1 //===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file implements a class to represent arbitrary precision 11 /// integral constant values and operations on them. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_ADT_APINT_H 16 #define LLVM_ADT_APINT_H 17 18 #include "llvm/Support/Compiler.h" 19 #include "llvm/Support/MathExtras.h" 20 #include <cassert> 21 #include <climits> 22 #include <cstring> 23 #include <string> 24 25 namespace llvm { 26 class FoldingSetNodeID; 27 class StringRef; 28 class hash_code; 29 class raw_ostream; 30 31 template <typename T> class SmallVectorImpl; 32 template <typename T> class ArrayRef; 33 template <typename T> class Optional; 34 template <typename T> struct DenseMapInfo; 35 36 class APInt; 37 38 inline APInt operator-(APInt); 39 40 //===----------------------------------------------------------------------===// 41 // APInt Class 42 //===----------------------------------------------------------------------===// 43 44 /// Class for arbitrary precision integers. 45 /// 46 /// APInt is a functional replacement for common case unsigned integer type like 47 /// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width 48 /// integer sizes and large integer value types such as 3-bits, 15-bits, or more 49 /// than 64-bits of precision. APInt provides a variety of arithmetic operators 50 /// and methods to manipulate integer values of any bit-width. It supports both 51 /// the typical integer arithmetic and comparison operations as well as bitwise 52 /// manipulation. 53 /// 54 /// The class has several invariants worth noting: 55 /// * All bit, byte, and word positions are zero-based. 56 /// * Once the bit width is set, it doesn't change except by the Truncate, 57 /// SignExtend, or ZeroExtend operations. 58 /// * All binary operators must be on APInt instances of the same bit width. 59 /// Attempting to use these operators on instances with different bit 60 /// widths will yield an assertion. 61 /// * The value is stored canonically as an unsigned value. For operations 62 /// where it makes a difference, there are both signed and unsigned variants 63 /// of the operation. For example, sdiv and udiv. However, because the bit 64 /// widths must be the same, operations such as Mul and Add produce the same 65 /// results regardless of whether the values are interpreted as signed or 66 /// not. 67 /// * In general, the class tries to follow the style of computation that LLVM 68 /// uses in its IR. This simplifies its use for LLVM. 69 /// 70 class LLVM_NODISCARD APInt { 71 public: 72 typedef uint64_t WordType; 73 74 /// This enum is used to hold the constants we needed for APInt. 75 enum : unsigned { 76 /// Byte size of a word. 77 APINT_WORD_SIZE = sizeof(WordType), 78 /// Bits in a word. 79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT 80 }; 81 82 enum class Rounding { 83 DOWN, 84 TOWARD_ZERO, 85 UP, 86 }; 87 88 static constexpr WordType WORDTYPE_MAX = ~WordType(0); 89 90 private: 91 /// This union is used to store the integer value. When the 92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal. 93 union { 94 uint64_t VAL; ///< Used to store the <= 64 bits integer value. 95 uint64_t *pVal; ///< Used to store the >64 bits integer value. 96 } U; 97 98 unsigned BitWidth; ///< The number of bits in this APInt. 99 100 friend struct DenseMapInfo<APInt>; 101 102 friend class APSInt; 103 104 /// Fast internal constructor 105 /// 106 /// This constructor is used only internally for speed of construction of 107 /// temporaries. It is unsafe for general use so it is not public. 108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) { 109 U.pVal = val; 110 } 111 112 /// Determine if this APInt just has one word to store value. 113 /// 114 /// \returns true if the number of bits <= 64, false otherwise. 115 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; } 116 117 /// Determine which word a bit is in. 118 /// 119 /// \returns the word position for the specified bit position. 120 static unsigned whichWord(unsigned bitPosition) { 121 return bitPosition / APINT_BITS_PER_WORD; 122 } 123 124 /// Determine which bit in a word a bit is in. 125 /// 126 /// \returns the bit position in a word for the specified bit position 127 /// in the APInt. 128 static unsigned whichBit(unsigned bitPosition) { 129 return bitPosition % APINT_BITS_PER_WORD; 130 } 131 132 /// Get a single bit mask. 133 /// 134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set 135 /// This method generates and returns a uint64_t (word) mask for a single 136 /// bit at a specific bit position. This is used to mask the bit in the 137 /// corresponding word. 138 static uint64_t maskBit(unsigned bitPosition) { 139 return 1ULL << whichBit(bitPosition); 140 } 141 142 /// Clear unused high order bits 143 /// 144 /// This method is used internally to clear the top "N" bits in the high order 145 /// word that are not used by the APInt. This is needed after the most 146 /// significant word is assigned a value to ensure that those bits are 147 /// zero'd out. 148 APInt &clearUnusedBits() { 149 // Compute how many bits are used in the final word 150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1; 151 152 // Mask out the high bits. 153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits); 154 if (isSingleWord()) 155 U.VAL &= mask; 156 else 157 U.pVal[getNumWords() - 1] &= mask; 158 return *this; 159 } 160 161 /// Get the word corresponding to a bit position 162 /// \returns the corresponding word for the specified bit position. 163 uint64_t getWord(unsigned bitPosition) const { 164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)]; 165 } 166 167 /// Utility method to change the bit width of this APInt to new bit width, 168 /// allocating and/or deallocating as necessary. There is no guarantee on the 169 /// value of any bits upon return. Caller should populate the bits after. 170 void reallocate(unsigned NewBitWidth); 171 172 /// Convert a char array into an APInt 173 /// 174 /// \param radix 2, 8, 10, 16, or 36 175 /// Converts a string into a number. The string must be non-empty 176 /// and well-formed as a number of the given base. The bit-width 177 /// must be sufficient to hold the result. 178 /// 179 /// This is used by the constructors that take string arguments. 180 /// 181 /// StringRef::getAsInteger is superficially similar but (1) does 182 /// not assume that the string is well-formed and (2) grows the 183 /// result to hold the input. 184 void fromString(unsigned numBits, StringRef str, uint8_t radix); 185 186 /// An internal division function for dividing APInts. 187 /// 188 /// This is used by the toString method to divide by the radix. It simply 189 /// provides a more convenient form of divide for internal use since KnuthDiv 190 /// has specific constraints on its inputs. If those constraints are not met 191 /// then it provides a simpler form of divide. 192 static void divide(const WordType *LHS, unsigned lhsWords, 193 const WordType *RHS, unsigned rhsWords, WordType *Quotient, 194 WordType *Remainder); 195 196 /// out-of-line slow case for inline constructor 197 void initSlowCase(uint64_t val, bool isSigned); 198 199 /// shared code between two array constructors 200 void initFromArray(ArrayRef<uint64_t> array); 201 202 /// out-of-line slow case for inline copy constructor 203 void initSlowCase(const APInt &that); 204 205 /// out-of-line slow case for shl 206 void shlSlowCase(unsigned ShiftAmt); 207 208 /// out-of-line slow case for lshr. 209 void lshrSlowCase(unsigned ShiftAmt); 210 211 /// out-of-line slow case for ashr. 212 void ashrSlowCase(unsigned ShiftAmt); 213 214 /// out-of-line slow case for operator= 215 void AssignSlowCase(const APInt &RHS); 216 217 /// out-of-line slow case for operator== 218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY; 219 220 /// out-of-line slow case for countLeadingZeros 221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY; 222 223 /// out-of-line slow case for countLeadingOnes. 224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY; 225 226 /// out-of-line slow case for countTrailingZeros. 227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY; 228 229 /// out-of-line slow case for countTrailingOnes 230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY; 231 232 /// out-of-line slow case for countPopulation 233 unsigned countPopulationSlowCase() const LLVM_READONLY; 234 235 /// out-of-line slow case for intersects. 236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY; 237 238 /// out-of-line slow case for isSubsetOf. 239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY; 240 241 /// out-of-line slow case for setBits. 242 void setBitsSlowCase(unsigned loBit, unsigned hiBit); 243 244 /// out-of-line slow case for flipAllBits. 245 void flipAllBitsSlowCase(); 246 247 /// out-of-line slow case for operator&=. 248 void AndAssignSlowCase(const APInt& RHS); 249 250 /// out-of-line slow case for operator|=. 251 void OrAssignSlowCase(const APInt& RHS); 252 253 /// out-of-line slow case for operator^=. 254 void XorAssignSlowCase(const APInt& RHS); 255 256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal 257 /// to, or greater than RHS. 258 int compare(const APInt &RHS) const LLVM_READONLY; 259 260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal 261 /// to, or greater than RHS. 262 int compareSigned(const APInt &RHS) const LLVM_READONLY; 263 264 public: 265 /// \name Constructors 266 /// @{ 267 268 /// Create a new APInt of numBits width, initialized as val. 269 /// 270 /// If isSigned is true then val is treated as if it were a signed value 271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width 272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond 273 /// the range of val are zero filled). 