xref: /netbsd-src/external/apache2/llvm/dist/llvm/include/llvm/ADT/FunctionExtras.h (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 //===- FunctionExtras.h - Function type erasure utilities -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file provides a collection of function (or more generally, callable)
10 /// type erasure utilities supplementing those provided by the standard library
11 /// in `<function>`.
12 ///
13 /// It provides `unique_function`, which works like `std::function` but supports
14 /// move-only callable objects and const-qualification.
15 ///
16 /// Future plans:
17 /// - Add a `function` that provides ref-qualified support, which doesn't work
18 ///   with `std::function`.
19 /// - Provide support for specifying multiple signatures to type erase callable
20 ///   objects with an overload set, such as those produced by generic lambdas.
21 /// - Expand to include a copyable utility that directly replaces std::function
22 ///   but brings the above improvements.
23 ///
24 /// Note that LLVM's utilities are greatly simplified by not supporting
25 /// allocators.
26 ///
27 /// If the standard library ever begins to provide comparable facilities we can
28 /// consider switching to those.
29 ///
30 //===----------------------------------------------------------------------===//
31 
32 #ifndef LLVM_ADT_FUNCTIONEXTRAS_H
33 #define LLVM_ADT_FUNCTIONEXTRAS_H
34 
35 #include "llvm/ADT/PointerIntPair.h"
36 #include "llvm/ADT/PointerUnion.h"
37 #include "llvm/ADT/STLForwardCompat.h"
38 #include "llvm/Support/MemAlloc.h"
39 #include "llvm/Support/type_traits.h"
40 #include <memory>
41 #include <type_traits>
42 
43 namespace llvm {
44 
45 /// unique_function is a type-erasing functor similar to std::function.
46 ///
47 /// It can hold move-only function objects, like lambdas capturing unique_ptrs.
48 /// Accordingly, it is movable but not copyable.
49 ///
50 /// It supports const-qualification:
51 /// - unique_function<int() const> has a const operator().
52 ///   It can only hold functions which themselves have a const operator().
53 /// - unique_function<int()> has a non-const operator().
54 ///   It can hold functions with a non-const operator(), like mutable lambdas.
55 template <typename FunctionT> class unique_function;
56 
57 namespace detail {
58 
59 template <typename T>
60 using EnableIfTrivial =
61     std::enable_if_t<llvm::is_trivially_move_constructible<T>::value &&
62                      std::is_trivially_destructible<T>::value>;
63 template <typename CallableT, typename ThisT>
64 using EnableUnlessSameType =
65     std::enable_if_t<!std::is_same<remove_cvref_t<CallableT>, ThisT>::value>;
66 template <typename CallableT, typename Ret, typename... Params>
67 using EnableIfCallable =
68     std::enable_if_t<std::is_void<Ret>::value ||
69                      std::is_convertible<decltype(std::declval<CallableT>()(
70                                              std::declval<Params>()...)),
71                                          Ret>::value>;
72 
73 template <typename ReturnT, typename... ParamTs> class UniqueFunctionBase {
74 protected:
75   static constexpr size_t InlineStorageSize = sizeof(void *) * 3;
76 
77   template <typename T, class = void>
78   struct IsSizeLessThanThresholdT : std::false_type {};
79 
80   template <typename T>
81   struct IsSizeLessThanThresholdT<
82       T, std::enable_if_t<sizeof(T) <= 2 * sizeof(void *)>> : std::true_type {};
83 
84   // Provide a type function to map parameters that won't observe extra copies
85   // or moves and which are small enough to likely pass in register to values
86   // and all other types to l-value reference types. We use this to compute the
87   // types used in our erased call utility to minimize copies and moves unless
88   // doing so would force things unnecessarily into memory.
89   //
90   // The heuristic used is related to common ABI register passing conventions.
91   // It doesn't have to be exact though, and in one way it is more strict
92   // because we want to still be able to observe either moves *or* copies.
93   template <typename T> struct AdjustedParamTBase {
94     static_assert(!std::is_reference<T>::value,
95                   "references should be handled by template specialization");
96     using type = typename std::conditional<
97         llvm::is_trivially_copy_constructible<T>::value &&
98             llvm::is_trivially_move_constructible<T>::value &&
99             IsSizeLessThanThresholdT<T>::value,
100         T, T &>::type;
101   };
102 
103   // This specialization ensures that 'AdjustedParam<V<T>&>' or
104   // 'AdjustedParam<V<T>&&>' does not trigger a compile-time error when 'T' is
105   // an incomplete type and V a templated type.
