xref: /llvm-project/llvm/include/llvm/ADT/STLExtras.h (revision 230946fad69c952dc434aa3e2f92853c1ee8d304)
1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file contains some templates that are useful if you are working with
11 /// the STL at all.
12 ///
13 /// No library is required when using these functions.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_STLEXTRAS_H
18 #define LLVM_ADT_STLEXTRAS_H
19 
20 #include "llvm/ADT/ADL.h"
21 #include "llvm/ADT/Hashing.h"
22 #include "llvm/ADT/STLForwardCompat.h"
23 #include "llvm/ADT/STLFunctionalExtras.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Config/abi-breaking.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include <algorithm>
29 #include <cassert>
30 #include <cstddef>
31 #include <cstdint>
32 #include <cstdlib>
33 #include <functional>
34 #include <initializer_list>
35 #include <iterator>
36 #include <limits>
37 #include <memory>
38 #include <optional>
39 #include <tuple>
40 #include <type_traits>
41 #include <utility>
42 
43 #ifdef EXPENSIVE_CHECKS
44 #include <random> // for std::mt19937
45 #endif
46 
47 namespace llvm {
48 
49 //===----------------------------------------------------------------------===//
50 //     Extra additions to <type_traits>
51 //===----------------------------------------------------------------------===//
52 
53 template <typename T> struct make_const_ptr {
54   using type = std::add_pointer_t<std::add_const_t<T>>;
55 };
56 
57 template <typename T> struct make_const_ref {
58   using type = std::add_lvalue_reference_t<std::add_const_t<T>>;
59 };
60 
61 namespace detail {
62 template <class, template <class...> class Op, class... Args> struct detector {
63   using value_t = std::false_type;
64 };
65 template <template <class...> class Op, class... Args>
66 struct detector<std::void_t<Op<Args...>>, Op, Args...> {
67   using value_t = std::true_type;
68 };
69 } // end namespace detail
70 
71 /// Detects if a given trait holds for some set of arguments 'Args'.
72 /// For example, the given trait could be used to detect if a given type
73 /// has a copy assignment operator:
74 ///   template<class T>
75 ///   using has_copy_assign_t = decltype(std::declval<T&>()
76 ///                                                 = std::declval<const T&>());
77 ///   bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value;
78 template <template <class...> class Op, class... Args>
79 using is_detected = typename detail::detector<void, Op, Args...>::value_t;
80 
81 /// This class provides various trait information about a callable object.
82 ///   * To access the number of arguments: Traits::num_args
83 ///   * To access the type of an argument: Traits::arg_t<Index>
84 ///   * To access the type of the result:  Traits::result_t
85 template <typename T, bool isClass = std::is_class<T>::value>
86 struct function_traits : public function_traits<decltype(&T::operator())> {};
87 
88 /// Overload for class function types.
89 template <typename ClassType, typename ReturnType, typename... Args>
90 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> {
91   /// The number of arguments to this function.
92   enum { num_args = sizeof...(Args) };
93 
94   /// The result type of this function.
95   using result_t = ReturnType;
96 
97   /// The type of an argument to this function.
98   template <size_t Index>
99   using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>;
100 };
101 /// Overload for class function types.
102 template <typename ClassType, typename ReturnType, typename... Args>
103 struct function_traits<ReturnType (ClassType::*)(Args...), false>
104     : public function_traits<ReturnType (ClassType::*)(Args...) const> {};
105 /// Overload for non-class function types.
106 template <typename ReturnType, typename... Args>
107 struct function_traits<ReturnType (*)(Args...), false> {
108   /// The number of arguments to this function.
109   enum { num_args = sizeof...(Args) };
110 
111   /// The result type of this function.
112   using result_t = ReturnType;
113 
114   /// The type of an argument to this function.
115   template <size_t i>
116   using arg_t = std::tuple_element_t<i, std::tuple<Args...>>;
117 };
118 template <typename ReturnType, typename... Args>
119 struct function_traits<ReturnType (*const)(Args...), false>
120     : public function_traits<ReturnType (*)(Args...)> {};
121 /// Overload for non-class function type references.
122 template <typename ReturnType, typename... Args>
123 struct function_traits<ReturnType (&)(Args...), false>
124     : public function_traits<ReturnType (*)(Args...)> {};
125 
126 /// traits class for checking whether type T is one of any of the given
127 /// types in the variadic list.
128 template <typename T, typename... Ts>
129 using is_one_of = std::disjunction<std::is_same<T, Ts>...>;
130 
131 /// traits class for checking whether type T is a base class for all
132 ///  the given types in the variadic list.
133 template <typename T, typename... Ts>
134 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>;
135 
136 namespace detail {
137 template <typename T, typename... Us> struct TypesAreDistinct;
138 template <typename T, typename... Us>
139 struct TypesAreDistinct
140     : std::integral_constant<bool, !is_one_of<T, Us...>::value &&
141                                        TypesAreDistinct<Us...>::value> {};
142 template <typename T> struct TypesAreDistinct<T> : std::true_type {};
143 } // namespace detail
144 
145 /// Determine if all types in Ts are distinct.
146 ///
147 /// Useful to statically assert when Ts is intended to describe a non-multi set
148 /// of types.
149 ///
150 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be
151 /// asserted once per instantiation of a type which requires it.
152 template <typename... Ts> struct TypesAreDistinct;
153 template <> struct TypesAreDistinct<> : std::true_type {};
154 template <typename... Ts>
155 struct TypesAreDistinct
156     : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {};
157 
158 /// Find the first index where a type appears in a list of types.
159 ///
160 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us.
161 ///
162 /// Typically only meaningful when it is otherwise statically known that the
163 /// type pack has no duplicate types. This should be guaranteed explicitly with
164 /// static_assert(TypesAreDistinct<Us...>::value).
165 ///
166 /// It is a compile-time error to instantiate when T is not present in Us, i.e.
167 /// if is_one_of<T, Us...>::value is false.
168 template <typename T, typename... Us> struct FirstIndexOfType;
169 template <typename T, typename U, typename... Us>
170 struct FirstIndexOfType<T, U, Us...>
171     : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {};
172 template <typename T, typename... Us>
173 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {};
174 
175 /// Find the type at a given index in a list of types.
176 ///
177 /// TypeAtIndex<I, Ts...> is the type at index I in Ts.
178 template <size_t I, typename... Ts>
179 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>;
180 
181 /// Helper which adds two underlying types of enumeration type.
182 /// Implicit conversion to a common type is accepted.
183 template <typename EnumTy1, typename EnumTy2,
184           typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value,
185                                           std::underlying_type_t<EnumTy1>>,
186           typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value,
187                                           std::underlying_type_t<EnumTy2>>>
188 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) {
189   return static_cast<UT1>(LHS) + static_cast<UT2>(RHS);
190 }
191 
192 //===----------------------------------------------------------------------===//
193 //     Extra additions to <iterator>
194 //===----------------------------------------------------------------------===//
195 
196 namespace callable_detail {
197 
198 /// Templated storage wrapper for a callable.
199 ///
200 /// This class is consistently default constructible, copy / move
201 /// constructible / assignable.
202 ///
203 /// Supported callable types:
204 ///  - Function pointer
205 ///  - Function reference
206 ///  - Lambda
207 ///  - Function object
208 template <typename T,
209           bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>>
210 class Callable {
211   using value_type = std::remove_reference_t<T>;
212   using reference = value_type &;
213   using const_reference = value_type const &;
214 
215   std::optional<value_type> Obj;
216 
217   static_assert(!std::is_pointer_v<value_type>,
218                 "Pointers to non-functions are not callable.");
219 
220 public:
221   Callable() = default;
222   Callable(T const &O) : Obj(std::in_place, O) {}
223 
224   Callable(Callable const &Other) = default;
225   Callable(Callable &&Other) = default;
226 
227   Callable &operator=(Callable const &Other) {
228     Obj = std::nullopt;
229     if (Other.Obj)
230       Obj.emplace(*Other.Obj);
231     return *this;
232   }
233 
234   Callable &operator=(Callable &&Other) {
235     Obj = std::nullopt;
236     if (Other.Obj)
237       Obj.emplace(std::move(*Other.Obj));
238     return *this;
239   }
240 
241   template <typename... Pn,
242             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
243   decltype(auto) operator()(Pn &&...Params) {
244     return (*Obj)(std::forward<Pn>(Params)...);
245   }
246 
247   template <typename... Pn,
248             std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0>
249   decltype(auto) operator()(Pn &&...Params) const {
250     return (*Obj)(std::forward<Pn>(Params)...);
251   }
252 
253   bool valid() const { return Obj != std::nullopt; }
254   bool reset() { return Obj = std::nullopt; }
255 
256   operator reference() { return *Obj; }
257   operator const_reference() const { return *Obj; }
258 };
259 
260 // Function specialization.  No need to waste extra space wrapping with a
261 // std::optional.
262 template <typename T> class Callable<T, true> {
263   static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>;
264 
265   using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>;
266   using CastT = std::conditional_t<IsPtr, T, T &>;
267 
268 private:
269   StorageT Func = nullptr;
270 
271 private:
272   template <typename In> static constexpr auto convertIn(In &&I) {
273     if constexpr (IsPtr) {
274       // Pointer... just echo it back.
275       return I;
276     } else {
277       // Must be a function reference.  Return its address.
278       return &I;
279     }
280   }
281 
282 public:
283   Callable() = default;
284 
285   // Construct from a function pointer or reference.
286   //
287   // Disable this constructor for references to 'Callable' so we don't violate
288   // the rule of 0.
289   template < // clang-format off
290     typename FnPtrOrRef,
291     std::enable_if_t<
292       !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int
293     > = 0
294   > // clang-format on
295   Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {}
296 
297   template <typename... Pn,
298             std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0>
299   decltype(auto) operator()(Pn &&...Params) const {
300     return Func(std::forward<Pn>(Params)...);
301   }
302 
303   bool valid() const { return Func != nullptr; }
304   void reset() { Func = nullptr; }
305 
306   operator T const &() const {
307     if constexpr (IsPtr) {
308       // T is a pointer... just echo it back.
309       return Func;
310     } else {
311       static_assert(std::is_reference_v<T>,
312                     "Expected a reference to a function.");
313       // T is a function reference... dereference the stored pointer.
314       return *Func;
315     }
316   }
317 };
318 
319 } // namespace callable_detail
320 
321 /// Returns true if the given container only contains a single element.
322 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) {
323   auto B = std::begin(C), E = std::end(C);
324   return B != E && std::next(B) == E;
325 }
326 
327 /// Return a range covering \p RangeOrContainer with the first N elements
328 /// excluded.
329 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) {
330   return make_range(std::next(adl_begin(RangeOrContainer), N),
331                     adl_end(RangeOrContainer));
332 }
333 
334 /// Return a range covering \p RangeOrContainer with the last N elements
335 /// excluded.
336 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) {
337   return make_range(adl_begin(RangeOrContainer),
338                     std::prev(adl_end(RangeOrContainer), N));
339 }
340 
341 // mapped_iterator - This is a simple iterator adapter that causes a function to
342 // be applied whenever operator* is invoked on the iterator.
343 
344 template <typename ItTy, typename FuncTy,
345           typename ReferenceTy =
346               decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
347 class mapped_iterator
348     : public iterator_adaptor_base<
349           mapped_iterator<ItTy, FuncTy>, ItTy,
350           typename std::iterator_traits<ItTy>::iterator_category,
351           std::remove_reference_t<ReferenceTy>,
352           typename std::iterator_traits<ItTy>::difference_type,
353           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
354 public:
355   mapped_iterator() = default;
356   mapped_iterator(ItTy U, FuncTy F)
357     : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
358 
359   ItTy getCurrent() { return this->I; }
360 
361   const FuncTy &getFunction() const { return F; }
362 
363   ReferenceTy operator*() const { return F(*this->I); }
364 
365 private:
366   callable_detail::Callable<FuncTy> F{};
367 };
368 
369 // map_iterator - Provide a convenient way to create mapped_iterators, just like
370 // make_pair is useful for creating pairs...