274 /// 275 /// \param numBits the bit width of the constructed APInt 276 /// \param val the initial value of the APInt 277 /// \param isSigned how to treat signedness of val 278 APInt(unsigned numBits, uint64_t val, bool isSigned = false) 279 : BitWidth(numBits) { 280 assert(BitWidth && "bitwidth too small"); 281 if (isSingleWord()) { 282 U.VAL = val; 283 clearUnusedBits(); 284 } else { 285 initSlowCase(val, isSigned); 286 } 287 } 288 289 /// Construct an APInt of numBits width, initialized as bigVal[]. 290 /// 291 /// Note that bigVal.size() can be smaller or larger than the corresponding 292 /// bit width but any extraneous bits will be dropped. 293 /// 294 /// \param numBits the bit width of the constructed APInt 295 /// \param bigVal a sequence of words to form the initial value of the APInt 296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal); 297 298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but 299 /// deprecated because this constructor is prone to ambiguity with the 300 /// APInt(unsigned, uint64_t, bool) constructor. 301 /// 302 /// If this overload is ever deleted, care should be taken to prevent calls 303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool) 304 /// constructor. 305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]); 306 307 /// Construct an APInt from a string representation. 308 /// 309 /// This constructor interprets the string \p str in the given radix. The 310 /// interpretation stops when the first character that is not suitable for the 311 /// radix is encountered, or the end of the string. Acceptable radix values 312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the 313 /// string to require more bits than numBits. 314 /// 315 /// \param numBits the bit width of the constructed APInt 316 /// \param str the string to be interpreted 317 /// \param radix the radix to use for the conversion 318 APInt(unsigned numBits, StringRef str, uint8_t radix); 319 320 /// Simply makes *this a copy of that. 321 /// Copy Constructor. 322 APInt(const APInt &that) : BitWidth(that.BitWidth) { 323 if (isSingleWord()) 324 U.VAL = that.U.VAL; 325 else 326 initSlowCase(that); 327 } 328 329 /// Move Constructor. 330 APInt(APInt &&that) : BitWidth(that.BitWidth) { 331 memcpy(&U, &that.U, sizeof(U)); 332 that.BitWidth = 0; 333 } 334 335 /// Destructor. 336 ~APInt() { 337 if (needsCleanup()) 338 delete[] U.pVal; 339 } 340 341 /// Default constructor that creates an uninteresting APInt 342 /// representing a 1-bit zero value. 343 /// 344 /// This is useful for object deserialization (pair this with the static 345 /// method Read). 346 explicit APInt() : BitWidth(1) { U.VAL = 0; } 347 348 /// Returns whether this instance allocated memory. 349 bool needsCleanup() const { return !isSingleWord(); } 350 351 /// Used to insert APInt objects, or objects that contain APInt objects, into 352 /// FoldingSets. 353 void Profile(FoldingSetNodeID &id) const; 354 355 /// @} 356 /// \name Value Tests 357 /// @{ 358 359 /// Determine sign of this APInt. 360 /// 361 /// This tests the high bit of this APInt to determine if it is set. 362 /// 363 /// \returns true if this APInt is negative, false otherwise 364 bool isNegative() const { return (*this)[BitWidth - 1]; } 365 366 /// Determine if this APInt Value is non-negative (>= 0) 367 /// 368 /// This tests the high bit of the APInt to determine if it is unset. 369 bool isNonNegative() const { return !isNegative(); } 370 371 /// Determine if sign bit of this APInt is set. 372 /// 373 /// This tests the high bit of this APInt to determine if it is set. 374 /// 375 /// \returns true if this APInt has its sign bit set, false otherwise. 376 bool isSignBitSet() const { return (*this)[BitWidth-1]; } 377 378 /// Determine if sign bit of this APInt is clear. 379 /// 380 /// This tests the high bit of this APInt to determine if it is clear. 381 /// 382 /// \returns true if this APInt has its sign bit clear, false otherwise. 383 bool isSignBitClear() const { return !isSignBitSet(); } 384 385 /// Determine if this APInt Value is positive. 386 /// 387 /// This tests if the value of this APInt is positive (> 0). Note 388 /// that 0 is not a positive value. 389 /// 390 /// \returns true if this APInt is positive. 391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } 392 393 /// Determine if this APInt Value is non-positive (<= 0). 394 /// 395 /// \returns true if this APInt is non-positive. 396 bool isNonPositive() const { return !isStrictlyPositive(); } 397 398 /// Determine if all bits are set 399 /// 400 /// This checks to see if the value has all bits of the APInt are set or not. 401 bool isAllOnesValue() const { 402 if (isSingleWord()) 403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth); 404 return countTrailingOnesSlowCase() == BitWidth; 405 } 406 407 /// Determine if all bits are clear 408 /// 409 /// This checks to see if the value has all bits of the APInt are clear or 410 /// not. 411 bool isNullValue() const { return !*this; } 412 413 /// Determine if this is a value of 1. 414 /// 415 /// This checks to see if the value of this APInt is one. 416 bool isOneValue() const { 417 if (isSingleWord()) 418 return U.VAL == 1; 419 return countLeadingZerosSlowCase() == BitWidth - 1; 420 } 421 422 /// Determine if this is the largest unsigned value. 423 /// 424 /// This checks to see if the value of this APInt is the maximum unsigned 425 /// value for the APInt's bit width. 426 bool isMaxValue() const { return isAllOnesValue(); } 427 428 /// Determine if this is the largest signed value. 429 /// 430 /// This checks to see if the value of this APInt is the maximum signed 431 /// value for the APInt's bit width. 432 bool isMaxSignedValue() const { 433 if (isSingleWord()) 434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1); 435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1; 436 } 437 438 /// Determine if this is the smallest unsigned value. 439 /// 440 /// This checks to see if the value of this APInt is the minimum unsigned 441 /// value for the APInt's bit width. 442 bool isMinValue() const { return isNullValue(); } 443 444 /// Determine if this is the smallest signed value. 445 /// 446 /// This checks to see if the value of this APInt is the minimum signed 447 /// value for the APInt's bit width. 448 bool isMinSignedValue() const { 449 if (isSingleWord()) 450 return U.VAL == (WordType(1) << (BitWidth - 1)); 451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1; 452 } 453 454 /// Check if this APInt has an N-bits unsigned integer value. 455 bool isIntN(unsigned N) const { 456 assert(N && "N == 0 ???"); 457 return getActiveBits() <= N; 458 } 459 460 /// Check if this APInt has an N-bits signed integer value. 461 bool isSignedIntN(unsigned N) const { 462 assert(N && "N == 0 ???"); 463 return getMinSignedBits() <= N; 464 } 465 466 /// Check if this APInt's value is a power of two greater than zero. 467 /// 468 /// \returns true if the argument APInt value is a power of two > 0. 469 bool isPowerOf2() const { 470 if (isSingleWord()) 471 return isPowerOf2_64(U.VAL); 472 return countPopulationSlowCase() == 1; 473 } 474 475 /// Check if the APInt's value is returned by getSignMask. 476 /// 477 /// \returns true if this is the value returned by getSignMask. 478 bool isSignMask() const { return isMinSignedValue(); } 479 480 /// Convert APInt to a boolean value. 481 /// 482 /// This converts the APInt to a boolean value as a test against zero. 483 bool getBoolValue() const { return !!*this; } 484 485 /// If this value is smaller than the specified limit, return it, otherwise 486 /// return the limit value. This causes the value to saturate to the limit. 487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX) const { 488 return ugt(Limit) ? Limit : getZExtValue(); 489 } 490 491 /// Check if the APInt consists of a repeated bit pattern. 492 /// 493 /// e.g. 0x01010101 satisfies isSplat(8). 494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit 495 /// width without remainder. 496 bool isSplat(unsigned SplatSizeInBits) const; 497 498 /// \returns true if this APInt value is a sequence of \param numBits ones 499 /// starting at the least significant bit with the remainder zero. 500 bool isMask(unsigned numBits) const { 501 assert(numBits != 0 && "numBits must be non-zero"); 502 assert(numBits <= BitWidth && "numBits out of range"); 503 if (isSingleWord()) 504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits)); 505 unsigned Ones = countTrailingOnesSlowCase(); 506 return (numBits == Ones) && 507 ((Ones + countLeadingZerosSlowCase()) == BitWidth); 508 } 509 510 /// \returns true if this APInt is a non-empty sequence of ones starting at 511 /// the least significant bit with the remainder zero. 512 /// Ex. isMask(0x0000FFFFU) == true. 513 bool isMask() const { 514 if (isSingleWord()) 515 return isMask_64(U.VAL); 516 unsigned Ones = countTrailingOnesSlowCase(); 517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth); 518 } 519 520 /// Return true if this APInt value contains a sequence of ones with 521 /// the remainder zero. 522 bool isShiftedMask() const { 523 if (isSingleWord()) 524 return isShiftedMask_64(U.VAL); 525 unsigned Ones = countPopulationSlowCase(); 526 unsigned LeadZ = countLeadingZerosSlowCase(); 527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth; 528 } 529 530 /// @} 531 /// \name Value Generators 532 /// @{ 533 534 /// Gets maximum unsigned value of APInt for specific bit width. 535 static APInt getMaxValue(unsigned numBits) { 536 return getAllOnesValue(numBits); 537 } 538 539 /// Gets maximum signed value of APInt for a specific bit width. 540 static APInt getSignedMaxValue(unsigned numBits) { 541 APInt API = getAllOnesValue(numBits); 542 API.clearBit(numBits - 1); 543 return API; 544 } 545 546 /// Gets minimum unsigned value of APInt for a specific bit width. 547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); } 548 549 /// Gets minimum signed value of APInt for a specific bit width. 