1 //===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file contains some templates that are useful if you are working with 11 /// the STL at all. 12 /// 13 /// No library is required when using these functions. 14 /// 15 //===----------------------------------------------------------------------===// 16 17 #ifndef LLVM_ADT_STLEXTRAS_H 18 #define LLVM_ADT_STLEXTRAS_H 19 20 #include "llvm/ADT/ADL.h" 21 #include "llvm/ADT/Hashing.h" 22 #include "llvm/ADT/STLForwardCompat.h" 23 #include "llvm/ADT/STLFunctionalExtras.h" 24 #include "llvm/ADT/iterator.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Config/abi-breaking.h" 27 #include "llvm/Support/ErrorHandling.h" 28 #include <algorithm> 29 #include <cassert> 30 #include <cstddef> 31 #include <cstdint> 32 #include <cstdlib> 33 #include <functional> 34 #include <initializer_list> 35 #include <iterator> 36 #include <limits> 37 #include <memory> 38 #include <optional> 39 #include <tuple> 40 #include <type_traits> 41 #include <utility> 42 43 #ifdef EXPENSIVE_CHECKS 44 #include <random> // for std::mt19937 45 #endif 46 47 namespace llvm { 48 49 //===----------------------------------------------------------------------===// 50 // Extra additions to <type_traits> 51 //===----------------------------------------------------------------------===// 52 53 template <typename T> struct make_const_ptr { 54 using type = std::add_pointer_t<std::add_const_t<T>>; 55 }; 56 57 template <typename T> struct make_const_ref { 58 using type = std::add_lvalue_reference_t<std::add_const_t<T>>; 59 }; 60 61 namespace detail { 62 template <class, template <class...> class Op, class... Args> struct detector { 63 using value_t = std::false_type; 64 }; 65 template <template <class...> class Op, class... Args> 66 struct detector<std::void_t<Op<Args...>>, Op, Args...> { 67 using value_t = std::true_type; 68 }; 69 } // end namespace detail 70 71 /// Detects if a given trait holds for some set of arguments 'Args'. 72 /// For example, the given trait could be used to detect if a given type 73 /// has a copy assignment operator: 74 /// template<class T> 75 /// using has_copy_assign_t = decltype(std::declval<T&>() 76 /// = std::declval<const T&>()); 77 /// bool fooHasCopyAssign = is_detected<has_copy_assign_t, FooClass>::value; 78 template <template <class...> class Op, class... Args> 79 using is_detected = typename detail::detector<void, Op, Args...>::value_t; 80 81 /// This class provides various trait information about a callable object. 82 /// * To access the number of arguments: Traits::num_args 83 /// * To access the type of an argument: Traits::arg_t<Index> 84 /// * To access the type of the result: Traits::result_t 85 template <typename T, bool isClass = std::is_class<T>::value> 86 struct function_traits : public function_traits<decltype(&T::operator())> {}; 87 88 /// Overload for class function types. 89 template <typename ClassType, typename ReturnType, typename... Args> 90 struct function_traits<ReturnType (ClassType::*)(Args...) const, false> { 91 /// The number of arguments to this function. 92 enum { num_args = sizeof...(Args) }; 93 94 /// The result type of this function. 95 using result_t = ReturnType; 96 97 /// The type of an argument to this function. 98 template <size_t Index> 99 using arg_t = std::tuple_element_t<Index, std::tuple<Args...>>; 100 }; 101 /// Overload for class function types. 102 template <typename ClassType, typename ReturnType, typename... Args> 103 struct function_traits<ReturnType (ClassType::*)(Args...), false> 104 : public function_traits<ReturnType (ClassType::*)(Args...) const> {}; 105 /// Overload for non-class function types. 106 template <typename ReturnType, typename... Args> 107 struct function_traits<ReturnType (*)(Args...), false> { 108 /// The number of arguments to this function. 109 enum { num_args = sizeof...(Args) }; 110 111 /// The result type of this function. 112 using result_t = ReturnType; 113 114 /// The type of an argument to this function. 115 template <size_t i> 116 using arg_t = std::tuple_element_t<i, std::tuple<Args...>>; 117 }; 118 template <typename ReturnType, typename... Args> 119 struct function_traits<ReturnType (*const)(Args...), false> 120 : public function_traits<ReturnType (*)(Args...)> {}; 121 /// Overload for non-class function type references. 122 template <typename ReturnType, typename... Args> 123 struct function_traits<ReturnType (&)(Args...), false> 124 : public function_traits<ReturnType (*)(Args...)> {}; 125 126 /// traits class for checking whether type T is one of any of the given 127 /// types in the variadic list. 128 template <typename T, typename... Ts> 129 using is_one_of = std::disjunction<std::is_same<T, Ts>...>; 130 131 /// traits class for checking whether type T is a base class for all 132 /// the given types in the variadic list. 133 template <typename T, typename... Ts> 134 using are_base_of = std::conjunction<std::is_base_of<T, Ts>...>; 135 136 namespace detail { 137 template <typename T, typename... Us> struct TypesAreDistinct; 138 template <typename T, typename... Us> 139 struct TypesAreDistinct 140 : std::integral_constant<bool, !is_one_of<T, Us...>::value && 141 TypesAreDistinct<Us...>::value> {}; 142 template <typename T> struct TypesAreDistinct<T> : std::true_type {}; 143 } // namespace detail 144 145 /// Determine if all types in Ts are distinct. 146 /// 147 /// Useful to statically assert when Ts is intended to describe a non-multi set 148 /// of types. 149 /// 150 /// Expensive (currently quadratic in sizeof(Ts...)), and so should only be 151 /// asserted once per instantiation of a type which requires it. 152 template <typename... Ts> struct TypesAreDistinct; 153 template <> struct TypesAreDistinct<> : std::true_type {}; 154 template <typename... Ts> 155 struct TypesAreDistinct 156 : std::integral_constant<bool, detail::TypesAreDistinct<Ts...>::value> {}; 157 158 /// Find the first index where a type appears in a list of types. 159 /// 160 /// FirstIndexOfType<T, Us...>::value is the first index of T in Us. 161 /// 162 /// Typically only meaningful when it is otherwise statically known that the 163 /// type pack has no duplicate types. This should be guaranteed explicitly with 164 /// static_assert(TypesAreDistinct<Us...>::value). 165 /// 166 /// It is a compile-time error to instantiate when T is not present in Us, i.e. 167 /// if is_one_of<T, Us...>::value is false. 168 template <typename T, typename... Us> struct FirstIndexOfType; 169 template <typename T, typename U, typename... Us> 170 struct FirstIndexOfType<T, U, Us...> 171 : std::integral_constant<size_t, 1 + FirstIndexOfType<T, Us...>::value> {}; 172 template <typename T, typename... Us> 173 struct FirstIndexOfType<T, T, Us...> : std::integral_constant<size_t, 0> {}; 174 175 /// Find the type at a given index in a list of types. 176 /// 177 /// TypeAtIndex<I, Ts...> is the type at index I in Ts. 178 template <size_t I, typename... Ts> 179 using TypeAtIndex = std::tuple_element_t<I, std::tuple<Ts...>>; 180 181 /// Helper which adds two underlying types of enumeration type. 182 /// Implicit conversion to a common type is accepted. 183 template <typename EnumTy1, typename EnumTy2, 184 typename UT1 = std::enable_if_t<std::is_enum<EnumTy1>::value, 185 std::underlying_type_t<EnumTy1>>, 186 typename UT2 = std::enable_if_t<std::is_enum<EnumTy2>::value, 187 std::underlying_type_t<EnumTy2>>> 188 constexpr auto addEnumValues(EnumTy1 LHS, EnumTy2 RHS) { 189 return static_cast<UT1>(LHS) + static_cast<UT2>(RHS); 190 } 191 192 //===----------------------------------------------------------------------===// 193 // Extra additions to <iterator> 194 //===----------------------------------------------------------------------===// 195 196 namespace callable_detail { 197 198 /// Templated storage wrapper for a callable. 199 /// 200 /// This class is consistently default constructible, copy / move 201 /// constructible / assignable. 202 /// 203 /// Supported callable types: 204 /// - Function pointer 205 /// - Function reference 206 /// - Lambda 207 /// - Function object 208 template <typename T, 209 bool = std::is_function_v<std::remove_pointer_t<remove_cvref_t<T>>>> 210 class Callable { 211 using value_type = std::remove_reference_t<T>; 212 using reference = value_type &; 213 using const_reference = value_type const &; 214 215 std::optional<value_type> Obj; 216 217 static_assert(!std::is_pointer_v<value_type>, 218 "Pointers to non-functions are not callable."); 219 220 public: 221 Callable() = default; 222 Callable(T const &O) : Obj(std::in_place, O) {} 223 224 Callable(Callable const &Other) = default; 225 Callable(Callable &&Other) = default; 226 227 Callable &operator=(Callable const &Other) { 228 Obj = std::nullopt; 229 if (Other.Obj) 230 Obj.emplace(*Other.Obj); 231 return *this; 232 } 233 234 Callable &operator=(Callable &&Other) { 235 Obj = std::nullopt; 236 if (Other.Obj) 237 Obj.emplace(std::move(*Other.Obj)); 238 return *this; 239 } 240 241 template <typename... Pn, 242 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> 243 decltype(auto) operator()(Pn &&...Params) { 244 return (*Obj)(std::forward<Pn>(Params)...); 245 } 246 247 template <typename... Pn, 248 std::enable_if_t<std::is_invocable_v<T const, Pn...>, int> = 0> 249 decltype(auto) operator()(Pn &&...Params) const { 250 return (*Obj)(std::forward<Pn>(Params)...); 251 } 252 253 bool valid() const { return Obj != std::nullopt; } 254 bool reset() { return Obj = std::nullopt; } 255 256 operator reference() { return *Obj; } 257 operator const_reference() const { return *Obj; } 258 }; 259 260 // Function specialization. No need to waste extra space wrapping with a 261 // std::optional. 262 template <typename T> class Callable<T, true> { 263 static constexpr bool IsPtr = std::is_pointer_v<remove_cvref_t<T>>; 264 265 using StorageT = std::conditional_t<IsPtr, T, std::remove_reference_t<T> *>; 266 using CastT = std::conditional_t<IsPtr, T, T &>; 267 268 private: 269 StorageT Func = nullptr; 270 271 private: 272 template <typename In> static constexpr auto convertIn(In &&I) { 273 if constexpr (IsPtr) { 274 // Pointer... just echo it back. 275 return I; 276 } else { 277 // Must be a function reference. Return its address. 278 return &I; 279 } 280 } 281 282 public: 283 Callable() = default; 284 285 // Construct from a function pointer or reference. 286 // 287 // Disable this constructor for references to 'Callable' so we don't violate 288 // the rule of 0. 289 template < // clang-format off 290 typename FnPtrOrRef, 291 std::enable_if_t< 292 !std::is_same_v<remove_cvref_t<FnPtrOrRef>, Callable>, int 293 > = 0 294 > // clang-format on 295 Callable(FnPtrOrRef &&F) : Func(convertIn(F)) {} 296 297 template <typename... Pn, 298 std::enable_if_t<std::is_invocable_v<T, Pn...>, int> = 0> 299 decltype(auto) operator()(Pn &&...Params) const { 300 return Func(std::forward<Pn>(Params)...); 301 } 302 303 bool valid() const { return Func != nullptr; } 304 void reset() { Func = nullptr; } 305 306 operator T const &() const { 307 if constexpr (IsPtr) { 308 // T is a pointer... just echo it back. 309 return Func; 310 } else { 311 static_assert(std::is_reference_v<T>, 312 "Expected a reference to a function."); 313 // T is a function reference... dereference the stored pointer. 314 return *Func; 315 } 316 } 317 }; 318 319 } // namespace callable_detail 320 321 /// Returns true if the given container only contains a single element. 322 template <typename ContainerTy> bool hasSingleElement(ContainerTy &&C) { 323 auto B = std::begin(C), E = std::end(C); 324 return B != E && std::next(B) == E; 325 } 326 327 /// Return a range covering \p RangeOrContainer with the first N elements 328 /// excluded. 329 template <typename T> auto drop_begin(T &&RangeOrContainer, size_t N = 1) { 330 return make_range(std::next(adl_begin(RangeOrContainer), N), 331 adl_end(RangeOrContainer)); 332 } 333 334 /// Return a range covering \p RangeOrContainer with the last N elements 335 /// excluded. 336 template <typename T> auto drop_end(T &&RangeOrContainer, size_t N = 1) { 337 return make_range(adl_begin(RangeOrContainer), 338 std::prev(adl_end(RangeOrContainer), N)); 339 } 340 341 // mapped_iterator - This is a simple iterator adapter that causes a function to 342 // be applied whenever operator* is invoked on the iterator. 