1 //===- llvm/ADT/PostOrderIterator.h - PostOrder iterator --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file builds on the ADT/GraphTraits.h file to build a generic graph
11 /// post order iterator. This should work over any graph type that has a
12 /// GraphTraits specialization.
13 ///
14 //===----------------------------------------------------------------------===//
15
16 #ifndef LLVM_ADT_POSTORDERITERATOR_H
17 #define LLVM_ADT_POSTORDERITERATOR_H
18
19 #include "llvm/ADT/GraphTraits.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include <iterator>
24 #include <optional>
25 #include <set>
26 #include <utility>
27 #include <vector>
28
29 namespace llvm {
30
31 // The po_iterator_storage template provides access to the set of already
32 // visited nodes during the po_iterator's depth-first traversal.
33 //
34 // The default implementation simply contains a set of visited nodes, while
35 // the External=true version uses a reference to an external set.
36 //
37 // It is possible to prune the depth-first traversal in several ways:
38 //
39 // - When providing an external set that already contains some graph nodes,
40 // those nodes won't be visited again. This is useful for restarting a
41 // post-order traversal on a graph with nodes that aren't dominated by a
42 // single node.
43 //
44 // - By providing a custom SetType class, unwanted graph nodes can be excluded
45 // by having the insert() function return false. This could for example
46 // confine a CFG traversal to blocks in a specific loop.
47 //
48 // - Finally, by specializing the po_iterator_storage template itself, graph
49 // edges can be pruned by returning false in the insertEdge() function. This
50 // could be used to remove loop back-edges from the CFG seen by po_iterator.
51 //
52 // A specialized po_iterator_storage class can observe both the pre-order and
53 // the post-order. The insertEdge() function is called in a pre-order, while
54 // the finishPostorder() function is called just before the po_iterator moves
55 // on to the next node.
56
57 /// Default po_iterator_storage implementation with an internal set object.
58 template<class SetType, bool External>
59 class po_iterator_storage {
60 SetType Visited;
61
62 public:
63 // Return true if edge destination should be visited.
64 template <typename NodeRef>
insertEdge(std::optional<NodeRef> From,NodeRef To)65 bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
66 return Visited.insert(To).second;
67 }
68
69 // Called after all children of BB have been visited.
finishPostorder(NodeRef BB)70 template <typename NodeRef> void finishPostorder(NodeRef BB) {}
71 };
72
73 /// Specialization of po_iterator_storage that references an external set.
74 template<class SetType>
75 class po_iterator_storage<SetType, true> {
76 SetType &Visited;
77
78 public:
po_iterator_storage(SetType & VSet)79 po_iterator_storage(SetType &VSet) : Visited(VSet) {}
po_iterator_storage(const po_iterator_storage & S)80 po_iterator_storage(const po_iterator_storage &S) : Visited(S.Visited) {}
81
82 // Return true if edge destination should be visited, called with From = 0 for
83 // the root node.
84 // Graph edges can be pruned by specializing this function.
85 template <class NodeRef>
insertEdge(std::optional<NodeRef> From,NodeRef To)86 bool insertEdge(std::optional<NodeRef> From, NodeRef To) {
87 return Visited.insert(To).second;
88 }
89
90 // Called after all children of BB have been visited.
finishPostorder(NodeRef BB)91 template <class NodeRef> void finishPostorder(NodeRef BB) {}
92 };
93
94 template <class GraphT,
95 class SetType = SmallPtrSet<typename GraphTraits<GraphT>::NodeRef, 8>,
96 bool ExtStorage = false, class GT = GraphTraits<GraphT>>
97 class po_iterator : public po_iterator_storage<SetType, ExtStorage> {
98 public:
99 using iterator_category = std::forward_iterator_tag;
100 using value_type = typename GT::NodeRef;
101 using difference_type = std::ptrdiff_t;
102 using pointer = value_type *;
103 using reference = value_type &;
104
105 private:
106 using NodeRef = typename GT::NodeRef;
107 using ChildItTy = typename GT::ChildIteratorType;
108
109 // VisitStack - Used to maintain the ordering. Top = current block
110 // First element is basic block pointer, second is the 'next child' to visit
111 SmallVector<std::pair<NodeRef, ChildItTy>, 8> VisitStack;
112
po_iterator(NodeRef BB)113 po_iterator(NodeRef BB) {
114 this->insertEdge(std::optional<NodeRef>(), BB);
115 VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
116 traverseChild();
117 }
118
119 po_iterator() = default; // End is when stack is empty.
