1 /* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
5
6 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
7 2002, 2003, 2004, 2006 Free Software Foundation, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
12 any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License along
20 with this program; if not, write to the Free Software Foundation,
21 Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
22
23 /* AIX requires this to be the first thing in the file. */
24 #if defined _AIX && !defined REGEX_MALLOC
25 #pragma alloca
26 #endif
27
28 #undef _GNU_SOURCE
29 #define _GNU_SOURCE
30
31 #ifdef HAVE_CONFIG_H
32 # include <config.h>
33 #endif
34
35 #ifndef INSIDE_RECURSION
36
37 # include <stddef.h>
38
39 # define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
40
41 /* For platform which support the ISO C amendement 1 functionality we
42 support user defined character classes. */
43 # if defined _LIBC || WIDE_CHAR_SUPPORT
44 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
45 # include <wchar.h>
46 # include <wctype.h>
47 # endif
48
49 # ifdef _LIBC
50 /* We have to keep the namespace clean. */
51 # define regfree(preg) __regfree (preg)
52 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
53 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
54 # define regerror(errcode, preg, errbuf, errbuf_size) \
55 __regerror(errcode, preg, errbuf, errbuf_size)
56 # define re_set_registers(bu, re, nu, st, en) \
57 __re_set_registers (bu, re, nu, st, en)
58 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
59 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
60 # define re_match(bufp, string, size, pos, regs) \
61 __re_match (bufp, string, size, pos, regs)
62 # define re_search(bufp, string, size, startpos, range, regs) \
63 __re_search (bufp, string, size, startpos, range, regs)
64 # define re_compile_pattern(pattern, length, bufp) \
65 __re_compile_pattern (pattern, length, bufp)
66 # define re_set_syntax(syntax) __re_set_syntax (syntax)
67 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
68 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
69 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
70
71 # define btowc __btowc
72 # define iswctype __iswctype
73 # define mbrtowc __mbrtowc
74 # define wcslen __wcslen
75 # define wcscoll __wcscoll
76 # define wcrtomb __wcrtomb
77 # define mempcpy __mempcpy
78
79 /* We are also using some library internals. */
80 # include <locale/localeinfo.h>
81 # include <locale/elem-hash.h>
82 # include <langinfo.h>
83 # include <locale/coll-lookup.h>
84 # endif
85
86 # ifdef _LIBC
87 # include <libintl.h>
88 # undef gettext
89 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
90 /* This define is so xgettext can find the internationalizable strings. */
91 # define gettext_noop(msgid) msgid
92 # else
93 /* This is for other GNU distributions with internationalized messages. */
94 # include "gettext.h"
95 # endif
96
97 /* Support for bounded pointers. */
98 # if !defined _LIBC && !defined __BOUNDED_POINTERS__
99 # define __bounded /* nothing */
100 # define __unbounded /* nothing */
101 # define __ptrvalue /* nothing */
102 # endif
103
104 /* The `emacs' switch turns on certain matching commands
105 that make sense only in Emacs. */
106 # ifdef emacs
107
108 # include "lisp.h"
109 # include "buffer.h"
110 # include "syntax.h"
111
112 # else /* not emacs */
113
114 /* If we are not linking with Emacs proper,
115 we can't use the relocating allocator
116 even if config.h says that we can. */
117 # undef REL_ALLOC
118
119 # include <stdlib.h>
120
121 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
122 If nothing else has been done, use the method below. */
123 # ifdef INHIBIT_STRING_HEADER
124 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
125 # if !defined bzero && !defined bcopy
126 # undef INHIBIT_STRING_HEADER
127 # endif
128 # endif
129 # endif
130
131 /* This is the normal way of making sure we have a bcopy and a bzero.
132 This is used in most programs--a few other programs avoid this
133 by defining INHIBIT_STRING_HEADER. */
134 # ifndef INHIBIT_STRING_HEADER
135 # include <string.h>
136 # ifndef bzero
137 # ifndef _LIBC
138 # define bzero(s, n) (memset (s, '\0', n), (s))
139 # else
140 # define bzero(s, n) __bzero (s, n)
141 # endif
142 # endif
143 # endif
144
145 /* Define the syntax stuff for \<, \>, etc. */
146
147 /* This must be nonzero for the wordchar and notwordchar pattern
148 commands in re_match_2. */
149 # ifndef Sword
150 # define Sword 1
151 # endif
152
153 # ifdef SWITCH_ENUM_BUG
154 # define SWITCH_ENUM_CAST(x) ((int)(x))
155 # else
156 # define SWITCH_ENUM_CAST(x) (x)
157 # endif
158
159 # endif /* not emacs */
160
161 # include <limits.h>
162
163 # ifndef MB_LEN_MAX
164 # define MB_LEN_MAX 1
165 # endif
166
167 /* Get the interface, including the syntax bits. */
168 # include <regex.h>
169
170 /* isalpha etc. are used for the character classes. */
171 # include <ctype.h>
172
173 /* Jim Meyering writes:
174
175 "... Some ctype macros are valid only for character codes that
176 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
177 using /bin/cc or gcc but without giving an ansi option). So, all
178 ctype uses should be through macros like ISPRINT... If
179 STDC_HEADERS is defined, then autoconf has verified that the ctype
180 macros don't need to be guarded with references to isascii. ...
181 Defining isascii to 1 should let any compiler worth its salt
182 eliminate the && through constant folding."
183 Solaris defines some of these symbols so we must undefine them first. */
184
185 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
186 # define IN_CTYPE_DOMAIN(c) 1
187 # else
188 # define IN_CTYPE_DOMAIN(c) isascii(c)
189 # endif
190
191 # ifdef isblank
192 # define ISBLANK(c) (IN_CTYPE_DOMAIN (c) && isblank (c))
193 # else
194 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
195 # endif
196 # ifdef isgraph
197 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isgraph (c))
198 # else
199 # define ISGRAPH(c) (IN_CTYPE_DOMAIN (c) && isprint (c) && !isspace (c))
200 # endif
201
202 # undef ISPRINT
203 # define ISPRINT(c) (IN_CTYPE_DOMAIN (c) && isprint (c))
204 # define ISDIGIT(c) (IN_CTYPE_DOMAIN (c) && isdigit (c))
205 # define ISALNUM(c) (IN_CTYPE_DOMAIN (c) && isalnum (c))
206 # define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c))
207 # define ISCNTRL(c) (IN_CTYPE_DOMAIN (c) && iscntrl (c))
208 # define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c))
209 # define ISPUNCT(c) (IN_CTYPE_DOMAIN (c) && ispunct (c))
210 # define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c))
211 # define ISUPPER(c) (IN_CTYPE_DOMAIN (c) && isupper (c))
212 # define ISXDIGIT(c) (IN_CTYPE_DOMAIN (c) && isxdigit (c))
213
214 # ifdef _tolower
215 # define TOLOWER(c) _tolower(c)
216 # else
217 # define TOLOWER(c) tolower(c)
218 # endif
219
220 # ifndef emacs
221 /* How many characters in the character set. */
222 # define CHAR_SET_SIZE 256
223
224 # ifdef SYNTAX_TABLE
225
226 extern char *re_syntax_table;
227
228 # else /* not SYNTAX_TABLE */
229
230 static char re_syntax_table[CHAR_SET_SIZE];
231
232 static void
init_syntax_once(void)233 init_syntax_once (void)
234 {
235 register int c;
236 static int done = 0;
237
238 if (done)
239 return;
240 bzero (re_syntax_table, sizeof re_syntax_table);
241
242 for (c = 0; c < CHAR_SET_SIZE; ++c)
243 if (ISALNUM (c))
244 re_syntax_table[c] = Sword;
245
246 re_syntax_table['_'] = Sword;
247
248 done = 1;
249 }
250
251 # endif /* not SYNTAX_TABLE */
252
253 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
254
255 # endif /* emacs */
256
257 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
258 use `alloca' instead of `malloc'. This is because using malloc in
259 re_search* or re_match* could cause memory leaks when C-g is used in
260 Emacs; also, malloc is slower and causes storage fragmentation. On
261 the other hand, malloc is more portable, and easier to debug.
262
263 Because we sometimes use alloca, some routines have to be macros,
264 not functions -- `alloca'-allocated space disappears at the end of the
265 function it is called in. */
266
267 # ifdef REGEX_MALLOC
268
269 # define REGEX_ALLOCATE malloc
270 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
271 # define REGEX_FREE free
272
273 # else /* not REGEX_MALLOC */
274
275 /* Emacs already defines alloca, sometimes. */
276 # ifndef alloca
277
278 /* Make alloca work the best possible way. */
279 # include <alloca.h>
280
281 # endif /* not alloca */
282
283 # define REGEX_ALLOCATE alloca
284
285 /* Assumes a `char *destination' variable. */
286 # define REGEX_REALLOCATE(source, osize, nsize) \
287 (destination = (char *) alloca (nsize), \
288 memcpy (destination, source, osize))
289
290 /* No need to do anything to free, after alloca. */
291 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
292
293 # endif /* not REGEX_MALLOC */
294
295 /* Define how to allocate the failure stack. */
296
297 # if defined REL_ALLOC && defined REGEX_MALLOC
298
299 # define REGEX_ALLOCATE_STACK(size) \
300 r_alloc (&failure_stack_ptr, (size))
301 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
302 r_re_alloc (&failure_stack_ptr, (nsize))
303 # define REGEX_FREE_STACK(ptr) \
304 r_alloc_free (&failure_stack_ptr)
305
306 # else /* not using relocating allocator */
307
308 # ifdef REGEX_MALLOC
309
310 # define REGEX_ALLOCATE_STACK malloc
311 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
312 # define REGEX_FREE_STACK free
313
314 # else /* not REGEX_MALLOC */
315
316 # define REGEX_ALLOCATE_STACK alloca
317
318 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
319 REGEX_REALLOCATE (source, osize, nsize)
320 /* No need to explicitly free anything. */
321 # define REGEX_FREE_STACK(arg)
322
323 # endif /* not REGEX_MALLOC */
324 # endif /* not using relocating allocator */
325
326
327 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
328 `string1' or just past its end. This works if PTR is NULL, which is
329 a good thing. */
330 # define FIRST_STRING_P(ptr) \
331 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
332
333 /* (Re)Allocate N items of type T using malloc, or fail. */
334 # define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
335 # define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
336 # define RETALLOC_IF(addr, n, t) \
337 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
338 # define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
339
340 # define BYTEWIDTH 8 /* In bits. */
341
342 # define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
343
344 # undef MAX
345 # undef MIN
346 # define MAX(a, b) ((a) > (b) ? (a) : (b))
347 # define MIN(a, b) ((a) < (b) ? (a) : (b))
348
349 typedef char boolean;
350 # define false 0
351 # define true 1
352
353 static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
354 reg_syntax_t syntax,
355 struct re_pattern_buffer *bufp);
356
357 static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
358 const char *string1, int size1,
359 const char *string2, int size2,
360 int pos,
361 struct re_registers *regs,
362 int stop);
363 static int byte_re_search_2 (struct re_pattern_buffer *bufp,
364 const char *string1, int size1,
365 const char *string2, int size2,
366 int startpos, int range,
367 struct re_registers *regs, int stop);
368 static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
369
370 #ifdef MBS_SUPPORT
371 static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
372 reg_syntax_t syntax,
373 struct re_pattern_buffer *bufp);
374
375
376 static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
377 const char *cstring1, int csize1,
378 const char *cstring2, int csize2,
379 int pos,
380 struct re_registers *regs,
381 int stop,
382 wchar_t *string1, int size1,
383 wchar_t *string2, int size2,
384 int *mbs_offset1, int *mbs_offset2);
385 static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
386 const char *string1, int size1,
387 const char *string2, int size2,
388 int startpos, int range,
389 struct re_registers *regs, int stop);
390 static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
391 #endif
392
393 /* These are the command codes that appear in compiled regular
394 expressions. Some opcodes are followed by argument bytes. A
395 command code can specify any interpretation whatsoever for its
396 arguments. Zero bytes may appear in the compiled regular expression. */
397
398 typedef enum
399 {
400 no_op = 0,
401
402 /* Succeed right away--no more backtracking. */
403 succeed,
404
405 /* Followed by one byte giving n, then by n literal bytes. */
406 exactn,
407
408 # ifdef MBS_SUPPORT
409 /* Same as exactn, but contains binary data. */
410 exactn_bin,
411 # endif
412
413 /* Matches any (more or less) character. */
414 anychar,
415
416 /* Matches any one char belonging to specified set. First
417 following byte is number of bitmap bytes. Then come bytes
418 for a bitmap saying which chars are in. Bits in each byte
419 are ordered low-bit-first. A character is in the set if its
420 bit is 1. A character too large to have a bit in the map is
421 automatically not in the set. */
422 /* ifdef MBS_SUPPORT, following element is length of character
423 classes, length of collating symbols, length of equivalence
424 classes, length of character ranges, and length of characters.
425 Next, character class element, collating symbols elements,
426 equivalence class elements, range elements, and character
427 elements follow.
428 See regex_compile function. */
429 charset,
430
431 /* Same parameters as charset, but match any character that is
432 not one of those specified. */
433 charset_not,
434
435 /* Start remembering the text that is matched, for storing in a
436 register. Followed by one byte with the register number, in
437 the range 0 to one less than the pattern buffer's re_nsub
438 field. Then followed by one byte with the number of groups
439 inner to this one. (This last has to be part of the
440 start_memory only because we need it in the on_failure_jump
441 of re_match_2.) */
442 start_memory,
443
444 /* Stop remembering the text that is matched and store it in a
445 memory register. Followed by one byte with the register
446 number, in the range 0 to one less than `re_nsub' in the
447 pattern buffer, and one byte with the number of inner groups,
448 just like `start_memory'. (We need the number of inner
449 groups here because we don't have any easy way of finding the
450 corresponding start_memory when we're at a stop_memory.) */
451 stop_memory,
452
453 /* Match a duplicate of something remembered. Followed by one
454 byte containing the register number. */
455 duplicate,
456
457 /* Fail unless at beginning of line. */
458 begline,
459
460 /* Fail unless at end of line. */
461 endline,
462
463 /* Succeeds if at beginning of buffer (if emacs) or at beginning
464 of string to be matched (if not). */
465 begbuf,
466
467 /* Analogously, for end of buffer/string. */
468 endbuf,
469
470 /* Followed by two byte relative address to which to jump. */
471 jump,
472
473 /* Same as jump, but marks the end of an alternative. */
474 jump_past_alt,
475
476 /* Followed by two-byte relative address of place to resume at
477 in case of failure. */
478 /* ifdef MBS_SUPPORT, the size of address is 1. */
479 on_failure_jump,
480
481 /* Like on_failure_jump, but pushes a placeholder instead of the
482 current string position when executed. */
483 on_failure_keep_string_jump,
484
485 /* Throw away latest failure point and then jump to following
486 two-byte relative address. */
487 /* ifdef MBS_SUPPORT, the size of address is 1. */
488 pop_failure_jump,
489
490 /* Change to pop_failure_jump if know won't have to backtrack to
491 match; otherwise change to jump. This is used to jump
492 back to the beginning of a repeat. If what follows this jump
493 clearly won't match what the repeat does, such that we can be
494 sure that there is no use backtracking out of repetitions
495 already matched, then we change it to a pop_failure_jump.
496 Followed by two-byte address. */
497 /* ifdef MBS_SUPPORT, the size of address is 1. */
498 maybe_pop_jump,
499
500 /* Jump to following two-byte address, and push a dummy failure
501 point. This failure point will be thrown away if an attempt
502 is made to use it for a failure. A `+' construct makes this
503 before the first repeat. Also used as an intermediary kind
504 of jump when compiling an alternative. */
505 /* ifdef MBS_SUPPORT, the size of address is 1. */
506 dummy_failure_jump,
507
508 /* Push a dummy failure point and continue. Used at the end of
509 alternatives. */
510 push_dummy_failure,
511
512 /* Followed by two-byte relative address and two-byte number n.
513 After matching N times, jump to the address upon failure. */
514 /* ifdef MBS_SUPPORT, the size of address is 1. */
515 succeed_n,
516
517 /* Followed by two-byte relative address, and two-byte number n.