550 static APInt getSignedMinValue(unsigned numBits) { 551 APInt API(numBits, 0); 552 API.setBit(numBits - 1); 553 return API; 554 } 555 556 /// Get the SignMask for a specific bit width. 557 /// 558 /// This is just a wrapper function of getSignedMinValue(), and it helps code 559 /// readability when we want to get a SignMask. 560 static APInt getSignMask(unsigned BitWidth) { 561 return getSignedMinValue(BitWidth); 562 } 563 564 /// Get the all-ones value. 565 /// 566 /// \returns the all-ones value for an APInt of the specified bit-width. 567 static APInt getAllOnesValue(unsigned numBits) { 568 return APInt(numBits, WORDTYPE_MAX, true); 569 } 570 571 /// Get the '0' value. 572 /// 573 /// \returns the '0' value for an APInt of the specified bit-width. 574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); } 575 576 /// Compute an APInt containing numBits highbits from this APInt. 577 /// 578 /// Get an APInt with the same BitWidth as this APInt, just zero mask 579 /// the low bits and right shift to the least significant bit. 580 /// 581 /// \returns the high "numBits" bits of this APInt. 582 APInt getHiBits(unsigned numBits) const; 583 584 /// Compute an APInt containing numBits lowbits from this APInt. 585 /// 586 /// Get an APInt with the same BitWidth as this APInt, just zero mask 587 /// the high bits. 588 /// 589 /// \returns the low "numBits" bits of this APInt. 590 APInt getLoBits(unsigned numBits) const; 591 592 /// Return an APInt with exactly one bit set in the result. 593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) { 594 APInt Res(numBits, 0); 595 Res.setBit(BitNo); 596 return Res; 597 } 598 599 /// Get a value with a block of bits set. 600 /// 601 /// Constructs an APInt value that has a contiguous range of bits set. The 602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other 603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get 604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than 605 /// \p hiBit. 606 /// 607 /// \param numBits the intended bit width of the result 608 /// \param loBit the index of the lowest bit set. 609 /// \param hiBit the index of the highest bit set. 610 /// 611 /// \returns An APInt value with the requested bits set. 612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) { 613 assert(loBit <= hiBit && "loBit greater than hiBit"); 614 APInt Res(numBits, 0); 615 Res.setBits(loBit, hiBit); 616 return Res; 617 } 618 619 /// Wrap version of getBitsSet. 620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet. 621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example, 622 /// with parameters (32, 28, 4), you would get 0xF000000F. 623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits 624 /// set. 625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, 626 unsigned hiBit) { 627 APInt Res(numBits, 0); 628 Res.setBitsWithWrap(loBit, hiBit); 629 return Res; 630 } 631 632 /// Get a value with upper bits starting at loBit set. 633 /// 634 /// Constructs an APInt value that has a contiguous range of bits set. The 635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other 636 /// bits will be zero. For example, with parameters(32, 12) you would get 637 /// 0xFFFFF000. 638 /// 639 /// \param numBits the intended bit width of the result 640 /// \param loBit the index of the lowest bit to set. 641 /// 642 /// \returns An APInt value with the requested bits set. 643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) { 644 APInt Res(numBits, 0); 645 Res.setBitsFrom(loBit); 646 return Res; 647 } 648 649 /// Get a value with high bits set 650 /// 651 /// Constructs an APInt value that has the top hiBitsSet bits set. 652 /// 653 /// \param numBits the bitwidth of the result 654 /// \param hiBitsSet the number of high-order bits set in the result. 655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) { 656 APInt Res(numBits, 0); 657 Res.setHighBits(hiBitsSet); 658 return Res; 659 } 660 661 /// Get a value with low bits set 662 /// 663 /// Constructs an APInt value that has the bottom loBitsSet bits set. 664 /// 665 /// \param numBits the bitwidth of the result 666 /// \param loBitsSet the number of low-order bits set in the result. 667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) { 668 APInt Res(numBits, 0); 669 Res.setLowBits(loBitsSet); 670 return Res; 671 } 672 673 /// Return a value containing V broadcasted over NewLen bits. 674 static APInt getSplat(unsigned NewLen, const APInt &V); 675 676 /// Determine if two APInts have the same value, after zero-extending 677 /// one of them (if needed!) to ensure that the bit-widths match. 678 static bool isSameValue(const APInt &I1, const APInt &I2) { 679 if (I1.getBitWidth() == I2.getBitWidth()) 680 return I1 == I2; 681 682 if (I1.getBitWidth() > I2.getBitWidth()) 683 return I1 == I2.zext(I1.getBitWidth()); 684 685 return I1.zext(I2.getBitWidth()) == I2; 686 } 687 688 /// Overload to compute a hash_code for an APInt value. 689 friend hash_code hash_value(const APInt &Arg); 690 691 /// This function returns a pointer to the internal storage of the APInt. 692 /// This is useful for writing out the APInt in binary form without any 693 /// conversions. 694 const uint64_t *getRawData() const { 695 if (isSingleWord()) 696 return &U.VAL; 697 return &U.pVal[0]; 698 } 699 700 /// @} 701 /// \name Unary Operators 702 /// @{ 703 704 /// Postfix increment operator. 705 /// 706 /// Increments *this by 1. 707 /// 708 /// \returns a new APInt value representing the original value of *this. 709 const APInt operator++(int) { 710 APInt API(*this); 711 ++(*this); 712 return API; 713 } 714 715 /// Prefix increment operator. 716 /// 717 /// \returns *this incremented by one 718 APInt &operator++(); 719 720 /// Postfix decrement operator. 721 /// 722 /// Decrements *this by 1. 723 /// 724 /// \returns a new APInt value representing the original value of *this. 725 const APInt operator--(int) { 726 APInt API(*this); 727 --(*this); 728 return API; 729 } 730 731 /// Prefix decrement operator. 732 /// 733 /// \returns *this decremented by one. 734 APInt &operator--(); 735 736 /// Logical negation operator. 737 /// 738 /// Performs logical negation operation on this APInt. 739 /// 740 /// \returns true if *this is zero, false otherwise. 741 bool operator!() const { 742 if (isSingleWord()) 743 return U.VAL == 0; 744 return countLeadingZerosSlowCase() == BitWidth; 745 } 746 747 /// @} 748 /// \name Assignment Operators 749 /// @{ 750 751 /// Copy assignment operator. 752 /// 753 /// \returns *this after assignment of RHS. 754 APInt &operator=(const APInt &RHS) { 755 // If the bitwidths are the same, we can avoid mucking with memory 756 if (isSingleWord() && RHS.isSingleWord()) { 757 U.VAL = RHS.U.VAL; 758 BitWidth = RHS.BitWidth; 759 return clearUnusedBits(); 760 } 761 762 AssignSlowCase(RHS); 763 return *this; 764 } 765 766 /// Move assignment operator. 767 APInt &operator=(APInt &&that) { 768 #ifdef EXPENSIVE_CHECKS 769 // Some std::shuffle implementations still do self-assignment. 770 if (this == &that) 771 return *this; 772 #endif 773 assert(this != &that && "Self-move not supported"); 774 if (!isSingleWord()) 775 delete[] U.pVal; 776 777 // Use memcpy so that type based alias analysis sees both VAL and pVal 778 // as modified. 779 memcpy(&U, &that.U, sizeof(U)); 780 781 BitWidth = that.BitWidth; 782 that.BitWidth = 0; 783 784 return *this; 785 } 786 787 /// Assignment operator. 788 /// 789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed 790 /// the bit width, the excess bits are truncated. If the bit width is larger 791 /// than 64, the value is zero filled in the unspecified high order bits. 792 /// 793 /// \returns *this after assignment of RHS value. 794 APInt &operator=(uint64_t RHS) { 795 if (isSingleWord()) { 796 U.VAL = RHS; 797 return clearUnusedBits(); 798 } 799 U.pVal[0] = RHS; 800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 801 return *this; 802 } 803 804 /// Bitwise AND assignment operator. 805 /// 806 /// Performs a bitwise AND operation on this APInt and RHS. The result is 807 /// assigned to *this. 808 /// 809 /// \returns *this after ANDing with RHS. 810 APInt &operator&=(const APInt &RHS) { 811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 812 if (isSingleWord()) 813 U.VAL &= RHS.U.VAL; 814 else 815 AndAssignSlowCase(RHS); 816 return *this; 817 } 818 819 /// Bitwise AND assignment operator. 820 /// 821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is 822 /// logically zero-extended or truncated to match the bit-width of 823 /// the LHS. 824 APInt &operator&=(uint64_t RHS) { 825 if (isSingleWord()) { 826 U.VAL &= RHS; 827 return *this; 828 } 829 U.pVal[0] &= RHS; 830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE); 831 return *this; 832 } 833 834 /// Bitwise OR assignment operator. 835 /// 836 /// Performs a bitwise OR operation on this APInt and RHS. The result is 837 /// assigned *this; 838 /// 839 /// \returns *this after ORing with RHS. 840 APInt &operator|=(const APInt &RHS) { 841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 842 if (isSingleWord()) 843 U.VAL |= RHS.U.VAL; 844 else 845 OrAssignSlowCase(RHS); 846 return *this; 847 } 848 849 /// Bitwise OR assignment operator. 850 /// 851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is 852 /// logically zero-extended or truncated to match the bit-width of 853 /// the LHS. 854 APInt &operator|=(uint64_t RHS) { 855 if (isSingleWord()) { 856 U.VAL |= RHS; 857 return clearUnusedBits(); 858 } 859 U.pVal[0] |= RHS; 860 return *this; 861 } 862 863 /// Bitwise XOR assignment operator. 864 /// 865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is 866 /// assigned to *this. 867 /// 868 /// \returns *this after XORing with RHS. 869 APInt &operator^=(const APInt &RHS) { 870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 871 if (isSingleWord()) 872 U.VAL ^= RHS.U.VAL; 873 else 874 XorAssignSlowCase(RHS); 875 return *this; 876 } 877 878 /// Bitwise XOR assignment operator. 