343 344 template <typename ItTy, typename FuncTy, 345 typename ReferenceTy = 346 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))> 347 class mapped_iterator 348 : public iterator_adaptor_base< 349 mapped_iterator<ItTy, FuncTy>, ItTy, 350 typename std::iterator_traits<ItTy>::iterator_category, 351 std::remove_reference_t<ReferenceTy>, 352 typename std::iterator_traits<ItTy>::difference_type, 353 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 354 public: 355 mapped_iterator() = default; 356 mapped_iterator(ItTy U, FuncTy F) 357 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {} 358 359 ItTy getCurrent() { return this->I; } 360 361 const FuncTy &getFunction() const { return F; } 362 363 ReferenceTy operator*() const { return F(*this->I); } 364 365 private: 366 callable_detail::Callable<FuncTy> F{}; 367 }; 368 369 // map_iterator - Provide a convenient way to create mapped_iterators, just like 370 // make_pair is useful for creating pairs... 371 template <class ItTy, class FuncTy> 372 inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) { 373 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F)); 374 } 375 376 template <class ContainerTy, class FuncTy> 377 auto map_range(ContainerTy &&C, FuncTy F) { 378 return make_range(map_iterator(std::begin(C), F), 379 map_iterator(std::end(C), F)); 380 } 381 382 /// A base type of mapped iterator, that is useful for building derived 383 /// iterators that do not need/want to store the map function (as in 384 /// mapped_iterator). These iterators must simply provide a `mapElement` method 385 /// that defines how to map a value of the iterator to the provided reference 386 /// type. 387 template <typename DerivedT, typename ItTy, typename ReferenceTy> 388 class mapped_iterator_base 389 : public iterator_adaptor_base< 390 DerivedT, ItTy, 391 typename std::iterator_traits<ItTy>::iterator_category, 392 std::remove_reference_t<ReferenceTy>, 393 typename std::iterator_traits<ItTy>::difference_type, 394 std::remove_reference_t<ReferenceTy> *, ReferenceTy> { 395 public: 396 using BaseT = mapped_iterator_base; 397 398 mapped_iterator_base(ItTy U) 399 : mapped_iterator_base::iterator_adaptor_base(std::move(U)) {} 400 401 ItTy getCurrent() { return this->I; } 402 403 ReferenceTy operator*() const { 404 return static_cast<const DerivedT &>(*this).mapElement(*this->I); 405 } 406 }; 407 408 namespace detail { 409 template <typename Range> 410 using check_has_free_function_rbegin = 411 decltype(adl_rbegin(std::declval<Range &>())); 412 413 template <typename Range> 414 static constexpr bool HasFreeFunctionRBegin = 415 is_detected<check_has_free_function_rbegin, Range>::value; 416 } // namespace detail 417 418 // Returns an iterator_range over the given container which iterates in reverse. 419 // Does not mutate the container. 420 template <typename ContainerTy> [[nodiscard]] auto reverse(ContainerTy &&C) { 421 if constexpr (detail::HasFreeFunctionRBegin<ContainerTy>) 422 return make_range(adl_rbegin(C), adl_rend(C)); 423 else 424 return make_range(std::make_reverse_iterator(adl_end(C)), 425 std::make_reverse_iterator(adl_begin(C))); 426 } 427 428 /// An iterator adaptor that filters the elements of given inner iterators. 429 /// 430 /// The predicate parameter should be a callable object that accepts the wrapped 431 /// iterator's reference type and returns a bool. When incrementing or 432 /// decrementing the iterator, it will call the predicate on each element and 433 /// skip any where it returns false. 434 /// 435 /// \code 436 /// int A[] = { 1, 2, 3, 4 }; 437 /// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; }); 438 /// // R contains { 1, 3 }. 439 /// \endcode 440 /// 441 /// Note: filter_iterator_base implements support for forward iteration. 442 /// filter_iterator_impl exists to provide support for bidirectional iteration, 443 /// conditional on whether the wrapped iterator supports it. 444 template <typename WrappedIteratorT, typename PredicateT, typename IterTag> 445 class filter_iterator_base 446 : public iterator_adaptor_base< 447 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>, 448 WrappedIteratorT, 449 std::common_type_t<IterTag, 450 typename std::iterator_traits< 451 WrappedIteratorT>::iterator_category>> { 452 using BaseT = typename filter_iterator_base::iterator_adaptor_base; 453 454 protected: 455 WrappedIteratorT End; 456 PredicateT Pred; 457 458 void findNextValid() { 459 while (this->I != End && !Pred(*this->I)) 460 BaseT::operator++(); 461 } 462 463 filter_iterator_base() = default; 464 465 // Construct the iterator. The begin iterator needs to know where the end 466 // is, so that it can properly stop when it gets there. The end iterator only 467 // needs the predicate to support bidirectional iteration. 468 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End, 469 PredicateT Pred) 470 : BaseT(Begin), End(End), Pred(Pred) { 471 findNextValid(); 472 } 473 474 public: 475 using BaseT::operator++; 476 477 filter_iterator_base &operator++() { 478 BaseT::operator++(); 479 findNextValid(); 480 return *this; 481 } 482 483 decltype(auto) operator*() const { 484 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 485 return BaseT::operator*(); 486 } 487 488 decltype(auto) operator->() const { 489 assert(BaseT::wrapped() != End && "Cannot dereference end iterator!"); 490 return BaseT::operator->(); 491 } 492 }; 493 494 /// Specialization of filter_iterator_base for forward iteration only. 495 template <typename WrappedIteratorT, typename PredicateT, 496 typename IterTag = std::forward_iterator_tag> 497 class filter_iterator_impl 498 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> { 499 public: 500 filter_iterator_impl() = default; 501 502 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 503 PredicateT Pred) 504 : filter_iterator_impl::filter_iterator_base(Begin, End, Pred) {} 505 }; 506 507 /// Specialization of filter_iterator_base for bidirectional iteration. 508 template <typename WrappedIteratorT, typename PredicateT> 509 class filter_iterator_impl<WrappedIteratorT, PredicateT, 510 std::bidirectional_iterator_tag> 511 : public filter_iterator_base<WrappedIteratorT, PredicateT, 512 std::bidirectional_iterator_tag> { 513 using BaseT = typename filter_iterator_impl::filter_iterator_base; 514 515 void findPrevValid() { 516 while (!this->Pred(*this->I)) 517 BaseT::operator--(); 518 } 519 520 public: 521 using BaseT::operator--; 522 523 filter_iterator_impl() = default; 524 525 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End, 526 PredicateT Pred) 527 : BaseT(Begin, End, Pred) {} 528 529 filter_iterator_impl &operator--() { 530 BaseT::operator--(); 531 findPrevValid(); 532 return *this; 533 } 534 }; 535 536 namespace detail { 537 538 template <bool is_bidirectional> struct fwd_or_bidi_tag_impl { 539 using type = std::forward_iterator_tag; 540 }; 541 542 template <> struct fwd_or_bidi_tag_impl<true> { 543 using type = std::bidirectional_iterator_tag; 544 }; 545 546 /// Helper which sets its type member to forward_iterator_tag if the category 547 /// of \p IterT does not derive from bidirectional_iterator_tag, and to 548 /// bidirectional_iterator_tag otherwise. 549 template <typename IterT> struct fwd_or_bidi_tag { 550 using type = typename fwd_or_bidi_tag_impl<std::is_base_of< 551 std::bidirectional_iterator_tag, 552 typename std::iterator_traits<IterT>::iterator_category>::value>::type; 553 }; 554 555 } // namespace detail 556 557 /// Defines filter_iterator to a suitable specialization of 558 /// filter_iterator_impl, based on the underlying iterator's category. 559 template <typename WrappedIteratorT, typename PredicateT> 560 using filter_iterator = filter_iterator_impl< 561 WrappedIteratorT, PredicateT, 562 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>; 563 564 /// Convenience function that takes a range of elements and a predicate, 565 /// and return a new filter_iterator range. 566 /// 567 /// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the 568 /// lifetime of that temporary is not kept by the returned range object, and the 569 /// temporary is going to be dropped on the floor after the make_iterator_range 570 /// full expression that contains this function call. 571 template <typename RangeT, typename PredicateT> 572 iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>> 573 make_filter_range(RangeT &&Range, PredicateT Pred) { 574 using FilterIteratorT = 575 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>; 576 return make_range( 577 FilterIteratorT(std::begin(std::forward<RangeT>(Range)), 578 std::end(std::forward<RangeT>(Range)), Pred), 579 FilterIteratorT(std::end(std::forward<RangeT>(Range)), 580 std::end(std::forward<RangeT>(Range)), Pred)); 581 } 582 583 /// A pseudo-iterator adaptor that is designed to implement "early increment" 584 /// style loops. 585 /// 586 /// This is *not a normal iterator* and should almost never be used directly. It 587 /// is intended primarily to be used with range based for loops and some range 588 /// algorithms. 589 /// 590 /// The iterator isn't quite an `OutputIterator` or an `InputIterator` but 591 /// somewhere between them. The constraints of these iterators are: 592 /// 593 /// - On construction or after being incremented, it is comparable and 594 /// dereferencable. It is *not* incrementable. 595 /// - After being dereferenced, it is neither comparable nor dereferencable, it 596 /// is only incrementable. 597 /// 598 /// This means you can only dereference the iterator once, and you can only 599 /// increment it once between dereferences. 600 template <typename WrappedIteratorT> 601 class early_inc_iterator_impl 602 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>, 603 WrappedIteratorT, std::input_iterator_tag> { 604 using BaseT = typename early_inc_iterator_impl::iterator_adaptor_base; 605 606 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer; 607 608 protected: 609 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 610 bool IsEarlyIncremented = false; 611 #endif 612 613 public: 614 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {} 615 616 using BaseT::operator*; 617 decltype(*std::declval<WrappedIteratorT>()) operator*() { 618 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 619 assert(!IsEarlyIncremented && "Cannot dereference twice!"); 620 IsEarlyIncremented = true; 621 #endif 622 return *(this->I)++; 623 } 624 625 using BaseT::operator++; 626 early_inc_iterator_impl &operator++() { 627 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 628 assert(IsEarlyIncremented && "Cannot increment before dereferencing!"); 629 IsEarlyIncremented = false; 630 #endif 631 return *this; 632 } 633 634 friend bool operator==(const early_inc_iterator_impl &LHS, 635 const early_inc_iterator_impl &RHS) { 636 #if LLVM_ENABLE_ABI_BREAKING_CHECKS 637 assert(!LHS.IsEarlyIncremented && "Cannot compare after dereferencing!"); 638 #endif 639 return (const BaseT &)LHS == (const BaseT &)RHS; 640 } 641 }; 642 643 /// Make a range that does early increment to allow mutation of the underlying 644 /// range without disrupting iteration. 645 /// 646 /// The underlying iterator will be incremented immediately after it is 647 /// dereferenced, allowing deletion of the current node or insertion of nodes to 648 /// not disrupt iteration provided they do not invalidate the *next* iterator -- 649 /// the current iterator can be invalidated. 650 /// 651 /// This requires a very exact pattern of use that is only really suitable to 652 /// range based for loops and other range algorithms that explicitly guarantee 653 /// to dereference exactly once each element, and to increment exactly once each 654 /// element. 655 template <typename RangeT> 656 iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>> 657 make_early_inc_range(RangeT &&Range) { 658 using EarlyIncIteratorT = 659 early_inc_iterator_impl<detail::IterOfRange<RangeT>>; 660 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))), 661 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range)))); 662 } 663 664 // Forward declarations required by zip_shortest/zip_equal/zip_first/zip_longest 665 template <typename R, typename UnaryPredicate> 666 bool all_of(R &&range, UnaryPredicate P); 667 668 template <typename R, typename UnaryPredicate> 669 bool any_of(R &&range, UnaryPredicate P); 670 671 template <typename T> bool all_equal(std::initializer_list<T> Values); 672 673 template <typename R> constexpr size_t range_size(R &&Range); 674 675 namespace detail { 676 677 using std::declval; 678 679 // We have to alias this since inlining the actual type at the usage site 680 // in the parameter list of iterator_facade_base<> below ICEs MSVC 2017. 681 template<typename... Iters> struct ZipTupleType { 682 using type = std::tuple<decltype(*declval<Iters>())...