371 template <class ItTy, class FuncTy>
372 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
373   return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
374 }
375 
376 template <class ContainerTy, class FuncTy>
377 auto map_range(ContainerTy &&C, FuncTy F) {
378   return make_range(map_iterator(std::begin(C), F),
379                     map_iterator(std::end(C), F));
380 }
381 
382 /// A base type of mapped iterator, that is useful for building derived
383 /// iterators that do not need/want to store the map function (as in
384 /// mapped_iterator). These iterators must simply provide a `mapElement` method
385 /// that defines how to map a value of the iterator to the provided reference
386 /// type.
387 template <typename DerivedT, typename ItTy, typename ReferenceTy>
388 class mapped_iterator_base
389     : public iterator_adaptor_base<
390           DerivedT, ItTy,
391           typename std::iterator_traits<ItTy>::iterator_category,
392           std::remove_reference_t<ReferenceTy>,
393           typename std::iterator_traits<ItTy>::difference_type,
394           std::remove_reference_t<ReferenceTy> *, ReferenceTy> {
395 public:
396   using BaseT = mapped_iterator_base;
397 
398   mapped_iterator_base(ItTy U)
399       : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {}
400 
401   ItTy getCurrent() { return this->I; }
402 
403   ReferenceTy operator*() const {
404     return static_cast<const DerivedT &>(*this).mapElement(*this->I);
405   }
406 };
407 
408 namespace detail {
409 template <typename Range>
410 using check_has_free_function_rbegin =
411     decltype(adl_rbegin(std::declval<Range &>()));
412 
413 template <typename Range>
414 static constexpr bool HasFreeFunctionRBegin =
415     is_detected<check_has_free_function_rbegin, Range>::value;
416 } // namespace detail
417 
418 // Returns an iterator_range over the given container which iterates in reverse.
419 // Does not mutate the container.
420 template <typename ContainerTy> [[nodiscard]] auto reverse(ContainerTy &&C) {
421   if constexpr (detail::HasFreeFunctionRBegin<ContainerTy>)
422     return make_range(adl_rbegin(C), adl_rend(C));
423   else
424     return make_range(std::make_reverse_iterator(adl_end(C)),
425                       std::make_reverse_iterator(adl_begin(C)));
426 }
427 
428 /// An iterator adaptor that filters the elements of given inner iterators.
429 ///
430 /// The predicate parameter should be a callable object that accepts the wrapped
431 /// iterator's reference type and returns a bool. When incrementing or
432 /// decrementing the iterator, it will call the predicate on each element and
433 /// skip any where it returns false.
434 ///
435 /// \code
436 ///   int A[] = { 1, 2, 3, 4 };
437 ///   auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
438 ///   // R contains { 1, 3 }.
439 /// \endcode
440 ///
441 /// Note: filter_iterator_base implements support for forward iteration.
442 /// filter_iterator_impl exists to provide support for bidirectional iteration,
443 /// conditional on whether the wrapped iterator supports it.
444 template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
445 class filter_iterator_base
446     : public iterator_adaptor_base<
447           filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
448           WrappedIteratorT,
449           std::common_type_t<IterTag,
450                              typename std::iterator_traits<
451                                  WrappedIteratorT>::iterator_category>> {
452   using BaseT = typename filter_iterator_base::iterator_adaptor_base;
453 
454 protected:
455   WrappedIteratorT End;
456   PredicateT Pred;
457 
458   void findNextValid() {
459     while (this->I != End && !Pred(*this->I))
460       BaseT::operator++();
461   }
462 
463   filter_iterator_base() = default;
464 
465   // Construct the iterator. The begin iterator needs to know where the end
466   // is, so that it can properly stop when it gets there. The end iterator only
467   // needs the predicate to support bidirectional iteration.
468   filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
469                        PredicateT Pred)
470       : BaseT(Begin), End(End), Pred(Pred) {
471     findNextValid();
472   }
473 
474 public:
475   using BaseT::operator++;
476 
477   filter_iterator_base &operator++() {
478     BaseT::operator++();
479     findNextValid();
480     return *this;
481   }
482 
483   decltype(auto) operator*() const {
484     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
485     return BaseT::operator*();
486   }
487 
488   decltype(auto) operator->() const {
489     assert(BaseT::wrapped() != End && "Cannot dereference end iterator!");
490     return BaseT::operator->();
491   }
492 };
493 
494 /// Specialization of filter_iterator_base for forward iteration only.
495 template <typename WrappedIteratorT, typename PredicateT,
496           typename IterTag = std::forward_iterator_tag>
497 class filter_iterator_impl
498     : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
499 public:
500   filter_iterator_impl() = default;
501 
502   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
503                        PredicateT Pred)
504       : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {}
505 };
506 
507 /// Specialization of filter_iterator_base for bidirectional iteration.
508 template <typename WrappedIteratorT, typename PredicateT>
509 class filter_iterator_impl<WrappedIteratorT, PredicateT,
510                            std::bidirectional_iterator_tag>
511     : public filter_iterator_base<WrappedIteratorT, PredicateT,
512                                   std::bidirectional_iterator_tag> {
513   using BaseT = typename filter_iterator_impl::filter_iterator_base;
514 
515   void findPrevValid() {
516     while (!this->Pred(*this->I))
517       BaseT::operator--();
518   }
519 
520 public:
521   using BaseT::operator--;
522 
523   filter_iterator_impl() = default;
524 
525   filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
526                        PredicateT Pred)
527       : BaseT(Begin, End, Pred) {}
528 
529   filter_iterator_impl &operator--() {
530     BaseT::operator--();
531     findPrevValid();
532     return *this;
533   }
534 };
535 
536 namespace detail {
537 
538 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
539   using type = std::forward_iterator_tag;
540 };
541 
542 template <> struct fwd_or_bidi_tag_impl<true> {
543   using type = std::bidirectional_iterator_tag;
544 };
545 
546 /// Helper which sets its type member to forward_iterator_tag if the category
547 /// of \p IterT does not derive from bidirectional_iterator_tag, and to
548 /// bidirectional_iterator_tag otherwise.
549 template <typename IterT> struct fwd_or_bidi_tag {
550   using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
551       std::bidirectional_iterator_tag,
552       typename std::iterator_traits<IterT>::iterator_category>::value>::type;
553 };
554 
555 } // namespace detail
556 
557 /// Defines filter_iterator to a suitable specialization of
558 /// filter_iterator_impl, based on the underlying iterator's category.
559 template <typename WrappedIteratorT, typename PredicateT>
560 using filter_iterator = filter_iterator_impl<
561     WrappedIteratorT, PredicateT,
562     typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
563 
564 /// Convenience function that takes a range of elements and a predicate,
565 /// and return a new filter_iterator range.
566 ///
567 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
568 /// lifetime of that temporary is not kept by the returned range object, and the
569 /// temporary is going to be dropped on the floor after the make_iterator_range
570 /// full expression that contains this function call.
571 template <typename RangeT, typename PredicateT>
572 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
573 make_filter_range(RangeT &&Range, PredicateT Pred) {
574   using FilterIteratorT =
575       filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
576   return make_range(
577       FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
578                       std::end(std::forward<RangeT>(Range)), Pred),
579       FilterIteratorT(std::end(std::forward<RangeT>(Range)),
580                       std::end(std::forward<RangeT>(Range)), Pred));
581 }
582 
583 /// A pseudo-iterator adaptor that is designed to implement "early increment"
584 /// style loops.
585 ///
586 /// This is *not a normal iterator* and should almost never be used directly. It
587 /// is intended primarily to be used with range based for loops and some range
588 /// algorithms.
589 ///
590 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
591 /// somewhere between them. The constraints of these iterators are:
592 ///
593 /// - On construction or after being incremented, it is comparable and
594 ///   dereferencable. It is *not* incrementable.
595 /// - After being dereferenced, it is neither comparable nor dereferencable, it
596 ///   is only incrementable.
597 ///
598 /// This means you can only dereference the iterator once, and you can only
599 /// increment it once between dereferences.
600 template <typename WrappedIteratorT>
601 class early_inc_iterator_impl
602     : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
603                                    WrappedIteratorT, std::input_iterator_tag> {
604   using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base;
605 
606   using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
607 
608 protected:
609 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
610   bool IsEarlyIncremented = false;
611 #endif
612 
613 public:
614   early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
615 
616   using BaseT::operator*;
617   decltype(*std::declval<WrappedIteratorT>()) operator*() {
618 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
619     assert(!IsEarlyIncremented && "Cannot dereference twice!");
620     IsEarlyIncremented = true;
621 #endif
622     return *(this->I)++;
623   }
624 
625   using BaseT::operator++;
626   early_inc_iterator_impl &operator++() {
627 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
628     assert(IsEarlyIncremented && "Cannot increment before dereferencing!");
629     IsEarlyIncremented = false;
630 #endif
631     return *this;
632   }
633 
634   friend bool operator==(const early_inc_iterator_impl &LHS,
635                          const early_inc_iterator_impl &RHS) {
636 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
637     assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!");
638 #endif
639     return (const BaseT &)LHS == (const BaseT &)RHS;
640   }
641 };
642 
643 /// Make a range that does early increment to allow mutation of the underlying
644 /// range without disrupting iteration.
645 ///
646 /// The underlying iterator will be incremented immediately after it is
647 /// dereferenced, allowing deletion of the current node or insertion of nodes to
648 /// not disrupt iteration provided they do not invalidate the *next* iterator --
649 /// the current iterator can be invalidated.
650 ///
651 /// This requires a very exact pattern of use that is only really suitable to
652 /// range based for loops and other range algorithms that explicitly guarantee
653 /// to dereference exactly once each element, and to increment exactly once each
654 /// element.
655 template <typename RangeT>
656 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
657 make_early_inc_range(RangeT &&Range) {
658   using EarlyIncIteratorT =
659       early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
660   return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
661                     EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
662 }
663 
664 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest
665 template <typename R, typename UnaryPredicate>
666 bool all_of(R &&range, UnaryPredicate P);
667 
668 template <typename R, typename UnaryPredicate>
669 bool any_of(R &&range, UnaryPredicate P);
670 
671 template <typename T> bool all_equal(std::initializer_list<T> Values);
672 
673 template <typename R> constexpr size_t range_size(R &&Range);
674 
675 namespace detail {
676 
677 using std::declval;
678 
679 // We have to alias this since inlining the actual type at the usage site
680 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
681 template<typename... Iters> struct ZipTupleType {
682   using type = std::tuple<decltype(*declval<Iters>())...>;
683 };
684 
685 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
686 using zip_traits = iterator_facade_base<
687     ZipType,
688     std::common_type_t<
689         std::bidirectional_iterator_tag,
690         typename std::iterator_traits<Iters>::iterator_category...>,
691     // ^ TODO: Implement random access methods.
692     ReferenceTupleType,
693     typename std::iterator_traits<
694         std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
695     // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
696     // inner iterators have the same difference_type. It would fail if, for
697     // instance, the second field's difference_type were non-numeric while the
698     // first is.
699     ReferenceTupleType *, ReferenceTupleType>;
700 
701 template <typename ZipType, typename ReferenceTupleType, typename... Iters>
702 struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> {
703   using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>;
704   using IndexSequence = std::index_sequence_for<Iters...>;
705   using value_type = typename Base::value_type;
706 
707   std::tuple<Iters...> iterators;
708 
709 protected:
710   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
711     return value_type(*std::get<Ns>(iterators)...);
712   }
713 
714   template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) {
715     (++std::get<Ns>(iterators), ...);
716   }
717 
718   template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) {
719     (--std::get<Ns>(iterators), ...);
720   }
721 
722   template <size_t... Ns>
723   bool test_all_equals(const zip_common &other,
724                        std::index_sequence<Ns...>) const {
725     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) &&
726             ...);
727   }
728 
729 public:
730   zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
731 
732   value_type operator*() const { return deref(IndexSequence{}); }
733 
734   ZipType &operator++() {
735     tup_inc(IndexSequence{});
736     return static_cast<ZipType &>(*this);
737   }
738 
739   ZipType &operator--() {
740     static_assert(Base::IsBidirectional,
741                   "All inner iterators must be at least bidirectional.");
742     tup_dec(IndexSequence{});
743     return static_cast<ZipType &>(*this);
744   }
745 
746   /// Return true if all the iterator are matching `other`'s iterators.