879 /// 880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is 881 /// logically zero-extended or truncated to match the bit-width of 882 /// the LHS. 883 APInt &operator^=(uint64_t RHS) { 884 if (isSingleWord()) { 885 U.VAL ^= RHS; 886 return clearUnusedBits(); 887 } 888 U.pVal[0] ^= RHS; 889 return *this; 890 } 891 892 /// Multiplication assignment operator. 893 /// 894 /// Multiplies this APInt by RHS and assigns the result to *this. 895 /// 896 /// \returns *this 897 APInt &operator*=(const APInt &RHS); 898 APInt &operator*=(uint64_t RHS); 899 900 /// Addition assignment operator. 901 /// 902 /// Adds RHS to *this and assigns the result to *this. 903 /// 904 /// \returns *this 905 APInt &operator+=(const APInt &RHS); 906 APInt &operator+=(uint64_t RHS); 907 908 /// Subtraction assignment operator. 909 /// 910 /// Subtracts RHS from *this and assigns the result to *this. 911 /// 912 /// \returns *this 913 APInt &operator-=(const APInt &RHS); 914 APInt &operator-=(uint64_t RHS); 915 916 /// Left-shift assignment function. 917 /// 918 /// Shifts *this left by shiftAmt and assigns the result to *this. 919 /// 920 /// \returns *this after shifting left by ShiftAmt 921 APInt &operator<<=(unsigned ShiftAmt) { 922 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 923 if (isSingleWord()) { 924 if (ShiftAmt == BitWidth) 925 U.VAL = 0; 926 else 927 U.VAL <<= ShiftAmt; 928 return clearUnusedBits(); 929 } 930 shlSlowCase(ShiftAmt); 931 return *this; 932 } 933 934 /// Left-shift assignment function. 935 /// 936 /// Shifts *this left by shiftAmt and assigns the result to *this. 937 /// 938 /// \returns *this after shifting left by ShiftAmt 939 APInt &operator<<=(const APInt &ShiftAmt); 940 941 /// @} 942 /// \name Binary Operators 943 /// @{ 944 945 /// Multiplication operator. 946 /// 947 /// Multiplies this APInt by RHS and returns the result. 948 APInt operator*(const APInt &RHS) const; 949 950 /// Left logical shift operator. 951 /// 952 /// Shifts this APInt left by \p Bits and returns the result. 953 APInt operator<<(unsigned Bits) const { return shl(Bits); } 954 955 /// Left logical shift operator. 956 /// 957 /// Shifts this APInt left by \p Bits and returns the result. 958 APInt operator<<(const APInt &Bits) const { return shl(Bits); } 959 960 /// Arithmetic right-shift function. 961 /// 962 /// Arithmetic right-shift this APInt by shiftAmt. 963 APInt ashr(unsigned ShiftAmt) const { 964 APInt R(*this); 965 R.ashrInPlace(ShiftAmt); 966 return R; 967 } 968 969 /// Arithmetic right-shift this APInt by ShiftAmt in place. 970 void ashrInPlace(unsigned ShiftAmt) { 971 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 972 if (isSingleWord()) { 973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth); 974 if (ShiftAmt == BitWidth) 975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit. 976 else 977 U.VAL = SExtVAL >> ShiftAmt; 978 clearUnusedBits(); 979 return; 980 } 981 ashrSlowCase(ShiftAmt); 982 } 983 984 /// Logical right-shift function. 985 /// 986 /// Logical right-shift this APInt by shiftAmt. 987 APInt lshr(unsigned shiftAmt) const { 988 APInt R(*this); 989 R.lshrInPlace(shiftAmt); 990 return R; 991 } 992 993 /// Logical right-shift this APInt by ShiftAmt in place. 994 void lshrInPlace(unsigned ShiftAmt) { 995 assert(ShiftAmt <= BitWidth && "Invalid shift amount"); 996 if (isSingleWord()) { 997 if (ShiftAmt == BitWidth) 998 U.VAL = 0; 999 else 1000 U.VAL >>= ShiftAmt; 1001 return; 1002 } 1003 lshrSlowCase(ShiftAmt); 1004 } 1005 1006 /// Left-shift function. 1007 /// 1008 /// Left-shift this APInt by shiftAmt. 1009 APInt shl(unsigned shiftAmt) const { 1010 APInt R(*this); 1011 R <<= shiftAmt; 1012 return R; 1013 } 1014 1015 /// Rotate left by rotateAmt. 1016 APInt rotl(unsigned rotateAmt) const; 1017 1018 /// Rotate right by rotateAmt. 1019 APInt rotr(unsigned rotateAmt) const; 1020 1021 /// Arithmetic right-shift function. 1022 /// 1023 /// Arithmetic right-shift this APInt by shiftAmt. 1024 APInt ashr(const APInt &ShiftAmt) const { 1025 APInt R(*this); 1026 R.ashrInPlace(ShiftAmt); 1027 return R; 1028 } 1029 1030 /// Arithmetic right-shift this APInt by shiftAmt in place. 1031 void ashrInPlace(const APInt &shiftAmt); 1032 1033 /// Logical right-shift function. 1034 /// 1035 /// Logical right-shift this APInt by shiftAmt. 1036 APInt lshr(const APInt &ShiftAmt) const { 1037 APInt R(*this); 1038 R.lshrInPlace(ShiftAmt); 1039 return R; 1040 } 1041 1042 /// Logical right-shift this APInt by ShiftAmt in place. 1043 void lshrInPlace(const APInt &ShiftAmt); 1044 1045 /// Left-shift function. 1046 /// 1047 /// Left-shift this APInt by shiftAmt. 1048 APInt shl(const APInt &ShiftAmt) const { 1049 APInt R(*this); 1050 R <<= ShiftAmt; 1051 return R; 1052 } 1053 1054 /// Rotate left by rotateAmt. 1055 APInt rotl(const APInt &rotateAmt) const; 1056 1057 /// Rotate right by rotateAmt. 1058 APInt rotr(const APInt &rotateAmt) const; 1059 1060 /// Unsigned division operation. 1061 /// 1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and 1063 /// RHS are treated as unsigned quantities for purposes of this division. 1064 /// 1065 /// \returns a new APInt value containing the division result, rounded towards 1066 /// zero. 1067 APInt udiv(const APInt &RHS) const; 1068 APInt udiv(uint64_t RHS) const; 1069 1070 /// Signed division function for APInt. 1071 /// 1072 /// Signed divide this APInt by APInt RHS. 1073 /// 1074 /// The result is rounded towards zero. 1075 APInt sdiv(const APInt &RHS) const; 1076 APInt sdiv(int64_t RHS) const; 1077 1078 /// Unsigned remainder operation. 1079 /// 1080 /// Perform an unsigned remainder operation on this APInt with RHS being the 1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes 1082 /// of this operation. Note that this is a true remainder operation and not a 1083 /// modulo operation because the sign follows the sign of the dividend which 1084 /// is *this. 1085 /// 1086 /// \returns a new APInt value containing the remainder result 1087 APInt urem(const APInt &RHS) const; 1088 uint64_t urem(uint64_t RHS) const; 1089 1090 /// Function for signed remainder operation. 1091 /// 1092 /// Signed remainder operation on APInt. 1093 APInt srem(const APInt &RHS) const; 1094 int64_t srem(int64_t RHS) const; 1095 1096 /// Dual division/remainder interface. 1097 /// 1098 /// Sometimes it is convenient to divide two APInt values and obtain both the 1099 /// quotient and remainder. This function does both operations in the same 1100 /// computation making it a little more efficient. The pair of input arguments 1101 /// may overlap with the pair of output arguments. It is safe to call 1102 /// udivrem(X, Y, X, Y), for example. 1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 1104 APInt &Remainder); 1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient, 1106 uint64_t &Remainder); 1107 1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient, 1109 APInt &Remainder); 1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient, 1111 int64_t &Remainder); 1112 1113 // Operations that return overflow indicators. 1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const; 1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const; 1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const; 1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const; 1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const; 1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const; 1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const; 1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const; 1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const; 1123 1124 // Operations that saturate 1125 APInt sadd_sat(const APInt &RHS) const; 1126 APInt uadd_sat(const APInt &RHS) const; 1127 APInt ssub_sat(const APInt &RHS) const; 1128 APInt usub_sat(const APInt &RHS) const; 1129 APInt smul_sat(const APInt &RHS) const; 1130 APInt umul_sat(const APInt &RHS) const; 1131 APInt sshl_sat(const APInt &RHS) const; 1132 APInt ushl_sat(const APInt &RHS) const; 1133 1134 /// Array-indexing support. 1135 /// 1136 /// \returns the bit value at bitPosition 1137 bool operator[](unsigned bitPosition) const { 1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!"); 1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0; 1140 } 1141 1142 /// @} 1143 /// \name Comparison Operators 1144 /// @{ 1145 1146 /// Equality operator. 1147 /// 1148 /// Compares this APInt with RHS for the validity of the equality 1149 /// relationship. 1150 bool operator==(const APInt &RHS) const { 1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"); 1152 if (isSingleWord()) 1153 return U.VAL == RHS.U.VAL; 1154 return EqualSlowCase(RHS); 1155 } 1156 1157 /// Equality operator. 1158 /// 1159 /// Compares this APInt with a uint64_t for the validity of the equality 1160 /// relationship. 1161 /// 1162 /// \returns true if *this == Val 1163 bool operator==(uint64_t Val) const { 1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val; 1165 } 1166 1167 /// Equality comparison. 1168 /// 1169 /// Compares this APInt with RHS for the validity of the equality 1170 /// relationship. 1171 /// 1172 /// \returns true if *this == Val 1173 bool eq(const APInt &RHS) const { return (*this) == RHS; } 1174 1175 /// Inequality operator. 1176 /// 1177 /// Compares this APInt with RHS for the validity of the inequality 1178 /// relationship. 1179 /// 1180 /// \returns true if *this != Val 1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); } 1182 1183 /// Inequality operator. 1184 /// 1185 /// Compares this APInt with a uint64_t for the validity of the inequality 1186 /// relationship. 1187 /// 1188 /// \returns true if *this != Val 1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); } 1190 1191 /// Inequality comparison 1192 /// 1193 /// Compares this APInt with RHS for the validity of the inequality 1194 /// relationship. 