>; 683 }; 684 685 template <typename ZipType, typename ReferenceTupleType, typename... Iters> 686 using zip_traits = iterator_facade_base< 687 ZipType, 688 std::common_type_t< 689 std::bidirectional_iterator_tag, 690 typename std::iterator_traits<Iters>::iterator_category...>, 691 // ^ TODO: Implement random access methods. 692 ReferenceTupleType, 693 typename std::iterator_traits< 694 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, 695 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all 696 // inner iterators have the same difference_type. It would fail if, for 697 // instance, the second field's difference_type were non-numeric while the 698 // first is. 699 ReferenceTupleType *, ReferenceTupleType>; 700 701 template <typename ZipType, typename ReferenceTupleType, typename... Iters> 702 struct zip_common : public zip_traits<ZipType, ReferenceTupleType, Iters...> { 703 using Base = zip_traits<ZipType, ReferenceTupleType, Iters...>; 704 using IndexSequence = std::index_sequence_for<Iters...>; 705 using value_type = typename Base::value_type; 706 707 std::tuple<Iters...> iterators; 708 709 protected: 710 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 711 return value_type(*std::get<Ns>(iterators)...); 712 } 713 714 template <size_t... Ns> void tup_inc(std::index_sequence<Ns...>) { 715 (++std::get<Ns>(iterators), ...); 716 } 717 718 template <size_t... Ns> void tup_dec(std::index_sequence<Ns...>) { 719 (--std::get<Ns>(iterators), ...); 720 } 721 722 template <size_t... Ns> 723 bool test_all_equals(const zip_common &other, 724 std::index_sequence<Ns...>) const { 725 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) && 726 ...); 727 } 728 729 public: 730 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {} 731 732 value_type operator*() const { return deref(IndexSequence{}); } 733 734 ZipType &operator++() { 735 tup_inc(IndexSequence{}); 736 return static_cast<ZipType &>(*this); 737 } 738 739 ZipType &operator--() { 740 static_assert(Base::IsBidirectional, 741 "All inner iterators must be at least bidirectional."); 742 tup_dec(IndexSequence{}); 743 return static_cast<ZipType &>(*this); 744 } 745 746 /// Return true if all the iterator are matching `other`'s iterators. 747 bool all_equals(zip_common &other) { 748 return test_all_equals(other, IndexSequence{}); 749 } 750 }; 751 752 template <typename... Iters> 753 struct zip_first : zip_common<zip_first<Iters...>, 754 typename ZipTupleType<Iters...>::type, Iters...> { 755 using zip_common<zip_first, typename ZipTupleType<Iters...>::type, 756 Iters...>::zip_common; 757 758 bool operator==(const zip_first &other) const { 759 return std::get<0>(this->iterators) == std::get<0>(other.iterators); 760 } 761 }; 762 763 template <typename... Iters> 764 struct zip_shortest 765 : zip_common<zip_shortest<Iters...>, typename ZipTupleType<Iters...>::type, 766 Iters...> { 767 using zip_common<zip_shortest, typename ZipTupleType<Iters...>::type, 768 Iters...>::zip_common; 769 770 bool operator==(const zip_shortest &other) const { 771 return any_iterator_equals(other, std::index_sequence_for<Iters...>{}); 772 } 773 774 private: 775 template <size_t... Ns> 776 bool any_iterator_equals(const zip_shortest &other, 777 std::index_sequence<Ns...>) const { 778 return ((std::get<Ns>(this->iterators) == std::get<Ns>(other.iterators)) || 779 ...); 780 } 781 }; 782 783 /// Helper to obtain the iterator types for the tuple storage within `zippy`. 784 template <template <typename...> class ItType, typename TupleStorageType, 785 typename IndexSequence> 786 struct ZippyIteratorTuple; 787 788 /// Partial specialization for non-const tuple storage. 789 template <template <typename...> class ItType, typename... Args, 790 std::size_t... Ns> 791 struct ZippyIteratorTuple<ItType, std::tuple<Args...>, 792 std::index_sequence<Ns...>> { 793 using type = ItType<decltype(adl_begin( 794 std::get<Ns>(declval<std::tuple<Args...> &>())))...>; 795 }; 796 797 /// Partial specialization for const tuple storage. 798 template <template <typename...> class ItType, typename... Args, 799 std::size_t... Ns> 800 struct ZippyIteratorTuple<ItType, const std::tuple<Args...>, 801 std::index_sequence<Ns...>> { 802 using type = ItType<decltype(adl_begin( 803 std::get<Ns>(declval<const std::tuple<Args...> &>())))...>; 804 }; 805 806 template <template <typename...> class ItType, typename... Args> class zippy { 807 private: 808 std::tuple<Args...> storage; 809 using IndexSequence = std::index_sequence_for<Args...>; 810 811 public: 812 using iterator = typename ZippyIteratorTuple<ItType, decltype(storage), 813 IndexSequence>::type; 814 using const_iterator = 815 typename ZippyIteratorTuple<ItType, const decltype(storage), 816 IndexSequence>::type; 817 using iterator_category = typename iterator::iterator_category; 818 using value_type = typename iterator::value_type; 819 using difference_type = typename iterator::difference_type; 820 using pointer = typename iterator::pointer; 821 using reference = typename iterator::reference; 822 using const_reference = typename const_iterator::reference; 823 824 zippy(Args &&...args) : storage(std::forward<Args>(args)...) {} 825 826 const_iterator begin() const { return begin_impl(IndexSequence{}); } 827 iterator begin() { return begin_impl(IndexSequence{}); } 828 const_iterator end() const { return end_impl(IndexSequence{}); } 829 iterator end() { return end_impl(IndexSequence{}); } 830 831 private: 832 template <size_t... Ns> 833 const_iterator begin_impl(std::index_sequence<Ns...>) const { 834 return const_iterator(adl_begin(std::get<Ns>(storage))...); 835 } 836 template <size_t... Ns> iterator begin_impl(std::index_sequence<Ns...>) { 837 return iterator(adl_begin(std::get<Ns>(storage))...); 838 } 839 840 template <size_t... Ns> 841 const_iterator end_impl(std::index_sequence<Ns...>) const { 842 return const_iterator(adl_end(std::get<Ns>(storage))...); 843 } 844 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 845 return iterator(adl_end(std::get<Ns>(storage))...); 846 } 847 }; 848 849 } // end namespace detail 850 851 /// zip iterator for two or more iteratable types. Iteration continues until the 852 /// end of the *shortest* iteratee is reached. 853 template <typename T, typename U, typename... Args> 854 detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u, 855 Args &&...args) { 856 return detail::zippy<detail::zip_shortest, T, U, Args...>( 857 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 858 } 859 860 /// zip iterator that assumes that all iteratees have the same length. 861 /// In builds with assertions on, this assumption is checked before the 862 /// iteration starts. 863 template <typename T, typename U, typename... Args> 864 detail::zippy<detail::zip_first, T, U, Args...> zip_equal(T &&t, U &&u, 865 Args &&...args) { 866 assert(all_equal({range_size(t), range_size(u), range_size(args)...}) && 867 "Iteratees do not have equal length"); 868 return detail::zippy<detail::zip_first, T, U, Args...>( 869 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 870 } 871 872 /// zip iterator that, for the sake of efficiency, assumes the first iteratee to 873 /// be the shortest. Iteration continues until the end of the first iteratee is 874 /// reached. In builds with assertions on, we check that the assumption about 875 /// the first iteratee being the shortest holds. 876 template <typename T, typename U, typename... Args> 877 detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u, 878 Args &&...args) { 879 assert(range_size(t) <= std::min({range_size(u), range_size(args)...}) && 880 "First iteratee is not the shortest"); 881 882 return detail::zippy<detail::zip_first, T, U, Args...>( 883 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 884 } 885 886 namespace detail { 887 template <typename Iter> 888 Iter next_or_end(const Iter &I, const Iter &End) { 889 if (I == End) 890 return End; 891 return std::next(I); 892 } 893 894 template <typename Iter> 895 auto deref_or_none(const Iter &I, const Iter &End) -> std::optional< 896 std::remove_const_t<std::remove_reference_t<decltype(*I)>>> { 897 if (I == End) 898 return std::nullopt; 899 return *I; 900 } 901 902 template <typename Iter> struct ZipLongestItemType { 903 using type = std::optional<std::remove_const_t< 904 std::remove_reference_t<decltype(*std::declval<Iter>())>>>; 905 }; 906 907 template <typename... Iters> struct ZipLongestTupleType { 908 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>; 909 }; 910 911 template <typename... Iters> 912 class zip_longest_iterator 913 : public iterator_facade_base< 914 zip_longest_iterator<Iters...>, 915 std::common_type_t< 916 std::forward_iterator_tag, 917 typename std::iterator_traits<Iters>::iterator_category...>, 918 typename ZipLongestTupleType<Iters...>::type, 919 typename std::iterator_traits< 920 std::tuple_element_t<0, std::tuple<Iters...>>>::difference_type, 921 typename ZipLongestTupleType<Iters...>::type *, 922 typename ZipLongestTupleType<Iters...>::type> { 923 public: 924 using value_type = typename ZipLongestTupleType<Iters...>::type; 925 926 private: 927 std::tuple<Iters...> iterators; 928 std::tuple<Iters...> end_iterators; 929 930 template <size_t... Ns> 931 bool test(const zip_longest_iterator<Iters...> &other, 932 std::index_sequence<Ns...>) const { 933 return ((std::get<Ns>(this->iterators) != std::get<Ns>(other.iterators)) || 934 ...); 935 } 936 937 template <size_t... Ns> value_type deref(std::index_sequence<Ns...>) const { 938 return value_type( 939 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 940 } 941 942 template <size_t... Ns> 943 decltype(iterators) tup_inc(std::index_sequence<Ns...>) const { 944 return std::tuple<Iters...>( 945 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...); 946 } 947 948 public: 949 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts) 950 : iterators(std::forward<Iters>(ts.first)...), 951 end_iterators(std::forward<Iters>(ts.second)...) {} 952 953 value_type operator*() const { 954 return deref(std::index_sequence_for<Iters...>{}); 955 } 956 957 zip_longest_iterator<Iters...> &operator++() { 958 iterators = tup_inc(std::index_sequence_for<Iters...>{}); 959 return *this; 960 } 961 962 bool operator==(const zip_longest_iterator<Iters...> &other) const { 963 return !test(other, std::index_sequence_for<Iters...>{}); 964 } 965 }; 966 967 template <typename... Args> class zip_longest_range { 968 public: 969 using iterator = 970 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>; 971 using iterator_category = typename iterator::iterator_category; 972 using value_type = typename iterator::value_type; 973 using difference_type = typename iterator::difference_type; 974 using pointer = typename iterator::pointer; 975 using reference = typename iterator::reference; 976 977 private: 978 std::tuple<Args...> ts; 979 980 template <size_t... Ns> 981 iterator begin_impl(std::index_sequence<Ns...>) const { 982 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)), 983 adl_end(std::get<Ns>(ts)))...); 984 } 985 986 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 987 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)), 988 adl_end(std::get<Ns>(ts)))...); 989 } 990 991 public: 992 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {} 993 994 iterator begin() const { 995 return begin_impl(std::index_sequence_for<Args...>{}); 996 } 997 iterator end() const { return end_impl(std::index_sequence_for<Args...>{}); } 998 }; 999 } // namespace detail 1000 1001 /// Iterate over two or more iterators at the same time. Iteration continues 1002 /// until all iterators reach the end. The std::optional only contains a value 1003 /// if the iterator has not reached the end. 1004 template <typename T, typename U, typename... Args> 1005 detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u, 1006 Args &&... args) { 1007 return detail::zip_longest_range<T, U, Args...>( 1008 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...); 1009 } 1010 1011 /// Iterator wrapper that concatenates sequences together. 1012 /// 1013 /// This can concatenate different iterators, even with different types, into 1014 /// a single iterator provided the value types of all the concatenated 1015 /// iterators expose `reference` and `pointer` types that can be converted to 1016 /// `ValueT &` and `ValueT *` respectively. It doesn't support more 1017 /// interesting/customized pointer or reference types. 1018 /// 1019 /// Currently this only supports forward or higher iterator categories as 1020 /// inputs and always exposes a forward iterator interface. 