518 Jump to the address N times, then fail. */
519 /* ifdef MBS_SUPPORT, the size of address is 1. */
520 jump_n,
521
522 /* Set the following two-byte relative address to the
523 subsequent two-byte number. The address *includes* the two
524 bytes of number. */
525 /* ifdef MBS_SUPPORT, the size of address is 1. */
526 set_number_at,
527
528 wordchar, /* Matches any word-constituent character. */
529 notwordchar, /* Matches any char that is not a word-constituent. */
530
531 wordbeg, /* Succeeds if at word beginning. */
532 wordend, /* Succeeds if at word end. */
533
534 wordbound, /* Succeeds if at a word boundary. */
535 notwordbound /* Succeeds if not at a word boundary. */
536
537 # ifdef emacs
538 ,before_dot, /* Succeeds if before point. */
539 at_dot, /* Succeeds if at point. */
540 after_dot, /* Succeeds if after point. */
541
542 /* Matches any character whose syntax is specified. Followed by
543 a byte which contains a syntax code, e.g., Sword. */
544 syntaxspec,
545
546 /* Matches any character whose syntax is not that specified. */
547 notsyntaxspec
548 # endif /* emacs */
549 } re_opcode_t;
550 #endif /* not INSIDE_RECURSION */
551
552
553 #ifdef BYTE
554 # define CHAR_T char
555 # define UCHAR_T unsigned char
556 # define COMPILED_BUFFER_VAR bufp->buffer
557 # define OFFSET_ADDRESS_SIZE 2
558 # define PREFIX(name) byte_##name
559 # define ARG_PREFIX(name) name
560 # define PUT_CHAR(c) putchar (c)
561 #else
562 # ifdef WCHAR
563 # define CHAR_T wchar_t
564 # define UCHAR_T wchar_t
565 # define COMPILED_BUFFER_VAR wc_buffer
566 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
567 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
568 # define PREFIX(name) wcs_##name
569 # define ARG_PREFIX(name) c##name
570 /* Should we use wide stream?? */
571 # define PUT_CHAR(c) printf ("%C", c);
572 # define TRUE 1
573 # define FALSE 0
574 # else
575 # ifdef MBS_SUPPORT
576 # define WCHAR
577 # define INSIDE_RECURSION
578 # include "regex.c"
579 # undef INSIDE_RECURSION
580 # endif
581 # define BYTE
582 # define INSIDE_RECURSION
583 # include "regex.c"
584 # undef INSIDE_RECURSION
585 # endif
586 #endif
587
588 #if USE_UNLOCKED_IO
589 # include "unlocked-io.h"
590 #endif
591
592 #ifdef INSIDE_RECURSION
593 /* Common operations on the compiled pattern. */
594
595 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
596 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
597
598 # ifdef WCHAR
599 # define STORE_NUMBER(destination, number) \
600 do { \
601 *(destination) = (UCHAR_T)(number); \
602 } while (0)
603 # else /* BYTE */
604 # define STORE_NUMBER(destination, number) \
605 do { \
606 (destination)[0] = (number) & 0377; \
607 (destination)[1] = (number) >> 8; \
608 } while (0)
609 # endif /* WCHAR */
610
611 /* Same as STORE_NUMBER, except increment DESTINATION to
612 the byte after where the number is stored. Therefore, DESTINATION
613 must be an lvalue. */
614 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
615
616 # define STORE_NUMBER_AND_INCR(destination, number) \
617 do { \
618 STORE_NUMBER (destination, number); \
619 (destination) += OFFSET_ADDRESS_SIZE; \
620 } while (0)
621
622 /* Put into DESTINATION a number stored in two contiguous bytes starting
623 at SOURCE. */
624 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
625
626 # ifdef WCHAR
627 # define EXTRACT_NUMBER(destination, source) \
628 do { \
629 (destination) = *(source); \
630 } while (0)
631 # else /* BYTE */
632 # define EXTRACT_NUMBER(destination, source) \
633 do { \
634 (destination) = *(source) & 0377; \
635 (destination) += (signed char) (*((source) + 1)) << 8; \
636 } while (0)
637 # endif
638
639 # ifdef DEBUG
640 static void
PREFIX(extract_number)641 PREFIX(extract_number) (int *dest, UCHAR_T *source)
642 {
643 # ifdef WCHAR
644 *dest = *source;
645 # else /* BYTE */
646 signed char temp = source[1];
647 *dest = *source & 0377;
648 *dest += temp << 8;
649 # endif
650 }
651
652 # ifndef EXTRACT_MACROS /* To debug the macros. */
653 # undef EXTRACT_NUMBER
654 # define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
655 # endif /* not EXTRACT_MACROS */
656
657 # endif /* DEBUG */
658
659 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
660 SOURCE must be an lvalue. */
661
662 # define EXTRACT_NUMBER_AND_INCR(destination, source) \
663 do { \
664 EXTRACT_NUMBER (destination, source); \
665 (source) += OFFSET_ADDRESS_SIZE; \
666 } while (0)
667
668 # ifdef DEBUG
669 static void
PREFIX(extract_number_and_incr)670 PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
671 {
672 PREFIX(extract_number) (destination, *source);
673 *source += OFFSET_ADDRESS_SIZE;
674 }
675
676 # ifndef EXTRACT_MACROS
677 # undef EXTRACT_NUMBER_AND_INCR
678 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
679 PREFIX(extract_number_and_incr) (&dest, &src)
680 # endif /* not EXTRACT_MACROS */
681
682 # endif /* DEBUG */
683
684
685
686 /* If DEBUG is defined, Regex prints many voluminous messages about what
687 it is doing (if the variable `debug' is nonzero). If linked with the
688 main program in `iregex.c', you can enter patterns and strings
689 interactively. And if linked with the main program in `main.c' and
690 the other test files, you can run the already-written tests. */
691
692 # ifdef DEBUG
693
694 # ifndef DEFINED_ONCE
695
696 /* We use standard I/O for debugging. */
697 # include <stdio.h>
698
699 /* It is useful to test things that ``must'' be true when debugging. */
700 # include <assert.h>
701
702 static int debug;
703
704 # define DEBUG_STATEMENT(e) e
705 # define DEBUG_PRINT1(x) if (debug) printf (x)
706 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
707 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
708 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
709 # endif /* not DEFINED_ONCE */
710
711 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
712 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
713 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
714 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
715
716
717 /* Print the fastmap in human-readable form. */
718
719 # ifndef DEFINED_ONCE
720 void
print_fastmap(char * fastmap)721 print_fastmap (char *fastmap)
722 {
723 unsigned was_a_range = 0;
724 unsigned i = 0;
725
726 while (i < (1 << BYTEWIDTH))
727 {
728 if (fastmap[i++])
729 {
730 was_a_range = 0;
731 putchar (i - 1);
732 while (i < (1 << BYTEWIDTH) && fastmap[i])
733 {
734 was_a_range = 1;
735 i++;
736 }
737 if (was_a_range)
738 {
739 printf ("-");
740 putchar (i - 1);
741 }
742 }
743 }
744 putchar ('\n');
745 }
746 # endif /* not DEFINED_ONCE */
747
748
749 /* Print a compiled pattern string in human-readable form, starting at
750 the START pointer into it and ending just before the pointer END. */
751
752 void
PREFIX(print_partial_compiled_pattern)753 PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
754 {
755 int mcnt, mcnt2;
756 UCHAR_T *p1;
757 UCHAR_T *p = start;
758 UCHAR_T *pend = end;
759
760 if (start == NULL)
761 {
762 printf ("(null)\n");
763 return;
764 }
765
766 /* Loop over pattern commands. */
767 while (p < pend)
768 {
769 # ifdef _LIBC
770 printf ("%td:\t", p - start);
771 # else
772 printf ("%ld:\t", (long int) (p - start));
773 # endif
774
775 switch ((re_opcode_t) *p++)
776 {
777 case no_op:
778 printf ("/no_op");
779 break;
780
781 case exactn:
782 mcnt = *p++;
783 printf ("/exactn/%d", mcnt);
784 do
785 {
786 putchar ('/');
787 PUT_CHAR (*p++);
788 }
789 while (--mcnt);
790 break;
791
792 # ifdef MBS_SUPPORT
793 case exactn_bin:
794 mcnt = *p++;
795 printf ("/exactn_bin/%d", mcnt);
796 do
797 {
798 printf("/%lx", (long int) *p++);
799 }
800 while (--mcnt);
801 break;
802 # endif /* MBS_SUPPORT */
803
804 case start_memory:
805 mcnt = *p++;
806 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
807 break;
808
809 case stop_memory:
810 mcnt = *p++;
811 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
812 break;
813
814 case duplicate:
815 printf ("/duplicate/%ld", (long int) *p++);
816 break;
817
818 case anychar:
819 printf ("/anychar");
820 break;
821
822 case charset:
823 case charset_not:
824 {
825 # ifdef WCHAR
826 int i, length;
827 wchar_t *workp = p;
828 printf ("/charset [%s",
829 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
830 p += 5;
831 length = *workp++; /* the length of char_classes */
832 for (i=0 ; i<length ; i++)
833 printf("[:%lx:]", (long int) *p++);
834 length = *workp++; /* the length of collating_symbol */
835 for (i=0 ; i<length ;)
836 {
837 printf("[.");
838 while(*p != 0)
839 PUT_CHAR((i++,*p++));
840 i++,p++;
841 printf(".]");
842 }
843 length = *workp++; /* the length of equivalence_class */
844 for (i=0 ; i<length ;)
845 {
846 printf("[=");
847 while(*p != 0)
848 PUT_CHAR((i++,*p++));
849 i++,p++;
850 printf("=]");
851 }
852 length = *workp++; /* the length of char_range */
853 for (i=0 ; i<length ; i++)
854 {
855 wchar_t range_start = *p++;
856 wchar_t range_end = *p++;
857 printf("%C-%C", range_start, range_end);
858 }
859 length = *workp++; /* the length of char */
860 for (i=0 ; i<length ; i++)
861 printf("%C", *p++);
862 putchar (']');
863 # else
864 register int c, last = -100;
865 register int in_range = 0;
866
867 printf ("/charset [%s",
868 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
869
870 assert (p + *p < pend);
871
872 for (c = 0; c < 256; c++)
873 if (c / 8 < *p
874 && (p[1 + (c/8)] & (1 << (c % 8))))
875 {
876 /* Are we starting a range? */
877 if (last + 1 == c && ! in_range)
878 {
879 putchar ('-');
880 in_range = 1;
881 }
882 /* Have we broken a range? */
883 else if (last + 1 != c && in_range)
884 {
885 putchar (last);
886 in_range = 0;
887 }
888
889 if (! in_range)
890 putchar (c);
891
892 last = c;
893 }
894
895 if (in_range)
896 putchar (last);
897
898 putchar (']');
899
900 p += 1 + *p;
901 # endif /* WCHAR */
902 }
903 break;
904
905 case begline:
906 printf ("/begline");
907 break;
908
909 case endline:
910 printf ("/endline");
911 break;
912
913 case on_failure_jump:
914 PREFIX(extract_number_and_incr) (&mcnt, &p);
915 # ifdef _LIBC
916 printf ("/on_failure_jump to %td", p + mcnt - start);
917 # else
918 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
919 # endif
920 break;
921
922 case on_failure_keep_string_jump:
923 PREFIX(extract_number_and_incr) (&mcnt, &p);
924 # ifdef _LIBC
925 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
926 # else
927 printf ("/on_failure_keep_string_jump to %ld",
928 (long int) (p + mcnt - start));
929 # endif
930 break;
931
932 case dummy_failure_jump:
933 PREFIX(extract_number_and_incr) (&mcnt, &p);
934 # ifdef _LIBC
935 printf ("/dummy_failure_jump to %td", p + mcnt - start);
936 # else
937 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
938 # endif
939 break;
940
941 case push_dummy_failure:
942 printf ("/push_dummy_failure");
943 break;
944
945 case maybe_pop_jump:
946 PREFIX(extract_number_and_incr) (&mcnt, &p);
947 # ifdef _LIBC
948 printf ("/maybe_pop_jump to %td", p + mcnt - start);
949 # else
950 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
951 # endif
952 break;
953
954 case pop_failure_jump:
955 PREFIX(extract_number_and_incr) (&mcnt, &p);
956 # ifdef _LIBC
957 printf ("/pop_failure_jump to %td", p + mcnt - start);
958 # else
959 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
960 # endif
961 break;
962
963 case jump_past_alt:
964 PREFIX(extract_number_and_incr) (&mcnt, &p);
965 # ifdef _LIBC
966 printf ("/jump_past_alt to %td", p + mcnt - start);
967 # else
968 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
969 # endif
970 break;
971
972 case jump:
973 PREFIX(extract_number_and_incr) (&mcnt, &p);
974 # ifdef _LIBC
975 printf ("/jump to %td", p + mcnt - start);
976 # else
977 printf ("/jump to %ld", (long int) (p + mcnt - start));
978 # endif
979 break;
980
981 case succeed_n:
982 PREFIX(extract_number_and_incr) (&mcnt, &p);
983 p1 = p + mcnt;
984 PREFIX(extract_number_and_incr) (&mcnt2, &p);
985 # ifdef _LIBC
986 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
987 # else
988 printf ("/succeed_n to %ld, %d times",
989 (long int) (p1 - start), mcnt2);
990 # endif
991 break;
992
993 case jump_n:
994 PREFIX(extract_number_and_incr) (&mcnt, &p);
995 p1 = p + mcnt;
996 PREFIX(extract_number_and_incr) (&mcnt2, &p);
997 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
998 break;
999
1000 case set_number_at:
1001 PREFIX(extract_number_and_incr) (&mcnt, &p);
1002 p1 = p + mcnt;
1003 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1004 # ifdef _LIBC
1005 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1006 # else
1007 printf ("/set_number_at location %ld to %d",
1008 (long int) (p1 - start), mcnt2);
1009 # endif
1010 break;
1011
1012 case wordbound:
1013 printf ("/wordbound");
1014 break;
1015
1016 case notwordbound:
1017 printf ("/notwordbound");
1018 break;
1019
1020 case wordbeg:
1021 printf ("/wordbeg");
1022 break;
1023
1024 case wordend:
1025 printf ("/wordend");
1026 break;
1027
1028 # ifdef emacs
1029 case before_dot:
1030 printf ("/before_dot");
1031 break;
1032
1033 case at_dot:
1034 printf ("/at_dot");
1035 break;
1036
1037 case after_dot:
1038 printf ("/after_dot");
1039 break;
1040
1041 case syntaxspec:
1042 printf ("/syntaxspec");
1043 mcnt = *p++;
1044 printf ("/%d", mcnt);
1045 break;
1046
1047 case notsyntaxspec:
1048 printf ("/notsyntaxspec");
1049 mcnt = *p++;
1050 printf ("/%d", mcnt);
1051 break;
1052 # endif /* emacs */
1053
1054 case wordchar:
1055 printf ("/wordchar");
1056 break;
1057
1058 case notwordchar:
1059 printf ("/notwordchar");
1060 break;
1061
1062 case begbuf:
1063 printf ("/begbuf");
1064 break;
1065
1066 case endbuf:
1067 printf ("/endbuf");
1068 break;
1069
1070 default:
1071 printf ("?%ld", (long int) *(p-1));
1072 }
1073
1074 putchar ('\n');
1075 }
1076
1077 # ifdef _LIBC
1078 printf ("%td:\tend of pattern.\n", p - start);
1079 # else
1080 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1081 # endif
1082 }
1083
1084
1085 void
PREFIX(print_compiled_pattern)1086 PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
1087 {
1088 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1089
1090 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1091 + bufp->used / sizeof(UCHAR_T));
1092 printf ("%ld bytes used/%ld bytes allocated.\n",
1093 bufp->used, bufp->allocated);
1094
1095 if (bufp->fastmap_accurate && bufp->fastmap)
1096 {
1097 printf ("fastmap: ");
1098 print_fastmap (bufp->fastmap);
1099 }
1100
1101 # ifdef _LIBC
1102 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1103 # else
1104 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1105 # endif
1106 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1107 printf ("can_be_null: %d\t", bufp->can_be_null);
1108 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1109 printf ("no_sub: %d\t", bufp->no_sub);
1110 printf ("not_bol: %d\t", bufp->not_bol);
1111 printf ("not_eol: %d\t", bufp->not_eol);
1112 printf ("syntax: %lx\n", bufp->syntax);
1113 /* Perhaps we should print the translate table? */
1114 }
1115
1116
1117 void
PREFIX(print_double_string)1118 PREFIX(print_double_string) (const CHAR_T *where,
1119 const CHAR_T *string1,
1120 const CHAR_T *string2,
1121 int size1,
1122 int size2)
1123 {
1124 int this_char;
1125
1126 if (where == NULL)
1127 printf ("(null)");
1128 else
1129 {
1130 int cnt;
1131
1132 if (FIRST_STRING_P (where))
1133 {
1134 for (this_char = where - string1; this_char < size1; this_char++)
1135 PUT_CHAR (string1[this_char]);
1136
1137 where = string2;
1138 }
1139
1140 cnt = 0;
1141 for (this_char = where - string2; this_char < size2; this_char++)
1142 {
1143 PUT_CHAR (string2[this_char]);
1144 if (++cnt > 100)
1145 {
1146 fputs ("...", stdout);
1147 break;
1148 }
1149 }
1150 }
1151 }
1152
1153 # ifndef DEFINED_ONCE
1154 void
printchar(c)1155 printchar (c)
1156 int c;
1157 {
1158 putc (c, stderr);
1159 }
1160 # endif
1161
1162 # else /* not DEBUG */
1163
1164 # ifndef DEFINED_ONCE
1165 # undef assert
1166 # define assert(e)
1167
1168 # define DEBUG_STATEMENT(e)
1169 # define DEBUG_PRINT1(x)
1170 # define DEBUG_PRINT2(x1, x2)
1171 # define DEBUG_PRINT3(x1, x2, x3)
1172 # define DEBUG_PRINT4(x1, x2, x3, x4)
1173 # endif /* not DEFINED_ONCE */
1174 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1175 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1176
1177 # endif /* not DEBUG */
1178
1179
1180
1181 # ifdef WCHAR
1182 /* This convert a multibyte string to a wide character string.
1183 And write their correspondances to offset_buffer(see below)
1184 and write whether each wchar_t is binary data to is_binary.
1185 This assume invalid multibyte sequences as binary data.
1186 We assume offset_buffer and is_binary is already allocated
1187 enough space. */
1188
1189 static size_t
convert_mbs_to_wcs(CHAR_T * dest,const unsigned char * src,size_t len,int * offset_buffer,char * is_binary)1190 convert_mbs_to_wcs (CHAR_T *dest,
1191 const unsigned char* src,
1192
1193 /* The length of multibyte string. */
1194 size_t len,
1195
1196 /* Correspondences between src(char string) and
1197 dest(wchar_t string) for optimization. E.g.:
1198 src = "xxxyzz"
1199 dest = {'X', 'Y', 'Z'}
1200 (each "xxx", "y" and "zz" represent one
1201 multibyte character corresponding to 'X',
1202 'Y' and 'Z'.)
1203 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"),
1204 0+3+1+2("zz")}
1205 = {0, 3, 4, 6} */
1206 int *offset_buffer,
1207
1208 char *is_binary)
1209 {
1210 wchar_t *pdest = dest;
1211 const unsigned char *psrc = src;
1212 size_t wc_count = 0;
1213
1214 mbstate_t mbs;
1215 int i, consumed;
1216 size_t mb_remain = len;
1217 size_t mb_count = 0;
1218
1219 /* Initialize the conversion state. */
1220 memset (&mbs, 0, sizeof (mbstate_t));
1221
1222 offset_buffer[0] = 0;
1223 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1224 psrc += consumed)
1225 {
1226 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1227
1228 if (consumed <= 0)
1229 /* failed to convert. maybe src contains binary data.
1230 So we consume 1 byte manualy. */
1231 {
1232 *pdest = *psrc;
1233 consumed = 1;
1234 is_binary[wc_count] = TRUE;
1235 }
1236 else
1237 is_binary[wc_count] = FALSE;
1238 /* In sjis encoding, we use yen sign as escape character in
1239 place of reverse solidus. So we convert 0x5c(yen sign in
1240 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1241 solidus in UCS2). */
1242 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1243 *pdest = (wchar_t) *psrc;
1244
1245 offset_buffer[wc_count + 1] = mb_count += consumed;
1246 }
1247
1248 /* Fill remain of the buffer with sentinel. */
1249 for (i = wc_count + 1 ; i <= len ; i++)
1250 offset_buffer[i] = mb_count + 1;
1251
1252 return wc_count;
1253 }
1254
1255 # endif /* WCHAR */
1256
1257 #else /* not INSIDE_RECURSION */
1258
1259 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1260 also be assigned to arbitrarily: each pattern buffer stores its own
1261 syntax, so it can be changed between regex compilations. */
1262 /* This has no initializer because initialized variables in Emacs
1263 become read-only after dumping. */
1264 reg_syntax_t re_syntax_options;
1265
1266
1267 /* Specify the precise syntax of regexps for compilation. This provides
1268 for compatibility for various utilities which historically have
1269 different, incompatible syntaxes.
1270
1271 The argument SYNTAX is a bit mask comprised of the various bits
1272 defined in regex.h. We return the old syntax. */
1273
1274 reg_syntax_t
re_set_syntax(reg_syntax_t syntax)1275 re_set_syntax (reg_syntax_t syntax)
1276 {
1277 reg_syntax_t ret = re_syntax_options;
1278
1279 re_syntax_options = syntax;
1280 # ifdef DEBUG
1281 if (syntax & RE_DEBUG)
1282 debug = 1;
1283 else if (debug) /* was on but now is not */
1284 debug = 0;
1285 # endif /* DEBUG */
1286 return ret;
1287 }
1288 # ifdef _LIBC
1289 weak_alias (__re_set_syntax, re_set_syntax)
1290 # endif
1291
1292 /* This table gives an error message for each of the error codes listed
1293 in regex.h. Obviously the order here has to be same as there.