747   bool all_equals(zip_common &other) {
748     return test_all_equals(other, IndexSequence{});
749   }
750 };
751 
752 template <typename... Iters>
753 struct zip_first : zip_common<zip_first<Iters...>,
754                               typename ZipTupleType<Iters...>::type, Iters...> {
755   using zip_common<zip_first, typename ZipTupleType<Iters...>::type,
756                    Iters...>::zip_common;
757 
758   bool operator==(const zip_first &other) const {
759     return std::get<0>(this->iterators) == std::get<0>(other.iterators);
760   }
761 };
762 
763 template <typename... Iters>
764 struct zip_shortest
765     : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type,
766                  Iters...> {
767   using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type,
768                    Iters...>::zip_common;
769 
770   bool operator==(const zip_shortest &other) const {
771     return any_iterator_equals(other, std::index_sequence_for<Iters...>{});
772   }
773 
774 private:
775   template <size_t... Ns>
776   bool any_iterator_equals(const zip_shortest &other,
777                            std::index_sequence<Ns...>) const {
778     return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) ||
779             ...);
780   }
781 };
782 
783 /// Helper to obtain the iterator types for the tuple storage within `zippy`.
784 template <template <typename...> class ItType, typename TupleStorageType,
785           typename IndexSequence>
786 struct ZippyIteratorTuple;
787 
788 /// Partial specialization for non-const tuple storage.
789 template <template <typename...> class ItType, typename... Args,
790           std::size_t... Ns>
791 struct ZippyIteratorTuple<ItType, std::tuple<Args...>,
792                           std::index_sequence<Ns...>> {
793   using type = ItType<decltype(adl_begin(
794       std::get<Ns>(declval<std::tuple<Args...> &>())))...>;
795 };
796 
797 /// Partial specialization for const tuple storage.
798 template <template <typename...> class ItType, typename... Args,
799           std::size_t... Ns>
800 struct ZippyIteratorTuple<ItType, const std::tuple<Args...>,
801                           std::index_sequence<Ns...>> {
802   using type = ItType<decltype(adl_begin(
803       std::get<Ns>(declval<const std::tuple<Args...> &>())))...>;
804 };
805 
806 template <template <typename...> class ItType, typename... Args> class zippy {
807 private:
808   std::tuple<Args...> storage;
809   using IndexSequence = std::index_sequence_for<Args...>;
810 
811 public:
812   using iterator = typename ZippyIteratorTuple<ItType, decltype(storage),
813                                                IndexSequence>::type;
814   using const_iterator =
815       typename ZippyIteratorTuple<ItType, const decltype(storage),
816                                   IndexSequence>::type;
817   using iterator_category = typename iterator::iterator_category;
818   using value_type = typename iterator::value_type;
819   using difference_type = typename iterator::difference_type;
820   using pointer = typename iterator::pointer;
821   using reference = typename iterator::reference;
822   using const_reference = typename const_iterator::reference;
823 
824   zippy(Args &&...args) : storage(std::forward<Args>(args)...) {}
825 
826   const_iterator begin() const { return begin_impl(IndexSequence{}); }
827   iterator begin() { return begin_impl(IndexSequence{}); }
828   const_iterator end() const { return end_impl(IndexSequence{}); }
829   iterator end() { return end_impl(IndexSequence{}); }
830 
831 private:
832   template <size_t... Ns>
833   const_iterator begin_impl(std::index_sequence<Ns...>) const {
834     return const_iterator(adl_begin(std::get<Ns>(storage))...);
835   }
836   template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) {
837     return iterator(adl_begin(std::get<Ns>(storage))...);
838   }
839 
840   template <size_t... Ns>
841   const_iterator end_impl(std::index_sequence<Ns...>) const {
842     return const_iterator(adl_end(std::get<Ns>(storage))...);
843   }
844   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
845     return iterator(adl_end(std::get<Ns>(storage))...);
846   }
847 };
848 
849 } // end namespace detail
850 
851 /// zip iterator for two or more iteratable types. Iteration continues until the
852 /// end of the *shortest* iteratee is reached.
853 template <typename T, typename U, typename... Args>
854 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
855                                                        Args &&...args) {
856   return detail::zippy<detail::zip_shortest, T, U, Args...>(
857       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
858 }
859 
860 /// zip iterator that assumes that all iteratees have the same length.
861 /// In builds with assertions on, this assumption is checked before the
862 /// iteration starts.
863 template <typename T, typename U, typename... Args>
864 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u,
865                                                           Args &&...args) {
866   assert(all_equal({range_size(t), range_size(u), range_size(args)...}) &&
867          "Iteratees do not have equal length");
868   return detail::zippy<detail::zip_first, T, U, Args...>(
869       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
870 }
871 
872 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to
873 /// be the shortest. Iteration continues until the end of the first iteratee is
874 /// reached. In builds with assertions on, we check that the assumption about
875 /// the first iteratee being the shortest holds.
876 template <typename T, typename U, typename... Args>
877 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
878                                                           Args &&...args) {
879   assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) &&
880          "First iteratee is not the shortest");
881 
882   return detail::zippy<detail::zip_first, T, U, Args...>(
883       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
884 }
885 
886 namespace detail {
887 template <typename Iter>
888 Iter next_or_end(const Iter &I, const Iter &End) {
889   if (I == End)
890     return End;
891   return std::next(I);
892 }
893 
894 template <typename Iter>
895 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional<
896     std::remove_const_t<std::remove_reference_t<decltype(*I)>>> {
897   if (I == End)
898     return std::nullopt;
899   return *I;
900 }
901 
902 template <typename Iter> struct ZipLongestItemType {
903   using type = std::optional<std::remove_const_t<
904       std::remove_reference_t<decltype(*std::declval<Iter>())>>>;
905 };
906 
907 template <typename... Iters> struct ZipLongestTupleType {
908   using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
909 };
910 
911 template <typename... Iters>
912 class zip_longest_iterator
913     : public iterator_facade_base<
914           zip_longest_iterator<Iters...>,
915           std::common_type_t<
916               std::forward_iterator_tag,
917               typename std::iterator_traits<Iters>::iterator_category...>,
918           typename ZipLongestTupleType<Iters...>::type,
919           typename std::iterator_traits<
920               std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type,
921           typename ZipLongestTupleType<Iters...>::type *,
922           typename ZipLongestTupleType<Iters...>::type> {
923 public:
924   using value_type = typename ZipLongestTupleType<Iters...>::type;
925 
926 private:
927   std::tuple<Iters...> iterators;
928   std::tuple<Iters...> end_iterators;
929 
930   template <size_t... Ns>
931   bool test(const zip_longest_iterator<Iters...> &other,
932             std::index_sequence<Ns...>) const {
933     return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) ||
934             ...);
935   }
936 
937   template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const {
938     return value_type(
939         deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
940   }
941 
942   template <size_t... Ns>
943   decltype(iterators) tup_inc(std::index_sequence<Ns...>) const {
944     return std::tuple<Iters...>(
945         next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
946   }
947 
948 public:
949   zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
950       : iterators(std::forward<Iters>(ts.first)...),
951         end_iterators(std::forward<Iters>(ts.second)...) {}
952 
953   value_type operator*() const {
954     return deref(std::index_sequence_for<Iters...>{});
955   }
956 
957   zip_longest_iterator<Iters...> &operator++() {
958     iterators = tup_inc(std::index_sequence_for<Iters...>{});
959     return *this;
960   }
961 
962   bool operator==(const zip_longest_iterator<Iters...> &other) const {
963     return !test(other, std::index_sequence_for<Iters...>{});
964   }
965 };
966 
967 template <typename... Args> class zip_longest_range {
968 public:
969   using iterator =
970       zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
971   using iterator_category = typename iterator::iterator_category;
972   using value_type = typename iterator::value_type;
973   using difference_type = typename iterator::difference_type;
974   using pointer = typename iterator::pointer;
975   using reference = typename iterator::reference;
976 
977 private:
978   std::tuple<Args...> ts;
979 
980   template <size_t... Ns>
981   iterator begin_impl(std::index_sequence<Ns...>) const {
982     return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
983                                    adl_end(std::get<Ns>(ts)))...);
984   }
985 
986   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
987     return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
988                                    adl_end(std::get<Ns>(ts)))...);
989   }
990 
991 public:
992   zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
993 
994   iterator begin() const {
995     return begin_impl(std::index_sequence_for<Args...>{});
996   }
997   iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); }
998 };
999 } // namespace detail
1000 
1001 /// Iterate over two or more iterators at the same time. Iteration continues
1002 /// until all iterators reach the end. The std::optional only contains a value
1003 /// if the iterator has not reached the end.
1004 template <typename T, typename U, typename... Args>
1005 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
1006                                                      Args &&... args) {
1007   return detail::zip_longest_range<T, U, Args...>(
1008       std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
1009 }
1010 
1011 /// Iterator wrapper that concatenates sequences together.
1012 ///
1013 /// This can concatenate different iterators, even with different types, into
1014 /// a single iterator provided the value types of all the concatenated
1015 /// iterators expose `reference` and `pointer` types that can be converted to
1016 /// `ValueT &` and `ValueT *` respectively. It doesn't support more
1017 /// interesting/customized pointer or reference types.
1018 ///
1019 /// Currently this only supports forward or higher iterator categories as
1020 /// inputs and always exposes a forward iterator interface.
1021 template <typename ValueT, typename... IterTs>
1022 class concat_iterator
1023     : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
1024                                   std::forward_iterator_tag, ValueT> {
1025   using BaseT = typename concat_iterator::iterator_facade_base;
1026 
1027   static constexpr bool ReturnsByValue =
1028       !(std::is_reference_v<decltype(*std::declval<IterTs>())> && ...);
1029 
1030   using reference_type =
1031       typename std::conditional_t<ReturnsByValue, ValueT, ValueT &>;
1032 
1033   using handle_type =
1034       typename std::conditional_t<ReturnsByValue, std::optional<ValueT>,
1035                                   ValueT *>;
1036 
1037   /// We store both the current and end iterators for each concatenated
1038   /// sequence in a tuple of pairs.
1039   ///
1040   /// Note that something like iterator_range seems nice at first here, but the
1041   /// range properties are of little benefit and end up getting in the way
1042   /// because we need to do mutation on the current iterators.
1043   std::tuple<IterTs...> Begins;
1044   std::tuple<IterTs...> Ends;
1045 
1046   /// Attempts to increment a specific iterator.
1047   ///
1048   /// Returns true if it was able to increment the iterator. Returns false if
1049   /// the iterator is already at the end iterator.
1050   template <size_t Index> bool incrementHelper() {
1051     auto &Begin = std::get<Index>(Begins);
1052     auto &End = std::get<Index>(Ends);
1053     if (Begin == End)
1054       return false;
1055 
1056     ++Begin;
1057     return true;
1058   }
1059 
1060   /// Increments the first non-end iterator.
1061   ///
1062   /// It is an error to call this with all iterators at the end.
1063   template <size_t... Ns> void increment(std::index_sequence<Ns...>) {
1064     // Build a sequence of functions to increment each iterator if possible.
1065     bool (concat_iterator::*IncrementHelperFns[])() = {
1066         &concat_iterator::incrementHelper<Ns>...};
1067 
1068     // Loop over them, and stop as soon as we succeed at incrementing one.
1069     for (auto &IncrementHelperFn : IncrementHelperFns)
1070       if ((this->*IncrementHelperFn)())
1071         return;
1072 
1073     llvm_unreachable("Attempted to increment an end concat iterator!");
1074   }
1075 
1076   /// Returns null if the specified iterator is at the end. Otherwise,
1077   /// dereferences the iterator and returns the address of the resulting
1078   /// reference.