1021 template <typename ValueT, typename... IterTs> 1022 class concat_iterator 1023 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>, 1024 std::forward_iterator_tag, ValueT> { 1025 using BaseT = typename concat_iterator::iterator_facade_base; 1026 1027 static constexpr bool ReturnsByValue = 1028 !(std::is_reference_v<decltype(*std::declval<IterTs>())> && ...); 1029 1030 using reference_type = 1031 typename std::conditional_t<ReturnsByValue, ValueT, ValueT &>; 1032 1033 using handle_type = 1034 typename std::conditional_t<ReturnsByValue, std::optional<ValueT>, 1035 ValueT *>; 1036 1037 /// We store both the current and end iterators for each concatenated 1038 /// sequence in a tuple of pairs. 1039 /// 1040 /// Note that something like iterator_range seems nice at first here, but the 1041 /// range properties are of little benefit and end up getting in the way 1042 /// because we need to do mutation on the current iterators. 1043 std::tuple<IterTs...> Begins; 1044 std::tuple<IterTs...> Ends; 1045 1046 /// Attempts to increment a specific iterator. 1047 /// 1048 /// Returns true if it was able to increment the iterator. Returns false if 1049 /// the iterator is already at the end iterator. 1050 template <size_t Index> bool incrementHelper() { 1051 auto &Begin = std::get<Index>(Begins); 1052 auto &End = std::get<Index>(Ends); 1053 if (Begin == End) 1054 return false; 1055 1056 ++Begin; 1057 return true; 1058 } 1059 1060 /// Increments the first non-end iterator. 1061 /// 1062 /// It is an error to call this with all iterators at the end. 1063 template <size_t... Ns> void increment(std::index_sequence<Ns...>) { 1064 // Build a sequence of functions to increment each iterator if possible. 1065 bool (concat_iterator::*IncrementHelperFns[])() = { 1066 &concat_iterator::incrementHelper<Ns>...}; 1067 1068 // Loop over them, and stop as soon as we succeed at incrementing one. 1069 for (auto &IncrementHelperFn : IncrementHelperFns) 1070 if ((this->*IncrementHelperFn)()) 1071 return; 1072 1073 llvm_unreachable("Attempted to increment an end concat iterator!"); 1074 } 1075 1076 /// Returns null if the specified iterator is at the end. Otherwise, 1077 /// dereferences the iterator and returns the address of the resulting 1078 /// reference. 1079 template <size_t Index> handle_type getHelper() const { 1080 auto &Begin = std::get<Index>(Begins); 1081 auto &End = std::get<Index>(Ends); 1082 if (Begin == End) 1083 return {}; 1084 1085 if constexpr (ReturnsByValue) 1086 return *Begin; 1087 else 1088 return &*Begin; 1089 } 1090 1091 /// Finds the first non-end iterator, dereferences, and returns the resulting 1092 /// reference. 1093 /// 1094 /// It is an error to call this with all iterators at the end. 1095 template <size_t... Ns> reference_type get(std::index_sequence<Ns...>) const { 1096 // Build a sequence of functions to get from iterator if possible. 1097 handle_type (concat_iterator::*GetHelperFns[])() 1098 const = {&concat_iterator::getHelper<Ns>...}; 1099 1100 // Loop over them, and return the first result we find. 1101 for (auto &GetHelperFn : GetHelperFns) 1102 if (auto P = (this->*GetHelperFn)()) 1103 return *P; 1104 1105 llvm_unreachable("Attempted to get a pointer from an end concat iterator!"); 1106 } 1107 1108 public: 1109 /// Constructs an iterator from a sequence of ranges. 1110 /// 1111 /// We need the full range to know how to switch between each of the 1112 /// iterators. 1113 template <typename... RangeTs> 1114 explicit concat_iterator(RangeTs &&... Ranges) 1115 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {} 1116 1117 using BaseT::operator++; 1118 1119 concat_iterator &operator++() { 1120 increment(std::index_sequence_for<IterTs...>()); 1121 return *this; 1122 } 1123 1124 reference_type operator*() const { 1125 return get(std::index_sequence_for<IterTs...>()); 1126 } 1127 1128 bool operator==(const concat_iterator &RHS) const { 1129 return Begins == RHS.Begins && Ends == RHS.Ends; 1130 } 1131 }; 1132 1133 namespace detail { 1134 1135 /// Helper to store a sequence of ranges being concatenated and access them. 1136 /// 1137 /// This is designed to facilitate providing actual storage when temporaries 1138 /// are passed into the constructor such that we can use it as part of range 1139 /// based for loops. 1140 template <typename ValueT, typename... RangeTs> class concat_range { 1141 public: 1142 using iterator = 1143 concat_iterator<ValueT, 1144 decltype(std::begin(std::declval<RangeTs &>()))...>; 1145 1146 private: 1147 std::tuple<RangeTs...> Ranges; 1148 1149 template <size_t... Ns> 1150 iterator begin_impl(std::index_sequence<Ns...>) { 1151 return iterator(std::get<Ns>(Ranges)...); 1152 } 1153 template <size_t... Ns> 1154 iterator begin_impl(std::index_sequence<Ns...>) const { 1155 return iterator(std::get<Ns>(Ranges)...); 1156 } 1157 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) { 1158 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1159 std::end(std::get<Ns>(Ranges)))...); 1160 } 1161 template <size_t... Ns> iterator end_impl(std::index_sequence<Ns...>) const { 1162 return iterator(make_range(std::end(std::get<Ns>(Ranges)), 1163 std::end(std::get<Ns>(Ranges)))...); 1164 } 1165 1166 public: 1167 concat_range(RangeTs &&... Ranges) 1168 : Ranges(std::forward<RangeTs>(Ranges)...) {} 1169 1170 iterator begin() { 1171 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1172 } 1173 iterator begin() const { 1174 return begin_impl(std::index_sequence_for<RangeTs...>{}); 1175 } 1176 iterator end() { 1177 return end_impl(std::index_sequence_for<RangeTs...>{}); 1178 } 1179 iterator end() const { 1180 return end_impl(std::index_sequence_for<RangeTs...>{}); 1181 } 1182 }; 1183 1184 } // end namespace detail 1185 1186 /// Returns a concatenated range across two or more ranges. Does not modify the 1187 /// ranges. 1188 /// 1189 /// The desired value type must be explicitly specified. 1190 template <typename ValueT, typename... RangeTs> 1191 [[nodiscard]] detail::concat_range<ValueT, RangeTs...> 1192 concat(RangeTs &&...Ranges) { 1193 static_assert(sizeof...(RangeTs) > 1, 1194 "Need more than one range to concatenate!"); 1195 return detail::concat_range<ValueT, RangeTs...>( 1196 std::forward<RangeTs>(Ranges)...); 1197 } 1198 1199 /// A utility class used to implement an iterator that contains some base object 1200 /// and an index. The iterator moves the index but keeps the base constant. 1201 template <typename DerivedT, typename BaseT, typename T, 1202 typename PointerT = T *, typename ReferenceT = T &> 1203 class indexed_accessor_iterator 1204 : public llvm::iterator_facade_base<DerivedT, 1205 std::random_access_iterator_tag, T, 1206 std::ptrdiff_t, PointerT, ReferenceT> { 1207 public: 1208 ptrdiff_t operator-(const indexed_accessor_iterator &rhs) const { 1209 assert(base == rhs.base && "incompatible iterators"); 1210 return index - rhs.index; 1211 } 1212 bool operator==(const indexed_accessor_iterator &rhs) const { 1213 assert(base == rhs.base && "incompatible iterators"); 1214 return index == rhs.index; 1215 } 1216 bool operator<(const indexed_accessor_iterator &rhs) const { 1217 assert(base == rhs.base && "incompatible iterators"); 1218 return index < rhs.index; 1219 } 1220 1221 DerivedT &operator+=(ptrdiff_t offset) { 1222 this->index += offset; 1223 return static_cast<DerivedT &>(*this); 1224 } 1225 DerivedT &operator-=(ptrdiff_t offset) { 1226 this->index -= offset; 1227 return static_cast<DerivedT &>(*this); 1228 } 1229 1230 /// Returns the current index of the iterator. 1231 ptrdiff_t getIndex() const { return index; } 1232 1233 /// Returns the current base of the iterator. 1234 const BaseT &getBase() const { return base; } 1235 1236 protected: 1237 indexed_accessor_iterator(BaseT base, ptrdiff_t index) 1238 : base(base), index(index) {} 1239 BaseT base; 1240 ptrdiff_t index; 1241 }; 1242 1243 namespace detail { 1244 /// The class represents the base of a range of indexed_accessor_iterators. It 1245 /// provides support for many different range functionalities, e.g. 1246 /// drop_front/slice/etc.. Derived range classes must implement the following 1247 /// static methods: 1248 /// * ReferenceT dereference_iterator(const BaseT &base, ptrdiff_t index) 1249 /// - Dereference an iterator pointing to the base object at the given 1250 /// index. 1251 /// * BaseT offset_base(const BaseT &base, ptrdiff_t index) 1252 /// - Return a new base that is offset from the provide base by 'index' 1253 /// elements. 1254 template <typename DerivedT, typename BaseT, typename T, 1255 typename PointerT = T *, typename ReferenceT = T &> 1256 class indexed_accessor_range_base { 1257 public: 1258 using RangeBaseT = indexed_accessor_range_base; 1259 1260 /// An iterator element of this range. 1261 class iterator : public indexed_accessor_iterator<iterator, BaseT, T, 1262 PointerT, ReferenceT> { 1263 public: 1264 // Index into this iterator, invoking a static method on the derived type. 1265 ReferenceT operator*() const { 1266 return DerivedT::dereference_iterator(this->getBase(), this->getIndex()); 1267 } 1268 1269 private: 1270 iterator(BaseT owner, ptrdiff_t curIndex) 1271 : iterator::indexed_accessor_iterator(owner, curIndex) {} 1272 1273 /// Allow access to the constructor. 1274 friend indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1275 ReferenceT>; 1276 }; 1277 1278 indexed_accessor_range_base(iterator begin, iterator end) 1279 : base(offset_base(begin.getBase(), begin.getIndex())), 1280 count(end.getIndex() - begin.getIndex()) {} 1281 indexed_accessor_range_base(const iterator_range<iterator> &range) 1282 : indexed_accessor_range_base(range.begin(), range.end()) {} 1283 indexed_accessor_range_base(BaseT base, ptrdiff_t count) 1284 : base(base), count(count) {} 1285 1286 iterator begin() const { return iterator(base, 0); } 1287 iterator end() const { return iterator(base, count); } 1288 ReferenceT operator[](size_t Index) const { 1289 assert(Index < size() && "invalid index for value range"); 1290 return DerivedT::dereference_iterator(base, static_cast<ptrdiff_t>(Index)); 1291 } 1292 ReferenceT front() const { 1293 assert(!empty() && "expected non-empty range"); 1294 return (*this)[0]; 1295 } 1296 ReferenceT back() const { 1297 assert(!empty() && "expected non-empty range"); 1298 return (*this)[size() - 1]; 1299 } 1300 1301 /// Return the size of this range. 1302 size_t size() const { return count; } 1303 1304 /// Return if the range is empty. 1305 bool empty() const { return size() == 0; } 1306 1307 /// Drop the first N elements, and keep M elements. 1308 DerivedT slice(size_t n, size_t m) const { 1309 assert(n + m <= size() && "invalid size specifiers"); 1310 return DerivedT(offset_base(base, n), m); 1311 } 1312 1313 /// Drop the first n elements. 1314 DerivedT drop_front(size_t n = 1) const { 1315 assert(size() >= n && "Dropping more elements than exist"); 1316 return slice(n, size() - n); 1317 } 1318 /// Drop the last n elements. 1319 DerivedT drop_back(size_t n = 1) const { 1320 assert(size() >= n && "Dropping more elements than exist"); 1321 return DerivedT(base, size() - n); 1322 } 1323 1324 /// Take the first n elements. 1325 DerivedT take_front(size_t n = 1) const { 1326 return n < size() ? drop_back(size() - n) 1327 : static_cast<const DerivedT &>(*this); 1328 } 1329 1330 /// Take the last n elements. 1331 DerivedT take_back(size_t n = 1) const { 1332 return n < size() ? drop_front(size() - n) 1333 : static_cast<const DerivedT &>(*this); 1334 } 1335 1336 /// Allow conversion to any type accepting an iterator_range. 1337 template <typename RangeT, typename = std::enable_if_t<std::is_constructible< 1338 RangeT, iterator_range<iterator>>::value>> 1339 operator RangeT() const { 1340 return RangeT(iterator_range<iterator>(*this)); 1341 } 1342 1343 /// Returns the base of this range. 1344 const BaseT &getBase() const { return base; } 1345 1346 private: 1347 /// Offset the given base by the given amount. 1348 static BaseT offset_base(const BaseT &base, size_t n) { 1349 return n == 0 ? base : DerivedT::offset_base(base, n); 1350 } 1351 1352 protected: 1353 indexed_accessor_range_base(const indexed_accessor_range_base &) = default; 1354 indexed_accessor_range_base(indexed_accessor_range_base &&) = default; 1355 indexed_accessor_range_base & 1356 operator=(const indexed_accessor_range_base &) = default; 1357 1358 /// The base that owns the provided range of values. 1359 BaseT base; 1360 /// The size from the owning range. 1361 ptrdiff_t count; 1362 }; 1363 /// Compare this range with another. 1364 /// FIXME: Make me a member function instead of friend when it works in C++20. 