106   template <typename T> struct AdjustedParamTBase<T &> { using type = T &; };
107   template <typename T> struct AdjustedParamTBase<T &&> { using type = T &; };
108 
109   template <typename T>
110   using AdjustedParamT = typename AdjustedParamTBase<T>::type;
111 
112   // The type of the erased function pointer we use as a callback to dispatch to
113   // the stored callable when it is trivial to move and destroy.
114   using CallPtrT = ReturnT (*)(void *CallableAddr,
115                                AdjustedParamT<ParamTs>... Params);
116   using MovePtrT = void (*)(void *LHSCallableAddr, void *RHSCallableAddr);
117   using DestroyPtrT = void (*)(void *CallableAddr);
118 
119   /// A struct to hold a single trivial callback with sufficient alignment for
120   /// our bitpacking.
121   struct alignas(8) TrivialCallback {
122     CallPtrT CallPtr;
123   };
124 
125   /// A struct we use to aggregate three callbacks when we need full set of
126   /// operations.
127   struct alignas(8) NonTrivialCallbacks {
128     CallPtrT CallPtr;
129     MovePtrT MovePtr;
130     DestroyPtrT DestroyPtr;
131   };
132 
133   // Create a pointer union between either a pointer to a static trivial call
134   // pointer in a struct or a pointer to a static struct of the call, move, and
135   // destroy pointers.
136   using CallbackPointerUnionT =
137       PointerUnion<TrivialCallback *, NonTrivialCallbacks *>;
138 
139   // The main storage buffer. This will either have a pointer to out-of-line
140   // storage or an inline buffer storing the callable.
141   union StorageUnionT {
142     // For out-of-line storage we keep a pointer to the underlying storage and
143     // the size. This is enough to deallocate the memory.
144     struct OutOfLineStorageT {
145       void *StoragePtr;
146       size_t Size;
147       size_t Alignment;
148     } OutOfLineStorage;
149     static_assert(
150         sizeof(OutOfLineStorageT) <= InlineStorageSize,
151         "Should always use all of the out-of-line storage for inline storage!");
152 
153     // For in-line storage, we just provide an aligned character buffer. We
154     // provide three pointers worth of storage here.
155     // This is mutable as an inlined `const unique_function<void() const>` may
156     // still modify its own mutable members.
157     mutable
158         typename std::aligned_storage<InlineStorageSize, alignof(void *)>::type
159             InlineStorage;
160   } StorageUnion;
161 
162   // A compressed pointer to either our dispatching callback or our table of
163   // dispatching callbacks and the flag for whether the callable itself is
164   // stored inline or not.
165   PointerIntPair<CallbackPointerUnionT, 1, bool> CallbackAndInlineFlag;
166 
167   bool isInlineStorage() const { return CallbackAndInlineFlag.getInt(); }
168 
169   bool isTrivialCallback() const {
170     return CallbackAndInlineFlag.getPointer().template is<TrivialCallback *>();
171   }
172 
173   CallPtrT getTrivialCallback() const {
174     return CallbackAndInlineFlag.getPointer().template get<TrivialCallback *>()->CallPtr;
175   }
176 
177   NonTrivialCallbacks *getNonTrivialCallbacks() const {
178     return CallbackAndInlineFlag.getPointer()
179         .template get<NonTrivialCallbacks *>();
180   }
181 
182   CallPtrT getCallPtr() const {
183     return isTrivialCallback() ? getTrivialCallback()
184                                : getNonTrivialCallbacks()->CallPtr;
185   }
186 
187   // These three functions are only const in the narrow sense. They return
188   // mutable pointers to function state.
189   // This allows unique_function<T const>::operator() to be const, even if the
190   // underlying functor may be internally mutable.
191   //
192   // const callers must ensure they're only used in const-correct ways.