1079   template <size_t Index> handle_type getHelper() const {
1080     auto &Begin = std::get<Index>(Begins);
1081     auto &End = std::get<Index>(Ends);
1082     if (Begin == End)
1083       return {};
1084 
1085     if constexpr (ReturnsByValue)
1086       return *Begin;
1087     else
1088       return &*Begin;
1089   }
1090 
1091   /// Finds the first non-end iterator, dereferences, and returns the resulting
1092   /// reference.
1093   ///
1094   /// It is an error to call this with all iterators at the end.
1095   template <size_t... Ns> reference_type get(std::index_sequence<Ns...>) const {
1096     // Build a sequence of functions to get from iterator if possible.
1097     handle_type (concat_iterator::*GetHelperFns[])()
1098         const = {&concat_iterator::getHelper<Ns>...};
1099 
1100     // Loop over them, and return the first result we find.
1101     for (auto &GetHelperFn : GetHelperFns)
1102       if (auto P = (this->*GetHelperFn)())
1103         return *P;
1104 
1105     llvm_unreachable("Attempted to get a pointer from an end concat iterator!");
1106   }
1107 
1108 public:
1109   /// Constructs an iterator from a sequence of ranges.
1110   ///
1111   /// We need the full range to know how to switch between each of the
1112   /// iterators.
1113   template <typename... RangeTs>
1114   explicit concat_iterator(RangeTs &&... Ranges)
1115       : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
1116 
1117   using BaseT::operator++;
1118 
1119   concat_iterator &operator++() {
1120     increment(std::index_sequence_for<IterTs...>());
1121     return *this;
1122   }
1123 
1124   reference_type operator*() const {
1125     return get(std::index_sequence_for<IterTs...>());
1126   }
1127 
1128   bool operator==(const concat_iterator &RHS) const {
1129     return Begins == RHS.Begins && Ends == RHS.Ends;
1130   }
1131 };
1132 
1133 namespace detail {
1134 
1135 /// Helper to store a sequence of ranges being concatenated and access them.
1136 ///
1137 /// This is designed to facilitate providing actual storage when temporaries
1138 /// are passed into the constructor such that we can use it as part of range
1139 /// based for loops.
1140 template <typename ValueT, typename... RangeTs> class concat_range {
1141 public:
1142   using iterator =
1143       concat_iterator<ValueT,
1144                       decltype(std::begin(std::declval<RangeTs &>()))...>;
1145 
1146 private:
1147   std::tuple<RangeTs...> Ranges;
1148 
1149   template <size_t... Ns>
1150   iterator begin_impl(std::index_sequence<Ns...>) {
1151     return iterator(std::get<Ns>(Ranges)...);
1152   }
1153   template <size_t... Ns>
1154   iterator begin_impl(std::index_sequence<Ns...>) const {
1155     return iterator(std::get<Ns>(Ranges)...);
1156   }
1157   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) {
1158     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1159                                std::end(std::get<Ns>(Ranges)))...);
1160   }
1161   template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const {
1162     return iterator(make_range(std::end(std::get<Ns>(Ranges)),
1163                                std::end(std::get<Ns>(Ranges)))...);
1164   }
1165 
1166 public:
1167   concat_range(RangeTs &&... Ranges)
1168       : Ranges(std::forward<RangeTs>(Ranges)...) {}
1169 
1170   iterator begin() {
1171     return begin_impl(std::index_sequence_for<RangeTs...>{});
1172   }
1173   iterator begin() const {
1174     return begin_impl(std::index_sequence_for<RangeTs...>{});
1175   }
1176   iterator end() {
1177     return end_impl(std::index_sequence_for<RangeTs...>{});
1178   }
1179   iterator end() const {
1180     return end_impl(std::index_sequence_for<RangeTs...>{});
1181   }
1182 };
1183 
1184 } // end namespace detail
1185 
1186 /// Returns a concatenated range across two or more ranges. Does not modify the
1187 /// ranges.
1188 ///
1189 /// The desired value type must be explicitly specified.
1190 template <typename ValueT, typename... RangeTs>
1191 [[nodiscard]] detail::concat_range<ValueT, RangeTs...>
1192 concat(RangeTs &&...Ranges) {
1193   static_assert(sizeof...(RangeTs) > 1,
1194                 "Need more than one range to concatenate!");
1195   return detail::concat_range<ValueT, RangeTs...>(
1196       std::forward<RangeTs>(Ranges)...);
1197 }
1198 
1199 /// A utility class used to implement an iterator that contains some base object
1200 /// and an index. The iterator moves the index but keeps the base constant.
1201 template <typename DerivedT, typename BaseT, typename T,
1202           typename PointerT = T *, typename ReferenceT = T &>
1203 class indexed_accessor_iterator
1204     : public llvm::iterator_facade_base<DerivedT,
1205                                         std::random_access_iterator_tag, T,
1206                                         std::ptrdiff_t, PointerT, ReferenceT> {
1207 public:
1208   ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const {
1209     assert(base == rhs.base && "incompatible iterators");
1210     return index - rhs.index;
1211   }
1212   bool operator==(const indexed_accessor_iterator &rhs) const {
1213     assert(base == rhs.base && "incompatible iterators");
1214     return index == rhs.index;
1215   }
1216   bool operator<(const indexed_accessor_iterator &rhs) const {
1217     assert(base == rhs.base && "incompatible iterators");
1218     return index < rhs.index;
1219   }
1220 
1221   DerivedT &operator+=(ptrdiff_t offset) {
1222     this->index += offset;
1223     return static_cast<DerivedT &>(*this);
1224   }
1225   DerivedT &operator-=(ptrdiff_t offset) {
1226     this->index -= offset;
1227     return static_cast<DerivedT &>(*this);
1228   }
1229 
1230   /// Returns the current index of the iterator.
1231   ptrdiff_t getIndex() const { return index; }
1232 
1233   /// Returns the current base of the iterator.
1234   const BaseT &getBase() const { return base; }
1235 
1236 protected:
1237   indexed_accessor_iterator(BaseT base, ptrdiff_t index)
1238       : base(base), index(index) {}
1239   BaseT base;
1240   ptrdiff_t index;
1241 };
1242 
1243 namespace detail {
1244 /// The class represents the base of a range of indexed_accessor_iterators. It
1245 /// provides support for many different range functionalities, e.g.
1246 /// drop_front/slice/etc.. Derived range classes must implement the following
1247 /// static methods:
1248 ///   * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index)
1249 ///     - Dereference an iterator pointing to the base object at the given
1250 ///       index.
1251 ///   * BaseT offset_base(const BaseT &base, ptrdiff_t index)
1252 ///     - Return a new base that is offset from the provide base by 'index'
1253 ///       elements.
1254 template <typename DerivedT, typename BaseT, typename T,
1255           typename PointerT = T *, typename ReferenceT = T &>
1256 class indexed_accessor_range_base {
1257 public:
1258   using RangeBaseT = indexed_accessor_range_base;
1259 
1260   /// An iterator element of this range.
1261   class iterator : public indexed_accessor_iterator<iterator, BaseT, T,
1262                                                     PointerT, ReferenceT> {
1263   public:
1264     // Index into this iterator, invoking a static method on the derived type.
1265     ReferenceT operator*() const {
1266       return DerivedT::dereference_iterator(this->getBase(), this->getIndex());
1267     }
1268 
1269   private:
1270     iterator(BaseT owner, ptrdiff_t curIndex)
1271         : iterator::indexed_accessor_iterator(owner, curIndex) {}
1272 
1273     /// Allow access to the constructor.
1274     friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1275                                        ReferenceT>;
1276   };
1277 
1278   indexed_accessor_range_base(iterator begin, iterator end)
1279       : base(offset_base(begin.getBase(), begin.getIndex())),
1280         count(end.getIndex() - begin.getIndex()) {}
1281   indexed_accessor_range_base(const iterator_range<iterator> &range)
1282       : indexed_accessor_range_base(range.begin(), range.end()) {}
1283   indexed_accessor_range_base(BaseT base, ptrdiff_t count)
1284       : base(base), count(count) {}
1285 
1286   iterator begin() const { return iterator(base, 0); }
1287   iterator end() const { return iterator(base, count); }
1288   ReferenceT operator[](size_t Index) const {
1289     assert(Index < size() && "invalid index for value range");
1290     return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index));
1291   }
1292   ReferenceT front() const {
1293     assert(!empty() && "expected non-empty range");
1294     return (*this)[0];
1295   }
1296   ReferenceT back() const {
1297     assert(!empty() && "expected non-empty range");
1298     return (*this)[size() - 1];
1299   }
1300 
1301   /// Return the size of this range.
1302   size_t size() const { return count; }
1303 
1304   /// Return if the range is empty.
1305   bool empty() const { return size() == 0; }
1306 
1307   /// Drop the first N elements, and keep M elements.
1308   DerivedT slice(size_t n, size_t m) const {
1309     assert(n + m <= size() && "invalid size specifiers");
1310     return DerivedT(offset_base(base, n), m);
1311   }
1312 
1313   /// Drop the first n elements.
1314   DerivedT drop_front(size_t n = 1) const {
1315     assert(size() >= n && "Dropping more elements than exist");
1316     return slice(n, size() - n);
1317   }
1318   /// Drop the last n elements.
1319   DerivedT drop_back(size_t n = 1) const {
1320     assert(size() >= n && "Dropping more elements than exist");
1321     return DerivedT(base, size() - n);
1322   }
1323 
1324   /// Take the first n elements.
1325   DerivedT take_front(size_t n = 1) const {
1326     return n < size() ? drop_back(size() - n)
1327                       : static_cast<const DerivedT &>(*this);
1328   }
1329 
1330   /// Take the last n elements.
1331   DerivedT take_back(size_t n = 1) const {
1332     return n < size() ? drop_front(size() - n)
1333                       : static_cast<const DerivedT &>(*this);
1334   }
1335 
1336   /// Allow conversion to any type accepting an iterator_range.
1337   template <typename RangeT, typename = std::enable_if_t<std::is_constructible<
1338                                  RangeT, iterator_range<iterator>>::value>>
1339   operator RangeT() const {
1340     return RangeT(iterator_range<iterator>(*this));
1341   }
1342 
1343   /// Returns the base of this range.
1344   const BaseT &getBase() const { return base; }
1345 
1346 private:
1347   /// Offset the given base by the given amount.
1348   static BaseT offset_base(const BaseT &base, size_t n) {
1349     return n == 0 ? base : DerivedT::offset_base(base, n);
1350   }
1351 
1352 protected:
1353   indexed_accessor_range_base(const indexed_accessor_range_base &) = default;
1354   indexed_accessor_range_base(indexed_accessor_range_base &&) = default;
1355   indexed_accessor_range_base &
1356   operator=(const indexed_accessor_range_base &) = default;
1357 
1358   /// The base that owns the provided range of values.
1359   BaseT base;
1360   /// The size from the owning range.
1361   ptrdiff_t count;
1362 };
1363 /// Compare this range with another.
1364 /// FIXME: Make me a member function instead of friend when it works in C++20.
1365 template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1366           typename PointerT, typename ReferenceT>
1367 bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1368                                                   ReferenceT> &lhs,
1369                 const OtherT &rhs) {
1370   return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
1371 }
1372 
1373 template <typename OtherT, typename DerivedT, typename BaseT, typename T,
1374           typename PointerT, typename ReferenceT>
1375 bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT,
1376                                                   ReferenceT> &lhs,
1377                 const OtherT &rhs) {
1378   return !(lhs == rhs);
1379 }
1380 } // end namespace detail
1381 
1382 /// This class provides an implementation of a range of
1383 /// indexed_accessor_iterators where the base is not indexable. Ranges with
1384 /// bases that are offsetable should derive from indexed_accessor_range_base
1385 /// instead. Derived range classes are expected to implement the following
1386 /// static method:
1387 ///   * ReferenceT dereference(const BaseT &base, ptrdiff_t index)
1388 ///     - Dereference an iterator pointing to a parent base at the given index.
