 } 1526 1527 std::string getNodeLabel(NodeRef Node, const BlockFrequencyInfoT *Graph, 1528 GVDAGType GType, int layout_order = -1) { 1529 std::string Result; 1530 raw_string_ostream OS(Result); 1531 1532 if (layout_order != -1) 1533 OS << Node->getName() << "[" << layout_order << "] : "; 1534 else 1535 OS << Node->getName() << " : "; 1536 switch (GType) { 1537 case GVDT_Fraction: 1538 Graph->printBlockFreq(OS, Node); 1539 break; 1540 case GVDT_Integer: 1541 OS << Graph->getBlockFreq(Node).getFrequency(); 1542 break; 1543 case GVDT_Count: { 1544 auto Count = Graph->getBlockProfileCount(Node); 1545 if (Count) 1546 OS << Count.getValue(); 1547 else 1548 OS << "Unknown"; 1549 break; 1550 } 1551 case GVDT_None: 1552 llvm_unreachable("If we are not supposed to render a graph we should " 1553 "never reach this point."); 1554 } 1555 return Result; 1556 } 1557 1558 std::string getEdgeAttributes(NodeRef Node, EdgeIter EI, 1559 const BlockFrequencyInfoT *BFI, 1560 const BranchProbabilityInfoT *BPI, 1561 unsigned HotPercentThreshold = 0) { 1562 std::string Str; 1563 if (!BPI) 1564 return Str; 1565 1566 BranchProbability BP = BPI->getEdgeProbability(Node, EI); 1567 uint32_t N = BP.getNumerator(); 1568 uint32_t D = BP.getDenominator(); 1569 double Percent = 100.0 * N / D; 1570 raw_string_ostream OS(Str); 1571 OS << format("label=\"%.1f%%\"", Percent); 1572 1573 if (HotPercentThreshold) { 1574 BlockFrequency EFreq = BFI->getBlockFreq(Node) * BP; 1575 BlockFrequency HotFreq = BlockFrequency(MaxFrequency) * 1576 BranchProbability(HotPercentThreshold, 100); 1577 1578 if (EFreq >= HotFreq) { 1579 OS << ",color=\"red\""; 1580 } 1581 } 1582 1583 OS.flush(); 1584 return Str; 1585 } 1586 }; 1587 1588 } // end namespace llvm 1589 1590 #undef DEBUG_TYPE 1591 1592 #endif // LLVM_ANALYSIS_BLOCKFREQUENCYINFOIMPL_H 1593