1365 template <typename OtherT, typename DerivedT, typename BaseT, typename T, 1366 typename PointerT, typename ReferenceT> 1367 bool operator==(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1368 ReferenceT> &lhs, 1369 const OtherT &rhs) { 1370 return std::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); 1371 } 1372 1373 template <typename OtherT, typename DerivedT, typename BaseT, typename T, 1374 typename PointerT, typename ReferenceT> 1375 bool operator!=(const indexed_accessor_range_base<DerivedT, BaseT, T, PointerT, 1376 ReferenceT> &lhs, 1377 const OtherT &rhs) { 1378 return !(lhs == rhs); 1379 } 1380 } // end namespace detail 1381 1382 /// This class provides an implementation of a range of 1383 /// indexed_accessor_iterators where the base is not indexable. Ranges with 1384 /// bases that are offsetable should derive from indexed_accessor_range_base 1385 /// instead. Derived range classes are expected to implement the following 1386 /// static method: 1387 /// * ReferenceT dereference(const BaseT &base, ptrdiff_t index) 1388 /// - Dereference an iterator pointing to a parent base at the given index. 1389 template <typename DerivedT, typename BaseT, typename T, 1390 typename PointerT = T *, typename ReferenceT = T &> 1391 class indexed_accessor_range 1392 : public detail::indexed_accessor_range_base< 1393 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT> { 1394 public: 1395 indexed_accessor_range(BaseT base, ptrdiff_t startIndex, ptrdiff_t count) 1396 : detail::indexed_accessor_range_base< 1397 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, ReferenceT>( 1398 std::make_pair(base, startIndex), count) {} 1399 using detail::indexed_accessor_range_base< 1400 DerivedT, std::pair<BaseT, ptrdiff_t>, T, PointerT, 1401 ReferenceT>::indexed_accessor_range_base; 1402 1403 /// Returns the current base of the range. 1404 const BaseT &getBase() const { return this->base.first; } 1405 1406 /// Returns the current start index of the range. 1407 ptrdiff_t getStartIndex() const { return this->base.second; } 1408 1409 /// See `detail::indexed_accessor_range_base` for details. 1410 static std::pair<BaseT, ptrdiff_t> 1411 offset_base(const std::pair<BaseT, ptrdiff_t> &base, ptrdiff_t index) { 1412 // We encode the internal base as a pair of the derived base and a start 1413 // index into the derived base. 1414 return std::make_pair(base.first, base.second + index); 1415 } 1416 /// See `detail::indexed_accessor_range_base` for details. 1417 static ReferenceT 1418 dereference_iterator(const std::pair<BaseT, ptrdiff_t> &base, 1419 ptrdiff_t index) { 1420 return DerivedT::dereference(base.first, base.second + index); 1421 } 1422 }; 1423 1424 namespace detail { 1425 /// Return a reference to the first or second member of a reference. Otherwise, 1426 /// return a copy of the member of a temporary. 1427 /// 1428 /// When passing a range whose iterators return values instead of references, 1429 /// the reference must be dropped from `decltype((elt.first))`, which will 1430 /// always be a reference, to avoid returning a reference to a temporary. 1431 template <typename EltTy, typename FirstTy> class first_or_second_type { 1432 public: 1433 using type = std::conditional_t<std::is_reference<EltTy>::value, FirstTy, 1434 std::remove_reference_t<FirstTy>>; 1435 }; 1436 } // end namespace detail 1437 1438 /// Given a container of pairs, return a range over the first elements. 1439 template <typename ContainerTy> auto make_first_range(ContainerTy &&c) { 1440 using EltTy = decltype((*std::begin(c))); 1441 return llvm::map_range(std::forward<ContainerTy>(c), 1442 [](EltTy elt) -> typename detail::first_or_second_type< 1443 EltTy, decltype((elt.first))>::type { 1444 return elt.first; 1445 }); 1446 } 1447 1448 /// Given a container of pairs, return a range over the second elements. 1449 template <typename ContainerTy> auto make_second_range(ContainerTy &&c) { 1450 using EltTy = decltype((*std::begin(c))); 1451 return llvm::map_range( 1452 std::forward<ContainerTy>(c), 1453 [](EltTy elt) -> 1454 typename detail::first_or_second_type<EltTy, 1455 decltype((elt.second))>::type { 1456 return elt.second; 1457 }); 1458 } 1459 1460 //===----------------------------------------------------------------------===// 1461 // Extra additions to <utility> 1462 //===----------------------------------------------------------------------===// 1463 1464 /// Function object to check whether the first component of a container 1465 /// supported by std::get (like std::pair and std::tuple) compares less than the 1466 /// first component of another container. 1467 struct less_first { 1468 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1469 return std::less<>()(std::get<0>(lhs), std::get<0>(rhs)); 1470 } 1471 }; 1472 1473 /// Function object to check whether the second component of a container 1474 /// supported by std::get (like std::pair and std::tuple) compares less than the 1475 /// second component of another container. 1476 struct less_second { 1477 template <typename T> bool operator()(const T &lhs, const T &rhs) const { 1478 return std::less<>()(std::get<1>(lhs), std::get<1>(rhs)); 1479 } 1480 }; 1481 1482 /// \brief Function object to apply a binary function to the first component of 1483 /// a std::pair. 1484 template<typename FuncTy> 1485 struct on_first { 1486 FuncTy func; 1487 1488 template <typename T> 1489 decltype(auto) operator()(const T &lhs, const T &rhs) const { 1490 return func(lhs.first, rhs.first); 1491 } 1492 }; 1493 1494 /// Utility type to build an inheritance chain that makes it easy to rank 1495 /// overload candidates. 1496 template <int N> struct rank : rank<N - 1> {}; 1497 template <> struct rank<0> {}; 1498 1499 namespace detail { 1500 template <typename... Ts> struct Visitor; 1501 1502 template <typename HeadT, typename... TailTs> 1503 struct Visitor<HeadT, TailTs...> : remove_cvref_t<HeadT>, Visitor<TailTs...> { 1504 explicit constexpr Visitor(HeadT &&Head, TailTs &&...Tail) 1505 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)), 1506 Visitor<TailTs...>(std::forward<TailTs>(Tail)...) {} 1507 using remove_cvref_t<HeadT>::operator(); 1508 using Visitor<TailTs...>::operator(); 1509 }; 1510 1511 template <typename HeadT> struct Visitor<HeadT> : remove_cvref_t<HeadT> { 1512 explicit constexpr Visitor(HeadT &&Head) 1513 : remove_cvref_t<HeadT>(std::forward<HeadT>(Head)) {} 1514 using remove_cvref_t<HeadT>::operator(); 1515 }; 1516 } // namespace detail 1517 1518 /// Returns an opaquely-typed Callable object whose operator() overload set is 1519 /// the sum of the operator() overload sets of each CallableT in CallableTs. 1520 /// 1521 /// The type of the returned object derives from each CallableT in CallableTs. 1522 /// The returned object is constructed by invoking the appropriate copy or move 1523 /// constructor of each CallableT, as selected by overload resolution on the 1524 /// corresponding argument to makeVisitor. 1525 /// 1526 /// Example: 1527 /// 1528 /// \code 1529 /// auto visitor = makeVisitor([](auto) { return "unhandled type"; }, 1530 /// [](int i) { return "int"; }, 1531 /// [](std::string s) { return "str"; }); 1532 /// auto a = visitor(42); // `a` is now "int". 1533 /// auto b = visitor("foo"); // `b` is now "str". 1534 /// auto c = visitor(3.14f); // `c` is now "unhandled type". 1535 /// \endcode 1536 /// 1537 /// Example of making a visitor with a lambda which captures a move-only type: 1538 /// 1539 /// \code 1540 /// std::unique_ptr<FooHandler> FH = /* ... */; 1541 /// auto visitor = makeVisitor( 1542 /// [FH{std::move(FH)}](Foo F) { return FH->handle(F); }, 1543 /// [](int i) { return i; }, 1544 /// [](std::string s) { return atoi(s); }); 1545 /// \endcode 1546 template <typename... CallableTs> 1547 constexpr decltype(auto) makeVisitor(CallableTs &&...Callables) { 1548 return detail::Visitor<CallableTs...>(std::forward<CallableTs>(Callables)...); 1549 } 1550 1551 //===----------------------------------------------------------------------===// 1552 // Extra additions to <algorithm> 1553 //===----------------------------------------------------------------------===// 1554 1555 // We have a copy here so that LLVM behaves the same when using different 1556 // standard libraries. 1557 template <class Iterator, class RNG> 1558 void shuffle(Iterator first, Iterator last, RNG &&g) { 1559 // It would be better to use a std::uniform_int_distribution, 1560 // but that would be stdlib dependent. 1561 typedef 1562 typename std::iterator_traits<Iterator>::difference_type difference_type; 1563 for (auto size = last - first; size > 1; ++first, (void)--size) { 1564 difference_type offset = g() % size; 1565 // Avoid self-assignment due to incorrect assertions in libstdc++ 1566 // containers (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85828). 1567 if (offset != difference_type(0)) 1568 std::iter_swap(first, first + offset); 1569 } 1570 } 1571 1572 /// Adapt std::less<T> for array_pod_sort. 1573 template<typename T> 1574 inline int array_pod_sort_comparator(const void *P1, const void *P2) { 1575 if (std::less<T>()(*reinterpret_cast<const T*>(P1), 1576 *reinterpret_cast<const T*>(P2))) 1577 return -1; 1578 if (std::less<T>()(*reinterpret_cast<const T*>(P2), 1579 *reinterpret_cast<const T*>(P1))) 1580 return 1; 1581 return 0; 1582 } 1583 1584 /// get_array_pod_sort_comparator - This is an internal helper function used to 1585 /// get type deduction of T right. 1586 template<typename T> 1587 inline int (*get_array_pod_sort_comparator(const T &)) 1588 (const void*, const void*) { 1589 return array_pod_sort_comparator<T>; 1590 } 1591 1592 #ifdef EXPENSIVE_CHECKS 1593 namespace detail { 1594 1595 inline unsigned presortShuffleEntropy() { 1596 static unsigned Result(std::random_device{}()); 1597 return Result; 1598 } 1599 1600 template <class IteratorTy> 1601 inline void presortShuffle(IteratorTy Start, IteratorTy End) { 1602 std::mt19937 Generator(presortShuffleEntropy()); 1603 llvm::shuffle(Start, End, Generator); 1604 } 1605 1606 } // end namespace detail 1607 #endif 1608 1609 /// array_pod_sort - This sorts an array with the specified start and end 1610 /// extent. This is just like std::sort, except that it calls qsort instead of 1611 /// using an inlined template. qsort is slightly slower than std::sort, but 1612 /// most sorts are not performance critical in LLVM and std::sort has to be 1613 /// template instantiated for each type, leading to significant measured code 1614 /// bloat. This function should generally be used instead of std::sort where 1615 /// possible. 1616 /// 1617 /// This function assumes that you have simple POD-like types that can be 1618 /// compared with std::less and can be moved with memcpy. If this isn't true, 1619 /// you should use std::sort. 1620 /// 1621 /// NOTE: If qsort_r were portable, we could allow a custom comparator and 1622 /// default to std::less. 1623 template<class IteratorTy> 1624 inline void array_pod_sort(IteratorTy Start, IteratorTy End) { 1625 // Don't inefficiently call qsort with one element or trigger undefined 1626 // behavior with an empty sequence. 1627 auto NElts = End - Start; 1628 if (NElts <= 1) return; 1629 #ifdef EXPENSIVE_CHECKS 1630 detail::presortShuffle<IteratorTy>(Start, End); 1631 #endif 1632 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start)); 1633 } 1634 1635 template <class IteratorTy> 1636 inline void array_pod_sort( 1637 IteratorTy Start, IteratorTy End, 1638 int (*Compare)( 1639 const typename std::iterator_traits<IteratorTy>::value_type *, 1640 const typename std::iterator_traits<IteratorTy>::value_type *)) { 1641 // Don't inefficiently call qsort with one element or trigger undefined 1642 // behavior with an empty sequence. 1643 auto NElts = End - Start; 1644 if (NElts <= 1) return; 1645 #ifdef EXPENSIVE_CHECKS 1646 detail::presortShuffle<IteratorTy>(Start, End); 1647 #endif 1648 qsort(&*Start, NElts, sizeof(*Start), 1649 reinterpret_cast<int (*)(const void *, const void *)>(Compare)); 1650 } 1651 1652 namespace detail { 1653 template <typename T> 1654 // We can use qsort if the iterator type is a pointer and the underlying value 1655 // is trivially copyable. 1656 using sort_trivially_copyable = std::conjunction< 1657 std::is_pointer<T>, 1658 std::is_trivially_copyable<typename std::iterator_traits<T>::value_type>>; 1659 } // namespace detail 1660 1661 // Provide wrappers to std::sort which shuffle the elements before sorting 1662 // to help uncover non-deterministic behavior (PR35135). 