120
po_iterator(NodeRef BB,SetType & S)121 po_iterator(NodeRef BB, SetType &S)
122 : po_iterator_storage<SetType, ExtStorage>(S) {
123 if (this->insertEdge(std::optional<NodeRef>(), BB)) {
124 VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
125 traverseChild();
126 }
127 }
128
po_iterator(SetType & S)129 po_iterator(SetType &S)
130 : po_iterator_storage<SetType, ExtStorage>(S) {
131 } // End is when stack is empty.
132
traverseChild()133 void traverseChild() {
134 while (VisitStack.back().second != GT::child_end(VisitStack.back().first)) {
135 NodeRef BB = *VisitStack.back().second++;
136 if (this->insertEdge(std::optional<NodeRef>(VisitStack.back().first),
137 BB)) {
138 // If the block is not visited...
139 VisitStack.push_back(std::make_pair(BB, GT::child_begin(BB)));
140 }
141 }
142 }
143
144 public:
145 // Provide static "constructors"...
begin(const GraphT & G)146 static po_iterator begin(const GraphT &G) {
147 return po_iterator(GT::getEntryNode(G));
148 }
end(const GraphT & G)149 static po_iterator end(const GraphT &G) { return po_iterator(); }
150
begin(const GraphT & G,SetType & S)151 static po_iterator begin(const GraphT &G, SetType &S) {
152 return po_iterator(GT::getEntryNode(G), S);
153 }
end(const GraphT & G,SetType & S)154 static po_iterator end(const GraphT &G, SetType &S) { return po_iterator(S); }
155
156 bool operator==(const po_iterator &x) const {
157 return VisitStack == x.VisitStack;
158 }
159 bool operator!=(const po_iterator &x) const { return !(*this == x); }
160
161 const NodeRef &operator*() const { return VisitStack.back().first; }
162
163 // This is a nonstandard operator-> that dereferences the pointer an extra
164 // time... so that you can actually call methods ON the BasicBlock, because
165 // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
166 //
167 NodeRef operator->() const { return **this; }
168
169 po_iterator &operator++() { // Preincrement
170 this->finishPostorder(VisitStack.back().first);
171 VisitStack.pop_back();
172 if (!VisitStack.empty())
173 traverseChild();
174 return *this;
175 }
176
177 po_iterator operator++(int) { // Postincrement
178 po_iterator tmp = *this;
179 ++*this;
180 return tmp;
181 }
182 };
183
184 // Provide global constructors that automatically figure out correct types...
185 //
186 template <class T>
po_begin(const T & G)187 po_iterator<T> po_begin(const T &G) { return po_iterator<T>::begin(G); }
188 template <class T>
po_end(const T & G)189 po_iterator<T> po_end (const T &G) { return po_iterator<T>::end(G); }
190
post_order(const T & G)191 template <class T> iterator_range<po_iterator<T>> post_order(const T &G) {
192 return make_range(po_begin(G), po_end(G));
193 }
194
195 // Provide global definitions of external postorder iterators...
196 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
197 struct po_ext_iterator : public po_iterator<T, SetType, true> {
po_ext_iteratorpo_ext_iterator198 po_ext_iterator(const po_iterator<T, SetType, true> &V) :
199 po_iterator<T, SetType, true>(V) {}
200 };
201
202 template<class T, class SetType>
po_ext_begin(T G,SetType & S)203 po_ext_iterator<T, SetType> po_ext_begin(T G, SetType &S) {
204 return po_ext_iterator<T, SetType>::begin(G, S);
205 }
206
207 template<class T, class SetType>
po_ext_end(T G,SetType & S)208 po_ext_iterator<T, SetType> po_ext_end(T G, SetType &S) {
209 return po_ext_iterator<T, SetType>::end(G, S);
210 }
211
212 template <class T, class SetType>
post_order_ext(const T & G,SetType & S)213 iterator_range<po_ext_iterator<T, SetType>> post_order_ext(const T &G, SetType &S) {
214 return make_range(po_ext_begin(G, S), po_ext_end(G, S));
215 }
216
217 // Provide global definitions of inverse post order iterators...