193   void *getCalleePtr() const {
194     return isInlineStorage() ? getInlineStorage() : getOutOfLineStorage();
195   }
196   void *getInlineStorage() const { return &StorageUnion.InlineStorage; }
197   void *getOutOfLineStorage() const {
198     return StorageUnion.OutOfLineStorage.StoragePtr;
199   }
200 
201   size_t getOutOfLineStorageSize() const {
202     return StorageUnion.OutOfLineStorage.Size;
203   }
204   size_t getOutOfLineStorageAlignment() const {
205     return StorageUnion.OutOfLineStorage.Alignment;
206   }
207 
208   void setOutOfLineStorage(void *Ptr, size_t Size, size_t Alignment) {
209     StorageUnion.OutOfLineStorage = {Ptr, Size, Alignment};
210   }
211 
212   template <typename CalledAsT>
213   static ReturnT CallImpl(void *CallableAddr,
214                           AdjustedParamT<ParamTs>... Params) {
215     auto &Func = *reinterpret_cast<CalledAsT *>(CallableAddr);
216     return Func(std::forward<ParamTs>(Params)...);
217   }
218 
219   template <typename CallableT>
220   static void MoveImpl(void *LHSCallableAddr, void *RHSCallableAddr) noexcept {
221     new (LHSCallableAddr)
222         CallableT(std::move(*reinterpret_cast<CallableT *>(RHSCallableAddr)));
223   }
224 
225   template <typename CallableT>
226   static void DestroyImpl(void *CallableAddr) noexcept {
227     reinterpret_cast<CallableT *>(CallableAddr)->~CallableT();
228   }
229 
230   // The pointers to call/move/destroy functions are determined for each
231   // callable type (and called-as type, which determines the overload chosen).
232   // (definitions are out-of-line).
233 
234   // By default, we need an object that contains all the different
235   // type erased behaviors needed. Create a static instance of the struct type
236   // here and each instance will contain a pointer to it.
237   // Wrap in a struct to avoid https://gcc.gnu.org/PR71954
238   template <typename CallableT, typename CalledAs, typename Enable = void>
239   struct CallbacksHolder {
240     static NonTrivialCallbacks Callbacks;
241   };
242   // See if we can create a trivial callback. We need the callable to be
243   // trivially moved and trivially destroyed so that we don't have to store
244   // type erased callbacks for those operations.
245   template <typename CallableT, typename CalledAs>
246   struct CallbacksHolder<CallableT, CalledAs, EnableIfTrivial<CallableT>> {
247     static TrivialCallback Callbacks;
248   };
249 
250   // A simple tag type so the call-as type to be passed to the constructor.
251   template <typename T> struct CalledAs {};
252 
253   // Essentially the "main" unique_function constructor, but subclasses
254   // provide the qualified type to be used for the call.
255   // (We always store a T, even if the call will use a pointer to const T).
256   template <typename CallableT, typename CalledAsT>
257   UniqueFunctionBase(CallableT Callable, CalledAs<CalledAsT>) {
258     bool IsInlineStorage = true;
259     void *CallableAddr = getInlineStorage();
260     if (sizeof(CallableT) > InlineStorageSize ||
261         alignof(CallableT) > alignof(decltype(StorageUnion.InlineStorage))) {
262       IsInlineStorage = false;
263       // Allocate out-of-line storage. FIXME: Use an explicit alignment
264       // parameter in C++17 mode.
265       auto Size = sizeof(CallableT);
266       auto Alignment = alignof(CallableT);
267       CallableAddr = allocate_buffer(Size, Alignment);
268       setOutOfLineStorage(CallableAddr, Size, Alignment);
269     }
270 
271     // Now move into the storage.
272     new (CallableAddr) CallableT(std::move(Callable));
273     CallbackAndInlineFlag.setPointerAndInt(
274         &CallbacksHolder<CallableT, CalledAsT>::Callbacks, IsInlineStorage);
275   }
276 
277   ~UniqueFunctionBase() {
278     if (!CallbackAndInlineFlag.getPointer())
279       return;
280 
281     // Cache this value so we don't re-check it after type-erased operations.
282     bool IsInlineStorage = isInlineStorage();
283 
284     if (!isTrivialCallback())
285       getNonTrivialCallbacks()->DestroyPtr(
286           IsInlineStorage ? getInlineStorage() : getOutOfLineStorage());
287 
288     if (!IsInlineStorage)
289       deallocate_buffer(getOutOfLineStorage(), getOutOfLineStorageSize(),
290                         getOutOfLineStorageAlignment());
291   }
292 
293   UniqueFunctionBase(UniqueFunctionBase &&RHS) noexcept {
294     // Copy the callback and inline flag.
295     CallbackAndInlineFlag = RHS.CallbackAndInlineFlag;
296 
297     // If the RHS is empty, just copying the above is sufficient.
298     if (!RHS)
299       return;
300 
301     if (!isInlineStorage()) {
302       // The out-of-line case is easiest to move.