1663 template <typename IteratorTy> 1664 inline void sort(IteratorTy Start, IteratorTy End) { 1665 if constexpr (detail::sort_trivially_copyable<IteratorTy>::value) { 1666 // Forward trivially copyable types to array_pod_sort. This avoids a large 1667 // amount of code bloat for a minor performance hit. 1668 array_pod_sort(Start, End); 1669 } else { 1670 #ifdef EXPENSIVE_CHECKS 1671 detail::presortShuffle<IteratorTy>(Start, End); 1672 #endif 1673 std::sort(Start, End); 1674 } 1675 } 1676 1677 template <typename Container> inline void sort(Container &&C) { 1678 llvm::sort(adl_begin(C), adl_end(C)); 1679 } 1680 1681 template <typename IteratorTy, typename Compare> 1682 inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) { 1683 #ifdef EXPENSIVE_CHECKS 1684 detail::presortShuffle<IteratorTy>(Start, End); 1685 #endif 1686 std::sort(Start, End, Comp); 1687 } 1688 1689 template <typename Container, typename Compare> 1690 inline void sort(Container &&C, Compare Comp) { 1691 llvm::sort(adl_begin(C), adl_end(C), Comp); 1692 } 1693 1694 /// Get the size of a range. This is a wrapper function around std::distance 1695 /// which is only enabled when the operation is O(1). 1696 template <typename R> 1697 auto size(R &&Range, 1698 std::enable_if_t< 1699 std::is_base_of<std::random_access_iterator_tag, 1700 typename std::iterator_traits<decltype( 1701 Range.begin())>::iterator_category>::value, 1702 void> * = nullptr) { 1703 return std::distance(Range.begin(), Range.end()); 1704 } 1705 1706 namespace detail { 1707 template <typename Range> 1708 using check_has_free_function_size = 1709 decltype(adl_size(std::declval<Range &>())); 1710 1711 template <typename Range> 1712 static constexpr bool HasFreeFunctionSize = 1713 is_detected<check_has_free_function_size, Range>::value; 1714 } // namespace detail 1715 1716 /// Returns the size of the \p Range, i.e., the number of elements. This 1717 /// implementation takes inspiration from `std::ranges::size` from C++20 and 1718 /// delegates the size check to `adl_size` or `std::distance`, in this order of 1719 /// preference. Unlike `llvm::size`, this function does *not* guarantee O(1) 1720 /// running time, and is intended to be used in generic code that does not know 1721 /// the exact range type. 1722 template <typename R> constexpr size_t range_size(R &&Range) { 1723 if constexpr (detail::HasFreeFunctionSize<R>) 1724 return adl_size(Range); 1725 else 1726 return static_cast<size_t>(std::distance(adl_begin(Range), adl_end(Range))); 1727 } 1728 1729 /// Provide wrappers to std::for_each which take ranges instead of having to 1730 /// pass begin/end explicitly. 1731 template <typename R, typename UnaryFunction> 1732 UnaryFunction for_each(R &&Range, UnaryFunction F) { 1733 return std::for_each(adl_begin(Range), adl_end(Range), F); 1734 } 1735 1736 /// Provide wrappers to std::all_of which take ranges instead of having to pass 1737 /// begin/end explicitly. 1738 template <typename R, typename UnaryPredicate> 1739 bool all_of(R &&Range, UnaryPredicate P) { 1740 return std::all_of(adl_begin(Range), adl_end(Range), P); 1741 } 1742 1743 /// Provide wrappers to std::any_of which take ranges instead of having to pass 1744 /// begin/end explicitly. 1745 template <typename R, typename UnaryPredicate> 1746 bool any_of(R &&Range, UnaryPredicate P) { 1747 return std::any_of(adl_begin(Range), adl_end(Range), P); 1748 } 1749 1750 /// Provide wrappers to std::none_of which take ranges instead of having to pass 1751 /// begin/end explicitly. 1752 template <typename R, typename UnaryPredicate> 1753 bool none_of(R &&Range, UnaryPredicate P) { 1754 return std::none_of(adl_begin(Range), adl_end(Range), P); 1755 } 1756 1757 /// Provide wrappers to std::find which take ranges instead of having to pass 1758 /// begin/end explicitly. 1759 template <typename R, typename T> auto find(R &&Range, const T &Val) { 1760 return std::find(adl_begin(Range), adl_end(Range), Val); 1761 } 1762 1763 /// Provide wrappers to std::find_if which take ranges instead of having to pass 1764 /// begin/end explicitly. 1765 template <typename R, typename UnaryPredicate> 1766 auto find_if(R &&Range, UnaryPredicate P) { 1767 return std::find_if(adl_begin(Range), adl_end(Range), P); 1768 } 1769 1770 template <typename R, typename UnaryPredicate> 1771 auto find_if_not(R &&Range, UnaryPredicate P) { 1772 return std::find_if_not(adl_begin(Range), adl_end(Range), P); 1773 } 1774 1775 /// Provide wrappers to std::remove_if which take ranges instead of having to 1776 /// pass begin/end explicitly. 1777 template <typename R, typename UnaryPredicate> 1778 auto remove_if(R &&Range, UnaryPredicate P) { 1779 return std::remove_if(adl_begin(Range), adl_end(Range), P); 1780 } 1781 1782 /// Provide wrappers to std::copy_if which take ranges instead of having to 1783 /// pass begin/end explicitly. 1784 template <typename R, typename OutputIt, typename UnaryPredicate> 1785 OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) { 1786 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P); 1787 } 1788 1789 /// Return the single value in \p Range that satisfies 1790 /// \p P(<member of \p Range> *, AllowRepeats)->T * returning nullptr 1791 /// when no values or multiple values were found. 1792 /// When \p AllowRepeats is true, multiple values that compare equal 1793 /// are allowed. 1794 template <typename T, typename R, typename Predicate> 1795 T *find_singleton(R &&Range, Predicate P, bool AllowRepeats = false) { 1796 T *RC = nullptr; 1797 for (auto &&A : Range) { 1798 if (T *PRC = P(A, AllowRepeats)) { 1799 if (RC) { 1800 if (!AllowRepeats || PRC != RC) 1801 return nullptr; 1802 } else 1803 RC = PRC; 1804 } 1805 } 1806 return RC; 1807 } 1808 1809 /// Return a pair consisting of the single value in \p Range that satisfies 1810 /// \p P(<member of \p Range> *, AllowRepeats)->std::pair<T*, bool> returning 1811 /// nullptr when no values or multiple values were found, and a bool indicating 1812 /// whether multiple values were found to cause the nullptr. 1813 /// When \p AllowRepeats is true, multiple values that compare equal are 1814 /// allowed. The predicate \p P returns a pair<T *, bool> where T is the 1815 /// singleton while the bool indicates whether multiples have already been 1816 /// found. It is expected that first will be nullptr when second is true. 1817 /// This allows using find_singleton_nested within the predicate \P. 1818 template <typename T, typename R, typename Predicate> 1819 std::pair<T *, bool> find_singleton_nested(R &&Range, Predicate P, 1820 bool AllowRepeats = false) { 1821 T *RC = nullptr; 1822 for (auto *A : Range) { 1823 std::pair<T *, bool> PRC = P(A, AllowRepeats); 1824 if (PRC.second) { 1825 assert(PRC.first == nullptr && 1826 "Inconsistent return values in find_singleton_nested."); 1827 return PRC; 1828 } 1829 if (PRC.first) { 1830 if (RC) { 1831 if (!AllowRepeats || PRC.first != RC) 1832 return {nullptr, true}; 1833 } else 1834 RC = PRC.first; 1835 } 1836 } 1837 return {RC, false}; 1838 } 1839 1840 template <typename R, typename OutputIt> 1841 OutputIt copy(R &&Range, OutputIt Out) { 1842 return std::copy(adl_begin(Range), adl_end(Range), Out); 1843 } 1844 1845 /// Provide wrappers to std::replace_copy_if which take ranges instead of having 1846 /// to pass begin/end explicitly. 1847 template <typename R, typename OutputIt, typename UnaryPredicate, typename T> 1848 OutputIt replace_copy_if(R &&Range, OutputIt Out, UnaryPredicate P, 1849 const T &NewValue) { 1850 return std::replace_copy_if(adl_begin(Range), adl_end(Range), Out, P, 1851 NewValue); 1852 } 1853 1854 /// Provide wrappers to std::replace_copy which take ranges instead of having to 1855 /// pass begin/end explicitly. 1856 template <typename R, typename OutputIt, typename T> 1857 OutputIt replace_copy(R &&Range, OutputIt Out, const T &OldValue, 1858 const T &NewValue) { 1859 return std::replace_copy(adl_begin(Range), adl_end(Range), Out, OldValue, 1860 NewValue); 1861 } 1862 1863 /// Provide wrappers to std::replace which take ranges instead of having to pass 1864 /// begin/end explicitly. 1865 template <typename R, typename T> 1866 void replace(R &&Range, const T &OldValue, const T &NewValue) { 1867 std::replace(adl_begin(Range), adl_end(Range), OldValue, NewValue); 1868 } 1869 1870 /// Provide wrappers to std::move which take ranges instead of having to 1871 /// pass begin/end explicitly. 1872 template <typename R, typename OutputIt> 1873 OutputIt move(R &&Range, OutputIt Out) { 1874 return std::move(adl_begin(Range), adl_end(Range), Out); 1875 } 1876 1877 namespace detail { 1878 template <typename Range, typename Element> 1879 using check_has_member_contains_t = 1880 decltype(std::declval<Range &>().contains(std::declval<const Element &>())); 1881 1882 template <typename Range, typename Element> 1883 static constexpr bool HasMemberContains = 1884 is_detected<check_has_member_contains_t, Range, Element>::value; 1885 1886 template <typename Range, typename Element> 1887 using check_has_member_find_t = 1888 decltype(std::declval<Range &>().find(std::declval<const Element &>()) != 1889 std::declval<Range &>().end()); 1890 1891 template <typename Range, typename Element> 1892 static constexpr bool HasMemberFind = 1893 is_detected<check_has_member_find_t, Range, Element>::value; 1894 1895 } // namespace detail 1896 1897 /// Returns true if \p Element is found in \p Range. Delegates the check to 1898 /// either `.contains(Element)`, `.find(Element)`, or `std::find`, in this 1899 /// order of preference. This is intended as the canonical way to check if an 1900 /// element exists in a range in generic code or range type that does not 1901 /// expose a `.contains(Element)` member. 1902 template <typename R, typename E> 1903 bool is_contained(R &&Range, const E &Element) { 1904 if constexpr (detail::HasMemberContains<R, E>) 1905 return Range.contains(Element); 1906 else if constexpr (detail::HasMemberFind<R, E>) 1907 return Range.find(Element) != Range.end(); 1908 else 1909 return std::find(adl_begin(Range), adl_end(Range), Element) != 1910 adl_end(Range); 1911 } 1912 1913 /// Returns true iff \p Element exists in \p Set. This overload takes \p Set as 1914 /// an initializer list and is `constexpr`-friendly. 1915 template <typename T, typename E> 1916 constexpr bool is_contained(std::initializer_list<T> Set, const E &Element) { 1917 // TODO: Use std::find when we switch to C++20. 1918 for (const T &V : Set) 1919 if (V == Element) 1920 return true; 1921 return false; 1922 } 1923 1924 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1925 /// are sorted with respect to a comparator \p C. 1926 template <typename R, typename Compare> bool is_sorted(R &&Range, Compare C) { 1927 return std::is_sorted(adl_begin(Range), adl_end(Range), C); 1928 } 1929 1930 /// Wrapper function around std::is_sorted to check if elements in a range \p R 1931 /// are sorted in non-descending order. 1932 template <typename R> bool is_sorted(R &&Range) { 1933 return std::is_sorted(adl_begin(Range), adl_end(Range)); 1934 } 1935 1936 /// Wrapper function around std::count to count the number of times an element 1937 /// \p Element occurs in the given range \p Range. 1938 template <typename R, typename E> auto count(R &&Range, const E &Element) { 1939 return std::count(adl_begin(Range), adl_end(Range), Element); 1940 } 1941 1942 /// Wrapper function around std::count_if to count the number of times an 1943 /// element satisfying a given predicate occurs in a range. 1944 template <typename R, typename UnaryPredicate> 1945 auto count_if(R &&Range, UnaryPredicate P) { 1946 return std::count_if(adl_begin(Range), adl_end(Range), P); 1947 } 1948 1949 /// Wrapper function around std::transform to apply a function to a range and 1950 /// store the result elsewhere. 1951 template <typename R, typename OutputIt, typename UnaryFunction> 1952 OutputIt transform(R &&Range, OutputIt d_first, UnaryFunction F) { 1953 return std::transform(adl_begin(Range), adl_end(Range), d_first, F); 1954 } 1955 1956 /// Provide wrappers to std::partition which take ranges instead of having to 1957 /// pass begin/end explicitly. 1958 template <typename R, typename UnaryPredicate> 1959 auto partition(R &&Range, UnaryPredicate P) { 1960 return std::partition(adl_begin(Range), adl_end(Range), P); 1961 } 1962 1963 /// Provide wrappers to std::binary_search which take ranges instead of having 1964 /// to pass begin/end explicitly. 1965 template <typename R, typename T> auto binary_search(R &&Range, T &&Value) { 1966 return std::binary_search(adl_begin(Range), adl_end(Range), 1967 std::forward<T>(Value)); 1968 } 1969 1970 template <typename R, typename T, typename Compare> 1971 auto binary_search(R &&Range, T &&Value, Compare C) { 1972 return std::binary_search(adl_begin(Range), adl_end(Range), 1973 std::forward<T>(Value), C); 1974 } 1975 1976 /// Provide wrappers to std::lower_bound which take ranges instead of having to 1977 /// pass begin/end explicitly. 