1389 template <typename DerivedT, typename BaseT, typename T,
1390           typename PointerT = T *, typename ReferenceT = T &>
1391 class indexed_accessor_range
1392     : public detail::indexed_accessor_range_base<
1393           DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> {
1394 public:
1395   indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count)
1396       : detail::indexed_accessor_range_base<
1397             DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>(
1398             std::make_pair(base, startIndex), count) {}
1399   using detail::indexed_accessor_range_base<
1400       DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT,
1401       ReferenceT>::indexed_accessor_range_base;
1402 
1403   /// Returns the current base of the range.
1404   const BaseT &getBase() const { return this->base.first; }
1405 
1406   /// Returns the current start index of the range.
1407   ptrdiff_t getStartIndex() const { return this->base.second; }
1408 
1409   /// See `detail::indexed_accessor_range_base` for details.
1410   static std::pair<BaseT, ptrdiff_t>
1411   offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) {
1412     // We encode the internal base as a pair of the derived base and a start
1413     // index into the derived base.
1414     return std::make_pair(base.first, base.second + index);
1415   }
1416   /// See `detail::indexed_accessor_range_base` for details.
1417   static ReferenceT
1418   dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base,
1419                        ptrdiff_t index) {
1420     return DerivedT::dereference(base.first, base.second + index);
1421   }
1422 };
1423 
1424 namespace detail {
1425 /// Return a reference to the first or second member of a reference. Otherwise,
1426 /// return a copy of the member of a temporary.
1427 ///
1428 /// When passing a range whose iterators return values instead of references,
1429 /// the reference must be dropped from `decltype((elt.first))`, which will
1430 /// always be a reference, to avoid returning a reference to a temporary.
1431 template <typename EltTy, typename FirstTy> class first_or_second_type {
1432 public:
1433   using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy,
1434                                   std::remove_reference_t<FirstTy>>;
1435 };
1436 } // end namespace detail
1437 
1438 /// Given a container of pairs, return a range over the first elements.
1439 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) {
1440   using EltTy = decltype((*std::begin(c)));
1441   return llvm::map_range(std::forward<ContainerTy>(c),
1442                          [](EltTy elt) -> typename detail::first_or_second_type<
1443                                            EltTy, decltype((elt.first))>::type {
1444                            return elt.first;
1445                          });
1446 }
1447 
1448 /// Given a container of pairs, return a range over the second elements.
1449 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) {
1450   using EltTy = decltype((*std::begin(c)));
1451   return llvm::map_range(
1452       std::forward<ContainerTy>(c),
1453       [](EltTy elt) ->
1454       typename detail::first_or_second_type<EltTy,
1455                                             decltype((elt.second))>::type {
1456         return elt.second;
1457       });
1458 }
1459 
1460 //===----------------------------------------------------------------------===//
1461 //     Extra additions to <utility>
1462 //===----------------------------------------------------------------------===//
1463 
1464 /// Function object to check whether the first component of a container
1465 /// supported by std::get (like std::pair and std::tuple) compares less than the
1466 /// first component of another container.
1467 struct less_first {
1468   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1469     return std::less<>()(std::get<0>(lhs), std::get<0>(rhs));
1470   }
1471 };
1472 
1473 /// Function object to check whether the second component of a container
1474 /// supported by std::get (like std::pair and std::tuple) compares less than the
1475 /// second component of another container.
1476 struct less_second {
1477   template <typename T> bool operator()(const T &lhs, const T &rhs) const {
1478     return std::less<>()(std::get<1>(lhs), std::get<1>(rhs));
1479   }
1480 };
1481 
1482 /// \brief Function object to apply a binary function to the first component of
1483 /// a std::pair.
1484 template<typename FuncTy>
1485 struct on_first {
1486   FuncTy func;
1487 
1488   template <typename T>
1489   decltype(auto) operator()(const T &lhs, const T &rhs) const {
1490     return func(lhs.first, rhs.first);
1491   }
1492 };
1493 
1494 /// Utility type to build an inheritance chain that makes it easy to rank
1495 /// overload candidates.
1496 template <int N> struct rank : rank<N - 1> {};
1497 template <> struct rank<0> {};
1498 
1499 namespace detail {
1500 template <typename... Ts> struct Visitor;
1501 
1502 template <typename HeadT, typename... TailTs>
1503 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> {
1504   explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail)
1505       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)),
1506         Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {}
1507   using remove_cvref_t<HeadT>::operator();
1508   using Visitor<TailTs...>::operator();
1509 };
1510 
1511 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> {
1512   explicit constexpr Visitor(HeadT &&Head)
1513       : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {}
1514   using remove_cvref_t<HeadT>::operator();
1515 };
1516 } // namespace detail
1517 
1518 /// Returns an opaquely-typed Callable object whose operator() overload set is
1519 /// the sum of the operator() overload sets of each CallableT in CallableTs.
1520 ///
1521 /// The type of the returned object derives from each CallableT in CallableTs.
1522 /// The returned object is constructed by invoking the appropriate copy or move
1523 /// constructor of each CallableT, as selected by overload resolution on the
1524 /// corresponding argument to makeVisitor.
1525 ///
1526 /// Example:
1527 ///
1528 /// \code
1529 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; },
1530 ///                            [](int i) { return "int"; },
1531 ///                            [](std::string s) { return "str"; });
1532 /// auto a = visitor(42);    // `a` is now "int".
1533 /// auto b = visitor("foo"); // `b` is now "str".
1534 /// auto c = visitor(3.14f); // `c` is now "unhandled type".
1535 /// \endcode
1536 ///
1537 /// Example of making a visitor with a lambda which captures a move-only type:
1538 ///
1539 /// \code
1540 /// std::unique_ptr<FooHandler> FH = /* ... */;
1541 /// auto visitor = makeVisitor(
1542 ///     [FH{std::move(FH)}](Foo F) { return FH->handle(F); },
1543 ///     [](int i) { return i; },
1544 ///     [](std::string s) { return atoi(s); });
1545 /// \endcode
1546 template <typename... CallableTs>
1547 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) {
1548   return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...);
1549 }
1550 
1551 //===----------------------------------------------------------------------===//
1552 //     Extra additions to <algorithm>
1553 //===----------------------------------------------------------------------===//
1554 
1555 // We have a copy here so that LLVM behaves the same when using different
1556 // standard libraries.
1557 template <class Iterator, class RNG>
1558 void shuffle(Iterator first, Iterator last, RNG &&g) {
1559   // It would be better to use a std::uniform_int_distribution,
1560   // but that would be stdlib dependent.
1561   typedef
1562       typename std::iterator_traits<Iterator>::difference_type difference_type;
1563   for (auto size = last - first; size > 1; ++first, (void)--size) {
1564     difference_type offset = g() % size;
1565     // Avoid self-assignment due to incorrect assertions in libstdc++
1566     // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828).
1567     if (offset != difference_type(0))
1568       std::iter_swap(first, first + offset);
1569   }
1570 }
1571 
1572 /// Adapt std::less<T> for array_pod_sort.
1573 template<typename T>
1574 inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1575   if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1576                      *reinterpret_cast<const T*>(P2)))
1577     return -1;
1578   if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1579                      *reinterpret_cast<const T*>(P1)))
1580     return 1;
1581   return 0;
1582 }
1583 
1584 /// get_array_pod_sort_comparator - This is an internal helper function used to
1585 /// get type deduction of T right.
1586 template<typename T>
1587 inline int (*get_array_pod_sort_comparator(const T &))
1588              (const void*, const void*) {
1589   return array_pod_sort_comparator<T>;
1590 }
1591 
1592 #ifdef EXPENSIVE_CHECKS
1593 namespace detail {
1594 
1595 inline unsigned presortShuffleEntropy() {
1596   static unsigned Result(std::random_device{}());
1597   return Result;
1598 }
1599 
1600 template <class IteratorTy>
1601 inline void presortShuffle(IteratorTy Start, IteratorTy End) {
1602   std::mt19937 Generator(presortShuffleEntropy());
1603   llvm::shuffle(Start, End, Generator);
1604 }
1605 
1606 } // end namespace detail
1607 #endif
1608 
1609 /// array_pod_sort - This sorts an array with the specified start and end
1610 /// extent.  This is just like std::sort, except that it calls qsort instead of
1611 /// using an inlined template.  qsort is slightly slower than std::sort, but
1612 /// most sorts are not performance critical in LLVM and std::sort has to be
1613 /// template instantiated for each type, leading to significant measured code
1614 /// bloat.  This function should generally be used instead of std::sort where
1615 /// possible.
1616 ///
1617 /// This function assumes that you have simple POD-like types that can be
1618 /// compared with std::less and can be moved with memcpy.  If this isn't true,
1619 /// you should use std::sort.
1620 ///
1621 /// NOTE: If qsort_r were portable, we could allow a custom comparator and
1622 /// default to std::less.
1623 template<class IteratorTy>
1624 inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1625   // Don't inefficiently call qsort with one element or trigger undefined
1626   // behavior with an empty sequence.
1627   auto NElts = End - Start;
1628   if (NElts <= 1) return;
1629 #ifdef EXPENSIVE_CHECKS
1630   detail::presortShuffle<IteratorTy>(Start, End);
1631 #endif
1632   qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1633 }
1634 
1635 template <class IteratorTy>
1636 inline void array_pod_sort(
1637     IteratorTy Start, IteratorTy End,
1638     int (*Compare)(
1639         const typename std::iterator_traits<IteratorTy>::value_type *,
1640         const typename std::iterator_traits<IteratorTy>::value_type *)) {
1641   // Don't inefficiently call qsort with one element or trigger undefined
1642   // behavior with an empty sequence.
1643   auto NElts = End - Start;
1644   if (NElts <= 1) return;
1645 #ifdef EXPENSIVE_CHECKS
1646   detail::presortShuffle<IteratorTy>(Start, End);
1647 #endif
1648   qsort(&*Start, NElts, sizeof(*Start),
1649         reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1650 }
1651 
1652 namespace detail {
1653 template <typename T>
1654 // We can use qsort if the iterator type is a pointer and the underlying value
1655 // is trivially copyable.
1656 using sort_trivially_copyable = std::conjunction<
1657     std::is_pointer<T>,
1658     std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>;
1659 } // namespace detail
1660 
1661 // Provide wrappers to std::sort which shuffle the elements before sorting
1662 // to help uncover non-deterministic behavior (PR35135).
1663 template <typename IteratorTy>
1664 inline void sort(IteratorTy Start, IteratorTy End) {
1665   if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) {
1666     // Forward trivially copyable types to array_pod_sort. This avoids a large
1667     // amount of code bloat for a minor performance hit.
1668     array_pod_sort(Start, End);
1669   } else {
1670 #ifdef EXPENSIVE_CHECKS
1671     detail::presortShuffle<IteratorTy>(Start, End);
1672 #endif
1673     std::sort(Start, End);
1674   }
1675 }
1676 
1677 template <typename Container> inline void sort(Container &&C) {
1678   llvm::sort(adl_begin(C), adl_end(C));
1679 }
1680 
1681 template <typename IteratorTy, typename Compare>
1682 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1683 #ifdef EXPENSIVE_CHECKS
1684   detail::presortShuffle<IteratorTy>(Start, End);
1685 #endif
1686   std::sort(Start, End, Comp);
1687 }
1688 
1689 template <typename Container, typename Compare>
1690 inline void sort(Container &&C, Compare Comp) {
1691   llvm::sort(adl_begin(C), adl_end(C), Comp);
1692 }
1693 
1694 /// Get the size of a range. This is a wrapper function around std::distance
1695 /// which is only enabled when the operation is O(1).