303       StorageUnion.OutOfLineStorage = RHS.StorageUnion.OutOfLineStorage;
304     } else if (isTrivialCallback()) {
305       // Move is trivial, just memcpy the bytes across.
306       memcpy(getInlineStorage(), RHS.getInlineStorage(), InlineStorageSize);
307     } else {
308       // Non-trivial move, so dispatch to a type-erased implementation.
309       getNonTrivialCallbacks()->MovePtr(getInlineStorage(),
310                                         RHS.getInlineStorage());
311     }
312 
313     // Clear the old callback and inline flag to get back to as-if-null.
314     RHS.CallbackAndInlineFlag = {};
315 
316 #ifndef NDEBUG
317     // In debug builds, we also scribble across the rest of the storage.
318     memset(RHS.getInlineStorage(), 0xAD, InlineStorageSize);
319 #endif
320   }
321 
322   UniqueFunctionBase &operator=(UniqueFunctionBase &&RHS) noexcept {
323     if (this == &RHS)
324       return *this;
325 
326     // Because we don't try to provide any exception safety guarantees we can
327     // implement move assignment very simply by first destroying the current
328     // object and then move-constructing over top of it.
329     this->~UniqueFunctionBase();
330     new (this) UniqueFunctionBase(std::move(RHS));
331     return *this;
332   }
333 
334   UniqueFunctionBase() = default;
335 
336 public:
337   explicit operator bool() const {
338     return (bool)CallbackAndInlineFlag.getPointer();
339   }
340 };
341 
342 template <typename R, typename... P>
343 template <typename CallableT, typename CalledAsT, typename Enable>
344 typename UniqueFunctionBase<R, P...>::NonTrivialCallbacks UniqueFunctionBase<
345     R, P...>::CallbacksHolder<CallableT, CalledAsT, Enable>::Callbacks = {
346     &CallImpl<CalledAsT>, &MoveImpl<CallableT>, &DestroyImpl<CallableT>};
347 
348 template <typename R, typename... P>
349 template <typename CallableT, typename CalledAsT>
350 typename UniqueFunctionBase<R, P...>::TrivialCallback
351     UniqueFunctionBase<R, P...>::CallbacksHolder<
352         CallableT, CalledAsT, EnableIfTrivial<CallableT>>::Callbacks{
353         &CallImpl<CalledAsT>};
354 
355 } // namespace detail
356 
357 template <typename R, typename... P>
358 class unique_function<R(P...)> : public detail::UniqueFunctionBase<R, P...> {
359   using Base = detail::UniqueFunctionBase<R, P...>;
360 
361 public:
362   unique_function() = default;
363   unique_function(std::nullptr_t) {}
364   unique_function(unique_function &&) = default;
365   unique_function(const unique_function &) = delete;
366   unique_function &operator=(unique_function &&) = default;
367   unique_function &operator=(const unique_function &) = delete;
368 
369   template <typename CallableT>
370   unique_function(
371       CallableT Callable,
372       detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
373       detail::EnableIfCallable<CallableT, R, P...> * = nullptr)
374       : Base(std::forward<CallableT>(Callable),
375              typename Base::template CalledAs<CallableT>{}) {}
376 
377   R operator()(P... Params) {
378     return this->getCallPtr()(this->getCalleePtr(), Params...);
379   }
380 };
381 
382 template <typename R, typename... P>
383 class unique_function<R(P...) const>
384     : public detail::UniqueFunctionBase<R, P...> {
385   using Base = detail::UniqueFunctionBase<R, P...>;
386 
387 public:
388   unique_function() = default;
389   unique_function(std::nullptr_t) {}
390   unique_function(unique_function &&) = default;
391   unique_function(const unique_function &) = delete;
392   unique_function &operator=(unique_function &&) = default;
393   unique_function &operator=(const unique_function &) = delete;
394 
395   template <typename CallableT>
396   unique_function(
397       CallableT Callable,
398       detail::EnableUnlessSameType<CallableT, unique_function> * = nullptr,
399       detail::EnableIfCallable<const CallableT, R, P...> * = nullptr)
400       : Base(std::forward<CallableT>(Callable),
401              typename Base::template CalledAs<const CallableT>{}) {}
402 
403   R operator()(P... Params) const {
404     return this->getCallPtr()(this->getCalleePtr(), Params...);
405   }
406 };
407 
408 } // end namespace llvm
409 
410 #endif // LLVM_ADT_FUNCTIONEXTRAS_H
411