1195 /// 1196 /// \returns true if *this != Val 1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); } 1198 1199 /// Unsigned less than comparison 1200 /// 1201 /// Regards both *this and RHS as unsigned quantities and compares them for 1202 /// the validity of the less-than relationship. 1203 /// 1204 /// \returns true if *this < RHS when both are considered unsigned. 1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; } 1206 1207 /// Unsigned less than comparison 1208 /// 1209 /// Regards both *this as an unsigned quantity and compares it with RHS for 1210 /// the validity of the less-than relationship. 1211 /// 1212 /// \returns true if *this < RHS when considered unsigned. 1213 bool ult(uint64_t RHS) const { 1214 // Only need to check active bits if not a single word. 1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS; 1216 } 1217 1218 /// Signed less than comparison 1219 /// 1220 /// Regards both *this and RHS as signed quantities and compares them for 1221 /// validity of the less-than relationship. 1222 /// 1223 /// \returns true if *this < RHS when both are considered signed. 1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; } 1225 1226 /// Signed less than comparison 1227 /// 1228 /// Regards both *this as a signed quantity and compares it with RHS for 1229 /// the validity of the less-than relationship. 1230 /// 1231 /// \returns true if *this < RHS when considered signed. 1232 bool slt(int64_t RHS) const { 1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative() 1234 : getSExtValue() < RHS; 1235 } 1236 1237 /// Unsigned less or equal comparison 1238 /// 1239 /// Regards both *this and RHS as unsigned quantities and compares them for 1240 /// validity of the less-or-equal relationship. 1241 /// 1242 /// \returns true if *this <= RHS when both are considered unsigned. 1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; } 1244 1245 /// Unsigned less or equal comparison 1246 /// 1247 /// Regards both *this as an unsigned quantity and compares it with RHS for 1248 /// the validity of the less-or-equal relationship. 1249 /// 1250 /// \returns true if *this <= RHS when considered unsigned. 1251 bool ule(uint64_t RHS) const { return !ugt(RHS); } 1252 1253 /// Signed less or equal comparison 1254 /// 1255 /// Regards both *this and RHS as signed quantities and compares them for 1256 /// validity of the less-or-equal relationship. 1257 /// 1258 /// \returns true if *this <= RHS when both are considered signed. 1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; } 1260 1261 /// Signed less or equal comparison 1262 /// 1263 /// Regards both *this as a signed quantity and compares it with RHS for the 1264 /// validity of the less-or-equal relationship. 1265 /// 1266 /// \returns true if *this <= RHS when considered signed. 1267 bool sle(uint64_t RHS) const { return !sgt(RHS); } 1268 1269 /// Unsigned greater than comparison 1270 /// 1271 /// Regards both *this and RHS as unsigned quantities and compares them for 1272 /// the validity of the greater-than relationship. 1273 /// 1274 /// \returns true if *this > RHS when both are considered unsigned. 1275 bool ugt(const APInt &RHS) const { return !ule(RHS); } 1276 1277 /// Unsigned greater than comparison 1278 /// 1279 /// Regards both *this as an unsigned quantity and compares it with RHS for 1280 /// the validity of the greater-than relationship. 1281 /// 1282 /// \returns true if *this > RHS when considered unsigned. 1283 bool ugt(uint64_t RHS) const { 1284 // Only need to check active bits if not a single word. 1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS; 1286 } 1287 1288 /// Signed greater than comparison 1289 /// 1290 /// Regards both *this and RHS as signed quantities and compares them for the 1291 /// validity of the greater-than relationship. 1292 /// 1293 /// \returns true if *this > RHS when both are considered signed. 1294 bool sgt(const APInt &RHS) const { return !sle(RHS); } 1295 1296 /// Signed greater than comparison 1297 /// 1298 /// Regards both *this as a signed quantity and compares it with RHS for 1299 /// the validity of the greater-than relationship. 1300 /// 1301 /// \returns true if *this > RHS when considered signed. 1302 bool sgt(int64_t RHS) const { 1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative() 1304 : getSExtValue() > RHS; 1305 } 1306 1307 /// Unsigned greater or equal comparison 1308 /// 1309 /// Regards both *this and RHS as unsigned quantities and compares them for 1310 /// validity of the greater-or-equal relationship. 1311 /// 1312 /// \returns true if *this >= RHS when both are considered unsigned. 1313 bool uge(const APInt &RHS) const { return !ult(RHS); } 1314 1315 /// Unsigned greater or equal comparison 1316 /// 1317 /// Regards both *this as an unsigned quantity and compares it with RHS for 1318 /// the validity of the greater-or-equal relationship. 1319 /// 1320 /// \returns true if *this >= RHS when considered unsigned. 1321 bool uge(uint64_t RHS) const { return !ult(RHS); } 1322 1323 /// Signed greater or equal comparison 1324 /// 1325 /// Regards both *this and RHS as signed quantities and compares them for 1326 /// validity of the greater-or-equal relationship. 1327 /// 1328 /// \returns true if *this >= RHS when both are considered signed. 1329 bool sge(const APInt &RHS) const { return !slt(RHS); } 1330 1331 /// Signed greater or equal comparison 1332 /// 1333 /// Regards both *this as a signed quantity and compares it with RHS for 1334 /// the validity of the greater-or-equal relationship. 1335 /// 1336 /// \returns true if *this >= RHS when considered signed. 1337 bool sge(int64_t RHS) const { return !slt(RHS); } 1338 1339 /// This operation tests if there are any pairs of corresponding bits 1340 /// between this APInt and RHS that are both set. 1341 bool intersects(const APInt &RHS) const { 1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1343 if (isSingleWord()) 1344 return (U.VAL & RHS.U.VAL) != 0; 1345 return intersectsSlowCase(RHS); 1346 } 1347 1348 /// This operation checks that all bits set in this APInt are also set in RHS. 1349 bool isSubsetOf(const APInt &RHS) const { 1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same"); 1351 if (isSingleWord()) 1352 return (U.VAL & ~RHS.U.VAL) == 0; 1353 return isSubsetOfSlowCase(RHS); 1354 } 1355 1356 /// @} 1357 /// \name Resizing Operators 1358 /// @{ 1359 1360 /// Truncate to new width. 1361 /// 1362 /// Truncate the APInt to a specified width. It is an error to specify a width 1363 /// that is greater than or equal to the current width. 1364 APInt trunc(unsigned width) const; 1365 1366 /// Truncate to new width with unsigned saturation. 1367 /// 1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to 1369 /// the new bitwidth, then return truncated APInt. Else, return max value. 1370 APInt truncUSat(unsigned width) const; 1371 1372 /// Truncate to new width with signed saturation. 1373 /// 1374 /// If this APInt, treated as signed integer, can be losslessly truncated to 1375 /// the new bitwidth, then return truncated APInt. Else, return either 1376 /// signed min value if the APInt was negative, or signed max value. 1377 APInt truncSSat(unsigned width) const; 1378 1379 /// Sign extend to a new width. 1380 /// 1381 /// This operation sign extends the APInt to a new width. If the high order 1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero. 1383 /// It is an error to specify a width that is less than or equal to the 1384 /// current width. 1385 APInt sext(unsigned width) const; 1386 1387 /// Zero extend to a new width. 1388 /// 1389 /// This operation zero extends the APInt to a new width. The high order bits 1390 /// are filled with 0 bits. It is an error to specify a width that is less 1391 /// than or equal to the current width. 1392 APInt zext(unsigned width) const; 1393 1394 /// Sign extend or truncate to width 1395 /// 1396 /// Make this APInt have the bit width given by \p width. The value is sign 1397 /// extended, truncated, or left alone to make it that width. 1398 APInt sextOrTrunc(unsigned width) const; 1399 1400 /// Zero extend or truncate to width 1401 /// 1402 /// Make this APInt have the bit width given by \p width. The value is zero 1403 /// extended, truncated, or left alone to make it that width. 1404 APInt zextOrTrunc(unsigned width) const; 1405 1406 /// Truncate to width 1407 /// 1408 /// Make this APInt have the bit width given by \p width. The value is 1409 /// truncated or left alone to make it that width. 1410 APInt truncOrSelf(unsigned width) const; 1411 1412 /// Sign extend or truncate to width 1413 /// 1414 /// Make this APInt have the bit width given by \p width. The value is sign 1415 /// extended, or left alone to make it that width. 1416 APInt sextOrSelf(unsigned width) const; 1417 1418 /// Zero extend or truncate to width 1419 /// 1420 /// Make this APInt have the bit width given by \p width. The value is zero 1421 /// extended, or left alone to make it that width. 1422 APInt zextOrSelf(unsigned width) const; 1423 1424 /// @} 1425 /// \name Bit Manipulation Operators 1426 /// @{ 1427 1428 /// Set every bit to 1. 1429 void setAllBits() { 1430 if (isSingleWord()) 1431 U.VAL = WORDTYPE_MAX; 1432 else 1433 // Set all the bits in all the words. 1434 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE); 1435 // Clear the unused ones 1436 clearUnusedBits(); 1437 } 1438 1439 /// Set a given bit to 1. 1440 /// 1441 /// Set the given bit to 1 whose position is given as "bitPosition". 1442 void setBit(unsigned BitPosition) { 1443 assert(BitPosition < BitWidth && "BitPosition out of range"); 1444 WordType Mask = maskBit(BitPosition); 1445 if (isSingleWord()) 1446 U.VAL |= Mask; 1447 else 1448 U.pVal[whichWord(BitPosition)] |= Mask; 1449 } 1450 1451 /// Set the sign bit to 1. 1452 void setSignBit() { 1453 setBit(BitWidth - 1); 1454 } 1455 1456 /// Set a given bit to a given value. 