1696 template <typename R>
1697 auto size(R &&Range,
1698           std::enable_if_t<
1699               std::is_base_of<std::random_access_iterator_tag,
1700                               typename std::iterator_traits<decltype(
1701                                   Range.begin())>::iterator_category>::value,
1702               void> * = nullptr) {
1703   return std::distance(Range.begin(), Range.end());
1704 }
1705 
1706 namespace detail {
1707 template <typename Range>
1708 using check_has_free_function_size =
1709     decltype(adl_size(std::declval<Range &>()));
1710 
1711 template <typename Range>
1712 static constexpr bool HasFreeFunctionSize =
1713     is_detected<check_has_free_function_size, Range>::value;
1714 } // namespace detail
1715 
1716 /// Returns the size of the \p Range, i.e., the number of elements. This
1717 /// implementation takes inspiration from `std::ranges::size` from C++20 and
1718 /// delegates the size check to `adl_size` or `std::distance`, in this order of
1719 /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1)
1720 /// running time, and is intended to be used in generic code that does not know
1721 /// the exact range type.
1722 template <typename R> constexpr size_t range_size(R &&Range) {
1723   if constexpr (detail::HasFreeFunctionSize<R>)
1724     return adl_size(Range);
1725   else
1726     return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range)));
1727 }
1728 
1729 /// Provide wrappers to std::for_each which take ranges instead of having to
1730 /// pass begin/end explicitly.
1731 template <typename R, typename UnaryFunction>
1732 UnaryFunction for_each(R &&Range, UnaryFunction F) {
1733   return std::for_each(adl_begin(Range), adl_end(Range), F);
1734 }
1735 
1736 /// Provide wrappers to std::all_of which take ranges instead of having to pass
1737 /// begin/end explicitly.
1738 template <typename R, typename UnaryPredicate>
1739 bool all_of(R &&Range, UnaryPredicate P) {
1740   return std::all_of(adl_begin(Range), adl_end(Range), P);
1741 }
1742 
1743 /// Provide wrappers to std::any_of which take ranges instead of having to pass
1744 /// begin/end explicitly.
1745 template <typename R, typename UnaryPredicate>
1746 bool any_of(R &&Range, UnaryPredicate P) {
1747   return std::any_of(adl_begin(Range), adl_end(Range), P);
1748 }
1749 
1750 /// Provide wrappers to std::none_of which take ranges instead of having to pass
1751 /// begin/end explicitly.
1752 template <typename R, typename UnaryPredicate>
1753 bool none_of(R &&Range, UnaryPredicate P) {
1754   return std::none_of(adl_begin(Range), adl_end(Range), P);
1755 }
1756 
1757 /// Provide wrappers to std::find which take ranges instead of having to pass
1758 /// begin/end explicitly.
1759 template <typename R, typename T> auto find(R &&Range, const T &Val) {
1760   return std::find(adl_begin(Range), adl_end(Range), Val);
1761 }
1762 
1763 /// Provide wrappers to std::find_if which take ranges instead of having to pass
1764 /// begin/end explicitly.
1765 template <typename R, typename UnaryPredicate>
1766 auto find_if(R &&Range, UnaryPredicate P) {
1767   return std::find_if(adl_begin(Range), adl_end(Range), P);
1768 }
1769 
1770 template <typename R, typename UnaryPredicate>
1771 auto find_if_not(R &&Range, UnaryPredicate P) {
1772   return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1773 }
1774 
1775 /// Provide wrappers to std::remove_if which take ranges instead of having to
1776 /// pass begin/end explicitly.
1777 template <typename R, typename UnaryPredicate>
1778 auto remove_if(R &&Range, UnaryPredicate P) {
1779   return std::remove_if(adl_begin(Range), adl_end(Range), P);
1780 }
1781 
1782 /// Provide wrappers to std::copy_if which take ranges instead of having to
1783 /// pass begin/end explicitly.
1784 template <typename R, typename OutputIt, typename UnaryPredicate>
1785 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1786   return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1787 }
1788 
1789 /// Return the single value in \p Range that satisfies
1790 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr
1791 /// when no values or multiple values were found.
1792 /// When \p AllowRepeats is true, multiple values that compare equal
1793 /// are allowed.
1794 template <typename T, typename R, typename Predicate>
1795 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) {
1796   T *RC = nullptr;
1797   for (auto &&A : Range) {
1798     if (T *PRC = P(A, AllowRepeats)) {
1799       if (RC) {
1800         if (!AllowRepeats || PRC != RC)
1801           return nullptr;
1802       } else
1803         RC = PRC;
1804     }
1805   }
1806   return RC;
1807 }
1808 
1809 /// Return a pair consisting of the single value in \p Range that satisfies
1810 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning
1811 /// nullptr when no values or multiple values were found, and a bool indicating
1812 /// whether multiple values were found to cause the nullptr.
1813 /// When \p AllowRepeats is true, multiple values that compare equal are
1814 /// allowed.  The predicate \p P returns a pair<T *, bool> where T is the
1815 /// singleton while the bool indicates whether multiples have already been
1816 /// found.  It is expected that first will be nullptr when second is true.
1817 /// This allows using find_singleton_nested within the predicate \P.
1818 template <typename T, typename R, typename Predicate>
1819 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P,
1820                                            bool AllowRepeats = false) {
1821   T *RC = nullptr;
1822   for (auto *A : Range) {
1823     std::pair<T *, bool> PRC = P(A, AllowRepeats);
1824     if (PRC.second) {
1825       assert(PRC.first == nullptr &&
1826              "Inconsistent return values in find_singleton_nested.");
1827       return PRC;
1828     }
1829     if (PRC.first) {
1830       if (RC) {
1831         if (!AllowRepeats || PRC.first != RC)
1832           return {nullptr, true};
1833       } else
1834         RC = PRC.first;
1835     }
1836   }
1837   return {RC, false};
1838 }
1839 
1840 template <typename R, typename OutputIt>
1841 OutputIt copy(R &&Range, OutputIt Out) {
1842   return std::copy(adl_begin(Range), adl_end(Range), Out);
1843 }
1844 
1845 /// Provide wrappers to std::replace_copy_if which take ranges instead of having
1846 /// to pass begin/end explicitly.
1847 template <typename R, typename OutputIt, typename UnaryPredicate, typename T>
1848 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P,
1849                          const T &NewValue) {
1850   return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P,
1851                               NewValue);
1852 }
1853 
1854 /// Provide wrappers to std::replace_copy which take ranges instead of having to
1855 /// pass begin/end explicitly.
1856 template <typename R, typename OutputIt, typename T>
1857 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue,
1858                       const T &NewValue) {
1859   return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue,
1860                            NewValue);
1861 }
1862 
1863 /// Provide wrappers to std::replace which take ranges instead of having to pass
1864 /// begin/end explicitly.
1865 template <typename R, typename T>
1866 void replace(R &&Range, const T &OldValue, const T &NewValue) {
1867   std::replace(adl_begin(Range), adl_end(Range), OldValue, NewValue);
1868 }
1869 
1870 /// Provide wrappers to std::move which take ranges instead of having to
1871 /// pass begin/end explicitly.
1872 template <typename R, typename OutputIt>
1873 OutputIt move(R &&Range, OutputIt Out) {
1874   return std::move(adl_begin(Range), adl_end(Range), Out);
1875 }
1876 
1877 namespace detail {
1878 template <typename Range, typename Element>
1879 using check_has_member_contains_t =
1880     decltype(std::declval<Range &>().contains(std::declval<const Element &>()));
1881 
1882 template <typename Range, typename Element>
1883 static constexpr bool HasMemberContains =
1884     is_detected<check_has_member_contains_t, Range, Element>::value;
1885 
1886 template <typename Range, typename Element>
1887 using check_has_member_find_t =
1888     decltype(std::declval<Range &>().find(std::declval<const Element &>()) !=
1889              std::declval<Range &>().end());
1890 
1891 template <typename Range, typename Element>
1892 static constexpr bool HasMemberFind =
1893     is_detected<check_has_member_find_t, Range, Element>::value;
1894 
1895 } // namespace detail
1896 
1897 /// Returns true if \p Element is found in \p Range. Delegates the check to
1898 /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this
1899 /// order of preference. This is intended as the canonical way to check if an
1900 /// element exists in a range in generic code or range type that does not
1901 /// expose a `.contains(Element)` member.
1902 template <typename R, typename E>
1903 bool is_contained(R &&Range, const E &Element) {
1904   if constexpr (detail::HasMemberContains<R, E>)
1905     return Range.contains(Element);
1906   else if constexpr (detail::HasMemberFind<R, E>)
1907     return Range.find(Element) != Range.end();
1908   else
1909     return std::find(adl_begin(Range), adl_end(Range), Element) !=
1910            adl_end(Range);
1911 }
1912 
1913 /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as
1914 /// an initializer list and is `constexpr`-friendly.
1915 template <typename T, typename E>
1916 constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) {
1917   // TODO: Use std::find when we switch to C++20.
1918   for (const T &V : Set)
1919     if (V == Element)
1920       return true;
1921   return false;
1922 }
1923 
1924 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1925 /// are sorted with respect to a comparator \p C.
1926 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) {
1927   return std::is_sorted(adl_begin(Range), adl_end(Range), C);
1928 }
1929 
1930 /// Wrapper function around std::is_sorted to check if elements in a range \p R
1931 /// are sorted in non-descending order.
1932 template <typename R> bool is_sorted(R &&Range) {
1933   return std::is_sorted(adl_begin(Range), adl_end(Range));
1934 }
1935 
1936 /// Wrapper function around std::count to count the number of times an element
1937 /// \p Element occurs in the given range \p Range.
1938 template <typename R, typename E> auto count(R &&Range, const E &Element) {
1939   return std::count(adl_begin(Range), adl_end(Range), Element);
1940 }
1941 
1942 /// Wrapper function around std::count_if to count the number of times an
1943 /// element satisfying a given predicate occurs in a range.
1944 template <typename R, typename UnaryPredicate>
1945 auto count_if(R &&Range, UnaryPredicate P) {
1946   return std::count_if(adl_begin(Range), adl_end(Range), P);
1947 }
1948 
1949 /// Wrapper function around std::transform to apply a function to a range and
1950 /// store the result elsewhere.
1951 template <typename R, typename OutputIt, typename UnaryFunction>
1952 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) {
1953   return std::transform(adl_begin(Range), adl_end(Range), d_first, F);
1954 }
1955 
1956 /// Provide wrappers to std::partition which take ranges instead of having to
1957 /// pass begin/end explicitly.
1958 template <typename R, typename UnaryPredicate>
1959 auto partition(R &&Range, UnaryPredicate P) {
1960   return std::partition(adl_begin(Range), adl_end(Range), P);
1961 }
1962 
1963 /// Provide wrappers to std::binary_search which take ranges instead of having
1964 /// to pass begin/end explicitly.
1965 template <typename R, typename T> auto binary_search(R &&Range, T &&Value) {
1966   return std::binary_search(adl_begin(Range), adl_end(Range),
1967                             std::forward<T>(Value));
1968 }
1969 
1970 template <typename R, typename T, typename Compare>
1971 auto binary_search(R &&Range, T &&Value, Compare C) {
1972   return std::binary_search(adl_begin(Range), adl_end(Range),
1973                             std::forward<T>(Value), C);
1974 }
1975 
1976 /// Provide wrappers to std::lower_bound which take ranges instead of having to
1977 /// pass begin/end explicitly.
1978 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) {
1979   return std::lower_bound(adl_begin(Range), adl_end(Range),
1980                           std::forward<T>(Value));
1981 }
1982 
1983 template <typename R, typename T, typename Compare>
1984 auto lower_bound(R &&Range, T &&Value, Compare C) {
1985   return std::lower_bound(adl_begin(Range), adl_end(Range),
1986                           std::forward<T>(Value), C);
1987 }
1988 
1989 /// Provide wrappers to std::upper_bound which take ranges instead of having to
1990 /// pass begin/end explicitly.
1991 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) {
1992   return std::upper_bound(adl_begin(Range), adl_end(Range),
1993                           std::forward<T>(Value));
1994 }
1995 
1996 template <typename R, typename T, typename Compare>
1997 auto upper_bound(R &&Range, T &&Value, Compare C) {
1998   return std::upper_bound(adl_begin(Range), adl_end(Range),
1999                           std::forward<T>(Value), C);
2000 }
2001 
2002 /// Provide wrappers to std::min_element which take ranges instead of having to
2003 /// pass begin/end explicitly.