1978 template <typename R, typename T> auto lower_bound(R &&Range, T &&Value) { 1979 return std::lower_bound(adl_begin(Range), adl_end(Range), 1980 std::forward<T>(Value)); 1981 } 1982 1983 template <typename R, typename T, typename Compare> 1984 auto lower_bound(R &&Range, T &&Value, Compare C) { 1985 return std::lower_bound(adl_begin(Range), adl_end(Range), 1986 std::forward<T>(Value), C); 1987 } 1988 1989 /// Provide wrappers to std::upper_bound which take ranges instead of having to 1990 /// pass begin/end explicitly. 1991 template <typename R, typename T> auto upper_bound(R &&Range, T &&Value) { 1992 return std::upper_bound(adl_begin(Range), adl_end(Range), 1993 std::forward<T>(Value)); 1994 } 1995 1996 template <typename R, typename T, typename Compare> 1997 auto upper_bound(R &&Range, T &&Value, Compare C) { 1998 return std::upper_bound(adl_begin(Range), adl_end(Range), 1999 std::forward<T>(Value), C); 2000 } 2001 2002 /// Provide wrappers to std::min_element which take ranges instead of having to 2003 /// pass begin/end explicitly. 2004 template <typename R> auto min_element(R &&Range) { 2005 return std::min_element(adl_begin(Range), adl_end(Range)); 2006 } 2007 2008 template <typename R, typename Compare> auto min_element(R &&Range, Compare C) { 2009 return std::min_element(adl_begin(Range), adl_end(Range), C); 2010 } 2011 2012 /// Provide wrappers to std::max_element which take ranges instead of having to 2013 /// pass begin/end explicitly. 2014 template <typename R> auto max_element(R &&Range) { 2015 return std::max_element(adl_begin(Range), adl_end(Range)); 2016 } 2017 2018 template <typename R, typename Compare> auto max_element(R &&Range, Compare C) { 2019 return std::max_element(adl_begin(Range), adl_end(Range), C); 2020 } 2021 2022 /// Provide wrappers to std::mismatch which take ranges instead of having to 2023 /// pass begin/end explicitly. 2024 /// This function returns a pair of iterators for the first mismatching elements 2025 /// from `R1` and `R2`. As an example, if: 2026 /// 2027 /// R1 = [0, 1, 4, 6], R2 = [0, 1, 5, 6] 2028 /// 2029 /// this function will return a pair of iterators, first pointing to R1[2] and 2030 /// second pointing to R2[2]. 2031 template <typename R1, typename R2> auto mismatch(R1 &&Range1, R2 &&Range2) { 2032 return std::mismatch(adl_begin(Range1), adl_end(Range1), adl_begin(Range2), 2033 adl_end(Range2)); 2034 } 2035 2036 template <typename R> 2037 void stable_sort(R &&Range) { 2038 std::stable_sort(adl_begin(Range), adl_end(Range)); 2039 } 2040 2041 template <typename R, typename Compare> 2042 void stable_sort(R &&Range, Compare C) { 2043 std::stable_sort(adl_begin(Range), adl_end(Range), C); 2044 } 2045 2046 /// Binary search for the first iterator in a range where a predicate is false. 2047 /// Requires that C is always true below some limit, and always false above it. 2048 template <typename R, typename Predicate, 2049 typename Val = decltype(*adl_begin(std::declval<R>()))> 2050 auto partition_point(R &&Range, Predicate P) { 2051 return std::partition_point(adl_begin(Range), adl_end(Range), P); 2052 } 2053 2054 template<typename Range, typename Predicate> 2055 auto unique(Range &&R, Predicate P) { 2056 return std::unique(adl_begin(R), adl_end(R), P); 2057 } 2058 2059 /// Wrapper function around std::unique to allow calling unique on a 2060 /// container without having to specify the begin/end iterators. 2061 template <typename Range> auto unique(Range &&R) { 2062 return std::unique(adl_begin(R), adl_end(R)); 2063 } 2064 2065 /// Wrapper function around std::equal to detect if pair-wise elements between 2066 /// two ranges are the same. 2067 template <typename L, typename R> bool equal(L &&LRange, R &&RRange) { 2068 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), 2069 adl_end(RRange)); 2070 } 2071 2072 template <typename L, typename R, typename BinaryPredicate> 2073 bool equal(L &&LRange, R &&RRange, BinaryPredicate P) { 2074 return std::equal(adl_begin(LRange), adl_end(LRange), adl_begin(RRange), 2075 adl_end(RRange), P); 2076 } 2077 2078 /// Returns true if all elements in Range are equal or when the Range is empty. 2079 template <typename R> bool all_equal(R &&Range) { 2080 auto Begin = adl_begin(Range); 2081 auto End = adl_end(Range); 2082 return Begin == End || std::equal(std::next(Begin), End, Begin); 2083 } 2084 2085 /// Returns true if all Values in the initializer lists are equal or the list 2086 // is empty. 2087 template <typename T> bool all_equal(std::initializer_list<T> Values) { 2088 return all_equal<std::initializer_list<T>>(std::move(Values)); 2089 } 2090 2091 /// Provide a container algorithm similar to C++ Library Fundamentals v2's 2092 /// `erase_if` which is equivalent to: 2093 /// 2094 /// C.erase(remove_if(C, pred), C.end()); 2095 /// 2096 /// This version works for any container with an erase method call accepting 2097 /// two iterators. 2098 template <typename Container, typename UnaryPredicate> 2099 void erase_if(Container &C, UnaryPredicate P) { 2100 C.erase(remove_if(C, P), C.end()); 2101 } 2102 2103 /// Wrapper function to remove a value from a container: 2104 /// 2105 /// C.erase(remove(C.begin(), C.end(), V), C.end()); 2106 template <typename Container, typename ValueType> 2107 void erase(Container &C, ValueType V) { 2108 C.erase(std::remove(C.begin(), C.end(), V), C.end()); 2109 } 2110 2111 /// Wrapper function to append range `R` to container `C`. 2112 /// 2113 /// C.insert(C.end(), R.begin(), R.end()); 2114 template <typename Container, typename Range> 2115 void append_range(Container &C, Range &&R) { 2116 C.insert(C.end(), adl_begin(R), adl_end(R)); 2117 } 2118 2119 /// Appends all `Values` to container `C`. 2120 template <typename Container, typename... Args> 2121 void append_values(Container &C, Args &&...Values) { 2122 C.reserve(range_size(C) + sizeof...(Args)); 2123 // Append all values one by one. 2124 ((void)C.insert(C.end(), std::forward<Args>(Values)), ...); 2125 } 2126 2127 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 2128 /// the range [ValIt, ValEnd) (which is not from the same container). 2129 template<typename Container, typename RandomAccessIterator> 2130 void replace(Container &Cont, typename Container::iterator ContIt, 2131 typename Container::iterator ContEnd, RandomAccessIterator ValIt, 2132 RandomAccessIterator ValEnd) { 2133 while (true) { 2134 if (ValIt == ValEnd) { 2135 Cont.erase(ContIt, ContEnd); 2136 return; 2137 } else if (ContIt == ContEnd) { 2138 Cont.insert(ContIt, ValIt, ValEnd); 2139 return; 2140 } 2141 *ContIt++ = *ValIt++; 2142 } 2143 } 2144 2145 /// Given a sequence container Cont, replace the range [ContIt, ContEnd) with 2146 /// the range R. 2147 template<typename Container, typename Range = std::initializer_list< 2148 typename Container::value_type>> 2149 void replace(Container &Cont, typename Container::iterator ContIt, 2150 typename Container::iterator ContEnd, Range R) { 2151 replace(Cont, ContIt, ContEnd, R.begin(), R.end()); 2152 } 2153 2154 /// An STL-style algorithm similar to std::for_each that applies a second 2155 /// functor between every pair of elements. 2156 /// 2157 /// This provides the control flow logic to, for example, print a 2158 /// comma-separated list: 2159 /// \code 2160 /// interleave(names.begin(), names.end(), 2161 /// [&](StringRef name) { os << name; }, 2162 /// [&] { os << ", "; }); 2163 /// \endcode 2164 template <typename ForwardIterator, typename UnaryFunctor, 2165 typename NullaryFunctor, 2166 typename = std::enable_if_t< 2167 !std::is_constructible<StringRef, UnaryFunctor>::value && 2168 !std::is_constructible<StringRef, NullaryFunctor>::value>> 2169 inline void interleave(ForwardIterator begin, ForwardIterator end, 2170 UnaryFunctor each_fn, NullaryFunctor between_fn) { 2171 if (begin == end) 2172 return; 2173 each_fn(*begin); 2174 ++begin; 2175 for (; begin != end; ++begin) { 2176 between_fn(); 2177 each_fn(*begin); 2178 } 2179 } 2180 2181 template <typename Container, typename UnaryFunctor, typename NullaryFunctor, 2182 typename = std::enable_if_t< 2183 !std::is_constructible<StringRef, UnaryFunctor>::value && 2184 !std::is_constructible<StringRef, NullaryFunctor>::value>> 2185 inline void interleave(const Container &c, UnaryFunctor each_fn, 2186 NullaryFunctor between_fn) { 2187 interleave(adl_begin(c), adl_end(c), each_fn, between_fn); 2188 } 2189 2190 /// Overload of interleave for the common case of string separator. 2191 template <typename Container, typename UnaryFunctor, typename StreamT, 2192 typename T = detail::ValueOfRange<Container>> 2193 inline void interleave(const Container &c, StreamT &os, UnaryFunctor each_fn, 2194 const StringRef &separator) { 2195 interleave(adl_begin(c), adl_end(c), each_fn, [&] { os << separator; }); 2196 } 2197 template <typename Container, typename StreamT, 2198 typename T = detail::ValueOfRange<Container>> 2199 inline void interleave(const Container &c, StreamT &os, 2200 const StringRef &separator) { 2201 interleave( 2202 c, os, [&](const T &a) { os << a; }, separator); 2203 } 2204 2205 template <typename Container, typename UnaryFunctor, typename StreamT, 2206 typename T = detail::ValueOfRange<Container>> 2207 inline void interleaveComma(const Container &c, StreamT &os, 2208 UnaryFunctor each_fn) { 2209 interleave(c, os, each_fn, ", "); 2210 } 2211 template <typename Container, typename StreamT, 2212 typename T = detail::ValueOfRange<Container>> 2213 inline void interleaveComma(const Container &c, StreamT &os) { 2214 interleaveComma(c, os, [&](const T &a) { os << a; }); 2215 } 2216 2217 //===----------------------------------------------------------------------===// 2218 // Extra additions to <memory> 2219 //===----------------------------------------------------------------------===// 2220 2221 struct FreeDeleter { 2222 void operator()(void* v) { 2223 ::free(v); 2224 } 2225 }; 2226 2227 template<typename First, typename Second> 2228 struct pair_hash { 2229 size_t operator()(const std::pair<First, Second> &P) const { 2230 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second); 2231 } 2232 }; 2233 2234 /// Binary functor that adapts to any other binary functor after dereferencing 2235 /// operands. 2236 template <typename T> struct deref { 2237 T func; 2238 2239 // Could be further improved to cope with non-derivable functors and 2240 // non-binary functors (should be a variadic template member function 2241 // operator()). 2242 template <typename A, typename B> auto operator()(A &lhs, B &rhs) const { 2243 assert(lhs); 2244 assert(rhs); 2245 return func(*lhs, *rhs); 2246 } 2247 }; 2248 2249 namespace detail { 2250 2251 /// Tuple-like type for `zip_enumerator` dereference. 2252 template <typename... Refs> struct enumerator_result; 2253 2254 template <typename... Iters> 2255 using EnumeratorTupleType = enumerator_result<decltype(*declval<Iters>())...>; 2256 2257 /// Zippy iterator that uses the second iterator for comparisons. For the 2258 /// increment to be safe, the second range has to be the shortest. 2259 /// Returns `enumerator_result` on dereference to provide `.index()` and 2260 /// `.value()` member functions. 2261 /// Note: Because the dereference operator returns `enumerator_result` as a 2262 /// value instead of a reference and does not strictly conform to the C++17's 2263 /// definition of forward iterator. However, it satisfies all the 2264 /// forward_iterator requirements that the `zip_common` and `zippy` depend on 2265 /// and fully conforms to the C++20 definition of forward iterator. 2266 /// This is similar to `std::vector<bool>::iterator` that returns bit reference 2267 /// wrappers on dereference. 2268 template <typename... Iters> 2269 struct zip_enumerator : zip_common<zip_enumerator<Iters...>, 2270 EnumeratorTupleType<Iters...>, Iters...> { 2271 static_assert(sizeof...(Iters) >= 2, "Expected at least two iteratees"); 2272 using zip_common<zip_enumerator<Iters...>, EnumeratorTupleType<Iters...>, 2273 Iters...>::zip_common; 2274 2275 bool operator==(const zip_enumerator &Other) const { 2276 return std::get<1>(this->iterators) == std::get<1>(Other.iterators); 2277 } 2278 }; 2279 2280 template <typename... Refs> struct enumerator_result<std::size_t, Refs...> { 2281 static constexpr std::size_t NumRefs = sizeof...(Refs); 2282 static_assert(NumRefs != 0); 2283 // `NumValues` includes the index. 2284 static constexpr std::size_t NumValues = NumRefs + 1; 2285 2286 // Tuple type whose element types are references for each `Ref`. 