1457 void setBitVal(unsigned BitPosition, bool BitValue) { 1458 if (BitValue) 1459 setBit(BitPosition); 1460 else 1461 clearBit(BitPosition); 1462 } 1463 1464 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. 1465 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls 1466 /// setBits when \p loBit < \p hiBit. 1467 /// For \p loBit == \p hiBit wrap case, set every bit to 1. 1468 void setBitsWithWrap(unsigned loBit, unsigned hiBit) { 1469 assert(hiBit <= BitWidth && "hiBit out of range"); 1470 assert(loBit <= BitWidth && "loBit out of range"); 1471 if (loBit < hiBit) { 1472 setBits(loBit, hiBit); 1473 return; 1474 } 1475 setLowBits(hiBit); 1476 setHighBits(BitWidth - loBit); 1477 } 1478 1479 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1. 1480 /// This function handles case when \p loBit <= \p hiBit. 1481 void setBits(unsigned loBit, unsigned hiBit) { 1482 assert(hiBit <= BitWidth && "hiBit out of range"); 1483 assert(loBit <= BitWidth && "loBit out of range"); 1484 assert(loBit <= hiBit && "loBit greater than hiBit"); 1485 if (loBit == hiBit) 1486 return; 1487 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) { 1488 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit)); 1489 mask <<= loBit; 1490 if (isSingleWord()) 1491 U.VAL |= mask; 1492 else 1493 U.pVal[0] |= mask; 1494 } else { 1495 setBitsSlowCase(loBit, hiBit); 1496 } 1497 } 1498 1499 /// Set the top bits starting from loBit. 1500 void setBitsFrom(unsigned loBit) { 1501 return setBits(loBit, BitWidth); 1502 } 1503 1504 /// Set the bottom loBits bits. 1505 void setLowBits(unsigned loBits) { 1506 return setBits(0, loBits); 1507 } 1508 1509 /// Set the top hiBits bits. 1510 void setHighBits(unsigned hiBits) { 1511 return setBits(BitWidth - hiBits, BitWidth); 1512 } 1513 1514 /// Set every bit to 0. 1515 void clearAllBits() { 1516 if (isSingleWord()) 1517 U.VAL = 0; 1518 else 1519 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE); 1520 } 1521 1522 /// Set a given bit to 0. 1523 /// 1524 /// Set the given bit to 0 whose position is given as "bitPosition". 1525 void clearBit(unsigned BitPosition) { 1526 assert(BitPosition < BitWidth && "BitPosition out of range"); 1527 WordType Mask = ~maskBit(BitPosition); 1528 if (isSingleWord()) 1529 U.VAL &= Mask; 1530 else 1531 U.pVal[whichWord(BitPosition)] &= Mask; 1532 } 1533 1534 /// Set bottom loBits bits to 0. 1535 void clearLowBits(unsigned loBits) { 1536 assert(loBits <= BitWidth && "More bits than bitwidth"); 1537 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits); 1538 *this &= Keep; 1539 } 1540 1541 /// Set the sign bit to 0. 1542 void clearSignBit() { 1543 clearBit(BitWidth - 1); 1544 } 1545 1546 /// Toggle every bit to its opposite value. 1547 void flipAllBits() { 1548 if (isSingleWord()) { 1549 U.VAL ^= WORDTYPE_MAX; 1550 clearUnusedBits(); 1551 } else { 1552 flipAllBitsSlowCase(); 1553 } 1554 } 1555 1556 /// Toggles a given bit to its opposite value. 1557 /// 1558 /// Toggle a given bit to its opposite value whose position is given 1559 /// as "bitPosition". 1560 void flipBit(unsigned bitPosition); 1561 1562 /// Negate this APInt in place. 1563 void negate() { 1564 flipAllBits(); 1565 ++(*this); 1566 } 1567 1568 /// Insert the bits from a smaller APInt starting at bitPosition. 1569 void insertBits(const APInt &SubBits, unsigned bitPosition); 1570 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits); 1571 1572 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits). 1573 APInt extractBits(unsigned numBits, unsigned bitPosition) const; 1574 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const; 1575 1576 /// @} 1577 /// \name Value Characterization Functions 1578 /// @{ 1579 1580 /// Return the number of bits in the APInt. 1581 unsigned getBitWidth() const { return BitWidth; } 1582 1583 /// Get the number of words. 1584 /// 1585 /// Here one word's bitwidth equals to that of uint64_t. 1586 /// 1587 /// \returns the number of words to hold the integer value of this APInt. 1588 unsigned getNumWords() const { return getNumWords(BitWidth); } 1589 1590 /// Get the number of words. 1591 /// 1592 /// *NOTE* Here one word's bitwidth equals to that of uint64_t. 1593 /// 1594 /// \returns the number of words to hold the integer value with a given bit 1595 /// width. 1596 static unsigned getNumWords(unsigned BitWidth) { 1597 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD; 1598 } 1599 1600 /// Compute the number of active bits in the value 1601 /// 1602 /// This function returns the number of active bits which is defined as the 1603 /// bit width minus the number of leading zeros. This is used in several 1604 /// computations to see how "wide" the value is. 1605 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); } 1606 1607 /// Compute the number of active words in the value of this APInt. 1608 /// 1609 /// This is used in conjunction with getActiveData to extract the raw value of 1610 /// the APInt. 1611 unsigned getActiveWords() const { 1612 unsigned numActiveBits = getActiveBits(); 1613 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1; 1614 } 1615 1616 /// Get the minimum bit size for this signed APInt 1617 /// 1618 /// Computes the minimum bit width for this APInt while considering it to be a 1619 /// signed (and probably negative) value. If the value is not negative, this 1620 /// function returns the same value as getActiveBits()+1. Otherwise, it 1621 /// returns the smallest bit width that will retain the negative value. For 1622 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so 1623 /// for -1, this function will always return 1. 1624 unsigned getMinSignedBits() const { return BitWidth - getNumSignBits() + 1; } 1625 1626 /// Get zero extended value 1627 /// 1628 /// This method attempts to return the value of this APInt as a zero extended 1629 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a 1630 /// uint64_t. Otherwise an assertion will result. 1631 uint64_t getZExtValue() const { 1632 if (isSingleWord()) 1633 return U.VAL; 1634 assert(getActiveBits() <= 64 && "Too many bits for uint64_t"); 1635 return U.pVal[0]; 1636 } 1637 1638 /// Get sign extended value 1639 /// 1640 /// This method attempts to return the value of this APInt as a sign extended 1641 /// int64_t. The bit width must be <= 64 or the value must fit within an 1642 /// int64_t. Otherwise an assertion will result. 1643 int64_t getSExtValue() const { 1644 if (isSingleWord()) 1645 return SignExtend64(U.VAL, BitWidth); 1646 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); 1647 return int64_t(U.pVal[0]); 1648 } 1649 1650 /// Get bits required for string value. 1651 /// 1652 /// This method determines how many bits are required to hold the APInt 1653 /// equivalent of the string given by \p str. 1654 static unsigned getBitsNeeded(StringRef str, uint8_t radix); 1655 1656 /// The APInt version of the countLeadingZeros functions in 1657 /// MathExtras.h. 1658 /// 1659 /// It counts the number of zeros from the most significant bit to the first 1660 /// one bit. 1661 /// 1662 /// \returns BitWidth if the value is zero, otherwise returns the number of 1663 /// zeros from the most significant bit to the first one bits. 1664 unsigned countLeadingZeros() const { 1665 if (isSingleWord()) { 1666 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth; 1667 return llvm::countLeadingZeros(U.VAL) - unusedBits; 1668 } 1669 return countLeadingZerosSlowCase(); 1670 } 1671 1672 /// Count the number of leading one bits. 1673 /// 1674 /// This function is an APInt version of the countLeadingOnes 1675 /// functions in MathExtras.h. It counts the number of ones from the most 1676 /// significant bit to the first zero bit. 1677 /// 1678 /// \returns 0 if the high order bit is not set, otherwise returns the number 1679 /// of 1 bits from the most significant to the least 1680 unsigned countLeadingOnes() const { 1681 if (isSingleWord()) 1682 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth)); 1683 return countLeadingOnesSlowCase(); 1684 } 1685 1686 /// Computes the number of leading bits of this APInt that are equal to its 1687 /// sign bit. 1688 unsigned getNumSignBits() const { 1689 return isNegative() ? countLeadingOnes() : countLeadingZeros(); 1690 } 1691 1692 /// Count the number of trailing zero bits. 1693 /// 1694 /// This function is an APInt version of the countTrailingZeros 1695 /// functions in MathExtras.h. It counts the number of zeros from the least 1696 /// significant bit to the first set bit. 1697 /// 1698 /// \returns BitWidth if the value is zero, otherwise returns the number of 1699 /// zeros from the least significant bit to the first one bit. 1700 unsigned countTrailingZeros() const { 1701 if (isSingleWord()) { 1702 unsigned TrailingZeros = llvm::countTrailingZeros(U.VAL); 1703 return (TrailingZeros > BitWidth ? BitWidth : TrailingZeros); 1704 } 1705 return countTrailingZerosSlowCase(); 1706 } 1707 1708 /// Count the number of trailing one bits. 1709 /// 1710 /// This function is an APInt version of the countTrailingOnes 1711 /// functions in MathExtras.h. It counts the number of ones from the least 1712 /// significant bit to the first zero bit. 1713 /// 1714 /// \returns BitWidth if the value is all ones, otherwise returns the number 1715 /// of ones from the least significant bit to the first zero bit. 1716 unsigned countTrailingOnes() const { 1717 if (isSingleWord()) 1718 return llvm::countTrailingOnes(U.VAL); 1719 return countTrailingOnesSlowCase(); 1720 } 1721 1722 /// Count the number of bits set. 1723 /// 1724 /// This function is an APInt version of the countPopulation functions 1725 /// in MathExtras.h. It counts the number of 1 bits in the APInt value. 