2004 template <typename R> auto min_element(R &&Range) {
2005   return std::min_element(adl_begin(Range), adl_end(Range));
2006 }
2007 
2008 template <typename R, typename Compare> auto min_element(R &&Range, Compare C) {
2009   return std::min_element(adl_begin(Range), adl_end(Range), C);
2010 }
2011 
2012 /// Provide wrappers to std::max_element which take ranges instead of having to
2013 /// pass begin/end explicitly.
2014 template <typename R> auto max_element(R &&Range) {
2015   return std::max_element(adl_begin(Range), adl_end(Range));
2016 }
2017 
2018 template <typename R, typename Compare> auto max_element(R &&Range, Compare C) {
2019   return std::max_element(adl_begin(Range), adl_end(Range), C);
2020 }
2021 
2022 /// Provide wrappers to std::mismatch which take ranges instead of having to
2023 /// pass begin/end explicitly.
2024 /// This function returns a pair of iterators for the first mismatching elements
2025 /// from `R1` and `R2`. As an example, if:
2026 ///
2027 /// R1 = [0, 1, 4, 6], R2 = [0, 1, 5, 6]
2028 ///
2029 /// this function will return a pair of iterators, first pointing to R1[2] and
2030 /// second pointing to R2[2].
2031 template <typename R1, typename R2> auto mismatch(R1 &&Range1, R2 &&Range2) {
2032   return std::mismatch(adl_begin(Range1), adl_end(Range1), adl_begin(Range2),
2033                        adl_end(Range2));
2034 }
2035 
2036 template <typename R>
2037 void stable_sort(R &&Range) {
2038   std::stable_sort(adl_begin(Range), adl_end(Range));
2039 }
2040 
2041 template <typename R, typename Compare>
2042 void stable_sort(R &&Range, Compare C) {
2043   std::stable_sort(adl_begin(Range), adl_end(Range), C);
2044 }
2045 
2046 /// Binary search for the first iterator in a range where a predicate is false.
2047 /// Requires that C is always true below some limit, and always false above it.
2048 template <typename R, typename Predicate,
2049           typename Val = decltype(*adl_begin(std::declval<R>()))>
2050 auto partition_point(R &&Range, Predicate P) {
2051   return std::partition_point(adl_begin(Range), adl_end(Range), P);
2052 }
2053 
2054 template<typename Range, typename Predicate>
2055 auto unique(Range &&R, Predicate P) {
2056   return std::unique(adl_begin(R), adl_end(R), P);
2057 }
2058 
2059 /// Wrapper function around std::unique to allow calling unique on a
2060 /// container without having to specify the begin/end iterators.
2061 template <typename Range> auto unique(Range &&R) {
2062   return std::unique(adl_begin(R), adl_end(R));
2063 }
2064 
2065 /// Wrapper function around std::equal to detect if pair-wise elements between
2066 /// two ranges are the same.
2067 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) {
2068   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2069                     adl_end(RRange));
2070 }
2071 
2072 template <typename L, typename R, typename BinaryPredicate>
2073 bool equal(L &&LRange, R &&RRange, BinaryPredicate P) {
2074   return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange),
2075                     adl_end(RRange), P);
2076 }
2077 
2078 /// Returns true if all elements in Range are equal or when the Range is empty.
2079 template <typename R> bool all_equal(R &&Range) {
2080   auto Begin = adl_begin(Range);
2081   auto End = adl_end(Range);
2082   return Begin == End || std::equal(std::next(Begin), End, Begin);
2083 }
2084 
2085 /// Returns true if all Values in the initializer lists are equal or the list
2086 // is empty.
2087 template <typename T> bool all_equal(std::initializer_list<T> Values) {
2088   return all_equal<std::initializer_list<T>>(std::move(Values));
2089 }
2090 
2091 /// Provide a container algorithm similar to C++ Library Fundamentals v2's
2092 /// `erase_if` which is equivalent to:
2093 ///
2094 ///   C.erase(remove_if(C, pred), C.end());
2095 ///
2096 /// This version works for any container with an erase method call accepting
2097 /// two iterators.
2098 template <typename Container, typename UnaryPredicate>
2099 void erase_if(Container &C, UnaryPredicate P) {
2100   C.erase(remove_if(C, P), C.end());
2101 }
2102 
2103 /// Wrapper function to remove a value from a container:
2104 ///
2105 /// C.erase(remove(C.begin(), C.end(), V), C.end());
2106 template <typename Container, typename ValueType>
2107 void erase(Container &C, ValueType V) {
2108   C.erase(std::remove(C.begin(), C.end(), V), C.end());
2109 }
2110 
2111 /// Wrapper function to append range `R` to container `C`.
2112 ///
2113 /// C.insert(C.end(), R.begin(), R.end());
2114 template <typename Container, typename Range>
2115 void append_range(Container &C, Range &&R) {
2116   C.insert(C.end(), adl_begin(R), adl_end(R));
2117 }
2118 
2119 /// Appends all `Values` to container `C`.
2120 template <typename Container, typename... Args>
2121 void append_values(Container &C, Args &&...Values) {
2122   C.reserve(range_size(C) + sizeof...(Args));
2123   // Append all values one by one.
2124   ((void)C.insert(C.end(), std::forward<Args>(Values)), ...);
2125 }
2126 
2127 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2128 /// the range [ValIt, ValEnd) (which is not from the same container).
2129 template<typename Container, typename RandomAccessIterator>
2130 void replace(Container &Cont, typename Container::iterator ContIt,
2131              typename Container::iterator ContEnd, RandomAccessIterator ValIt,
2132              RandomAccessIterator ValEnd) {
2133   while (true) {
2134     if (ValIt == ValEnd) {
2135       Cont.erase(ContIt, ContEnd);
2136       return;
2137     } else if (ContIt == ContEnd) {
2138       Cont.insert(ContIt, ValIt, ValEnd);
2139       return;
2140     }
2141     *ContIt++ = *ValIt++;
2142   }
2143 }
2144 
2145 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with
2146 /// the range R.
2147 template<typename Container, typename Range = std::initializer_list<
2148                                  typename Container::value_type>>
2149 void replace(Container &Cont, typename Container::iterator ContIt,
2150              typename Container::iterator ContEnd, Range R) {
2151   replace(Cont, ContIt, ContEnd, R.begin(), R.end());
2152 }
2153 
2154 /// An STL-style algorithm similar to std::for_each that applies a second
2155 /// functor between every pair of elements.
2156 ///
2157 /// This provides the control flow logic to, for example, print a
2158 /// comma-separated list:
2159 /// \code
2160 ///   interleave(names.begin(), names.end(),
2161 ///              [&](StringRef name) { os << name; },
2162 ///              [&] { os << ", "; });
2163 /// \endcode
2164 template <typename ForwardIterator, typename UnaryFunctor,
2165           typename NullaryFunctor,
2166           typename = std::enable_if_t<
2167               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2168               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2169 inline void interleave(ForwardIterator begin, ForwardIterator end,
2170                        UnaryFunctor each_fn, NullaryFunctor between_fn) {
2171   if (begin == end)
2172     return;
2173   each_fn(*begin);
2174   ++begin;
2175   for (; begin != end; ++begin) {
2176     between_fn();
2177     each_fn(*begin);
2178   }
2179 }
2180 
2181 template <typename Container, typename UnaryFunctor, typename NullaryFunctor,
2182           typename = std::enable_if_t<
2183               !std::is_constructible<StringRef, UnaryFunctor>::value &&
2184               !std::is_constructible<StringRef, NullaryFunctor>::value>>
2185 inline void interleave(const Container &c, UnaryFunctor each_fn,
2186                        NullaryFunctor between_fn) {
2187   interleave(adl_begin(c), adl_end(c), each_fn, between_fn);
2188 }
2189 
2190 /// Overload of interleave for the common case of string separator.
2191 template <typename Container, typename UnaryFunctor, typename StreamT,
2192           typename T = detail::ValueOfRange<Container>>
2193 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn,
2194                        const StringRef &separator) {
2195   interleave(adl_begin(c), adl_end(c), each_fn, [&] { os << separator; });
2196 }
2197 template <typename Container, typename StreamT,
2198           typename T = detail::ValueOfRange<Container>>
2199 inline void interleave(const Container &c, StreamT &os,
2200                        const StringRef &separator) {
2201   interleave(
2202       c, os, [&](const T &a) { os << a; }, separator);
2203 }
2204 
2205 template <typename Container, typename UnaryFunctor, typename StreamT,
2206           typename T = detail::ValueOfRange<Container>>
2207 inline void interleaveComma(const Container &c, StreamT &os,
2208                             UnaryFunctor each_fn) {
2209   interleave(c, os, each_fn, ", ");
2210 }
2211 template <typename Container, typename StreamT,
2212           typename T = detail::ValueOfRange<Container>>
2213 inline void interleaveComma(const Container &c, StreamT &os) {
2214   interleaveComma(c, os, [&](const T &a) { os << a; });
2215 }
2216 
2217 //===----------------------------------------------------------------------===//
2218 //     Extra additions to <memory>
2219 //===----------------------------------------------------------------------===//
2220 
2221 struct FreeDeleter {
2222   void operator()(void* v) {
2223     ::free(v);
2224   }
2225 };
2226 
2227 template<typename First, typename Second>
2228 struct pair_hash {
2229   size_t operator()(const std::pair<First, Second> &P) const {
2230     return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
2231   }
2232 };
2233 
2234 /// Binary functor that adapts to any other binary functor after dereferencing
2235 /// operands.
2236 template <typename T> struct deref {
2237   T func;
2238 
2239   // Could be further improved to cope with non-derivable functors and
2240   // non-binary functors (should be a variadic template member function
2241   // operator()).
2242   template <typename A, typename B> auto operator()(A &lhs, B &rhs) const {
2243     assert(lhs);
2244     assert(rhs);
2245     return func(*lhs, *rhs);
2246   }
2247 };
2248 
2249 namespace detail {
2250 
2251 /// Tuple-like type for `zip_enumerator` dereference.
2252 template <typename... Refs> struct enumerator_result;
2253 
2254 template <typename... Iters>
2255 using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>;
2256 
2257 /// Zippy iterator that uses the second iterator for comparisons. For the
2258 /// increment to be safe, the second range has to be the shortest.
2259 /// Returns `enumerator_result` on dereference to provide `.index()` and
2260 /// `.value()` member functions.
2261 /// Note: Because the dereference operator returns `enumerator_result` as a
2262 /// value instead of a reference and does not strictly conform to the C++17's
2263 /// definition of forward iterator. However, it satisfies all the
2264 /// forward_iterator requirements that the `zip_common` and `zippy` depend on
2265 /// and fully conforms to the C++20 definition of forward iterator.
2266 /// This is similar to `std::vector<bool>::iterator` that returns bit reference
2267 /// wrappers on dereference.
2268 template <typename... Iters>
2269 struct zip_enumerator : zip_common<zip_enumerator<Iters...>,
2270                                    EnumeratorTupleType<Iters...>, Iters...> {
2271   static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees");
2272   using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>,
2273                    Iters...>::zip_common;
2274 
2275   bool operator==(const zip_enumerator &Other) const {
2276     return std::get<1>(this->iterators) == std::get<1>(Other.iterators);
2277   }
2278 };
2279 
2280 template <typename... Refs> struct enumerator_result<std::size_t, Refs...> {
2281   static constexpr std::size_t NumRefs = sizeof...(Refs);
2282   static_assert(NumRefs != 0);
2283   // `NumValues` includes the index.
2284   static constexpr std::size_t NumValues = NumRefs + 1;
2285 
2286   // Tuple type whose element types are references for each `Ref`.
2287   using range_reference_tuple = std::tuple<Refs...>;
2288   // Tuple type who elements are references to all values, including both
2289   // the index and `Refs` reference types.