1294 POSIX doesn't require that we do anything for REG_NOERROR,
1295 but why not be nice? */
1296
1297 static const char re_error_msgid[] =
1298 {
1299 # define REG_NOERROR_IDX 0
1300 gettext_noop ("Success") /* REG_NOERROR */
1301 "\0"
1302 # define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1303 gettext_noop ("No match") /* REG_NOMATCH */
1304 "\0"
1305 # define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match")
1306 gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1307 "\0"
1308 # define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1309 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1310 "\0"
1311 # define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1312 gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1313 "\0"
1314 # define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name")
1315 gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1316 "\0"
1317 # define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash")
1318 gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1319 "\0"
1320 # define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference")
1321 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */
1322 "\0"
1323 # define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1324 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1325 "\0"
1326 # define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1327 gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1328 "\0"
1329 # define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{")
1330 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1331 "\0"
1332 # define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1333 gettext_noop ("Invalid range end") /* REG_ERANGE */
1334 "\0"
1335 # define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end")
1336 gettext_noop ("Memory exhausted") /* REG_ESPACE */
1337 "\0"
1338 # define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted")
1339 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1340 "\0"
1341 # define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1342 gettext_noop ("Premature end of regular expression") /* REG_EEND */
1343 "\0"
1344 # define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression")
1345 gettext_noop ("Regular expression too big") /* REG_ESIZE */
1346 "\0"
1347 # define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big")
1348 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1349 };
1350
1351 static const size_t re_error_msgid_idx[] =
1352 {
1353 REG_NOERROR_IDX,
1354 REG_NOMATCH_IDX,
1355 REG_BADPAT_IDX,
1356 REG_ECOLLATE_IDX,
1357 REG_ECTYPE_IDX,
1358 REG_EESCAPE_IDX,
1359 REG_ESUBREG_IDX,
1360 REG_EBRACK_IDX,
1361 REG_EPAREN_IDX,
1362 REG_EBRACE_IDX,
1363 REG_BADBR_IDX,
1364 REG_ERANGE_IDX,
1365 REG_ESPACE_IDX,
1366 REG_BADRPT_IDX,
1367 REG_EEND_IDX,
1368 REG_ESIZE_IDX,
1369 REG_ERPAREN_IDX
1370 };
1371
1372 #endif /* INSIDE_RECURSION */
1373
1374 #ifndef DEFINED_ONCE
1375 /* Avoiding alloca during matching, to placate r_alloc. */
1376
1377 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1378 searching and matching functions should not call alloca. On some
1379 systems, alloca is implemented in terms of malloc, and if we're
1380 using the relocating allocator routines, then malloc could cause a
1381 relocation, which might (if the strings being searched are in the
1382 ralloc heap) shift the data out from underneath the regexp
1383 routines.
1384
1385 Here's another reason to avoid allocation: Emacs
1386 processes input from X in a signal handler; processing X input may
1387 call malloc; if input arrives while a matching routine is calling
1388 malloc, then we're scrod. But Emacs can't just block input while
1389 calling matching routines; then we don't notice interrupts when
1390 they come in. So, Emacs blocks input around all regexp calls
1391 except the matching calls, which it leaves unprotected, in the
1392 faith that they will not malloc. */
1393
1394 /* Normally, this is fine. */
1395 # define MATCH_MAY_ALLOCATE
1396
1397 /* When using GNU C, we are not REALLY using the C alloca, no matter
1398 what config.h may say. So don't take precautions for it. */
1399 # ifdef __GNUC__
1400 # undef C_ALLOCA
1401 # endif
1402
1403 /* The match routines may not allocate if (1) they would do it with malloc
1404 and (2) it's not safe for them to use malloc.
1405 Note that if REL_ALLOC is defined, matching would not use malloc for the
1406 failure stack, but we would still use it for the register vectors;
1407 so REL_ALLOC should not affect this. */
1408 # if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1409 # undef MATCH_MAY_ALLOCATE
1410 # endif
1411 #endif /* not DEFINED_ONCE */
1412
1413 #ifdef INSIDE_RECURSION
1414 /* Failure stack declarations and macros; both re_compile_fastmap and
1415 re_match_2 use a failure stack. These have to be macros because of
1416 REGEX_ALLOCATE_STACK. */
1417
1418
1419 /* Number of failure points for which to initially allocate space
1420 when matching. If this number is exceeded, we allocate more
1421 space, so it is not a hard limit. */
1422 # ifndef INIT_FAILURE_ALLOC
1423 # define INIT_FAILURE_ALLOC 5
1424 # endif
1425
1426 /* Roughly the maximum number of failure points on the stack. Would be
1427 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1428 This is a variable only so users of regex can assign to it; we never
1429 change it ourselves. */
1430
1431 # ifdef INT_IS_16BIT
1432
1433 # ifndef DEFINED_ONCE
1434 # if defined MATCH_MAY_ALLOCATE
1435 /* 4400 was enough to cause a crash on Alpha OSF/1,
1436 whose default stack limit is 2mb. */
1437 long int re_max_failures = 4000;
1438 # else
1439 long int re_max_failures = 2000;
1440 # endif
1441 # endif
1442
PREFIX(fail_stack_elt)1443 union PREFIX(fail_stack_elt)
1444 {
1445 UCHAR_T *pointer;
1446 long int integer;
1447 };
1448
1449 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1450
1451 typedef struct
1452 {
1453 PREFIX(fail_stack_elt_t) *stack;
1454 unsigned long int size;
1455 unsigned long int avail; /* Offset of next open position. */
1456 } PREFIX(fail_stack_type);
1457
1458 # else /* not INT_IS_16BIT */
1459
1460 # ifndef DEFINED_ONCE
1461 # if defined MATCH_MAY_ALLOCATE
1462 /* 4400 was enough to cause a crash on Alpha OSF/1,
1463 whose default stack limit is 2mb. */
1464 int re_max_failures = 4000;
1465 # else
1466 int re_max_failures = 2000;
1467 # endif
1468 # endif
1469
PREFIX(fail_stack_elt)1470 union PREFIX(fail_stack_elt)
1471 {
1472 UCHAR_T *pointer;
1473 int integer;
1474 };
1475
1476 typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1477
1478 typedef struct
1479 {
1480 PREFIX(fail_stack_elt_t) *stack;
1481 unsigned size;
1482 unsigned avail; /* Offset of next open position. */
1483 } PREFIX(fail_stack_type);
1484
1485 # endif /* INT_IS_16BIT */
1486
1487 # ifndef DEFINED_ONCE
1488 # define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1489 # define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1490 # define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1491 # endif
1492
1493
1494 /* Define macros to initialize and free the failure stack.
1495 Do `return -2' if the alloc fails. */
1496
1497 # ifdef MATCH_MAY_ALLOCATE
1498 # define INIT_FAIL_STACK() \
1499 do { \
1500 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1501 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1502 \
1503 if (fail_stack.stack == NULL) \
1504 return -2; \
1505 \
1506 fail_stack.size = INIT_FAILURE_ALLOC; \
1507 fail_stack.avail = 0; \
1508 } while (0)
1509
1510 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1511 # else
1512 # define INIT_FAIL_STACK() \
1513 do { \
1514 fail_stack.avail = 0; \
1515 } while (0)
1516
1517 # define RESET_FAIL_STACK()
1518 # endif
1519
1520
1521 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1522
1523 Return 1 if succeeds, and 0 if either ran out of memory
1524 allocating space for it or it was already too large.
1525
1526 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1527
1528 # define DOUBLE_FAIL_STACK(fail_stack) \
1529 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1530 ? 0 \
1531 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1532 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1533 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1534 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1535 \
1536 (fail_stack).stack == NULL \
1537 ? 0 \
1538 : ((fail_stack).size <<= 1, \
1539 1)))
1540
1541
1542 /* Push pointer POINTER on FAIL_STACK.
1543 Return 1 if was able to do so and 0 if ran out of memory allocating
1544 space to do so. */
1545 # define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1546 ((FAIL_STACK_FULL () \
1547 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1548 ? 0 \
1549 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1550 1))
1551
1552 /* Push a pointer value onto the failure stack.
1553 Assumes the variable `fail_stack'. Probably should only
1554 be called from within `PUSH_FAILURE_POINT'. */
1555 # define PUSH_FAILURE_POINTER(item) \
1556 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1557
1558 /* This pushes an integer-valued item onto the failure stack.
1559 Assumes the variable `fail_stack'. Probably should only
1560 be called from within `PUSH_FAILURE_POINT'. */
1561 # define PUSH_FAILURE_INT(item) \
1562 fail_stack.stack[fail_stack.avail++].integer = (item)
1563
1564 /* Push a fail_stack_elt_t value onto the failure stack.
1565 Assumes the variable `fail_stack'. Probably should only
1566 be called from within `PUSH_FAILURE_POINT'. */
1567 # define PUSH_FAILURE_ELT(item) \
1568 fail_stack.stack[fail_stack.avail++] = (item)
1569
1570 /* These three POP... operations complement the three PUSH... operations.
1571 All assume that `fail_stack' is nonempty. */
1572 # define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1573 # define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1574 # define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1575
1576 /* Used to omit pushing failure point id's when we're not debugging. */
1577 # ifdef DEBUG
1578 # define DEBUG_PUSH PUSH_FAILURE_INT
1579 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1580 # else
1581 # define DEBUG_PUSH(item)
1582 # define DEBUG_POP(item_addr)
1583 # endif
1584
1585
1586 /* Push the information about the state we will need
1587 if we ever fail back to it.
1588
1589 Requires variables fail_stack, regstart, regend, reg_info, and
1590 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1591 be declared.
1592
1593 Does `return FAILURE_CODE' if runs out of memory. */
1594
1595 # define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1596 do { \
1597 char *destination; \
1598 /* Must be int, so when we don't save any registers, the arithmetic \
1599 of 0 + -1 isn't done as unsigned. */ \
1600 /* Can't be int, since there is not a shred of a guarantee that int \
1601 is wide enough to hold a value of something to which pointer can \
1602 be assigned */ \
1603 active_reg_t this_reg; \
1604 \
1605 DEBUG_STATEMENT (failure_id++); \
1606 DEBUG_STATEMENT (nfailure_points_pushed++); \
1607 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1608 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1609 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1610 \
1611 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1612 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1613 \
1614 /* Ensure we have enough space allocated for what we will push. */ \
1615 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1616 { \
1617 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1618 return failure_code; \
1619 \
1620 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1621 (fail_stack).size); \
1622 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1623 } \
1624 \
1625 /* Push the info, starting with the registers. */ \
1626 DEBUG_PRINT1 ("\n"); \
1627 \
1628 if (1) \
1629 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1630 this_reg++) \
1631 { \
1632 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1633 DEBUG_STATEMENT (num_regs_pushed++); \
1634 \
1635 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1636 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1637 \
1638 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1639 PUSH_FAILURE_POINTER (regend[this_reg]); \
1640 \
1641 DEBUG_PRINT2 (" info: %p\n ", \
1642 reg_info[this_reg].word.pointer); \
1643 DEBUG_PRINT2 (" match_null=%d", \
1644 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1645 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1646 DEBUG_PRINT2 (" matched_something=%d", \
1647 MATCHED_SOMETHING (reg_info[this_reg])); \
1648 DEBUG_PRINT2 (" ever_matched=%d", \
1649 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1650 DEBUG_PRINT1 ("\n"); \
1651 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1652 } \
1653 \
1654 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1655 PUSH_FAILURE_INT (lowest_active_reg); \
1656 \
1657 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1658 PUSH_FAILURE_INT (highest_active_reg); \
1659 \
1660 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1661 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1662 PUSH_FAILURE_POINTER (pattern_place); \
1663 \
1664 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1665 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1666 size2); \
1667 DEBUG_PRINT1 ("'\n"); \
1668 PUSH_FAILURE_POINTER (string_place); \
1669 \
1670 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1671 DEBUG_PUSH (failure_id); \
1672 } while (0)
1673
1674 # ifndef DEFINED_ONCE
1675 /* This is the number of items that are pushed and popped on the stack
1676 for each register. */
1677 # define NUM_REG_ITEMS 3
1678
1679 /* Individual items aside from the registers. */
1680 # ifdef DEBUG
1681 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1682 # else
1683 # define NUM_NONREG_ITEMS 4
1684 # endif
1685
1686 /* We push at most this many items on the stack. */
1687 /* We used to use (num_regs - 1), which is the number of registers
1688 this regexp will save; but that was changed to 5
1689 to avoid stack overflow for a regexp with lots of parens. */
1690 # define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1691
1692 /* We actually push this many items. */
1693 # define NUM_FAILURE_ITEMS \
1694 (((0 \
1695 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1696 * NUM_REG_ITEMS) \
1697 + NUM_NONREG_ITEMS)
1698
1699 /* How many items can still be added to the stack without overflowing it. */
1700 # define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1701 # endif /* not DEFINED_ONCE */
1702
1703
1704 /* Pops what PUSH_FAIL_STACK pushes.
1705
1706 We restore into the parameters, all of which should be lvalues:
1707 STR -- the saved data position.
1708 PAT -- the saved pattern position.
1709 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1710 REGSTART, REGEND -- arrays of string positions.
1711 REG_INFO -- array of information about each subexpression.
1712
1713 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1714 `pend', `string1', `size1', `string2', and `size2'. */
1715 # define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1716 { \
1717 DEBUG_STATEMENT (unsigned failure_id;) \
1718 active_reg_t this_reg; \
1719 const UCHAR_T *string_temp; \
1720 \
1721 assert (!FAIL_STACK_EMPTY ()); \
1722 \
1723 /* Remove failure points and point to how many regs pushed. */ \
1724 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1725 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1726 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1727 \
1728 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1729 \
1730 DEBUG_POP (&failure_id); \
1731 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1732 \
1733 /* If the saved string location is NULL, it came from an \
1734 on_failure_keep_string_jump opcode, and we want to throw away the \
1735 saved NULL, thus retaining our current position in the string. */ \
1736 string_temp = POP_FAILURE_POINTER (); \
1737 if (string_temp != NULL) \
1738 str = (const CHAR_T *) string_temp; \
1739 \
1740 DEBUG_PRINT2 (" Popping string %p: `", str); \
1741 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1742 DEBUG_PRINT1 ("'\n"); \
1743 \
1744 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1745 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1746 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1747 \
1748 /* Restore register info. */ \
1749 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1750 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1751 \
1752 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1753 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1754 \
1755 if (1) \
1756 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1757 { \
1758 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1759 \
1760 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1761 DEBUG_PRINT2 (" info: %p\n", \
1762 reg_info[this_reg].word.pointer); \
1763 \
1764 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1765 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1766 \
1767 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1768 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1769 } \
1770 else \
1771 { \
1772 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1773 { \
1774 reg_info[this_reg].word.integer = 0; \
1775 regend[this_reg] = 0; \
1776 regstart[this_reg] = 0; \
1777 } \
1778 highest_active_reg = high_reg; \
1779 } \
1780 \
1781 set_regs_matched_done = 0; \
1782 DEBUG_STATEMENT (nfailure_points_popped++); \
1783 } /* POP_FAILURE_POINT */
1784
1785 /* Structure for per-register (a.k.a. per-group) information.
1786 Other register information, such as the
1787 starting and ending positions (which are addresses), and the list of
1788 inner groups (which is a bits list) are maintained in separate
1789 variables.
1790
1791 We are making a (strictly speaking) nonportable assumption here: that
1792 the compiler will pack our bit fields into something that fits into
1793 the type of `word', i.e., is something that fits into one item on the
1794 failure stack. */
1795
1796
1797 /* Declarations and macros for re_match_2. */
1798
1799 typedef union
1800 {
1801 PREFIX(fail_stack_elt_t) word;
1802 struct
1803 {
1804 /* This field is one if this group can match the empty string,
1805 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1806 # define MATCH_NULL_UNSET_VALUE 3
1807 unsigned match_null_string_p : 2;
1808 unsigned is_active : 1;
1809 unsigned matched_something : 1;
1810 unsigned ever_matched_something : 1;
1811 } bits;
1812 } PREFIX(register_info_type);
1813
1814 # ifndef DEFINED_ONCE
1815 # define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1816 # define IS_ACTIVE(R) ((R).bits.is_active)
1817 # define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1818 # define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1819
1820
1821 /* Call this when have matched a real character; it sets `matched' flags
1822 for the subexpressions which we are currently inside. Also records
1823 that those subexprs have matched. */
1824 # define SET_REGS_MATCHED() \
1825 do \
1826 { \
1827 if (!set_regs_matched_done) \
1828 { \
1829 active_reg_t r; \
1830 set_regs_matched_done = 1; \
1831 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1832 { \
1833 MATCHED_SOMETHING (reg_info[r]) \
1834 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1835 = 1; \
1836 } \
1837 } \
1838 } \
1839 while (0)
1840 # endif /* not DEFINED_ONCE */
1841
1842 /* Registers are set to a sentinel when they haven't yet matched. */
1843 static CHAR_T PREFIX(reg_unset_dummy);
1844 # define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1845 # define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1846
1847 /* Subroutine declarations and macros for regex_compile. */
1848 static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1849 static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1850 int arg1, int arg2);
1851 static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1852 int arg, UCHAR_T *end);
1853 static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1854 int arg1, int arg2, UCHAR_T *end);
1855 static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1856 const CHAR_T *p,
1857 reg_syntax_t syntax);
1858 static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1859 const CHAR_T *pend,
1860 reg_syntax_t syntax);
1861 # ifdef WCHAR
1862 static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1863 const CHAR_T **p_ptr,
1864 const CHAR_T *pend,
1865 char *translate,
1866 reg_syntax_t syntax,
1867 UCHAR_T *b,
1868 CHAR_T *char_set);
1869 static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
1870 # else /* BYTE */
1871 static reg_errcode_t byte_compile_range (unsigned int range_start,
1872 const char **p_ptr,
1873 const char *pend,
1874 char *translate,
1875 reg_syntax_t syntax,
1876 unsigned char *b);
1877 # endif /* WCHAR */
1878
1879 /* Fetch the next character in the uncompiled pattern---translating it
1880 if necessary. Also cast from a signed character in the constant
1881 string passed to us by the user to an unsigned char that we can use
1882 as an array index (in, e.g., `translate'). */
1883 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1884 because it is impossible to allocate 4GB array for some encodings
1885 which have 4 byte character_set like UCS4. */
1886 # ifndef PATFETCH
1887 # ifdef WCHAR
1888 # define PATFETCH(c) \
1889 do {if (p == pend) return REG_EEND; \
1890 c = (UCHAR_T) *p++; \
1891 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1892 } while (0)
1893 # else /* BYTE */
1894 # define PATFETCH(c) \
1895 do {if (p == pend) return REG_EEND; \
1896 c = (unsigned char) *p++; \
1897 if (translate) c = (unsigned char) translate[c]; \
1898 } while (0)
1899 # endif /* WCHAR */
1900 # endif
1901
1902 /* Fetch the next character in the uncompiled pattern, with no
1903 translation. */
1904 # define PATFETCH_RAW(c) \
1905 do {if (p == pend) return REG_EEND; \
1906 c = (UCHAR_T) *p++; \
1907 } while (0)
1908
1909 /* Go backwards one character in the pattern. */
1910 # define PATUNFETCH p--
1911
1912
1913 /* If `translate' is non-null, return translate[D], else just D. We
1914 cast the subscript to translate because some data is declared as
1915 `char *', to avoid warnings when a string constant is passed. But
1916 when we use a character as a subscript we must make it unsigned. */
1917 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1918 because it is impossible to allocate 4GB array for some encodings
1919 which have 4 byte character_set like UCS4. */
1920
1921 # ifndef TRANSLATE
1922 # ifdef WCHAR
1923 # define TRANSLATE(d) \
1924 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1925 ? (char) translate[(unsigned char) (d)] : (d))
1926 # else /* BYTE */
1927 # define TRANSLATE(d) \
1928 (translate ? (char) translate[(unsigned char) (d)] : (d))
1929 # endif /* WCHAR */
1930 # endif
1931
1932
1933 /* Macros for outputting the compiled pattern into `buffer'. */
1934
1935 /* If the buffer isn't allocated when it comes in, use this. */
1936 # define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1937
1938 /* Make sure we have at least N more bytes of space in buffer. */
1939 # ifdef WCHAR
1940 # define GET_BUFFER_SPACE(n) \
1941 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1942 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1943 EXTEND_BUFFER ()
1944 # else /* BYTE */
1945 # define GET_BUFFER_SPACE(n) \
1946 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1947 EXTEND_BUFFER ()
1948 # endif /* WCHAR */
1949
1950 /* Make sure we have one more byte of buffer space and then add C to it. */
1951 # define BUF_PUSH(c) \
1952 do { \
1953 GET_BUFFER_SPACE (1); \
1954 *b++ = (UCHAR_T) (c); \
1955 } while (0)
1956
1957
1958 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1959 # define BUF_PUSH_2(c1, c2) \
1960 do { \
1961 GET_BUFFER_SPACE (2); \
1962 *b++ = (UCHAR_T) (c1); \
1963 *b++ = (UCHAR_T) (c2); \
1964 } while (0)
1965
1966
1967 /* As with BUF_PUSH_2, except for three bytes. */
1968 # define BUF_PUSH_3(c1, c2, c3) \
1969 do { \
1970 GET_BUFFER_SPACE (3); \
1971 *b++ = (UCHAR_T) (c1); \
1972 *b++ = (UCHAR_T) (c2); \
1973 *b++ = (UCHAR_T) (c3); \
1974 } while (0)
1975
1976 /* Store a jump with opcode OP at LOC to location TO. We store a
1977 relative address offset by the three bytes the jump itself occupies. */
1978 # define STORE_JUMP(op, loc, to) \
1979 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1980
1981 /* Likewise, for a two-argument jump. */
1982 # define STORE_JUMP2(op, loc, to, arg) \
1983 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1984
1985 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1986 # define INSERT_JUMP(op, loc, to) \
1987 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1988
1989 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1990 # define INSERT_JUMP2(op, loc, to, arg) \
1991 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1992 arg, b)
1993
1994 /* This is not an arbitrary limit: the arguments which represent offsets
1995 into the pattern are two bytes long. So if 2^16 bytes turns out to
1996 be too small, many things would have to change. */
1997 /* Any other compiler which, like MSC, has allocation limit below 2^16
1998 bytes will have to use approach similar to what was done below for
1999 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
2000 reallocating to 0 bytes. Such thing is not going to work too well.