2287 using range_reference_tuple = std::tuple<Refs...>; 2288 // Tuple type who elements are references to all values, including both 2289 // the index and `Refs` reference types. 2290 using value_reference_tuple = std::tuple<std::size_t, Refs...>; 2291 2292 enumerator_result(std::size_t Index, Refs &&...Rs) 2293 : Idx(Index), Storage(std::forward<Refs>(Rs)...) {} 2294 2295 /// Returns the 0-based index of the current position within the original 2296 /// input range(s). 2297 std::size_t index() const { return Idx; } 2298 2299 /// Returns the value(s) for the current iterator. This does not include the 2300 /// index. 2301 decltype(auto) value() const { 2302 if constexpr (NumRefs == 1) 2303 return std::get<0>(Storage); 2304 else 2305 return Storage; 2306 } 2307 2308 /// Returns the value at index `I`. This case covers the index. 2309 template <std::size_t I, typename = std::enable_if_t<I == 0>> 2310 friend std::size_t get(const enumerator_result &Result) { 2311 return Result.Idx; 2312 } 2313 2314 /// Returns the value at index `I`. This case covers references to the 2315 /// iteratees. 2316 template <std::size_t I, typename = std::enable_if_t<I != 0>> 2317 friend decltype(auto) get(const enumerator_result &Result) { 2318 // Note: This is a separate function from the other `get`, instead of an 2319 // `if constexpr` case, to work around an MSVC 19.31.31XXX compiler 2320 // (Visual Studio 2022 17.1) return type deduction bug. 2321 return std::get<I - 1>(Result.Storage); 2322 } 2323 2324 template <typename... Ts> 2325 friend bool operator==(const enumerator_result &Result, 2326 const std::tuple<std::size_t, Ts...> &Other) { 2327 static_assert(NumRefs == sizeof...(Ts), "Size mismatch"); 2328 if (Result.Idx != std::get<0>(Other)) 2329 return false; 2330 return Result.is_value_equal(Other, std::make_index_sequence<NumRefs>{}); 2331 } 2332 2333 private: 2334 template <typename Tuple, std::size_t... Idx> 2335 bool is_value_equal(const Tuple &Other, std::index_sequence<Idx...>) const { 2336 return ((std::get<Idx>(Storage) == std::get<Idx + 1>(Other)) && ...); 2337 } 2338 2339 std::size_t Idx; 2340 // Make this tuple mutable to avoid casts that obfuscate const-correctness 2341 // issues. Const-correctness of references is taken care of by `zippy` that 2342 // defines const-non and const iterator types that will propagate down to 2343 // `enumerator_result`'s `Refs`. 2344 // Note that unlike the results of `zip*` functions, `enumerate`'s result are 2345 // supposed to be modifiable even when defined as 2346 // `const`. 2347 mutable range_reference_tuple Storage; 2348 }; 2349 2350 struct index_iterator 2351 : llvm::iterator_facade_base<index_iterator, 2352 std::random_access_iterator_tag, std::size_t> { 2353 index_iterator(std::size_t Index) : Index(Index) {} 2354 2355 index_iterator &operator+=(std::ptrdiff_t N) { 2356 Index += N; 2357 return *this; 2358 } 2359 2360 index_iterator &operator-=(std::ptrdiff_t N) { 2361 Index -= N; 2362 return *this; 2363 } 2364 2365 std::ptrdiff_t operator-(const index_iterator &R) const { 2366 return Index - R.Index; 2367 } 2368 2369 // Note: This dereference operator returns a value instead of a reference 2370 // and does not strictly conform to the C++17's definition of forward 2371 // iterator. However, it satisfies all the forward_iterator requirements 2372 // that the `zip_common` depends on and fully conforms to the C++20 2373 // definition of forward iterator. 2374 std::size_t operator*() const { return Index; } 2375 2376 friend bool operator==(const index_iterator &Lhs, const index_iterator &Rhs) { 2377 return Lhs.Index == Rhs.Index; 2378 } 2379 2380 friend bool operator<(const index_iterator &Lhs, const index_iterator &Rhs) { 2381 return Lhs.Index < Rhs.Index; 2382 } 2383 2384 private: 2385 std::size_t Index; 2386 }; 2387 2388 /// Infinite stream of increasing 0-based `size_t` indices. 2389 struct index_stream { 2390 index_iterator begin() const { return {0}; } 2391 index_iterator end() const { 2392 // We approximate 'infinity' with the max size_t value, which should be good 2393 // enough to index over any container. 2394 return index_iterator{std::numeric_limits<std::size_t>::max()}; 2395 } 2396 }; 2397 2398 } // end namespace detail 2399 2400 /// Increasing range of `size_t` indices. 2401 class index_range { 2402 std::size_t Begin; 2403 std::size_t End; 2404 2405 public: 2406 index_range(std::size_t Begin, std::size_t End) : Begin(Begin), End(End) {} 2407 detail::index_iterator begin() const { return {Begin}; } 2408 detail::index_iterator end() const { return {End}; } 2409 }; 2410 2411 /// Given two or more input ranges, returns a new range whose values are 2412 /// tuples (A, B, C, ...), such that A is the 0-based index of the item in the 2413 /// sequence, and B, C, ..., are the values from the original input ranges. All 2414 /// input ranges are required to have equal lengths. Note that the returned 2415 /// iterator allows for the values (B, C, ...) to be modified. Example: 2416 /// 2417 /// ```c++ 2418 /// std::vector<char> Letters = {'A', 'B', 'C', 'D'}; 2419 /// std::vector<int> Vals = {10, 11, 12, 13}; 2420 /// 2421 /// for (auto [Index, Letter, Value] : enumerate(Letters, Vals)) { 2422 /// printf("Item %zu - %c: %d\n", Index, Letter, Value); 2423 /// Value -= 10; 2424 /// } 2425 /// ``` 2426 /// 2427 /// Output: 2428 /// Item 0 - A: 10 2429 /// Item 1 - B: 11 2430 /// Item 2 - C: 12 2431 /// Item 3 - D: 13 2432 /// 2433 /// or using an iterator: 2434 /// ```c++ 2435 /// for (auto it : enumerate(Vals)) { 2436 /// it.value() += 10; 2437 /// printf("Item %zu: %d\n", it.index(), it.value()); 2438 /// } 2439 /// ``` 2440 /// 2441 /// Output: 2442 /// Item 0: 20 2443 /// Item 1: 21 2444 /// Item 2: 22 2445 /// Item 3: 23 2446 /// 2447 template <typename FirstRange, typename... RestRanges> 2448 auto enumerate(FirstRange &&First, RestRanges &&...Rest) { 2449 if constexpr (sizeof...(Rest) != 0) { 2450 #ifndef NDEBUG 2451 // Note: Create an array instead of an initializer list to work around an 2452 // Apple clang 14 compiler bug. 2453 size_t sizes[] = {range_size(First), range_size(Rest)...}; 2454 assert(all_equal(sizes) && "Ranges have different length"); 2455 #endif 2456 } 2457 using enumerator = detail::zippy<detail::zip_enumerator, detail::index_stream, 2458 FirstRange, RestRanges...>; 2459 return enumerator(detail::index_stream{}, std::forward<FirstRange>(First), 2460 std::forward<RestRanges>(Rest)...); 2461 } 2462 2463 namespace detail { 2464 2465 template <typename Predicate, typename... Args> 2466 bool all_of_zip_predicate_first(Predicate &&P, Args &&...args) { 2467 auto z = zip(args...); 2468 auto it = z.begin(); 2469 auto end = z.end(); 2470 while (it != end) { 2471 if (!std::apply([&](auto &&...args) { return P(args...); }, *it)) 2472 return false; 2473 ++it; 2474 } 2475 return it.all_equals(end); 2476 } 2477 2478 // Just an adaptor to switch the order of argument and have the predicate before 2479 // the zipped inputs. 2480 template <typename... ArgsThenPredicate, size_t... InputIndexes> 2481 bool all_of_zip_predicate_last( 2482 std::tuple<ArgsThenPredicate...> argsThenPredicate, 2483 std::index_sequence<InputIndexes...>) { 2484 auto constexpr OutputIndex = 2485 std::tuple_size<decltype(argsThenPredicate)>::value - 1; 2486 return all_of_zip_predicate_first(std::get<OutputIndex>(argsThenPredicate), 2487 std::get<InputIndexes>(argsThenPredicate)...); 2488 } 2489 2490 } // end namespace detail 2491 2492 /// Compare two zipped ranges using the provided predicate (as last argument). 2493 /// Return true if all elements satisfy the predicate and false otherwise. 2494 // Return false if the zipped iterator aren't all at end (size mismatch). 2495 template <typename... ArgsAndPredicate> 2496 bool all_of_zip(ArgsAndPredicate &&...argsAndPredicate) { 2497 return detail::all_of_zip_predicate_last( 2498 std::forward_as_tuple(argsAndPredicate...), 2499 std::make_index_sequence<sizeof...(argsAndPredicate) - 1>{}); 2500 } 2501 2502 /// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N) 2503 /// time. Not meant for use with random-access iterators. 2504 /// Can optionally take a predicate to filter lazily some items. 2505 template <typename IterTy, 2506 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2507 bool hasNItems( 2508 IterTy &&Begin, IterTy &&End, unsigned N, 2509 Pred &&ShouldBeCounted = 2510 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2511 std::enable_if_t< 2512 !std::is_base_of<std::random_access_iterator_tag, 2513 typename std::iterator_traits<std::remove_reference_t< 2514 decltype(Begin)>>::iterator_category>::value, 2515 void> * = nullptr) { 2516 for (; N; ++Begin) { 2517 if (Begin == End) 2518 return false; // Too few. 2519 N -= ShouldBeCounted(*Begin); 2520 } 2521 for (; Begin != End; ++Begin) 2522 if (ShouldBeCounted(*Begin)) 2523 return false; // Too many. 2524 return true; 2525 } 2526 2527 /// Return true if the sequence [Begin, End) has N or more items. Runs in O(N) 2528 /// time. Not meant for use with random-access iterators. 2529 /// Can optionally take a predicate to lazily filter some items. 2530 template <typename IterTy, 2531 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2532 bool hasNItemsOrMore( 2533 IterTy &&Begin, IterTy &&End, unsigned N, 2534 Pred &&ShouldBeCounted = 2535 [](const decltype(*std::declval<IterTy>()) &) { return true; }, 2536 std::enable_if_t< 2537 !std::is_base_of<std::random_access_iterator_tag, 2538 typename std::iterator_traits<std::remove_reference_t< 2539 decltype(Begin)>>::iterator_category>::value, 2540 void> * = nullptr) { 2541 for (; N; ++Begin) { 2542 if (Begin == End) 2543 return false; // Too few. 2544 N -= ShouldBeCounted(*Begin); 2545 } 2546 return true; 2547 } 2548 2549 /// Returns true if the sequence [Begin, End) has N or less items. Can 2550 /// optionally take a predicate to lazily filter some items. 2551 template <typename IterTy, 2552 typename Pred = bool (*)(const decltype(*std::declval<IterTy>()) &)> 2553 bool hasNItemsOrLess( 2554 IterTy &&Begin, IterTy &&End, unsigned N, 2555 Pred &&ShouldBeCounted = [](const decltype(*std::declval<IterTy>()) &) { 2556 return true; 2557 }) { 2558 assert(N != std::numeric_limits<unsigned>::max()); 2559 return !hasNItemsOrMore(Begin, End, N + 1, ShouldBeCounted); 2560 } 2561 2562 /// Returns true if the given container has exactly N items 2563 template <typename ContainerTy> bool hasNItems(ContainerTy &&C, unsigned N) { 2564 return hasNItems(std::begin(C), std::end(C), N); 2565 } 2566 2567 /// Returns true if the given container has N or more items 2568 template <typename ContainerTy> 2569 bool hasNItemsOrMore(ContainerTy &&C, unsigned N) { 2570 return hasNItemsOrMore(std::begin(C), std::end(C), N); 2571 } 2572 2573 /// Returns true if the given container has N or less items 2574 template <typename ContainerTy> 2575 bool hasNItemsOrLess(ContainerTy &&C, unsigned N) { 2576 return hasNItemsOrLess(std::begin(C), std::end(C), N); 2577 } 2578 2579 /// Returns a raw pointer that represents the same address as the argument. 2580 /// 2581 /// This implementation can be removed once we move to C++20 where it's defined 2582 /// as std::to_address(). 2583 /// 2584 /// The std::pointer_traits<>::to_address(p) variations of these overloads has 2585 /// not been implemented. 2586 template <class Ptr> auto to_address(const Ptr &P) { return P.operator->(); } 2587 template <class T> constexpr T *to_address(T *P) { return P; } 2588 2589 // Detect incomplete types, relying on the fact that their size is unknown. 2590 namespace detail { 2591 template <typename T> using has_sizeof = decltype(sizeof(T)); 2592 } // namespace detail 2593 2594 /// Detects when type `T` is incomplete. This is true for forward declarations 2595 /// and false for types with a full definition. 2596 template <typename T> 2597 constexpr bool is_incomplete_v = !is_detected<detail::has_sizeof, T>::value; 2598 2599 } // end namespace llvm 2600 2601 namespace std { 2602 template <typename... Refs> 2603 struct tuple_size<llvm::detail::enumerator_result<Refs...>> 2604 : std::integral_constant<std::size_t, sizeof...(Refs)> {}; 2605 2606 template <std::size_t I, typename... Refs> 2607 struct tuple_element<I, llvm::detail::enumerator_result<Refs...>> 2608 : std::tuple_element<I, std::tuple<Refs...>> {}; 2609 2610 template <std::size_t I, typename... Refs> 2611 struct tuple_element<I, const llvm::detail::enumerator_result<Refs...>> 2612 : std::tuple_element<I, std::tuple<Refs...>> {}; 2613 2614 } // namespace std 2615 2616 #endif // LLVM_ADT_STLEXTRAS_H 2617