1726 /// 1727 /// \returns 0 if the value is zero, otherwise returns the number of set bits. 1728 unsigned countPopulation() const { 1729 if (isSingleWord()) 1730 return llvm::countPopulation(U.VAL); 1731 return countPopulationSlowCase(); 1732 } 1733 1734 /// @} 1735 /// \name Conversion Functions 1736 /// @{ 1737 void print(raw_ostream &OS, bool isSigned) const; 1738 1739 /// Converts an APInt to a string and append it to Str. Str is commonly a 1740 /// SmallString. 1741 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed, 1742 bool formatAsCLiteral = false) const; 1743 1744 /// Considers the APInt to be unsigned and converts it into a string in the 1745 /// radix given. The radix can be 2, 8, 10 16, or 36. 1746 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1747 toString(Str, Radix, false, false); 1748 } 1749 1750 /// Considers the APInt to be signed and converts it into a string in the 1751 /// radix given. The radix can be 2, 8, 10, 16, or 36. 1752 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 1753 toString(Str, Radix, true, false); 1754 } 1755 1756 /// Return the APInt as a std::string. 1757 /// 1758 /// Note that this is an inefficient method. It is better to pass in a 1759 /// SmallVector/SmallString to the methods above to avoid thrashing the heap 1760 /// for the string. 1761 std::string toString(unsigned Radix, bool Signed) const; 1762 1763 /// \returns a byte-swapped representation of this APInt Value. 1764 APInt byteSwap() const; 1765 1766 /// \returns the value with the bit representation reversed of this APInt 1767 /// Value. 1768 APInt reverseBits() const; 1769 1770 /// Converts this APInt to a double value. 1771 double roundToDouble(bool isSigned) const; 1772 1773 /// Converts this unsigned APInt to a double value. 1774 double roundToDouble() const { return roundToDouble(false); } 1775 1776 /// Converts this signed APInt to a double value. 1777 double signedRoundToDouble() const { return roundToDouble(true); } 1778 1779 /// Converts APInt bits to a double 1780 /// 1781 /// The conversion does not do a translation from integer to double, it just 1782 /// re-interprets the bits as a double. Note that it is valid to do this on 1783 /// any bit width. Exactly 64 bits will be translated. 1784 double bitsToDouble() const { 1785 return BitsToDouble(getWord(0)); 1786 } 1787 1788 /// Converts APInt bits to a float 1789 /// 1790 /// The conversion does not do a translation from integer to float, it just 1791 /// re-interprets the bits as a float. Note that it is valid to do this on 1792 /// any bit width. Exactly 32 bits will be translated. 1793 float bitsToFloat() const { 1794 return BitsToFloat(static_cast<uint32_t>(getWord(0))); 1795 } 1796 1797 /// Converts a double to APInt bits. 1798 /// 1799 /// The conversion does not do a translation from double to integer, it just 1800 /// re-interprets the bits of the double. 1801 static APInt doubleToBits(double V) { 1802 return APInt(sizeof(double) * CHAR_BIT, DoubleToBits(V)); 1803 } 1804 1805 /// Converts a float to APInt bits. 1806 /// 1807 /// The conversion does not do a translation from float to integer, it just 1808 /// re-interprets the bits of the float. 1809 static APInt floatToBits(float V) { 1810 return APInt(sizeof(float) * CHAR_BIT, FloatToBits(V)); 1811 } 1812 1813 /// @} 1814 /// \name Mathematics Operations 1815 /// @{ 1816 1817 /// \returns the floor log base 2 of this APInt. 1818 unsigned logBase2() const { return getActiveBits() - 1; } 1819 1820 /// \returns the ceil log base 2 of this APInt. 1821 unsigned ceilLogBase2() const { 1822 APInt temp(*this); 1823 --temp; 1824 return temp.getActiveBits(); 1825 } 1826 1827 /// \returns the nearest log base 2 of this APInt. Ties round up. 1828 /// 1829 /// NOTE: When we have a BitWidth of 1, we define: 1830 /// 1831 /// log2(0) = UINT32_MAX 1832 /// log2(1) = 0 1833 /// 1834 /// to get around any mathematical concerns resulting from 1835 /// referencing 2 in a space where 2 does no exist. 1836 unsigned nearestLogBase2() const { 1837 // Special case when we have a bitwidth of 1. If VAL is 1, then we 1838 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to 1839 // UINT32_MAX. 1840 if (BitWidth == 1) 1841 return U.VAL - 1; 1842 1843 // Handle the zero case. 1844 if (isNullValue()) 1845 return UINT32_MAX; 1846 1847 // The non-zero case is handled by computing: 1848 // 1849 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1]. 1850 // 1851 // where x[i] is referring to the value of the ith bit of x. 1852 unsigned lg = logBase2(); 1853 return lg + unsigned((*this)[lg - 1]); 1854 } 1855 1856 /// \returns the log base 2 of this APInt if its an exact power of two, -1 1857 /// otherwise 1858 int32_t exactLogBase2() const { 1859 if (!isPowerOf2()) 1860 return -1; 1861 return logBase2(); 1862 } 1863 1864 /// Compute the square root 1865 APInt sqrt() const; 1866 1867 /// Get the absolute value; 1868 /// 1869 /// If *this is < 0 then return -(*this), otherwise *this; 1870 APInt abs() const { 1871 if (isNegative()) 1872 return -(*this); 1873 return *this; 1874 } 1875 1876 /// \returns the multiplicative inverse for a given modulo. 1877 APInt multiplicativeInverse(const APInt &modulo) const; 1878 1879 /// @} 1880 /// \name Support for division by constant 1881 /// @{ 1882 1883 /// Calculate the magic number for signed division by a constant. 1884 struct ms; 1885 ms magic() const; 1886 1887 /// Calculate the magic number for unsigned division by a constant. 1888 struct mu; 1889 mu magicu(unsigned LeadingZeros = 0) const; 1890 1891 /// @} 1892 /// \name Building-block Operations for APInt and APFloat 1893 /// @{ 1894 1895 // These building block operations operate on a representation of arbitrary 1896 // precision, two's-complement, bignum integer values. They should be 1897 // sufficient to implement APInt and APFloat bignum requirements. Inputs are 1898 // generally a pointer to the base of an array of integer parts, representing 1899 // an unsigned bignum, and a count of how many parts there are. 1900 1901 /// Sets the least significant part of a bignum to the input value, and zeroes 1902 /// out higher parts. 1903 static void tcSet(WordType *, WordType, unsigned); 1904 1905 /// Assign one bignum to another. 1906 static void tcAssign(WordType *, const WordType *, unsigned); 1907 1908 /// Returns true if a bignum is zero, false otherwise. 1909 static bool tcIsZero(const WordType *, unsigned); 1910 1911 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based. 1912 static int tcExtractBit(const WordType *, unsigned bit); 1913 1914 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to 1915 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least 1916 /// significant bit of DST. All high bits above srcBITS in DST are 1917 /// zero-filled. 1918 static void tcExtract(WordType *, unsigned dstCount, 1919 const WordType *, unsigned srcBits, 1920 unsigned srcLSB); 1921 1922 /// Set the given bit of a bignum. Zero-based. 1923 static void tcSetBit(WordType *, unsigned bit); 1924 1925 /// Clear the given bit of a bignum. Zero-based. 1926 static void tcClearBit(WordType *, unsigned bit); 1927 1928 /// Returns the bit number of the least or most significant set bit of a 1929 /// number. If the input number has no bits set -1U is returned. 1930 static unsigned tcLSB(const WordType *, unsigned n); 1931 static unsigned tcMSB(const WordType *parts, unsigned n); 1932 1933 /// Negate a bignum in-place. 1934 static void tcNegate(WordType *, unsigned); 1935 1936 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1937 static WordType tcAdd(WordType *, const WordType *, 1938 WordType carry, unsigned); 1939 /// DST += RHS. Returns the carry flag. 1940 static WordType tcAddPart(WordType *, WordType, unsigned); 1941 1942 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag. 1943 static WordType tcSubtract(WordType *, const WordType *, 1944 WordType carry, unsigned); 1945 /// DST -= RHS. Returns the carry flag. 1946 static WordType tcSubtractPart(WordType *, WordType, unsigned); 1947 1948 /// DST += SRC * MULTIPLIER + PART if add is true 1949 /// DST = SRC * MULTIPLIER + PART if add is false 1950 /// 1951 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must 1952 /// start at the same point, i.e. DST == SRC. 1953 /// 1954 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned. 1955 /// Otherwise DST is filled with the least significant DSTPARTS parts of the 1956 /// result, and if all of the omitted higher parts were zero return zero, 1957 /// otherwise overflow occurred and return one. 1958 static int tcMultiplyPart(WordType *dst, const WordType *src, 1959 WordType multiplier, WordType carry, 1960 unsigned srcParts, unsigned dstParts, 1961 bool add); 1962 1963 /// DST = LHS * RHS, where DST has the same width as the operands and is 1964 /// filled with the least significant parts of the result. Returns one if 1965 /// overflow occurred, otherwise zero. DST must be disjoint from both 1966 /// operands. 1967 static int tcMultiply(WordType *, const WordType *, const WordType *, 1968 unsigned); 1969 1970 /// DST = LHS * RHS, where DST has width the sum of the widths of the 1971 /// operands. No overflow occurs. DST must be disjoint from both operands. 1972 static void tcFullMultiply(WordType *, const WordType *, 1973 const WordType *, unsigned, unsigned); 1974 1975 /// If RHS is zero LHS and REMAINDER are left unchanged, return one. 1976 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set 1977 /// REMAINDER to the remainder, return zero. i.e. 1978 /// 1979 /// OLD_LHS = RHS * LHS + REMAINDER 1980 /// 1981 /// SCRATCH is a bignum of the same size as the operands and result for use by 1982 /// the routine; its contents need not be initialized and are destroyed. LHS, 1983 /// REMAINDER and SCRATCH must be distinct. 1984 static int tcDivide(WordType *lhs, const WordType *rhs, 1985 WordType *remainder, WordType *scratch, 1986 unsigned parts); 1987 1988 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no 1989 /// restrictions on Count. 1990 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count); 1991 1992 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no 1993 /// restrictions on Count. 