2001 You have been warned!! */
2002 # ifndef DEFINED_ONCE
2003 # if defined _MSC_VER && !defined WIN32
2004 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2005 The REALLOC define eliminates a flurry of conversion warnings,
2006 but is not required. */
2007 # define MAX_BUF_SIZE 65500L
2008 # define REALLOC(p,s) realloc ((p), (size_t) (s))
2009 # else
2010 # define MAX_BUF_SIZE (1L << 16)
2011 # define REALLOC(p,s) realloc ((p), (s))
2012 # endif
2013
2014 /* Extend the buffer by twice its current size via realloc and
2015 reset the pointers that pointed into the old block to point to the
2016 correct places in the new one. If extending the buffer results in it
2017 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2018 # if __BOUNDED_POINTERS__
2019 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2020 # define MOVE_BUFFER_POINTER(P) \
2021 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2022 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2023 else \
2024 { \
2025 SET_HIGH_BOUND (b); \
2026 SET_HIGH_BOUND (begalt); \
2027 if (fixup_alt_jump) \
2028 SET_HIGH_BOUND (fixup_alt_jump); \
2029 if (laststart) \
2030 SET_HIGH_BOUND (laststart); \
2031 if (pending_exact) \
2032 SET_HIGH_BOUND (pending_exact); \
2033 }
2034 # else
2035 # define MOVE_BUFFER_POINTER(P) (P) += incr
2036 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2037 # endif
2038 # endif /* not DEFINED_ONCE */
2039
2040 # ifdef WCHAR
2041 # define EXTEND_BUFFER() \
2042 do { \
2043 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2044 int wchar_count; \
2045 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2046 return REG_ESIZE; \
2047 bufp->allocated <<= 1; \
2048 if (bufp->allocated > MAX_BUF_SIZE) \
2049 bufp->allocated = MAX_BUF_SIZE; \
2050 /* How many characters the new buffer can have? */ \
2051 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2052 if (wchar_count == 0) wchar_count = 1; \
2053 /* Truncate the buffer to CHAR_T align. */ \
2054 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2055 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2056 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2057 if (COMPILED_BUFFER_VAR == NULL) \
2058 return REG_ESPACE; \
2059 /* If the buffer moved, move all the pointers into it. */ \
2060 if (old_buffer != COMPILED_BUFFER_VAR) \
2061 { \
2062 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2063 MOVE_BUFFER_POINTER (b); \
2064 MOVE_BUFFER_POINTER (begalt); \
2065 if (fixup_alt_jump) \
2066 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2067 if (laststart) \
2068 MOVE_BUFFER_POINTER (laststart); \
2069 if (pending_exact) \
2070 MOVE_BUFFER_POINTER (pending_exact); \
2071 } \
2072 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2073 } while (0)
2074 # else /* BYTE */
2075 # define EXTEND_BUFFER() \
2076 do { \
2077 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2078 if (bufp->allocated == MAX_BUF_SIZE) \
2079 return REG_ESIZE; \
2080 bufp->allocated <<= 1; \
2081 if (bufp->allocated > MAX_BUF_SIZE) \
2082 bufp->allocated = MAX_BUF_SIZE; \
2083 bufp->buffer = REALLOC (COMPILED_BUFFER_VAR, bufp->allocated); \
2084 if (COMPILED_BUFFER_VAR == NULL) \
2085 return REG_ESPACE; \
2086 /* If the buffer moved, move all the pointers into it. */ \
2087 if (old_buffer != COMPILED_BUFFER_VAR) \
2088 { \
2089 int incr = COMPILED_BUFFER_VAR - old_buffer; \
2090 MOVE_BUFFER_POINTER (b); \
2091 MOVE_BUFFER_POINTER (begalt); \
2092 if (fixup_alt_jump) \
2093 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2094 if (laststart) \
2095 MOVE_BUFFER_POINTER (laststart); \
2096 if (pending_exact) \
2097 MOVE_BUFFER_POINTER (pending_exact); \
2098 } \
2099 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2100 } while (0)
2101 # endif /* WCHAR */
2102
2103 # ifndef DEFINED_ONCE
2104 /* Since we have one byte reserved for the register number argument to
2105 {start,stop}_memory, the maximum number of groups we can report
2106 things about is what fits in that byte. */
2107 # define MAX_REGNUM 255
2108
2109 /* But patterns can have more than `MAX_REGNUM' registers. We just
2110 ignore the excess. */
2111 typedef unsigned regnum_t;
2112
2113
2114 /* Macros for the compile stack. */
2115
2116 /* Since offsets can go either forwards or backwards, this type needs to
2117 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2118 /* int may be not enough when sizeof(int) == 2. */
2119 typedef long pattern_offset_t;
2120
2121 typedef struct
2122 {
2123 pattern_offset_t begalt_offset;
2124 pattern_offset_t fixup_alt_jump;
2125 pattern_offset_t inner_group_offset;
2126 pattern_offset_t laststart_offset;
2127 regnum_t regnum;
2128 } compile_stack_elt_t;
2129
2130
2131 typedef struct
2132 {
2133 compile_stack_elt_t *stack;
2134 unsigned size;
2135 unsigned avail; /* Offset of next open position. */
2136 } compile_stack_type;
2137
2138
2139 # define INIT_COMPILE_STACK_SIZE 32
2140
2141 # define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2142 # define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2143
2144 /* The next available element. */
2145 # define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2146
2147 # endif /* not DEFINED_ONCE */
2148
2149 /* Set the bit for character C in a list. */
2150 # ifndef DEFINED_ONCE
2151 # define SET_LIST_BIT(c) \
2152 (b[((unsigned char) (c)) / BYTEWIDTH] \
2153 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2154 # endif /* DEFINED_ONCE */
2155
2156 /* Get the next unsigned number in the uncompiled pattern. */
2157 # define GET_UNSIGNED_NUMBER(num) \
2158 { \
2159 while (p != pend) \
2160 { \
2161 PATFETCH (c); \
2162 if (c < '0' || c > '9') \
2163 break; \
2164 if (num <= RE_DUP_MAX) \
2165 { \
2166 if (num < 0) \
2167 num = 0; \
2168 num = num * 10 + c - '0'; \
2169 } \
2170 } \
2171 }
2172
2173 # ifndef DEFINED_ONCE
2174 # if defined _LIBC || WIDE_CHAR_SUPPORT
2175 /* The GNU C library provides support for user-defined character classes
2176 and the functions from ISO C amendement 1. */
2177 # ifdef CHARCLASS_NAME_MAX
2178 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2179 # else
2180 /* This shouldn't happen but some implementation might still have this
2181 problem. Use a reasonable default value. */
2182 # define CHAR_CLASS_MAX_LENGTH 256
2183 # endif
2184
2185 # ifdef _LIBC
2186 # define IS_CHAR_CLASS(string) __wctype (string)
2187 # else
2188 # define IS_CHAR_CLASS(string) wctype (string)
2189 # endif
2190 # else
2191 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2192
2193 # define IS_CHAR_CLASS(string) \
2194 (STREQ (string, "alpha") || STREQ (string, "upper") \
2195 || STREQ (string, "lower") || STREQ (string, "digit") \
2196 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2197 || STREQ (string, "space") || STREQ (string, "print") \
2198 || STREQ (string, "punct") || STREQ (string, "graph") \
2199 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2200 # endif
2201 # endif /* DEFINED_ONCE */
2202
2203 # ifndef MATCH_MAY_ALLOCATE
2204
2205 /* If we cannot allocate large objects within re_match_2_internal,
2206 we make the fail stack and register vectors global.
2207 The fail stack, we grow to the maximum size when a regexp
2208 is compiled.
2209 The register vectors, we adjust in size each time we
2210 compile a regexp, according to the number of registers it needs. */
2211
2212 static PREFIX(fail_stack_type) fail_stack;
2213
2214 /* Size with which the following vectors are currently allocated.
2215 That is so we can make them bigger as needed,
2216 but never make them smaller. */
2217 # ifdef DEFINED_ONCE
2218 static int regs_allocated_size;
2219
2220 static const char ** regstart, ** regend;
2221 static const char ** old_regstart, ** old_regend;
2222 static const char **best_regstart, **best_regend;
2223 static const char **reg_dummy;
2224 # endif /* DEFINED_ONCE */
2225
2226 static PREFIX(register_info_type) *PREFIX(reg_info);
2227 static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2228
2229 /* Make the register vectors big enough for NUM_REGS registers,
2230 but don't make them smaller. */
2231
2232 static void
PREFIX(regex_grow_registers)2233 PREFIX(regex_grow_registers) (int num_regs)
2234 {
2235 if (num_regs > regs_allocated_size)
2236 {
2237 RETALLOC_IF (regstart, num_regs, const char *);
2238 RETALLOC_IF (regend, num_regs, const char *);
2239 RETALLOC_IF (old_regstart, num_regs, const char *);
2240 RETALLOC_IF (old_regend, num_regs, const char *);
2241 RETALLOC_IF (best_regstart, num_regs, const char *);
2242 RETALLOC_IF (best_regend, num_regs, const char *);
2243 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2244 RETALLOC_IF (reg_dummy, num_regs, const char *);
2245 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2246
2247 regs_allocated_size = num_regs;
2248 }
2249 }
2250
2251 # endif /* not MATCH_MAY_ALLOCATE */
2252
2253 # ifndef DEFINED_ONCE
2254 static boolean group_in_compile_stack (compile_stack_type
2255 compile_stack,
2256 regnum_t regnum);
2257 # endif /* not DEFINED_ONCE */
2258
2259 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2260 Returns one of error codes defined in `regex.h', or zero for success.
2261
2262 Assumes the `allocated' (and perhaps `buffer') and `translate'
2263 fields are set in BUFP on entry.
2264
2265 If it succeeds, results are put in BUFP (if it returns an error, the
2266 contents of BUFP are undefined):
2267 `buffer' is the compiled pattern;
2268 `syntax' is set to SYNTAX;
2269 `used' is set to the length of the compiled pattern;
2270 `fastmap_accurate' is zero;
2271 `re_nsub' is the number of subexpressions in PATTERN;
2272 `not_bol' and `not_eol' are zero;
2273
2274 The `fastmap' and `newline_anchor' fields are neither
2275 examined nor set. */
2276
2277 /* Return, freeing storage we allocated. */
2278 # ifdef WCHAR
2279 # define FREE_STACK_RETURN(value) \
2280 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2281 # else
2282 # define FREE_STACK_RETURN(value) \
2283 return (free (compile_stack.stack), value)
2284 # endif /* WCHAR */
2285
2286 static reg_errcode_t
PREFIX(regex_compile)2287 PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2288 size_t ARG_PREFIX(size),
2289 reg_syntax_t syntax,
2290 struct re_pattern_buffer *bufp)
2291 {
2292 /* We fetch characters from PATTERN here. Even though PATTERN is
2293 `char *' (i.e., signed), we declare these variables as unsigned, so
2294 they can be reliably used as array indices. */
2295 register UCHAR_T c, c1;
2296
2297 #ifdef WCHAR
2298 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2299 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2300 size_t size;
2301 /* offset buffer for optimization. See convert_mbs_to_wc. */
2302 int *mbs_offset = NULL;
2303 /* It hold whether each wchar_t is binary data or not. */
2304 char *is_binary = NULL;
2305 /* A flag whether exactn is handling binary data or not. */
2306 char is_exactn_bin = FALSE;
2307 #endif /* WCHAR */
2308
2309 /* A random temporary spot in PATTERN. */
2310 const CHAR_T *p1;
2311
2312 /* Points to the end of the buffer, where we should append. */
2313 register UCHAR_T *b;
2314
2315 /* Keeps track of unclosed groups. */
2316 compile_stack_type compile_stack;
2317
2318 /* Points to the current (ending) position in the pattern. */
2319 #ifdef WCHAR
2320 const CHAR_T *p;
2321 const CHAR_T *pend;
2322 #else /* BYTE */
2323 const CHAR_T *p = pattern;
2324 const CHAR_T *pend = pattern + size;
2325 #endif /* WCHAR */
2326
2327 /* How to translate the characters in the pattern. */
2328 RE_TRANSLATE_TYPE translate = bufp->translate;
2329
2330 /* Address of the count-byte of the most recently inserted `exactn'
2331 command. This makes it possible to tell if a new exact-match
2332 character can be added to that command or if the character requires
2333 a new `exactn' command. */
2334 UCHAR_T *pending_exact = 0;
2335
2336 /* Address of start of the most recently finished expression.
2337 This tells, e.g., postfix * where to find the start of its
2338 operand. Reset at the beginning of groups and alternatives. */
2339 UCHAR_T *laststart = 0;
2340
2341 /* Address of beginning of regexp, or inside of last group. */
2342 UCHAR_T *begalt;
2343
2344 /* Address of the place where a forward jump should go to the end of
2345 the containing expression. Each alternative of an `or' -- except the
2346 last -- ends with a forward jump of this sort. */
2347 UCHAR_T *fixup_alt_jump = 0;
2348
2349 /* Counts open-groups as they are encountered. Remembered for the
2350 matching close-group on the compile stack, so the same register
2351 number is put in the stop_memory as the start_memory. */
2352 regnum_t regnum = 0;
2353
2354 #ifdef WCHAR
2355 /* Initialize the wchar_t PATTERN and offset_buffer. */
2356 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2357 mbs_offset = TALLOC(csize + 1, int);
2358 is_binary = TALLOC(csize + 1, char);
2359 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2360 {
2361 free(pattern);
2362 free(mbs_offset);
2363 free(is_binary);
2364 return REG_ESPACE;
2365 }
2366 pattern[csize] = L'\0'; /* sentinel */
2367 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2368 pend = p + size;
2369 if (size < 0)
2370 {
2371 free(pattern);
2372 free(mbs_offset);
2373 free(is_binary);
2374 return REG_BADPAT;
2375 }
2376 #endif
2377
2378 #ifdef DEBUG
2379 DEBUG_PRINT1 ("\nCompiling pattern: ");
2380 if (debug)
2381 {
2382 unsigned debug_count;
2383
2384 for (debug_count = 0; debug_count < size; debug_count++)
2385 PUT_CHAR (pattern[debug_count]);
2386 putchar ('\n');
2387 }
2388 #endif /* DEBUG */
2389
2390 /* Initialize the compile stack. */
2391 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2392 if (compile_stack.stack == NULL)
2393 {
2394 #ifdef WCHAR
2395 free(pattern);
2396 free(mbs_offset);
2397 free(is_binary);
2398 #endif
2399 return REG_ESPACE;
2400 }
2401
2402 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2403 compile_stack.avail = 0;
2404
2405 /* Initialize the pattern buffer. */
2406 bufp->syntax = syntax;
2407 bufp->fastmap_accurate = 0;
2408 bufp->not_bol = bufp->not_eol = 0;
2409
2410 /* Set `used' to zero, so that if we return an error, the pattern
2411 printer (for debugging) will think there's no pattern. We reset it
2412 at the end. */
2413 bufp->used = 0;
2414
2415 /* Always count groups, whether or not bufp->no_sub is set. */
2416 bufp->re_nsub = 0;
2417
2418 #if !defined emacs && !defined SYNTAX_TABLE
2419 /* Initialize the syntax table. */
2420 init_syntax_once ();
2421 #endif
2422
2423 if (bufp->allocated == 0)
2424 {
2425 if (bufp->buffer)
2426 { /* If zero allocated, but buffer is non-null, try to realloc
2427 enough space. This loses if buffer's address is bogus, but
2428 that is the user's responsibility. */
2429 #ifdef WCHAR
2430 /* Free bufp->buffer and allocate an array for wchar_t pattern
2431 buffer. */
2432 free(bufp->buffer);
2433 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2434 UCHAR_T);
2435 #else
2436 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2437 #endif /* WCHAR */
2438 }
2439 else
2440 { /* Caller did not allocate a buffer. Do it for them. */
2441 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2442 UCHAR_T);
2443 }
2444
2445 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2446 #ifdef WCHAR
2447 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2448 #endif /* WCHAR */
2449 bufp->allocated = INIT_BUF_SIZE;
2450 }
2451 #ifdef WCHAR
2452 else
2453 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2454 #endif
2455
2456 begalt = b = COMPILED_BUFFER_VAR;
2457
2458 /* Loop through the uncompiled pattern until we're at the end. */
2459 while (p != pend)
2460 {
2461 PATFETCH (c);
2462
2463 switch (c)
2464 {
2465 case '^':
2466 {
2467 if ( /* If at start of pattern, it's an operator. */
2468 p == pattern + 1
2469 /* If context independent, it's an operator. */
2470 || syntax & RE_CONTEXT_INDEP_ANCHORS
2471 /* Otherwise, depends on what's come before. */
2472 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2473 BUF_PUSH (begline);
2474 else
2475 goto normal_char;
2476 }
2477 break;
2478
2479
2480 case '$':
2481 {
2482 if ( /* If at end of pattern, it's an operator. */
2483 p == pend
2484 /* If context independent, it's an operator. */
2485 || syntax & RE_CONTEXT_INDEP_ANCHORS
2486 /* Otherwise, depends on what's next. */
2487 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2488 BUF_PUSH (endline);
2489 else
2490 goto normal_char;
2491 }
2492 break;
2493
2494
2495 case '+':
2496 case '?':
2497 if ((syntax & RE_BK_PLUS_QM)
2498 || (syntax & RE_LIMITED_OPS))
2499 goto normal_char;
2500 handle_plus:
2501 case '*':
2502 /* If there is no previous pattern... */
2503 if (!laststart)
2504 {
2505 if (syntax & RE_CONTEXT_INVALID_OPS)
2506 FREE_STACK_RETURN (REG_BADRPT);
2507 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2508 goto normal_char;
2509 }
2510
2511 {
2512 /* Are we optimizing this jump? */
2513 boolean keep_string_p = false;
2514
2515 /* 1 means zero (many) matches is allowed. */
2516 char zero_times_ok = 0, many_times_ok = 0;
2517
2518 /* If there is a sequence of repetition chars, collapse it
2519 down to just one (the right one). We can't combine
2520 interval operators with these because of, e.g., `a{2}*',
2521 which should only match an even number of `a's. */
2522
2523 for (;;)
2524 {
2525 zero_times_ok |= c != '+';
2526 many_times_ok |= c != '?';
2527
2528 if (p == pend)
2529 break;
2530
2531 PATFETCH (c);
2532
2533 if (c == '*'
2534 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2535 ;
2536
2537 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2538 {
2539 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2540
2541 PATFETCH (c1);
2542 if (!(c1 == '+' || c1 == '?'))