218 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>,
219 bool External = false>
220 struct ipo_iterator : public po_iterator<Inverse<T>, SetType, External> {
ipo_iteratoripo_iterator221 ipo_iterator(const po_iterator<Inverse<T>, SetType, External> &V) :
222 po_iterator<Inverse<T>, SetType, External> (V) {}
223 };
224
225 template <class T>
ipo_begin(const T & G)226 ipo_iterator<T> ipo_begin(const T &G) {
227 return ipo_iterator<T>::begin(G);
228 }
229
230 template <class T>
ipo_end(const T & G)231 ipo_iterator<T> ipo_end(const T &G){
232 return ipo_iterator<T>::end(G);
233 }
234
235 template <class T>
inverse_post_order(const T & G)236 iterator_range<ipo_iterator<T>> inverse_post_order(const T &G) {
237 return make_range(ipo_begin(G), ipo_end(G));
238 }
239
240 // Provide global definitions of external inverse postorder iterators...
241 template <class T, class SetType = std::set<typename GraphTraits<T>::NodeRef>>
242 struct ipo_ext_iterator : public ipo_iterator<T, SetType, true> {
ipo_ext_iteratoripo_ext_iterator243 ipo_ext_iterator(const ipo_iterator<T, SetType, true> &V) :
244 ipo_iterator<T, SetType, true>(V) {}
ipo_ext_iteratoripo_ext_iterator245 ipo_ext_iterator(const po_iterator<Inverse<T>, SetType, true> &V) :
246 ipo_iterator<T, SetType, true>(V) {}
247 };
248
249 template <class T, class SetType>
ipo_ext_begin(const T & G,SetType & S)250 ipo_ext_iterator<T, SetType> ipo_ext_begin(const T &G, SetType &S) {
251 return ipo_ext_iterator<T, SetType>::begin(G, S);
252 }
253
254 template <class T, class SetType>
ipo_ext_end(const T & G,SetType & S)255 ipo_ext_iterator<T, SetType> ipo_ext_end(const T &G, SetType &S) {
256 return ipo_ext_iterator<T, SetType>::end(G, S);
257 }
258
259 template <class T, class SetType>
260 iterator_range<ipo_ext_iterator<T, SetType>>
inverse_post_order_ext(const T & G,SetType & S)261 inverse_post_order_ext(const T &G, SetType &S) {
262 return make_range(ipo_ext_begin(G, S), ipo_ext_end(G, S));
263 }
264
265 //===--------------------------------------------------------------------===//
266 // Reverse Post Order CFG iterator code
267 //===--------------------------------------------------------------------===//
268 //
269 // This is used to visit basic blocks in a method in reverse post order. This
270 // class is awkward to use because I don't know a good incremental algorithm to
271 // computer RPO from a graph. Because of this, the construction of the
272 // ReversePostOrderTraversal object is expensive (it must walk the entire graph
273 // with a postorder iterator to build the data structures). The moral of this
274 // story is: Don't create more ReversePostOrderTraversal classes than necessary.
275 //
276 // Because it does the traversal in its constructor, it won't invalidate when
277 // BasicBlocks are removed, *but* it may contain erased blocks. Some places
278 // rely on this behavior (i.e. GVN).
279 //
280 // This class should be used like this:
281 // {
282 // ReversePostOrderTraversal<Function*> RPOT(FuncPtr); // Expensive to create
283 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
284 // ...
285 // }
286 // for (rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
287 // ...
288 // }
289 // }
290 //
291
292 template<class GraphT, class GT = GraphTraits<GraphT>>
293 class ReversePostOrderTraversal {
294 using NodeRef = typename GT::NodeRef;
295
296 std::vector<NodeRef> Blocks; // Block list in normal PO order
297
Initialize(const GraphT & G)298 void Initialize(const GraphT &G) {
299 std::copy(po_begin(G), po_end(G), std::back_inserter(Blocks));
300 }
301
302 public:
303 using rpo_iterator = typename std::vector<NodeRef>::reverse_iterator;
304 using const_rpo_iterator = typename std::vector<NodeRef>::const_reverse_iterator;
305
ReversePostOrderTraversal(const GraphT & G)306 ReversePostOrderTraversal(const GraphT &G) { Initialize(G); }
307
308 // Because we want a reverse post order, use reverse iterators from the vector
begin()309 rpo_iterator begin() { return Blocks.rbegin(); }
begin()310 const_rpo_iterator begin() const { return Blocks.crbegin(); }
end()311 rpo_iterator end() { return Blocks.rend(); }
end()312 const_rpo_iterator end() const { return Blocks.crend(); }
313 };
314
315 } // end namespace llvm
316
317 #endif // LLVM_ADT_POSTORDERITERATOR_H
318