1994 static void tcShiftRight(WordType *, unsigned Words, unsigned Count); 1995 1996 /// The obvious AND, OR and XOR and complement operations. 1997 static void tcAnd(WordType *, const WordType *, unsigned); 1998 static void tcOr(WordType *, const WordType *, unsigned); 1999 static void tcXor(WordType *, const WordType *, unsigned); 2000 static void tcComplement(WordType *, unsigned); 2001 2002 /// Comparison (unsigned) of two bignums. 2003 static int tcCompare(const WordType *, const WordType *, unsigned); 2004 2005 /// Increment a bignum in-place. Return the carry flag. 2006 static WordType tcIncrement(WordType *dst, unsigned parts) { 2007 return tcAddPart(dst, 1, parts); 2008 } 2009 2010 /// Decrement a bignum in-place. Return the borrow flag. 2011 static WordType tcDecrement(WordType *dst, unsigned parts) { 2012 return tcSubtractPart(dst, 1, parts); 2013 } 2014 2015 /// Set the least significant BITS and clear the rest. 2016 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits); 2017 2018 /// debug method 2019 void dump() const; 2020 2021 /// @} 2022 }; 2023 2024 /// Magic data for optimising signed division by a constant. 2025 struct APInt::ms { 2026 APInt m; ///< magic number 2027 unsigned s; ///< shift amount 2028 }; 2029 2030 /// Magic data for optimising unsigned division by a constant. 2031 struct APInt::mu { 2032 APInt m; ///< magic number 2033 bool a; ///< add indicator 2034 unsigned s; ///< shift amount 2035 }; 2036 2037 inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; } 2038 2039 inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; } 2040 2041 /// Unary bitwise complement operator. 2042 /// 2043 /// \returns an APInt that is the bitwise complement of \p v. 2044 inline APInt operator~(APInt v) { 2045 v.flipAllBits(); 2046 return v; 2047 } 2048 2049 inline APInt operator&(APInt a, const APInt &b) { 2050 a &= b; 2051 return a; 2052 } 2053 2054 inline APInt operator&(const APInt &a, APInt &&b) { 2055 b &= a; 2056 return std::move(b); 2057 } 2058 2059 inline APInt operator&(APInt a, uint64_t RHS) { 2060 a &= RHS; 2061 return a; 2062 } 2063 2064 inline APInt operator&(uint64_t LHS, APInt b) { 2065 b &= LHS; 2066 return b; 2067 } 2068 2069 inline APInt operator|(APInt a, const APInt &b) { 2070 a |= b; 2071 return a; 2072 } 2073 2074 inline APInt operator|(const APInt &a, APInt &&b) { 2075 b |= a; 2076 return std::move(b); 2077 } 2078 2079 inline APInt operator|(APInt a, uint64_t RHS) { 2080 a |= RHS; 2081 return a; 2082 } 2083 2084 inline APInt operator|(uint64_t LHS, APInt b) { 2085 b |= LHS; 2086 return b; 2087 } 2088 2089 inline APInt operator^(APInt a, const APInt &b) { 2090 a ^= b; 2091 return a; 2092 } 2093 2094 inline APInt operator^(const APInt &a, APInt &&b) { 2095 b ^= a; 2096 return std::move(b); 2097 } 2098 2099 inline APInt operator^(APInt a, uint64_t RHS) { 2100 a ^= RHS; 2101 return a; 2102 } 2103 2104 inline APInt operator^(uint64_t LHS, APInt b) { 2105 b ^= LHS; 2106 return b; 2107 } 2108 2109 inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) { 2110 I.print(OS, true); 2111 return OS; 2112 } 2113 2114 inline APInt operator-(APInt v) { 2115 v.negate(); 2116 return v; 2117 } 2118 2119 inline APInt operator+(APInt a, const APInt &b) { 2120 a += b; 2121 return a; 2122 } 2123 2124 inline APInt operator+(const APInt &a, APInt &&b) { 2125 b += a; 2126 return std::move(b); 2127 } 2128 2129 inline APInt operator+(APInt a, uint64_t RHS) { 2130 a += RHS; 2131 return a; 2132 } 2133 2134 inline APInt operator+(uint64_t LHS, APInt b) { 2135 b += LHS; 2136 return b; 2137 } 2138 2139 inline APInt operator-(APInt a, const APInt &b) { 2140 a -= b; 2141 return a; 2142 } 2143 2144 inline APInt operator-(const APInt &a, APInt &&b) { 2145 b.negate(); 2146 b += a; 2147 return std::move(b); 2148 } 2149 2150 inline APInt operator-(APInt a, uint64_t RHS) { 2151 a -= RHS; 2152 return a; 2153 } 2154 2155 inline APInt operator-(uint64_t LHS, APInt b) { 2156 b.negate(); 2157 b += LHS; 2158 return b; 2159 } 2160 2161 inline APInt operator*(APInt a, uint64_t RHS) { 2162 a *= RHS; 2163 return a; 2164 } 2165 2166 inline APInt operator*(uint64_t LHS, APInt b) { 2167 b *= LHS; 2168 return b; 2169 } 2170 2171 2172 namespace APIntOps { 2173 2174 /// Determine the smaller of two APInts considered to be signed. 2175 inline const APInt &smin(const APInt &A, const APInt &B) { 2176 return A.slt(B) ? A : B; 2177 } 2178 2179 /// Determine the larger of two APInts considered to be signed. 2180 inline const APInt &smax(const APInt &A, const APInt &B) { 2181 return A.sgt(B) ? A : B; 2182 } 2183 2184 /// Determine the smaller of two APInts considered to be unsigned. 2185 inline const APInt &umin(const APInt &A, const APInt &B) { 2186 return A.ult(B) ? A : B; 2187 } 2188 2189 /// Determine the larger of two APInts considered to be unsigned. 2190 inline const APInt &umax(const APInt &A, const APInt &B) { 2191 return A.ugt(B) ? A : B; 2192 } 2193 2194 /// Compute GCD of two unsigned APInt values. 2195 /// 2196 /// This function returns the greatest common divisor of the two APInt values 2197 /// using Stein's algorithm. 2198 /// 2199 /// \returns the greatest common divisor of A and B. 2200 APInt GreatestCommonDivisor(APInt A, APInt B); 2201 2202 /// Converts the given APInt to a double value. 2203 /// 2204 /// Treats the APInt as an unsigned value for conversion purposes. 2205 inline double RoundAPIntToDouble(const APInt &APIVal) { 2206 return APIVal.roundToDouble(); 2207 } 2208 2209 /// Converts the given APInt to a double value. 2210 /// 2211 /// Treats the APInt as a signed value for conversion purposes. 2212 inline double RoundSignedAPIntToDouble(const APInt &APIVal) { 2213 return APIVal.signedRoundToDouble(); 2214 } 2215 2216 /// Converts the given APInt to a float value. 2217 inline float RoundAPIntToFloat(const APInt &APIVal) { 2218 return float(RoundAPIntToDouble(APIVal)); 2219 } 2220 2221 /// Converts the given APInt to a float value. 2222 /// 2223 /// Treats the APInt as a signed value for conversion purposes. 2224 inline float RoundSignedAPIntToFloat(const APInt &APIVal) { 2225 return float(APIVal.signedRoundToDouble()); 2226 } 2227 2228 /// Converts the given double value into a APInt. 2229 /// 2230 /// This function convert a double value to an APInt value. 2231 APInt RoundDoubleToAPInt(double Double, unsigned width); 2232 2233 /// Converts a float value into a APInt. 2234 /// 2235 /// Converts a float value into an APInt value. 2236 inline APInt RoundFloatToAPInt(float Float, unsigned width) { 2237 return RoundDoubleToAPInt(double(Float), width); 2238 } 2239 2240 /// Return A unsign-divided by B, rounded by the given rounding mode. 2241 APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM); 2242 2243 /// Return A sign-divided by B, rounded by the given rounding mode. 2244 APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM); 2245 2246 /// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range 2247 /// (e.g. 32 for i32). 2248 /// This function finds the smallest number n, such that 2249 /// (a) n >= 0 and q(n) = 0, or 2250 /// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all 2251 /// integers, belong to two different intervals [Rk, Rk+R), 2252 /// where R = 2^BW, and k is an integer. 2253 /// The idea here is to find when q(n) "overflows" 2^BW, while at the 2254 /// same time "allowing" subtraction. In unsigned modulo arithmetic a 2255 /// subtraction (treated as addition of negated numbers) would always 2256 /// count as an overflow, but here we want to allow values to decrease 2257 /// and increase as long as they are within the same interval. 2258 /// Specifically, adding of two negative numbers should not cause an 2259 /// overflow (as long as the magnitude does not exceed the bit width). 2260 /// On the other hand, given a positive number, adding a negative 2261 /// number to it can give a negative result, which would cause the 2262 /// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is 2263 /// treated as a special case of an overflow. 2264 /// 2265 /// This function returns None if after finding k that minimizes the 2266 /// positive solution to q(n) = kR, both solutions are contained between 2267 /// two consecutive integers. 2268 /// 2269 /// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation 2270 /// in arithmetic modulo 2^BW, and treating the values as signed) by the 2271 /// virtue of *signed* overflow. This function will *not* find such an n, 2272 /// however it may find a value of n satisfying the inequalities due to 2273 /// an *unsigned* overflow (if the values are treated as unsigned). 2274 /// To find a solution for a signed overflow, treat it as a problem of 2275 /// finding an unsigned overflow with a range with of BW-1. 2276 /// 2277 /// The returned value may have a different bit width from the input 2278 /// coefficients. 2279 Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C, 2280 unsigned RangeWidth); 2281 2282 /// Compare two values, and if they are different, return the position of the 2283 /// most significant bit that is different in the values. 2284 Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A, 2285 const APInt &B); 2286 2287 } // End of APIntOps namespace 2288 2289 // See friend declaration above. This additional declaration is required in 2290 // order to compile LLVM with IBM xlC compiler. 2291 hash_code hash_value(const APInt &Arg); 2292 2293 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst 2294 /// with the integer held in IntVal. 2295 void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes); 2296 2297 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting 2298 /// from Src into IntVal, which is assumed to be wide enough and to hold zero. 2299 void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes); 2300 2301 } // namespace llvm 2302 2303 #endif 2304