2290   using value_reference_tuple = std::tuple<std::size_t, Refs...>;
2291 
2292   enumerator_result(std::size_t Index, Refs &&...Rs)
2293       : Idx(Index), Storage(std::forward<Refs>(Rs)...) {}
2294 
2295   /// Returns the 0-based index of the current position within the original
2296   /// input range(s).
2297   std::size_t index() const { return Idx; }
2298 
2299   /// Returns the value(s) for the current iterator. This does not include the
2300   /// index.
2301   decltype(auto) value() const {
2302     if constexpr (NumRefs == 1)
2303       return std::get<0>(Storage);
2304     else
2305       return Storage;
2306   }
2307 
2308   /// Returns the value at index `I`. This case covers the index.
2309   template <std::size_t I, typename = std::enable_if_t<I == 0>>
2310   friend std::size_t get(const enumerator_result &Result) {
2311     return Result.Idx;
2312   }
2313 
2314   /// Returns the value at index `I`. This case covers references to the
2315   /// iteratees.
2316   template <std::size_t I, typename = std::enable_if_t<I != 0>>
2317   friend decltype(auto) get(const enumerator_result &Result) {
2318     // Note: This is a separate function from the other `get`, instead of an
2319     // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler
2320     // (Visual Studio 2022 17.1) return type deduction bug.
2321     return std::get<I - 1>(Result.Storage);
2322   }
2323 
2324   template <typename... Ts>
2325   friend bool operator==(const enumerator_result &Result,
2326                          const std::tuple<std::size_t, Ts...> &Other) {
2327     static_assert(NumRefs == sizeof...(Ts), "Size mismatch");
2328     if (Result.Idx != std::get<0>(Other))
2329       return false;
2330     return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{});
2331   }
2332 
2333 private:
2334   template <typename Tuple, std::size_t... Idx>
2335   bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const {
2336     return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...);
2337   }
2338 
2339   std::size_t Idx;
2340   // Make this tuple mutable to avoid casts that obfuscate const-correctness
2341   // issues. Const-correctness of references is taken care of by `zippy` that
2342   // defines const-non and const iterator types that will propagate down to
2343   // `enumerator_result`'s `Refs`.
2344   //  Note that unlike the results of `zip*` functions, `enumerate`'s result are
2345   //  supposed to be modifiable even when defined as
2346   // `const`.
2347   mutable range_reference_tuple Storage;
2348 };
2349 
2350 struct index_iterator
2351     : llvm::iterator_facade_base<index_iterator,
2352                                  std::random_access_iterator_tag, std::size_t> {
2353   index_iterator(std::size_t Index) : Index(Index) {}
2354 
2355   index_iterator &operator+=(std::ptrdiff_t N) {
2356     Index += N;
2357     return *this;
2358   }
2359 
2360   index_iterator &operator-=(std::ptrdiff_t N) {
2361     Index -= N;
2362     return *this;
2363   }
2364 
2365   std::ptrdiff_t operator-(const index_iterator &R) const {
2366     return Index - R.Index;
2367   }
2368 
2369   // Note: This dereference operator returns a value instead of a reference
2370   // and does not strictly conform to the C++17's definition of forward
2371   // iterator. However, it satisfies all the forward_iterator requirements
2372   // that the `zip_common` depends on and fully conforms to the C++20
2373   // definition of forward iterator.
2374   std::size_t operator*() const { return Index; }
2375 
2376   friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) {
2377     return Lhs.Index == Rhs.Index;
2378   }
2379 
2380   friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) {
2381     return Lhs.Index < Rhs.Index;
2382   }
2383 
2384 private:
2385   std::size_t Index;
2386 };
2387 
2388 /// Infinite stream of increasing 0-based `size_t` indices.
2389 struct index_stream {
2390   index_iterator begin() const { return {0}; }
2391   index_iterator end() const {
2392     // We approximate 'infinity' with the max size_t value, which should be good
2393     // enough to index over any container.
2394     return index_iterator{std::numeric_limits<std::size_t>::max()};
2395   }
2396 };
2397 
2398 } // end namespace detail
2399 
2400 /// Increasing range of `size_t` indices.
2401 class index_range {
2402   std::size_t Begin;
2403   std::size_t End;
2404 
2405 public:
2406   index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {}
2407   detail::index_iterator begin() const { return {Begin}; }
2408   detail::index_iterator end() const { return {End}; }
2409 };
2410 
2411 /// Given two or more input ranges, returns a new range whose values are
2412 /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the
2413 /// sequence, and B, C, ..., are the values from the original input ranges. All
2414 /// input ranges are required to have equal lengths. Note that the returned
2415 /// iterator allows for the values (B, C, ...) to be modified.  Example:
2416 ///
2417 /// ```c++
2418 /// std::vector<char> Letters = {'A', 'B', 'C', 'D'};
2419 /// std::vector<int> Vals = {10, 11, 12, 13};
2420 ///
2421 /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) {
2422 ///   printf("Item %zu - %c: %d\n", Index, Letter, Value);
2423 ///   Value -= 10;
2424 /// }
2425 /// ```
2426 ///
2427 /// Output:
2428 ///   Item 0 - A: 10
2429 ///   Item 1 - B: 11
2430 ///   Item 2 - C: 12
2431 ///   Item 3 - D: 13
2432 ///
2433 /// or using an iterator:
2434 /// ```c++
2435 /// for (auto it : enumerate(Vals)) {
2436 ///   it.value() += 10;
2437 ///   printf("Item %zu: %d\n", it.index(), it.value());
2438 /// }
2439 /// ```
2440 ///
2441 /// Output:
2442 ///   Item 0: 20
2443 ///   Item 1: 21
2444 ///   Item 2: 22
2445 ///   Item 3: 23
2446 ///
2447 template <typename FirstRange, typename... RestRanges>
2448 auto enumerate(FirstRange &&First, RestRanges &&...Rest) {
2449   if constexpr (sizeof...(Rest) != 0) {
2450 #ifndef NDEBUG
2451     // Note: Create an array instead of an initializer list to work around an
2452     // Apple clang 14 compiler bug.
2453     size_t sizes[] = {range_size(First), range_size(Rest)...};
2454     assert(all_equal(sizes) && "Ranges have different length");
2455 #endif
2456   }
2457   using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream,
2458                                    FirstRange, RestRanges...>;
2459   return enumerator(detail::index_stream{}, std::forward<FirstRange>(First),
2460                     std::forward<RestRanges>(Rest)...);
2461 }
2462 
2463 namespace detail {
2464 
2465 template <typename Predicate, typename... Args>
2466 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) {
2467   auto z = zip(args...);
2468   auto it = z.begin();
2469   auto end = z.end();
2470   while (it != end) {
2471     if (!std::apply([&](auto &&...args) { return P(args...); }, *it))
2472       return false;
2473     ++it;
2474   }
2475   return it.all_equals(end);
2476 }
2477 
2478 // Just an adaptor to switch the order of argument and have the predicate before
2479 // the zipped inputs.
2480 template <typename... ArgsThenPredicate, size_t... InputIndexes>
2481 bool all_of_zip_predicate_last(
2482     std::tuple<ArgsThenPredicate...> argsThenPredicate,
2483     std::index_sequence<InputIndexes...>) {
2484   auto constexpr OutputIndex =
2485       std::tuple_size<decltype(argsThenPredicate)>::value - 1;
2486   return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate),
2487                              std::get<InputIndexes>(argsThenPredicate)...);
2488 }
2489 
2490 } // end namespace detail
2491 
2492 /// Compare two zipped ranges using the provided predicate (as last argument).
2493 /// Return true if all elements satisfy the predicate and false otherwise.
2494 //  Return false if the zipped iterator aren't all at end (size mismatch).
2495 template <typename... ArgsAndPredicate>
2496 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) {
2497   return detail::all_of_zip_predicate_last(
2498       std::forward_as_tuple(argsAndPredicate...),
2499       std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{});
2500 }
2501 
2502 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
2503 /// time. Not meant for use with random-access iterators.
2504 /// Can optionally take a predicate to filter lazily some items.
2505 template <typename IterTy,
2506           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2507 bool hasNItems(
2508     IterTy &&Begin, IterTy &&End, unsigned N,
2509     Pred &&ShouldBeCounted =
2510         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2511     std::enable_if_t<
2512         !std::is_base_of<std::random_access_iterator_tag,
2513                          typename std::iterator_traits<std::remove_reference_t<
2514                              decltype(Begin)>>::iterator_category>::value,
2515         void> * = nullptr) {
2516   for (; N; ++Begin) {
2517     if (Begin == End)
2518       return false; // Too few.
2519     N -= ShouldBeCounted(*Begin);
2520   }
2521   for (; Begin != End; ++Begin)
2522     if (ShouldBeCounted(*Begin))
2523       return false; // Too many.
2524   return true;
2525 }
2526 
2527 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
2528 /// time. Not meant for use with random-access iterators.
2529 /// Can optionally take a predicate to lazily filter some items.
2530 template <typename IterTy,
2531           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2532 bool hasNItemsOrMore(
2533     IterTy &&Begin, IterTy &&End, unsigned N,
2534     Pred &&ShouldBeCounted =
2535         [](const decltype(*std::declval<IterTy>()) &) { return true; },
2536     std::enable_if_t<
2537         !std::is_base_of<std::random_access_iterator_tag,
2538                          typename std::iterator_traits<std::remove_reference_t<
2539                              decltype(Begin)>>::iterator_category>::value,
2540         void> * = nullptr) {
2541   for (; N; ++Begin) {
2542     if (Begin == End)
2543       return false; // Too few.
2544     N -= ShouldBeCounted(*Begin);
2545   }
2546   return true;
2547 }
2548 
2549 /// Returns true if the sequence [Begin, End) has N or less items. Can
2550 /// optionally take a predicate to lazily filter some items.
2551 template <typename IterTy,
2552           typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)>
2553 bool hasNItemsOrLess(
2554     IterTy &&Begin, IterTy &&End, unsigned N,
2555     Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) {
2556       return true;
2557     }) {
2558   assert(N != std::numeric_limits<unsigned>::max());
2559   return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted);
2560 }
2561 
2562 /// Returns true if the given container has exactly N items
2563 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) {
2564   return hasNItems(std::begin(C), std::end(C), N);
2565 }
2566 
2567 /// Returns true if the given container has N or more items
2568 template <typename ContainerTy>
2569 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) {
2570   return hasNItemsOrMore(std::begin(C), std::end(C), N);
2571 }
2572 
2573 /// Returns true if the given container has N or less items
2574 template <typename ContainerTy>
2575 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) {
2576   return hasNItemsOrLess(std::begin(C), std::end(C), N);
2577 }
2578 
2579 /// Returns a raw pointer that represents the same address as the argument.
2580 ///
2581 /// This implementation can be removed once we move to C++20 where it's defined
2582 /// as std::to_address().
2583 ///
2584 /// The std::pointer_traits<>::to_address(p) variations of these overloads has
2585 /// not been implemented.
2586 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); }
2587 template <class T> constexpr T *to_address(T *P) { return P; }
2588 
2589 // Detect incomplete types, relying on the fact that their size is unknown.
2590 namespace detail {
2591 template <typename T> using has_sizeof = decltype(sizeof(T));
2592 } // namespace detail
2593 
2594 /// Detects when type `T` is incomplete. This is true for forward declarations
2595 /// and false for types with a full definition.
2596 template <typename T>
2597 constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value;
2598 
2599 } // end namespace llvm
2600 
2601 namespace std {
2602 template <typename... Refs>
2603 struct tuple_size<llvm::detail::enumerator_result<Refs...>>
2604     : std::integral_constant<std::size_t, sizeof...(Refs)> {};
2605 
2606 template <std::size_t I, typename... Refs>
2607 struct tuple_element<I, llvm::detail::enumerator_result<Refs...>>
2608     : std::tuple_element<I, std::tuple<Refs...>> {};
2609 
2610 template <std::size_t I, typename... Refs>
2611 struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>>
2612     : std::tuple_element<I, std::tuple<Refs...>> {};
2613 
2614 } // namespace std
2615 
2616 #endif // LLVM_ADT_STLEXTRAS_H
2617