2543 {
2544 PATUNFETCH;
2545 PATUNFETCH;
2546 break;
2547 }
2548
2549 c = c1;
2550 }
2551 else
2552 {
2553 PATUNFETCH;
2554 break;
2555 }
2556
2557 /* If we get here, we found another repeat character. */
2558 }
2559
2560 /* Star, etc. applied to an empty pattern is equivalent
2561 to an empty pattern. */
2562 if (!laststart)
2563 break;
2564
2565 /* Now we know whether or not zero matches is allowed
2566 and also whether or not two or more matches is allowed. */
2567 if (many_times_ok)
2568 { /* More than one repetition is allowed, so put in at the
2569 end a backward relative jump from `b' to before the next
2570 jump we're going to put in below (which jumps from
2571 laststart to after this jump).
2572
2573 But if we are at the `*' in the exact sequence `.*\n',
2574 insert an unconditional jump backwards to the .,
2575 instead of the beginning of the loop. This way we only
2576 push a failure point once, instead of every time
2577 through the loop. */
2578 assert (p - 1 > pattern);
2579
2580 /* Allocate the space for the jump. */
2581 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2582
2583 /* We know we are not at the first character of the pattern,
2584 because laststart was nonzero. And we've already
2585 incremented `p', by the way, to be the character after
2586 the `*'. Do we have to do something analogous here
2587 for null bytes, because of RE_DOT_NOT_NULL? */
2588 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2589 && zero_times_ok
2590 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2591 && !(syntax & RE_DOT_NEWLINE))
2592 { /* We have .*\n. */
2593 STORE_JUMP (jump, b, laststart);
2594 keep_string_p = true;
2595 }
2596 else
2597 /* Anything else. */
2598 STORE_JUMP (maybe_pop_jump, b, laststart -
2599 (1 + OFFSET_ADDRESS_SIZE));
2600
2601 /* We've added more stuff to the buffer. */
2602 b += 1 + OFFSET_ADDRESS_SIZE;
2603 }
2604
2605 /* On failure, jump from laststart to b + 3, which will be the
2606 end of the buffer after this jump is inserted. */
2607 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2608 'b + 3'. */
2609 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2610 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2611 : on_failure_jump,
2612 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2613 pending_exact = 0;
2614 b += 1 + OFFSET_ADDRESS_SIZE;
2615
2616 if (!zero_times_ok)
2617 {
2618 /* At least one repetition is required, so insert a
2619 `dummy_failure_jump' before the initial
2620 `on_failure_jump' instruction of the loop. This
2621 effects a skip over that instruction the first time
2622 we hit that loop. */
2623 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2624 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2625 2 + 2 * OFFSET_ADDRESS_SIZE);
2626 b += 1 + OFFSET_ADDRESS_SIZE;
2627 }
2628 }
2629 break;
2630
2631
2632 case '.':
2633 laststart = b;
2634 BUF_PUSH (anychar);
2635 break;
2636
2637
2638 case '[':
2639 {
2640 boolean had_char_class = false;
2641 #ifdef WCHAR
2642 CHAR_T range_start = 0xffffffff;
2643 #else
2644 unsigned int range_start = 0xffffffff;
2645 #endif
2646 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2647
2648 #ifdef WCHAR
2649 /* We assume a charset(_not) structure as a wchar_t array.
2650 charset[0] = (re_opcode_t) charset(_not)
2651 charset[1] = l (= length of char_classes)
2652 charset[2] = m (= length of collating_symbols)
2653 charset[3] = n (= length of equivalence_classes)
2654 charset[4] = o (= length of char_ranges)
2655 charset[5] = p (= length of chars)
2656
2657 charset[6] = char_class (wctype_t)
2658 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2659 ...
2660 charset[l+5] = char_class (wctype_t)
2661
2662 charset[l+6] = collating_symbol (wchar_t)
2663 ...
2664 charset[l+m+5] = collating_symbol (wchar_t)
2665 ifdef _LIBC we use the index if
2666 _NL_COLLATE_SYMB_EXTRAMB instead of
2667 wchar_t string.
2668
2669 charset[l+m+6] = equivalence_classes (wchar_t)
2670 ...
2671 charset[l+m+n+5] = equivalence_classes (wchar_t)
2672 ifdef _LIBC we use the index in
2673 _NL_COLLATE_WEIGHT instead of
2674 wchar_t string.
2675
2676 charset[l+m+n+6] = range_start
2677 charset[l+m+n+7] = range_end
2678 ...
2679 charset[l+m+n+2o+4] = range_start
2680 charset[l+m+n+2o+5] = range_end
2681 ifdef _LIBC we use the value looked up
2682 in _NL_COLLATE_COLLSEQ instead of
2683 wchar_t character.
2684
2685 charset[l+m+n+2o+6] = char
2686 ...
2687 charset[l+m+n+2o+p+5] = char
2688
2689 */
2690
2691 /* We need at least 6 spaces: the opcode, the length of
2692 char_classes, the length of collating_symbols, the length of
2693 equivalence_classes, the length of char_ranges, the length of
2694 chars. */
2695 GET_BUFFER_SPACE (6);
2696
2697 /* Save b as laststart. And We use laststart as the pointer
2698 to the first element of the charset here.
2699 In other words, laststart[i] indicates charset[i]. */
2700 laststart = b;
2701
2702 /* We test `*p == '^' twice, instead of using an if
2703 statement, so we only need one BUF_PUSH. */
2704 BUF_PUSH (*p == '^' ? charset_not : charset);
2705 if (*p == '^')
2706 p++;
2707
2708 /* Push the length of char_classes, the length of
2709 collating_symbols, the length of equivalence_classes, the
2710 length of char_ranges and the length of chars. */
2711 BUF_PUSH_3 (0, 0, 0);
2712 BUF_PUSH_2 (0, 0);
2713
2714 /* Remember the first position in the bracket expression. */
2715 p1 = p;
2716
2717 /* charset_not matches newline according to a syntax bit. */
2718 if ((re_opcode_t) b[-6] == charset_not
2719 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2720 {
2721 BUF_PUSH('\n');
2722 laststart[5]++; /* Update the length of characters */
2723 }
2724
2725 /* Read in characters and ranges, setting map bits. */
2726 for (;;)
2727 {
2728 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2729
2730 PATFETCH (c);
2731
2732 /* \ might escape characters inside [...] and [^...]. */
2733 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2734 {
2735 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2736
2737 PATFETCH (c1);
2738 BUF_PUSH(c1);
2739 laststart[5]++; /* Update the length of chars */
2740 range_start = c1;
2741 continue;
2742 }
2743
2744 /* Could be the end of the bracket expression. If it's
2745 not (i.e., when the bracket expression is `[]' so
2746 far), the ']' character bit gets set way below. */
2747 if (c == ']' && p != p1 + 1)
2748 break;
2749
2750 /* Look ahead to see if it's a range when the last thing
2751 was a character class. */
2752 if (had_char_class && c == '-' && *p != ']')
2753 FREE_STACK_RETURN (REG_ERANGE);
2754
2755 /* Look ahead to see if it's a range when the last thing
2756 was a character: if this is a hyphen not at the
2757 beginning or the end of a list, then it's the range
2758 operator. */
2759 if (c == '-'
2760 && !(p - 2 >= pattern && p[-2] == '[')
2761 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2762 && *p != ']')
2763 {
2764 reg_errcode_t ret;
2765 /* Allocate the space for range_start and range_end. */
2766 GET_BUFFER_SPACE (2);
2767 /* Update the pointer to indicate end of buffer. */
2768 b += 2;
2769 ret = wcs_compile_range (range_start, &p, pend, translate,
2770 syntax, b, laststart);
2771 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2772 range_start = 0xffffffff;
2773 }
2774 else if (p[0] == '-' && p[1] != ']')
2775 { /* This handles ranges made up of characters only. */
2776 reg_errcode_t ret;
2777
2778 /* Move past the `-'. */
2779 PATFETCH (c1);
2780 /* Allocate the space for range_start and range_end. */
2781 GET_BUFFER_SPACE (2);
2782 /* Update the pointer to indicate end of buffer. */
2783 b += 2;
2784 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2785 laststart);
2786 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2787 range_start = 0xffffffff;
2788 }
2789
2790 /* See if we're at the beginning of a possible character
2791 class. */
2792 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2793 { /* Leave room for the null. */
2794 char str[CHAR_CLASS_MAX_LENGTH + 1];
2795
2796 PATFETCH (c);
2797 c1 = 0;
2798
2799 /* If pattern is `[[:'. */
2800 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2801
2802 for (;;)
2803 {
2804 PATFETCH (c);
2805 if ((c == ':' && *p == ']') || p == pend)
2806 break;
2807 if (c1 < CHAR_CLASS_MAX_LENGTH)
2808 str[c1++] = c;
2809 else
2810 /* This is in any case an invalid class name. */
2811 str[0] = '\0';
2812 }
2813 str[c1] = '\0';
2814
2815 /* If isn't a word bracketed by `[:' and `:]':
2816 undo the ending character, the letters, and leave
2817 the leading `:' and `[' (but store them as character). */
2818 if (c == ':' && *p == ']')
2819 {
2820 wctype_t wt;
2821 uintptr_t alignedp;
2822
2823 /* Query the character class as wctype_t. */
2824 wt = IS_CHAR_CLASS (str);
2825 if (wt == 0)
2826 FREE_STACK_RETURN (REG_ECTYPE);
2827
2828 /* Throw away the ] at the end of the character
2829 class. */
2830 PATFETCH (c);
2831
2832 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2833
2834 /* Allocate the space for character class. */
2835 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2836 /* Update the pointer to indicate end of buffer. */
2837 b += CHAR_CLASS_SIZE;
2838 /* Move data which follow character classes
2839 not to violate the data. */
2840 insert_space(CHAR_CLASS_SIZE,
2841 laststart + 6 + laststart[1],
2842 b - 1);
2843 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2844 + __alignof__(wctype_t) - 1)
2845 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2846 /* Store the character class. */
2847 *((wctype_t*)alignedp) = wt;
2848 /* Update length of char_classes */
2849 laststart[1] += CHAR_CLASS_SIZE;
2850
2851 had_char_class = true;
2852 }
2853 else
2854 {
2855 c1++;
2856 while (c1--)
2857 PATUNFETCH;
2858 BUF_PUSH ('[');
2859 BUF_PUSH (':');
2860 laststart[5] += 2; /* Update the length of characters */
2861 range_start = ':';
2862 had_char_class = false;
2863 }
2864 }
2865 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2866 || *p == '.'))
2867 {
2868 CHAR_T str[128]; /* Should be large enough. */
2869 CHAR_T delim = *p; /* '=' or '.' */
2870 # ifdef _LIBC
2871 uint32_t nrules =
2872 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2873 # endif
2874 PATFETCH (c);
2875 c1 = 0;
2876
2877 /* If pattern is `[[=' or '[[.'. */
2878 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2879
2880 for (;;)
2881 {
2882 PATFETCH (c);
2883 if ((c == delim && *p == ']') || p == pend)
2884 break;
2885 if (c1 < sizeof (str) - 1)
2886 str[c1++] = c;
2887 else
2888 /* This is in any case an invalid class name. */
2889 str[0] = '\0';
2890 }
2891 str[c1] = '\0';
2892
2893 if (c == delim && *p == ']' && str[0] != '\0')
2894 {
2895 unsigned int i, offset;
2896 /* If we have no collation data we use the default
2897 collation in which each character is in a class
2898 by itself. It also means that ASCII is the
2899 character set and therefore we cannot have character
2900 with more than one byte in the multibyte
2901 representation. */
2902
2903 /* If not defined _LIBC, we push the name and
2904 `\0' for the sake of matching performance. */
2905 int datasize = c1 + 1;
2906
2907 # ifdef _LIBC
2908 int32_t idx = 0;
2909 if (nrules == 0)
2910 # endif
2911 {
2912 if (c1 != 1)
2913 FREE_STACK_RETURN (REG_ECOLLATE);
2914 }
2915 # ifdef _LIBC
2916 else
2917 {
2918 const int32_t *table;
2919 const int32_t *weights;
2920 const int32_t *extra;
2921 const int32_t *indirect;
2922 wint_t *cp;
2923
2924 /* This #include defines a local function! */
2925 # include <locale/weightwc.h>
2926
2927 if(delim == '=')
2928 {
2929 /* We push the index for equivalence class. */
2930 cp = (wint_t*)str;
2931
2932 table = (const int32_t *)
2933 _NL_CURRENT (LC_COLLATE,
2934 _NL_COLLATE_TABLEWC);
2935 weights = (const int32_t *)
2936 _NL_CURRENT (LC_COLLATE,
2937 _NL_COLLATE_WEIGHTWC);
2938 extra = (const int32_t *)
2939 _NL_CURRENT (LC_COLLATE,
2940 _NL_COLLATE_EXTRAWC);
2941 indirect = (const int32_t *)
2942 _NL_CURRENT (LC_COLLATE,
2943 _NL_COLLATE_INDIRECTWC);
2944
2945 idx = findidx ((const wint_t**)&cp);
2946 if (idx == 0 || cp < (wint_t*) str + c1)
2947 /* This is no valid character. */
2948 FREE_STACK_RETURN (REG_ECOLLATE);
2949
2950 str[0] = (wchar_t)idx;
2951 }
2952 else /* delim == '.' */
2953 {
2954 /* We push collation sequence value
2955 for collating symbol. */
2956 int32_t table_size;
2957 const int32_t *symb_table;
2958 const unsigned char *extra;
2959 int32_t idx;
2960 int32_t elem;
2961 int32_t second;
2962 int32_t hash;
2963 char char_str[c1];
2964
2965 /* We have to convert the name to a single-byte
2966 string. This is possible since the names
2967 consist of ASCII characters and the internal
2968 representation is UCS4. */
2969 for (i = 0; i < c1; ++i)
2970 char_str[i] = str[i];
2971
2972 table_size =
2973 _NL_CURRENT_WORD (LC_COLLATE,
2974 _NL_COLLATE_SYMB_HASH_SIZEMB);
2975 symb_table = (const int32_t *)
2976 _NL_CURRENT (LC_COLLATE,
2977 _NL_COLLATE_SYMB_TABLEMB);
2978 extra = (const unsigned char *)
2979 _NL_CURRENT (LC_COLLATE,
2980 _NL_COLLATE_SYMB_EXTRAMB);
2981
2982 /* Locate the character in the hashing table. */
2983 hash = elem_hash (char_str, c1);
2984
2985 idx = 0;
2986 elem = hash % table_size;
2987 second = hash % (table_size - 2);
2988 while (symb_table[2 * elem] != 0)
2989 {
2990 /* First compare the hashing value. */
2991 if (symb_table[2 * elem] == hash
2992 && c1 == extra[symb_table[2 * elem + 1]]
2993 && memcmp (char_str,
2994 &extra[symb_table[2 * elem + 1]
2995 + 1], c1) == 0)
2996 {
2997 /* Yep, this is the entry. */
2998 idx = symb_table[2 * elem + 1];
2999 idx += 1 + extra[idx];
3000 break;
3001 }
3002
3003 /* Next entry. */
3004 elem += second;
3005 }
3006
3007 if (symb_table[2 * elem] != 0)
3008 {
3009 /* Compute the index of the byte sequence
3010 in the table. */
3011 idx += 1 + extra[idx];
3012 /* Adjust for the alignment. */
3013 idx = (idx + 3) & ~3;
3014
3015 str[0] = (wchar_t) idx + 4;
3016 }
3017 else if (symb_table[2 * elem] == 0 && c1 == 1)
3018 {
3019 /* No valid character. Match it as a
3020 single byte character. */
3021 had_char_class = false;
3022 BUF_PUSH(str[0]);
3023 /* Update the length of characters */
3024 laststart[5]++;
3025 range_start = str[0];
3026
3027 /* Throw away the ] at the end of the
3028 collating symbol. */
3029 PATFETCH (c);
3030 /* exit from the switch block. */
3031 continue;
3032 }
3033 else
3034 FREE_STACK_RETURN (REG_ECOLLATE);
3035 }
3036 datasize = 1;
3037 }
3038 # endif
3039 /* Throw away the ] at the end of the equivalence
3040 class (or collating symbol). */
3041 PATFETCH (c);
3042
3043 /* Allocate the space for the equivalence class
3044 (or collating symbol) (and '\0' if needed). */
3045 GET_BUFFER_SPACE(datasize);
3046 /* Update the pointer to indicate end of buffer. */
3047 b += datasize;
3048
3049 if (delim == '=')
3050 { /* equivalence class */
3051 /* Calculate the offset of char_ranges,
3052 which is next to equivalence_classes. */
3053 offset = laststart[1] + laststart[2]
3054 + laststart[3] +6;
3055 /* Insert space. */
3056 insert_space(datasize, laststart + offset, b - 1);
3057
3058 /* Write the equivalence_class and \0. */
3059 for (i = 0 ; i < datasize ; i++)
3060 laststart[offset + i] = str[i];
3061
3062 /* Update the length of equivalence_classes. */
3063 laststart[3] += datasize;
3064 had_char_class = true;
3065 }
3066 else /* delim == '.' */
3067 { /* collating symbol */
3068 /* Calculate the offset of the equivalence_classes,
3069 which is next to collating_symbols. */
3070 offset = laststart[1] + laststart[2] + 6;
3071 /* Insert space and write the collationg_symbol
3072 and \0. */
3073 insert_space(datasize, laststart + offset, b-1);
3074 for (i = 0 ; i < datasize ; i++)
3075 laststart[offset + i] = str[i];
3076
3077 /* In re_match_2_internal if range_start < -1, we
3078 assume -range_start is the offset of the
3079 collating symbol which is specified as
3080 the character of the range start. So we assign
3081 -(laststart[1] + laststart[2] + 6) to
3082 range_start. */
3083 range_start = -(laststart[1] + laststart[2] + 6);
3084 /* Update the length of collating_symbol. */
3085 laststart[2] += datasize;
3086 had_char_class = false;
3087 }
3088 }
3089 else
3090 {
3091 c1++;
3092 while (c1--)
3093 PATUNFETCH;
3094 BUF_PUSH ('[');
3095 BUF_PUSH (delim);
3096 laststart[5] += 2; /* Update the length of characters */
3097 range_start = delim;
3098 had_char_class = false;
3099 }
3100 }
3101 else
3102 {
3103 had_char_class = false;
3104 BUF_PUSH(c);
3105 laststart[5]++; /* Update the length of characters */
3106 range_start = c;
3107 }
3108 }
3109
3110 #else /* BYTE */
3111 /* Ensure that we have enough space to push a charset: the
3112 opcode, the length count, and the bitset; 34 bytes in all. */
3113 GET_BUFFER_SPACE (34);
3114
3115 laststart = b;
3116
3117 /* We test `*p == '^' twice, instead of using an if
3118 statement, so we only need one BUF_PUSH. */
3119 BUF_PUSH (*p == '^' ? charset_not : charset);
3120 if (*p == '^')
3121 p++;
3122
3123 /* Remember the first position in the bracket expression. */
3124 p1 = p;
3125
3126 /* Push the number of bytes in the bitmap. */
3127 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3128
3129 /* Clear the whole map. */
3130 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3131
3132 /* charset_not matches newline according to a syntax bit. */
3133 if ((re_opcode_t) b[-2] == charset_not
3134 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3135 SET_LIST_BIT ('\n');
3136
3137 /* Read in characters and ranges, setting map bits. */
3138 for (;;)
3139 {
3140 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3141
3142 PATFETCH (c);
3143
3144 /* \ might escape characters inside [...] and [^...]. */
3145 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3146 {
3147 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3148
3149 PATFETCH (c1);
3150 SET_LIST_BIT (c1);
3151 range_start = c1;
3152 continue;
3153 }
3154
3155 /* Could be the end of the bracket expression. If it's
3156 not (i.e., when the bracket expression is `[]' so
3157 far), the ']' character bit gets set way below. */
3158 if (c == ']' && p != p1 + 1)
3159 break;
3160
3161 /* Look ahead to see if it's a range when the last thing
3162 was a character class. */
3163 if (had_char_class && c == '-' && *p != ']')
3164 FREE_STACK_RETURN (REG_ERANGE);
3165
3166 /* Look ahead to see if it's a range when the last thing
3167 was a character: if this is a hyphen not at the
3168 beginning or the end of a list, then it's the range
3169 operator. */
3170 if (c == '-'
3171 && !(p - 2 >= pattern && p[-2] == '[')
3172 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3173 && *p != ']')
3174 {
3175 reg_errcode_t ret
3176 = byte_compile_range (range_start, &p, pend, translate,
3177 syntax, b);
3178 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3179 range_start = 0xffffffff;
3180 }
3181
3182 else if (p[0] == '-' && p[1] != ']')
3183 { /* This handles ranges made up of characters only. */
3184 reg_errcode_t ret;
3185
3186 /* Move past the `-'. */
3187 PATFETCH (c1);
3188
3189 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3190 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3191 range_start = 0xffffffff;
3192 }
3193
3194 /* See if we're at the beginning of a possible character
3195 class. */
3196
3197 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3198 { /* Leave room for the null. */
3199 char str[CHAR_CLASS_MAX_LENGTH + 1];
3200
3201 PATFETCH (c);
3202 c1 = 0;
3203
3204 /* If pattern is `[[:'. */
3205 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3206
3207 for (;;)
3208 {
3209 PATFETCH (c);
3210 if ((c == ':' && *p == ']') || p == pend)
3211 break;
3212 if (c1 < CHAR_CLASS_MAX_LENGTH)
3213 str[c1++] = c;
3214 else
3215 /* This is in any case an invalid class name. */
3216 str[0] = '\0';
3217 }
3218 str[c1] = '\0';
3219
3220 /* If isn't a word bracketed by `[:' and `:]':
3221 undo the ending character, the letters, and leave
3222 the leading `:' and `[' (but set bits for them). */
3223 if (c == ':' && *p == ']')
3224 {
3225 # if defined _LIBC || WIDE_CHAR_SUPPORT
3226 boolean is_lower = STREQ (str, "lower");
3227 boolean is_upper = STREQ (str, "upper");
3228 wctype_t wt;
3229 int ch;
3230
3231 wt = IS_CHAR_CLASS (str);
3232 if (wt == 0)
3233 FREE_STACK_RETURN (REG_ECTYPE);
3234
3235 /* Throw away the ] at the end of the character
3236 class. */
3237 PATFETCH (c);
3238
3239 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3240
3241 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3242 {
3243 if (iswctype (btowc (ch), wt))
3244 SET_LIST_BIT (ch);
3245
3246 if (translate && (is_upper || is_lower)
3247 && (ISUPPER (ch) || ISLOWER (ch)))
3248 SET_LIST_BIT (ch);
3249 }
3250
3251 had_char_class = true;
3252 # else
3253 int ch;
3254 boolean is_alnum = STREQ (str, "alnum");
3255 boolean is_alpha = STREQ (str, "alpha");
3256 boolean is_blank = STREQ (str, "blank");
3257 boolean is_cntrl = STREQ (str, "cntrl");
3258 boolean is_digit = STREQ (str, "digit");
3259 boolean is_graph = STREQ (str, "graph");
3260 boolean is_lower = STREQ (str, "lower");
3261 boolean is_print = STREQ (str, "print");
3262 boolean is_punct = STREQ (str, "punct");
3263 boolean is_space = STREQ (str, "space");
3264 boolean is_upper = STREQ (str, "upper");
3265 boolean is_xdigit = STREQ (str, "xdigit");
3266
3267 if (!IS_CHAR_CLASS (str))
3268 FREE_STACK_RETURN (REG_ECTYPE);
3269
3270 /* Throw away the ] at the end of the character
3271 class. */
3272 PATFETCH (c);
3273
3274 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3275
3276 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3277 {
3278 /* This was split into 3 if's to
3279 avoid an arbitrary limit in some compiler. */
3280 if ( (is_alnum && ISALNUM (ch))
3281 || (is_alpha && ISALPHA (ch))
3282 || (is_blank && ISBLANK (ch))
3283 || (is_cntrl && ISCNTRL (ch)))
3284 SET_LIST_BIT (ch);
3285 if ( (is_digit && ISDIGIT (ch))
3286 || (is_graph && ISGRAPH (ch))
3287 || (is_lower && ISLOWER (ch))
3288 || (is_print && ISPRINT (ch)))
3289 SET_LIST_BIT (ch);
3290 if ( (is_punct && ISPUNCT (ch))
3291 || (is_space && ISSPACE (ch))
3292 || (is_upper && ISUPPER (ch))
3293 || (is_xdigit && ISXDIGIT (ch)))
3294 SET_LIST_BIT (ch);
3295 if ( translate && (is_upper || is_lower)
3296 && (ISUPPER (ch) || ISLOWER (ch)))
3297 SET_LIST_BIT (ch);
3298 }
3299 had_char_class = true;
3300 # endif /* libc || wctype.h */
3301 }
3302 else
3303 {
3304 c1++;
3305 while (c1--)
3306 PATUNFETCH;
3307 SET_LIST_BIT ('[');
3308 SET_LIST_BIT (':');
3309 range_start = ':';
3310 had_char_class = false;
3311 }
3312 }
3313 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3314 {
3315 unsigned char str[MB_LEN_MAX + 1];
3316 # ifdef _LIBC
3317 uint32_t nrules =
3318 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3319 # endif
3320
3321 PATFETCH (c);
3322 c1 = 0;
3323
3324 /* If pattern is `[[='. */
3325 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3326
3327 for (;;)
3328 {
3329 PATFETCH (c);
3330 if ((c == '=' && *p == ']') || p == pend)
3331 break;
3332 if (c1 < MB_LEN_MAX)
3333 str[c1++] = c;
3334 else
3335 /* This is in any case an invalid class name. */
3336 str[0] = '\0';
3337 }
3338 str[c1] = '\0';
3339
3340 if (c == '=' && *p == ']' && str[0] != '\0')
3341 {
3342 /* If we have no collation data we use the default
3343 collation in which each character is in a class
3344 by itself. It also means that ASCII is the
3345 character set and therefore we cannot have character
3346 with more than one byte in the multibyte
3347 representation. */
3348 # ifdef _LIBC
3349 if (nrules == 0)
3350 # endif
3351 {
3352 if (c1 != 1)
3353 FREE_STACK_RETURN (REG_ECOLLATE);
3354
3355 /* Throw away the ] at the end of the equivalence
3356 class. */
3357 PATFETCH (c);
3358
3359 /* Set the bit for the character. */
3360 SET_LIST_BIT (str[0]);
3361 }
3362 # ifdef _LIBC
3363 else
3364 {
3365 /* Try to match the byte sequence in `str' against
3366 those known to the collate implementation.
3367 First find out whether the bytes in `str' are
3368 actually from exactly one character. */
3369 const int32_t *table;
3370 const unsigned char *weights;
3371 const unsigned char *extra;
3372 const int32_t *indirect;
3373 int32_t idx;
3374 const unsigned char *cp = str;
3375 int ch;
3376
3377 /* This #include defines a local function! */
3378 # include <locale/weight.h>
3379
3380 table = (const int32_t *)
3381 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3382 weights = (const unsigned char *)
3383 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3384 extra = (const unsigned char *)
3385 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3386 indirect = (const int32_t *)
3387 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3388
3389 idx = findidx (&cp);
3390 if (idx == 0 || cp < str + c1)
3391 /* This is no valid character. */
3392 FREE_STACK_RETURN (REG_ECOLLATE);
3393
3394 /* Throw away the ] at the end of the equivalence
3395 class. */
3396 PATFETCH (c);
3397
3398 /* Now we have to go throught the whole table
3399 and find all characters which have the same
3400 first level weight.
3401
3402 XXX Note that this is not entirely correct.
3403 we would have to match multibyte sequences
3404 but this is not possible with the current
3405 implementation. */
3406 for (ch = 1; ch < 256; ++ch)
3407 /* XXX This test would have to be changed if we
3408 would allow matching multibyte sequences. */
3409 if (table[ch] > 0)
3410 {
3411 int32_t idx2 = table[ch];
3412 size_t len = weights[idx2];
3413
3414 /* Test whether the lenghts match. */
3415 if (weights[idx] == len)
3416 {
3417 /* They do. New compare the bytes of
3418 the weight. */
3419 size_t cnt = 0;
3420
3421 while (cnt < len
3422 && (weights[idx + 1 + cnt]
3423 == weights[idx2 + 1 + cnt]))
3424 ++cnt;
3425
3426 if (cnt == len)
3427 /* They match. Mark the character as
3428 acceptable. */
3429 SET_LIST_BIT (ch);
3430 }
3431 }
3432 }
3433 # endif
3434 had_char_class = true;
3435 }
3436 else
3437 {
3438 c1++;
3439 while (c1--)
3440 PATUNFETCH;
3441 SET_LIST_BIT ('[');
3442 SET_LIST_BIT ('=');
3443 range_start = '=';
3444 had_char_class = false;
3445 }
3446 }
3447 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3448 {
3449 unsigned char str[128]; /* Should be large enough. */
3450 # ifdef _LIBC
3451 uint32_t nrules =
3452 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3453 # endif
3454
3455 PATFETCH (c);
3456 c1 = 0;
3457
3458 /* If pattern is `[[.'. */
3459 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3460
3461 for (;;)
3462 {
3463 PATFETCH (c);
3464 if ((c == '.' && *p == ']') || p == pend)
3465 break;
3466 if (c1 < sizeof (str))
3467 str[c1++] = c;
3468 else
3469 /* This is in any case an invalid class name. */
3470 str[0] = '\0';
3471 }
3472 str[c1] = '\0';
3473
3474 if (c == '.' && *p == ']' && str[0] != '\0')
3475 {
3476 /* If we have no collation data we use the default
3477 collation in which each character is the name
3478 for its own class which contains only the one
3479 character. It also means that ASCII is the
3480 character set and therefore we cannot have character
3481 with more than one byte in the multibyte
3482 representation. */
3483 # ifdef _LIBC
3484 if (nrules == 0)
3485 # endif
3486 {
3487 if (c1 != 1)
3488 FREE_STACK_RETURN (REG_ECOLLATE);
3489
3490 /* Throw away the ] at the end of the equivalence
3491 class. */
3492 PATFETCH (c);
3493
3494 /* Set the bit for the character. */
3495 SET_LIST_BIT (str[0]);
3496 range_start = ((const unsigned char *) str)[0];
3497 }
3498 # ifdef _LIBC
3499 else
3500 {
3501 /* Try to match the byte sequence in `str' against
3502 those known to the collate implementation.
3503 First find out whether the bytes in `str' are
3504 actually from exactly one character. */
3505 int32_t table_size;
3506 const int32_t *symb_table;
3507 const unsigned char *extra;
3508 int32_t idx;
3509 int32_t elem;
3510 int32_t second;
3511 int32_t hash;
3512
3513 table_size =
3514 _NL_CURRENT_WORD (LC_COLLATE,
3515 _NL_COLLATE_SYMB_HASH_SIZEMB);
3516 symb_table = (const int32_t *)
3517 _NL_CURRENT (LC_COLLATE,
3518 _NL_COLLATE_SYMB_TABLEMB);
3519 extra = (const unsigned char *)
3520 _NL_CURRENT (LC_COLLATE,
3521 _NL_COLLATE_SYMB_EXTRAMB);
3522
3523 /* Locate the character in the hashing table. */
3524 hash = elem_hash (str, c1);
3525
3526 idx = 0;
3527 elem = hash % table_size;
3528 second = hash % (table_size - 2);
3529 while (symb_table[2 * elem] != 0)
3530 {
3531 /* First compare the hashing value. */
3532 if (symb_table[2 * elem] == hash
3533 && c1 == extra[symb_table[2 * elem + 1]]
3534 && memcmp (str,
3535 &extra[symb_table[2 * elem + 1]
3536 + 1],
3537 c1) == 0)
3538 {
3539 /* Yep, this is the entry. */
3540 idx = symb_table[2 * elem + 1];
3541 idx += 1 + extra[idx];
3542 break;
3543 }
3544
3545 /* Next entry. */
3546 elem += second;
3547 }
3548
3549 if (symb_table[2 * elem] == 0)
3550 /* This is no valid character. */
3551 FREE_STACK_RETURN (REG_ECOLLATE);
3552
3553 /* Throw away the ] at the end of the equivalence
3554 class. */
3555 PATFETCH (c);
3556
3557 /* Now add the multibyte character(s) we found
3558 to the accept list.
3559
3560 XXX Note that this is not entirely correct.
3561 we would have to match multibyte sequences
3562 but this is not possible with the current
3563 implementation. Also, we have to match
3564 collating symbols, which expand to more than
3565 one file, as a whole and not allow the
3566 individual bytes. */
3567 c1 = extra[idx++];
3568 if (c1 == 1)
3569 range_start = extra[idx];
3570 while (c1-- > 0)
3571 {
3572 SET_LIST_BIT (extra[idx]);
3573 ++idx;
3574 }
3575 }
3576 # endif
3577 had_char_class = false;
3578 }
3579 else
3580 {
3581 c1++;
3582 while (c1--)
3583 PATUNFETCH;
3584 SET_LIST_BIT ('[');
3585 SET_LIST_BIT ('.');
3586 range_start = '.';
3587 had_char_class = false;
3588 }
3589 }
3590 else
3591 {
3592 had_char_class = false;
3593 SET_LIST_BIT (c);
3594 range_start = c;
3595 }
3596 }
3597
3598 /* Discard any (non)matching list bytes that are all 0 at the
3599 end of the map. Decrease the map-length byte too. */
3600 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3601 b[-1]--;
3602 b += b[-1];
3603 #endif /* WCHAR */
3604 }
3605 break;
3606
3607
3608 case '(':
3609 if (syntax & RE_NO_BK_PARENS)
3610 goto handle_open;
3611 else
3612 goto normal_char;
3613
3614
3615 case ')':
3616 if (syntax & RE_NO_BK_PARENS)
3617 goto handle_close;
3618 else
3619 goto normal_char;
3620
3621
3622 case '\n':
3623 if (syntax & RE_NEWLINE_ALT)
3624 goto handle_alt;
3625 else
3626 goto normal_char;
3627
3628
3629 case '|':
3630 if (syntax & RE_NO_BK_VBAR)
3631 goto handle_alt;
3632 else
3633 goto normal_char;
3634
3635
3636 case '{':
3637 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3638 goto handle_interval;
3639 else
3640 goto normal_char;
3641
3642
3643 case '\\':
3644 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3645
3646 /* Do not translate the character after the \, so that we can
3647 distinguish, e.g., \B from \b, even if we normally would
3648 translate, e.g., B to b. */
3649 PATFETCH_RAW (c);
3650
3651 switch (c)
3652 {
3653 case '(':
3654 if (syntax & RE_NO_BK_PARENS)
3655 goto normal_backslash;
3656
3657 handle_open:
3658 bufp->re_nsub++;
3659 regnum++;
3660
3661 if (COMPILE_STACK_FULL)
3662 {
3663 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3664 compile_stack_elt_t);
3665 if (compile_stack.stack == NULL) return REG_ESPACE;
3666
3667 compile_stack.size <<= 1;
3668 }
3669
3670 /* These are the values to restore when we hit end of this
3671 group. They are all relative offsets, so that if the
3672 whole pattern moves because of realloc, they will still
3673 be valid. */
3674 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3675 COMPILE_STACK_TOP.fixup_alt_jump
3676 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3677 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3678 COMPILE_STACK_TOP.regnum = regnum;
3679
3680 /* We will eventually replace the 0 with the number of
3681 groups inner to this one. But do not push a
3682 start_memory for groups beyond the last one we can
3683 represent in the compiled pattern. */
3684 if (regnum <= MAX_REGNUM)
3685 {
3686 COMPILE_STACK_TOP.inner_group_offset = b
3687 - COMPILED_BUFFER_VAR + 2;
3688 BUF_PUSH_3 (start_memory, regnum, 0);
3689 }
3690
3691 compile_stack.avail++;
3692
3693 fixup_alt_jump = 0;
3694 laststart = 0;
3695 begalt = b;
3696 /* If we've reached MAX_REGNUM groups, then this open
3697 won't actually generate any code, so we'll have to
3698 clear pending_exact explicitly. */
3699 pending_exact = 0;
3700 break;
3701
3702
3703 case ')':
3704 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3705
3706 if (COMPILE_STACK_EMPTY)
3707 {
3708 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3709 goto normal_backslash;
3710 else
3711 FREE_STACK_RETURN (REG_ERPAREN);
3712 }
3713
3714 handle_close:
3715 if (fixup_alt_jump)
3716 { /* Push a dummy failure point at the end of the
3717 alternative for a possible future
3718 `pop_failure_jump' to pop. See comments at
3719 `push_dummy_failure' in `re_match_2'. */
3720 BUF_PUSH (push_dummy_failure);
3721
3722 /* We allocated space for this jump when we assigned
3723 to `fixup_alt_jump', in the `handle_alt' case below. */
3724 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3725 }
3726
3727 /* See similar code for backslashed left paren above. */
3728 if (COMPILE_STACK_EMPTY)
3729 {
3730 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3731 goto normal_char;
3732 else
3733 FREE_STACK_RETURN (REG_ERPAREN);
3734 }
3735
3736 /* Since we just checked for an empty stack above, this
3737 ``can't happen''. */
3738 assert (compile_stack.avail != 0);
3739 {
3740 /* We don't just want to restore into `regnum', because
3741 later groups should continue to be numbered higher,
3742 as in `(ab)c(de)' -- the second group is #2. */
3743 regnum_t this_group_regnum;
3744
3745 compile_stack.avail--;
3746 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3747 fixup_alt_jump
3748 = COMPILE_STACK_TOP.fixup_alt_jump
3749 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3750 : 0;
3751 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3752 this_group_regnum = COMPILE_STACK_TOP.regnum;
3753 /* If we've reached MAX_REGNUM groups, then this open
3754 won't actually generate any code, so we'll have to
3755 clear pending_exact explicitly. */
3756 pending_exact = 0;
3757
3758 /* We're at the end of the group, so now we know how many
3759 groups were inside this one. */
3760 if (this_group_regnum <= MAX_REGNUM)
3761 {
3762 UCHAR_T *inner_group_loc
3763 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3764
3765 *inner_group_loc = regnum - this_group_regnum;
3766 BUF_PUSH_3 (stop_memory, this_group_regnum,
3767 regnum - this_group_regnum);
3768 }
3769 }
3770 break;
3771
3772
3773 case '|': /* `\|'. */
3774 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3775 goto normal_backslash;
3776 handle_alt:
3777 if (syntax & RE_LIMITED_OPS)
3778 goto normal_char;
3779
3780 /* Insert before the previous alternative a jump which
3781 jumps to this alternative if the former fails. */
3782 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3783 INSERT_JUMP (on_failure_jump, begalt,
3784 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3785 pending_exact = 0;
3786 b += 1 + OFFSET_ADDRESS_SIZE;
3787
3788 /* The alternative before this one has a jump after it
3789 which gets executed if it gets matched. Adjust that
3790 jump so it will jump to this alternative's analogous
3791 jump (put in below, which in turn will jump to the next
3792 (if any) alternative's such jump, etc.). The last such
3793 jump jumps to the correct final destination. A picture:
3794 _____ _____
3795 | | | |
3796 | v | v
3797 a | b | c
3798
3799 If we are at `b', then fixup_alt_jump right now points to a
3800 three-byte space after `a'. We'll put in the jump, set
3801 fixup_alt_jump to right after `b', and leave behind three
3802 bytes which we'll fill in when we get to after `c'. */
3803
3804 if (fixup_alt_jump)
3805 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3806
3807 /* Mark and leave space for a jump after this alternative,
3808 to be filled in later either by next alternative or
3809 when know we're at the end of a series of alternatives. */
3810 fixup_alt_jump = b;
3811 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3812 b += 1 + OFFSET_ADDRESS_SIZE;
3813
3814 laststart = 0;
3815 begalt = b;
3816 break;
3817
3818
3819 case '{':
3820 /* If \{ is a literal. */
3821 if (!(syntax & RE_INTERVALS)
3822 /* If we're at `\{' and it's not the open-interval
3823 operator. */
3824 || (syntax & RE_NO_BK_BRACES))
3825 goto normal_backslash;
3826
3827 handle_interval:
3828 {
3829 /* If got here, then the syntax allows intervals. */
3830
3831 /* At least (most) this many matches must be made. */
3832 int lower_bound = -1, upper_bound = -1;
3833
3834 /* Place in the uncompiled pattern (i.e., just after
3835 the '{') to go back to if the interval is invalid. */
3836 const CHAR_T *beg_interval = p;
3837
3838 if (p == pend)
3839 goto invalid_interval;
3840
3841 GET_UNSIGNED_NUMBER (lower_bound);
3842
3843 if (c == ',')
3844 {
3845 GET_UNSIGNED_NUMBER (upper_bound);
3846 if (upper_bound < 0)
3847 upper_bound = RE_DUP_MAX;
3848 }
3849 else
3850 /* Interval such as `{1}' => match exactly once. */
3851 upper_bound = lower_bound;
3852
3853 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3854 goto invalid_interval;
3855
3856 if (!(syntax & RE_NO_BK_BRACES))
3857 {
3858 if (c != '\\' || p == pend)
3859 goto invalid_interval;
3860 PATFETCH (c);
3861 }
3862
3863 if (c != '}')
3864 goto invalid_interval;
3865
3866 /* If it's invalid to have no preceding re. */
3867 if (!laststart)
3868 {
3869 if (syntax & RE_CONTEXT_INVALID_OPS
3870 && !(syntax & RE_INVALID_INTERVAL_ORD))
3871 FREE_STACK_RETURN (REG_BADRPT);
3872 else if (syntax & RE_CONTEXT_INDEP_OPS)
3873 laststart = b;
3874 else
3875 goto unfetch_interval;
3876 }
3877
3878 /* We just parsed a valid interval. */
3879
3880 if (RE_DUP_MAX < upper_bound)
3881 FREE_STACK_RETURN (REG_BADBR);
3882
3883 /* If the upper bound is zero, don't want to succeed at
3884 all; jump from `laststart' to `b + 3', which will be
3885 the end of the buffer after we insert the jump. */
3886 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3887 instead of 'b + 3'. */
3888 if (upper_bound == 0)
3889 {
3890 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3891 INSERT_JUMP (jump, laststart, b + 1
3892 + OFFSET_ADDRESS_SIZE);
3893 b += 1 + OFFSET_ADDRESS_SIZE;
3894 }
3895
3896 /* Otherwise, we have a nontrivial interval. When
3897 we're all done, the pattern will look like:
3898 set_number_at <jump count> <upper bound>
3899 set_number_at <succeed_n count> <lower bound>
3900 succeed_n <after jump addr> <succeed_n count>
3901 <body of loop>
3902 jump_n <succeed_n addr> <jump count>
3903 (The upper bound and `jump_n' are omitted if
3904 `upper_bound' is 1, though.) */
3905 else
3906 { /* If the upper bound is > 1, we need to insert
3907 more at the end of the loop. */
3908 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3909 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3910
3911 GET_BUFFER_SPACE (nbytes);
3912
3913 /* Initialize lower bound of the `succeed_n', even
3914 though it will be set during matching by its
3915 attendant `set_number_at' (inserted next),
3916 because `re_compile_fastmap' needs to know.
3917 Jump to the `jump_n' we might insert below. */
3918 INSERT_JUMP2 (succeed_n, laststart,
3919 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3920 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3921 , lower_bound);
3922 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3923
3924 /* Code to initialize the lower bound. Insert
3925 before the `succeed_n'. The `5' is the last two
3926 bytes of this `set_number_at', plus 3 bytes of
3927 the following `succeed_n'. */
3928 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3929 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3930 of the following `succeed_n'. */
3931 PREFIX(insert_op2) (set_number_at, laststart, 1
3932 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3933 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3934
3935 if (upper_bound > 1)
3936 { /* More than one repetition is allowed, so
3937 append a backward jump to the `succeed_n'
3938 that starts this interval.
3939
3940 When we've reached this during matching,
3941 we'll have matched the interval once, so
3942 jump back only `upper_bound - 1' times. */
3943 STORE_JUMP2 (jump_n, b, laststart
3944 + 2 * OFFSET_ADDRESS_SIZE + 1,
3945 upper_bound - 1);
3946 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3947
3948 /* The location we want to set is the second
3949 parameter of the `jump_n'; that is `b-2' as
3950 an absolute address. `laststart' will be
3951 the `set_number_at' we're about to insert;
3952 `laststart+3' the number to set, the source
3953 for the relative address. But we are
3954 inserting into the middle of the pattern --
3955 so everything is getting moved up by 5.
3956 Conclusion: (b - 2) - (laststart + 3) + 5,
3957 i.e., b - laststart.
3958
3959 We insert this at the beginning of the loop
3960 so that if we fail during matching, we'll
3961 reinitialize the bounds. */
3962 PREFIX(insert_op2) (set_number_at, laststart,
3963 b - laststart,
3964 upper_bound - 1, b);
3965 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3966 }
3967 }
3968 pending_exact = 0;
3969 break;
3970
3971 invalid_interval:
3972 if (!(syntax & RE_INVALID_INTERVAL_ORD))
3973 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3974 unfetch_interval:
3975 /* Match the characters as literals. */
3976 p = beg_interval;
3977 c = '{';
3978 if (syntax & RE_NO_BK_BRACES)
3979 goto normal_char;
3980 else
3981 goto normal_backslash;
3982 }
3983
3984 #ifdef emacs
3985 /* There is no way to specify the before_dot and after_dot
3986 operators. rms says this is ok. --karl */
3987 case '=':
3988 BUF_PUSH (at_dot);
3989 break;
3990
3991 case 's':
3992 laststart = b;
3993 PATFETCH (c);
3994 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3995 break;
3996
3997 case 'S':
3998 laststart = b;
3999 PATFETCH (c);
4000 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4001 break;
4002 #endif /* emacs */
4003
4004
4005 case 'w':
4006 if (syntax & RE_NO_GNU_OPS)
4007 goto normal_char;
4008 laststart = b;
4009 BUF_PUSH (wordchar);
4010 break;
4011
4012
4013 case 'W':
4014 if (syntax & RE_NO_GNU_OPS)
4015 goto normal_char;
4016 laststart = b;
4017 BUF_PUSH (notwordchar);
4018 break;
4019
4020
4021 case '<':
4022 if (syntax & RE_NO_GNU_OPS)
4023 goto normal_char;
4024 BUF_PUSH (wordbeg);
4025 break;
4026
4027 case '>':
4028 if (syntax & RE_NO_GNU_OPS)
4029 goto normal_char;
4030 BUF_PUSH (wordend);
4031 break;
4032
4033 case 'b':
4034 if (syntax & RE_NO_GNU_OPS)
4035 goto normal_char;
4036 BUF_PUSH (wordbound);
4037 break;
4038
4039 case 'B':
4040 if (syntax & RE_NO_GNU_OPS)
4041 goto normal_char;
4042 BUF_PUSH (notwordbound);
4043 break;
4044
4045 case '`':
4046 if (syntax & RE_NO_GNU_OPS)
4047 goto normal_char;
4048 BUF_PUSH (begbuf);
4049 break;
4050
4051 case '\'':
4052 if (syntax & RE_NO_GNU_OPS)
4053 goto normal_char;
4054 BUF_PUSH (endbuf);
4055 break;
4056
4057 case '1': case '2': case '3': case '4': case '5':
4058 case '6': case '7': case '8': case '9':
4059 if (syntax & RE_NO_BK_REFS)
4060 goto normal_char;
4061
4062 c1 = c - '0';
4063
4064 if (c1 > regnum)
4065 FREE_STACK_RETURN (REG_ESUBREG);
4066
4067 /* Can't back reference to a subexpression if inside of it. */
4068 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4069 goto normal_char;
4070
4071 laststart = b;
4072 BUF_PUSH_2 (duplicate, c1);
4073 break;
4074
4075
4076 case '+':
4077 case '?':
4078 if (syntax & RE_BK_PLUS_QM)
4079 goto handle_plus;
4080 else
4081 goto normal_backslash;
4082
4083 default:
4084 normal_backslash:
4085 /* You might think it would be useful for \ to mean
4086 not to translate; but if we don't translate it
4087 it will never match anything. */
4088 c = TRANSLATE (c);
4089 goto normal_char;
4090 }
4091 break;
4092
4093
4094 default:
4095 /* Expects the character in `c'. */
4096 normal_char:
4097 /* If no exactn currently being built. */
4098 if (!pending_exact
4099 #ifdef WCHAR
4100 /* If last exactn handle binary(or character) and
4101 new exactn handle character(or binary). */
4102 || is_exactn_bin != is_binary[p - 1 - pattern]
4103 #endif /* WCHAR */
4104
4105 /* If last exactn not at current position. */
4106 || pending_exact + *pending_exact + 1 != b
4107
4108 /* We have only one byte following the exactn for the count. */
4109 || *pending_exact == (1 << BYTEWIDTH) - 1
4110
4111 /* If followed by a repetition operator. */
4112 || *p == '*' || *p == '^'
4113 || ((syntax & RE_BK_PLUS_QM)
4114 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4115 : (*p == '+' || *p == '?'))
4116 || ((syntax & RE_INTERVALS)
4117 && ((syntax & RE_NO_BK_BRACES)
4118 ? *p == '{'
4119 : (p[0] == '\\' && p[1] == '{'))))
4120 {
4121 /* Start building a new exactn. */
4122
4123 laststart = b;
4124
4125 #ifdef WCHAR
4126 /* Is this exactn binary data or character? */
4127 is_exactn_bin = is_binary[p - 1 - pattern];
4128 if (is_exactn_bin)
4129 BUF_PUSH_2 (exactn_bin, 0);
4130 else
4131 BUF_PUSH_2 (exactn, 0);
4132 #else
4133 BUF_PUSH_2 (exactn, 0);
4134 #endif /* WCHAR */
4135 pending_exact = b - 1;
4136 }
4137
4138 BUF_PUSH (c);
4139 (*pending_exact)++;
4140 break;
4141 } /* switch (c) */
4142 } /* while p != pend */
4143
4144
4145 /* Through the pattern now. */
4146
4147 if (fixup_alt_jump)
4148 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4149
4150 if (!COMPILE_STACK_EMPTY)
4151 FREE_STACK_RETURN (REG_EPAREN);
4152
4153 /* If we don't want backtracking, force success
4154 the first time we reach the end of the compiled pattern. */
4155 if (syntax & RE_NO_POSIX_BACKTRACKING)
4156 BUF_PUSH (succeed);
4157
4158 #ifdef WCHAR
4159 free (pattern);
4160 free (mbs_offset);
4161 free (is_binary);
4162 #endif
4163 free (compile_stack.stack);
4164
4165 /* We have succeeded; set the length of the buffer. */
4166 #ifdef WCHAR
4167 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4168 #else
4169 bufp->used = b - bufp->buffer;
4170 #endif
4171
4172 #ifdef DEBUG
4173 if (debug)
4174 {
4175 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4176 PREFIX(print_compiled_pattern) (bufp);
4177 }
4178 #endif /* DEBUG */
4179
4180 #ifndef MATCH_MAY_ALLOCATE
4181 /* Initialize the failure stack to the largest possible stack. This
4182 isn't necessary unless we're trying to avoid calling alloca in
4183 the search and match routines. */
4184 {
4185 int num_regs = bufp->re_nsub + 1;
4186
4187 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4188 is strictly greater than re_max_failures, the largest possible stack
4189 is 2 * re_max_failures failure points. */
4190 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4191 {
4192 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4193
4194 # ifdef emacs
4195 if (! fail_stack.stack)
4196 fail_stack.stack
4197 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4198 * sizeof (PREFIX(fail_stack_elt_t)));
4199 else
4200 fail_stack.stack
4201 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4202 (fail_stack.size
4203 * sizeof (PREFIX(fail_stack_elt_t))));
4204 # else /* not emacs */
4205 if (! fail_stack.stack)
4206 fail_stack.stack
4207 = malloc (fail_stack.size * sizeof (PREFIX(fail_stack_elt_t)));
4208 else
4209 fail_stack.stack
4210 = realloc (fail_stack.stack,
4211 fail_stack.size * sizeof (PREFIX(fail_stack_elt_t)));
4212 # endif /* not emacs */
4213 }
4214
4215 PREFIX(regex_grow_registers) (num_regs);
4216 }
4217 #endif /* not MATCH_MAY_ALLOCATE */
4218
4219 return REG_NOERROR;
4220 } /* regex_compile */
4221
4222 /* Subroutines for `regex_compile'. */
4223
4224 /* Store OP at LOC followed by two-byte integer parameter ARG. */
4225 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4226
4227 static void
PREFIX(store_op1)4228 PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
4229 {
4230 *loc = (UCHAR_T) op;
4231 STORE_NUMBER (loc + 1, arg);
4232 }
4233
4234
4235 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4236 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4237
4238 static void
PREFIX(store_op2)4239 PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
4240 {
4241 *loc = (UCHAR_T) op;
4242 STORE_NUMBER (loc + 1, arg1);
4243 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4244 }
4245
4246
4247 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4248 for OP followed by two-byte integer parameter ARG. */
4249 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4250
4251 static void
PREFIX(insert_op1)4252 PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
4253 {
4254 register UCHAR_T *pfrom = end;
4255 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4256
4257 while (pfrom != loc)
4258 *--pto = *--pfrom;
4259
4260 PREFIX(store_op1) (op, loc, arg);
4261 }
4262
4263
4264 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4265 /* ifdef WCHAR, integer parameter is 1 wchar_t. */
4266
4267 static void
PREFIX(insert_op2)4268 PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2,
4269 UCHAR_T *end)
4270 {
4271 register UCHAR_T *pfrom = end;
4272 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4273
4274 while (pfrom != loc)
4275 *--pto = *--pfrom;
4276
4277 PREFIX(store_op2) (op, loc, arg1, arg2);
4278 }
4279
4280
4281 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
4282 after an alternative or a begin-subexpression. We assume there is at
4283 least one character before the ^. */
4284
4285 static boolean
PREFIX(at_begline_loc_p)4286 PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4287 reg_syntax_t syntax)
4288 {
4289 const CHAR_T *prev = p - 2;
4290 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4291
4292 return
4293 /* After a subexpression? */
4294 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4295 /* After an alternative? */
4296 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4297 }
4298
4299
4300 /* The dual of at_begline_loc_p. This one is for $. We assume there is
4301 at least one character after the $, i.e., `P < PEND'. */
4302
4303 static boolean
PREFIX(at_endline_loc_p)4304 PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4305 reg_syntax_t syntax)
4306 {
4307 const CHAR_T *next = p;
4308 boolean next_backslash = *next == '\\';
4309 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4310
4311 return
4312 /* Before a subexpression? */
4313 (syntax & RE_NO_BK_PARENS ? *next == ')'
4314 : next_backslash && next_next && *next_next == ')')
4315 /* Before an alternative? */
4316 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4317 : next_backslash && next_next && *next_next == '|');
4318 }
4319
4320 #else /* not INSIDE_RECURSION */
4321
4322 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4323 false if it's not. */
4324
4325 static boolean
group_in_compile_stack(compile_stack_type compile_stack,regnum_t regnum)4326 group_in_compile_stack (compile_stack_type compile_stack,
4327 regnum_t regnum)
4328 {
4329 int this_element;
4330
4331 for (this_element = compile_stack.avail - 1;
4332 this_element >= 0;
4333 this_element--)
4334 if (compile_stack.stack[this_element].regnum == regnum)
4335 return true;
4336
4337 return false;
4338 }
4339 #endif /* not INSIDE_RECURSION */
4340
4341 #ifdef INSIDE_RECURSION
4342
4343 #ifdef WCHAR
4344 /* This insert space, which size is "num", into the pattern at "loc".
4345 "end" must point the end of the allocated buffer. */
4346 static void
insert_space(int num,CHAR_T * loc,CHAR_T * end)4347 insert_space (int num, CHAR_T *loc, CHAR_T *end)
4348 {
4349 register CHAR_T *pto = end;
4350 register CHAR_T *pfrom = end - num;
4351
4352 while (pfrom >= loc)
4353 *pto-- = *pfrom--;
4354 }
4355 #endif /* WCHAR */
4356
4357 #ifdef WCHAR
4358 static reg_errcode_t
wcs_compile_range(CHAR_T range_start_char,const CHAR_T ** p_ptr,const CHAR_T * pend,RE_TRANSLATE_TYPE translate,reg_syntax_t syntax,CHAR_T * b,CHAR_T * char_set)4359 wcs_compile_range (CHAR_T range_start_char,
4360 const CHAR_T **p_ptr, const CHAR_T *pend,
4361 RE_TRANSLATE_TYPE translate, reg_syntax_t syntax,
4362 CHAR_T *b, CHAR_T *char_set)
4363 {
4364 const CHAR_T *p = *p_ptr;
4365 CHAR_T range_start, range_end;
4366 reg_errcode_t ret;
4367 # ifdef _LIBC
4368 uint32_t nrules;
4369 uint32_t start_val, end_val;
4370 # endif
4371 if (p == pend)
4372 return REG_ERANGE;
4373
4374 # ifdef _LIBC
4375 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4376 if (nrules != 0)
4377 {
4378 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4379 _NL_COLLATE_COLLSEQWC);
4380 const unsigned char *extra = (const unsigned char *)
4381 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4382
4383 if (range_start_char < -1)
4384 {
4385 /* range_start is a collating symbol. */
4386 int32_t *wextra;
4387 /* Retreive the index and get collation sequence value. */
4388 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4389 start_val = wextra[1 + *wextra];
4390 }
4391 else
4392 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4393
4394 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4395
4396 /* Report an error if the range is empty and the syntax prohibits
4397 this. */
4398 ret = ((syntax & RE_NO_EMPTY_RANGES)
4399 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4400
4401 /* Insert space to the end of the char_ranges. */
4402 insert_space(2, b - char_set[5] - 2, b - 1);
4403 *(b - char_set[5] - 2) = (wchar_t)start_val;
4404 *(b - char_set[5] - 1) = (wchar_t)end_val;
4405 char_set[4]++; /* ranges_index */
4406 }
4407 else
4408 # endif
4409 {
4410 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4411 range_start_char;
4412 range_end = TRANSLATE (p[0]);
4413 /* Report an error if the range is empty and the syntax prohibits
4414 this. */
4415 ret = ((syntax & RE_NO_EMPTY_RANGES)
4416 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4417
4418 /* Insert space to the end of the char_ranges. */
4419 insert_space(2, b - char_set[5] - 2, b - 1);
4420 *(b - char_set[5] - 2) = range_start;
4421 *(b - char_set[5] - 1) = range_end;
4422 char_set[4]++; /* ranges_index */
4423 }
4424 /* Have to increment the pointer into the pattern string, so the
4425 caller isn't still at the ending character. */
4426 (*p_ptr)++;
4427
4428 return ret;
4429 }
4430 #else /* BYTE */
4431 /* Read the ending character of a range (in a bracket expression) from the
4432 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4433 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4434 Then we set the translation of all bits between the starting and
4435 ending characters (inclusive) in the compiled pattern B.
4436
4437 Return an error code.
4438
4439 We use these short variable names so we can use the same macros as
4440 `regex_compile' itself. */
4441
4442 static reg_errcode_t
byte_compile_range(unsigned int range_start_char,const char ** p_ptr,const char * pend,RE_TRANSLATE_TYPE translate,reg_syntax_t syntax,unsigned char * b)4443 byte_compile_range (unsigned int range_start_char,
4444 const char **p_ptr, const char *pend,
4445 RE_TRANSLATE_TYPE translate, reg_syntax_t syntax,
4446 unsigned char *b)
4447 {
4448 unsigned this_char;
4449 const char *p = *p_ptr;
4450 reg_errcode_t ret;
4451 # if _LIBC
4452 const unsigned char *collseq;
4453 unsigned int start_colseq;
4454 unsigned int end_colseq;
4455 # else
4456 unsigned end_char;
4457 # endif
4458
4459 if (p == pend)
4460 return REG_ERANGE;
4461
4462 /* Have to increment the pointer into the pattern string, so the
4463 caller isn't still at the ending character. */
4464 (*p_ptr)++;
4465
4466 /* Report an error if the range is empty and the syntax prohibits this. */
4467 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4468
4469 # if _LIBC
4470 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4471 _NL_COLLATE_COLLSEQMB);
4472
4473 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4474 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4475 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4476 {
4477 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4478
4479 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4480 {
4481 SET_LIST_BIT (TRANSLATE (this_char));
4482 ret = REG_NOERROR;
4483 }
4484 }
4485 # else
4486 /* Here we see why `this_char' has to be larger than an `unsigned
4487 char' -- we would otherwise go into an infinite loop, since all
4488 characters <= 0xff. */
4489 range_start_char = TRANSLATE (range_start_char);
4490 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4491 and some compilers cast it to int implicitly, so following for_loop
4492 may fall to (almost) infinite loop.
4493 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4494 To avoid this, we cast p[0] to unsigned int and truncate it. */
4495 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4496
4497 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4498 {
4499 SET_LIST_BIT (TRANSLATE (this_char));
4500 ret = REG_NOERROR;
4501 }
4502 # endif
4503
4504 return ret;
4505 }
4506 #endif /* WCHAR */
4507
4508 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4509 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4510 characters can start a string that matches the pattern. This fastmap
4511 is used by re_search to skip quickly over impossible starting points.
4512
4513 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4514 area as BUFP->fastmap.
4515
4516 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4517 the pattern buffer.
4518
4519 Returns 0 if we succeed, -2 if an internal error. */
4520
4521 #ifdef WCHAR
4522 /* local function for re_compile_fastmap.
4523 truncate wchar_t character to char. */
4524
4525 static unsigned char
truncate_wchar(CHAR_T c)4526 truncate_wchar (CHAR_T c)
4527 {
4528 unsigned char buf[MB_CUR_MAX];
4529 mbstate_t state;
4530 int retval;
4531 memset (&state, '\0', sizeof (state));
4532 retval = wcrtomb (buf, c, &state);
4533 return retval > 0 ? buf[0] : (unsigned char) c;
4534 }
4535 #endif /* WCHAR */
4536
4537 static int
PREFIX(re_compile_fastmap)4538 PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
4539 {
4540 int j, k;
4541 #ifdef MATCH_MAY_ALLOCATE
4542 PREFIX(fail_stack_type) fail_stack;
4543 #endif
4544 #ifndef REGEX_MALLOC
4545 char *destination;
4546 #endif
4547
4548 register char *fastmap = bufp->fastmap;
4549
4550 #ifdef WCHAR
4551 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4552 pattern to (char*) in regex_compile. */
4553 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4554 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4555 #else /* BYTE */
4556 UCHAR_T *pattern = bufp->buffer;
4557 register UCHAR_T *pend = pattern + bufp->used;
4558 #endif /* WCHAR */
4559 UCHAR_T *p = pattern;
4560
4561 #ifdef REL_ALLOC
4562 /* This holds the pointer to the failure stack, when
4563 it is allocated relocatably. */
4564 fail_stack_elt_t *failure_stack_ptr;
4565 #endif
4566
4567 /* Assume that each path through the pattern can be null until
4568 proven otherwise. We set this false at the bottom of switch
4569 statement, to which we get only if a particular path doesn't
4570 match the empty string. */
4571 boolean path_can_be_null = true;
4572
4573 /* We aren't doing a `succeed_n' to begin with. */
4574 boolean succeed_n_p = false;
4575
4576 assert (fastmap != NULL && p != NULL);
4577
4578 INIT_FAIL_STACK ();
4579 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4580 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4581 bufp->can_be_null = 0;
4582
4583 while (1)
4584 {
4585 if (p == pend || *p == succeed)
4586 {
4587 /* We have reached the (effective) end of pattern. */
4588 if (!FAIL_STACK_EMPTY ())
4589 {
4590 bufp->can_be_null |= path_can_be_null;
4591
4592 /* Reset for next path. */
4593 path_can_be_null = true;
4594
4595 p = fail_stack.stack[--fail_stack.avail].pointer;
4596
4597 continue;
4598 }
4599 else
4600 break;
4601 }
4602
4603 /* We should never be about to go beyond the end of the pattern. */
4604 assert (p < pend);
4605
4606 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4607 {
4608
4609 /* I guess the idea here is to simply not bother with a fastmap
4610 if a backreference is used, since it's too hard to figure out
4611 the fastmap for the corresponding group. Setting
4612 `can_be_null' stops `re_search_2' from using the fastmap, so
4613 that is all we do. */
4614 case duplicate:
4615 bufp->can_be_null = 1;
4616 goto done;
4617
4618
4619 /* Following are the cases which match a character. These end
4620 with `break'. */
4621
4622 #ifdef WCHAR
4623 case exactn:
4624 fastmap[truncate_wchar(p[1])] = 1;
4625 break;
4626 #else /* BYTE */
4627 case exactn:
4628 fastmap[p[1]] = 1;
4629 break;
4630 #endif /* WCHAR */
4631 #ifdef MBS_SUPPORT
4632 case exactn_bin:
4633 fastmap[p[1]] = 1;
4634 break;
4635 #endif
4636
4637 #ifdef WCHAR
4638 /* It is hard to distinguish fastmap from (multi byte) characters
4639 which depends on current locale. */
4640 case charset:
4641 case charset_not:
4642 case wordchar:
4643 case notwordchar:
4644 bufp->can_be_null = 1;
4645 goto done;
4646 #else /* BYTE */
4647 case charset:
4648 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4649 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4650 fastmap[j] = 1;
4651 break;
4652
4653
4654 case charset_not:
4655 /* Chars beyond end of map must be allowed. */
4656 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4657 fastmap[j] = 1;
4658
4659 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4660 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4661 fastmap[j] = 1;
4662 break;
4663
4664
4665 case wordchar:
4666 for (j = 0; j < (1 << BYTEWIDTH); j++)
4667 if (SYNTAX (j) == Sword)
4668 fastmap[j] = 1;
4669 break;
4670
4671
4672 case notwordchar:
4673 for (j = 0; j < (1 << BYTEWIDTH); j++)
4674 if (SYNTAX (j) != Sword)
4675 fastmap[j] = 1;
4676 break;
4677 #endif /* WCHAR */
4678
4679 case anychar:
4680 {
4681 int fastmap_newline = fastmap['\n'];
4682
4683 /* `.' matches anything ... */
4684 for (j = 0; j < (1 << BYTEWIDTH); j++)
4685 fastmap[j] = 1;
4686
4687 /* ... except perhaps newline. */
4688 if (!(bufp->syntax & RE_DOT_NEWLINE))
4689 fastmap['\n'] = fastmap_newline;
4690
4691 /* Return if we have already set `can_be_null'; if we have,
4692 then the fastmap is irrelevant. Something's wrong here. */
4693 else if (bufp->can_be_null)
4694 goto done;
4695
4696 /* Otherwise, have to check alternative paths. */
4697 break;
4698 }
4699
4700 #ifdef emacs
4701 case syntaxspec:
4702 k = *p++;
4703 for (j = 0; j < (1 << BYTEWIDTH); j++)
4704 if (SYNTAX (j) == (enum syntaxcode) k)
4705 fastmap[j] = 1;
4706 break;
4707
4708
4709 case notsyntaxspec:
4710 k = *p++;
4711 for (j = 0; j < (1 << BYTEWIDTH); j++)
4712 if (SYNTAX (j) != (enum syntaxcode) k)
4713 fastmap[j] = 1;
4714 break;
4715
4716
4717 /* All cases after this match the empty string. These end with
4718 `continue'. */
4719
4720
4721 case before_dot:
4722 case at_dot:
4723 case after_dot:
4724 continue;
4725 #endif /* emacs */
4726
4727
4728 case no_op:
4729 case begline:
4730 case endline:
4731 case begbuf:
4732 case endbuf:
4733 case wordbound:
4734 case notwordbound:
4735 case wordbeg:
4736 case wordend:
4737 case push_dummy_failure:
4738 continue;
4739
4740
4741 case jump_n:
4742 case pop_failure_jump:
4743 case maybe_pop_jump:
4744 case jump:
4745 case jump_past_alt:
4746 case dummy_failure_jump:
4747 EXTRACT_NUMBER_AND_INCR (j, p);
4748 p += j;
4749 if (j > 0)
4750 continue;
4751
4752 /* Jump backward implies we just went through the body of a
4753 loop and matched nothing. Opcode jumped to should be
4754 `on_failure_jump' or `succeed_n'. Just treat it like an
4755 ordinary jump. For a * loop, it has pushed its failure
4756 point already; if so, discard that as redundant. */
4757 if ((re_opcode_t) *p != on_failure_jump
4758 && (re_opcode_t) *p != succeed_n)
4759 continue;
4760
4761 p++;
4762 EXTRACT_NUMBER_AND_INCR (j, p);
4763 p += j;
4764
4765 /* If what's on the stack is where we are now, pop it. */
4766 if (!FAIL_STACK_EMPTY ()
4767 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4768 fail_stack.avail--;
4769
4770 continue;
4771
4772
4773 case on_failure_jump:
4774 case on_failure_keep_string_jump:
4775 handle_on_failure_jump:
4776 EXTRACT_NUMBER_AND_INCR (j, p);
4777
4778 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4779 end of the pattern. We don't want to push such a point,
4780 since when we restore it above, entering the switch will
4781 increment `p' past the end of the pattern. We don't need
4782 to push such a point since we obviously won't find any more
4783 fastmap entries beyond `pend'. Such a pattern can match
4784 the null string, though. */
4785 if (p + j < pend)
4786 {
4787 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4788 {
4789 RESET_FAIL_STACK ();
4790 return -2;
4791 }
4792 }
4793 else
4794 bufp->can_be_null = 1;
4795
4796 if (succeed_n_p)
4797 {
4798 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4799 succeed_n_p = false;
4800 }
4801
4802 continue;
4803
4804
4805 case succeed_n:
4806 /* Get to the number of times to succeed. */
4807 p += OFFSET_ADDRESS_SIZE;
4808
4809 /* Increment p past the n for when k != 0. */
4810 EXTRACT_NUMBER_AND_INCR (k, p);
4811 if (k == 0)
4812 {
4813 p -= 2 * OFFSET_ADDRESS_SIZE;
4814 succeed_n_p = true; /* Spaghetti code alert. */
4815 goto handle_on_failure_jump;
4816 }
4817 continue;
4818
4819
4820 case set_number_at:
4821 p += 2 * OFFSET_ADDRESS_SIZE;
4822 continue;
4823
4824
4825 case start_memory:
4826 case stop_memory:
4827 p += 2;
4828 continue;
4829
4830
4831 default:
4832 abort (); /* We have listed all the cases. */
4833 } /* switch *p++ */
4834
4835 /* Getting here means we have found the possible starting
4836 characters for one path of the pattern -- and that the empty
4837 string does not match. We need not follow this path further.
4838 Instead, look at the next alternative (remembered on the
4839 stack), or quit if no more. The test at the top of the loop
4840 does these things. */
4841 path_can_be_null = false;
4842 p = pend;
4843 } /* while p */
4844
4845 /* Set `can_be_null' for the last path (also the first path, if the
4846 pattern is empty). */
4847 bufp->can_be_null |= path_can_be_null;
4848
4849 done:
4850 RESET_FAIL_STACK ();
4851 return 0;
4852 }
4853
4854 #else /* not INSIDE_RECURSION */
4855
4856 int
re_compile_fastmap(struct re_pattern_buffer * bufp)4857 re_compile_fastmap (struct re_pattern_buffer *bufp)
4858 {
4859 # ifdef MBS_SUPPORT
4860 if (MB_CUR_MAX != 1)
4861 return wcs_re_compile_fastmap(bufp);
4862 else
4863 # endif
4864 return byte_re_compile_fastmap(bufp);
4865 } /* re_compile_fastmap */
4866 #ifdef _LIBC
weak_alias(__re_compile_fastmap,re_compile_fastmap)4867 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4868 #endif
4869
4870
4871 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4872 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4873 this memory for recording register information. STARTS and ENDS
4874 must be allocated using the malloc library routine, and must each
4875 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4876
4877 If NUM_REGS == 0, then subsequent matches should allocate their own
4878 register data.
4879
4880 Unless this function is called, the first search or match using
4881 PATTERN_BUFFER will allocate its own register data, without
4882 freeing the old data. */
4883
4884 void
4885 re_set_registers (struct re_pattern_buffer *bufp,
4886 struct re_registers *regs,
4887 unsigned int num_regs,
4888 regoff_t *starts, regoff_t *ends)
4889 {
4890 if (num_regs)
4891 {
4892 bufp->regs_allocated = REGS_REALLOCATE;
4893 regs->num_regs = num_regs;
4894 regs->start = starts;
4895 regs->end = ends;
4896 }
4897 else
4898 {
4899 bufp->regs_allocated = REGS_UNALLOCATED;
4900 regs->num_regs = 0;
4901 regs->start = regs->end = (regoff_t *) 0;
4902 }
4903 }
4904 #ifdef _LIBC
weak_alias(__re_set_registers,re_set_registers)4905 weak_alias (__re_set_registers, re_set_registers)
4906 #endif
4907
4908 /* Searching routines. */
4909
4910 /* Like re_search_2, below, but only one string is specified, and
4911 doesn't let you say where to stop matching. */
4912
4913 int
4914 re_search (struct re_pattern_buffer *bufp,
4915 const char *string,
4916 int size, int startpos, int range,
4917 struct re_registers *regs)
4918 {
4919 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4920 regs, size);
4921 }
4922 #ifdef _LIBC
weak_alias(__re_search,re_search)4923 weak_alias (__re_search, re_search)
4924 #endif
4925
4926
4927 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4928 virtual concatenation of STRING1 and STRING2, starting first at index
4929 STARTPOS, then at STARTPOS + 1, and so on.
4930
4931 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4932
4933 RANGE is how far to scan while trying to match. RANGE = 0 means try
4934 only at STARTPOS; in general, the last start tried is STARTPOS +
4935 RANGE.
4936
4937 In REGS, return the indices of the virtual concatenation of STRING1
4938 and STRING2 that matched the entire BUFP->buffer and its contained
4939 subexpressions.
4940
4941 Do not consider matching one past the index STOP in the virtual
4942 concatenation of STRING1 and STRING2.
4943
4944 We return either the position in the strings at which the match was
4945 found, -1 if no match, or -2 if error (such as failure
4946 stack overflow). */
4947
4948 int
4949 re_search_2 (struct re_pattern_buffer *bufp,
4950 const char *string1, int size1,
4951 const char *string2, int size2,
4952 int startpos, int range,
4953 struct re_registers *regs,
4954 int stop)
4955 {
4956 # ifdef MBS_SUPPORT
4957 if (MB_CUR_MAX != 1)
4958 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4959 range, regs, stop);
4960 else
4961 # endif
4962 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4963 range, regs, stop);
4964 } /* re_search_2 */
4965 #ifdef _LIBC
weak_alias(__re_search_2,re_search_2)4966 weak_alias (__re_search_2, re_search_2)
4967 #endif
4968
4969 #endif /* not INSIDE_RECURSION */
4970
4971 #ifdef INSIDE_RECURSION
4972
4973 #ifdef MATCH_MAY_ALLOCATE
4974 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4975 #else
4976 # define FREE_VAR(var) if (var) free (var); var = NULL
4977 #endif
4978
4979 #ifdef WCHAR
4980 # define MAX_ALLOCA_SIZE 2000
4981
4982 # define FREE_WCS_BUFFERS() \
4983 do { \
4984 if (size1 > MAX_ALLOCA_SIZE) \
4985 { \
4986 free (wcs_string1); \
4987 free (mbs_offset1); \
4988 } \
4989 else \
4990 { \
4991 FREE_VAR (wcs_string1); \
4992 FREE_VAR (mbs_offset1); \
4993 } \
4994 if (size2 > MAX_ALLOCA_SIZE) \
4995 { \
4996 free (wcs_string2); \
4997 free (mbs_offset2); \
4998 } \
4999 else \
5000 { \
5001 FREE_VAR (wcs_string2); \
5002 FREE_VAR (mbs_offset2); \
5003 } \
5004 } while (0)
5005
5006 #endif
5007
5008
5009 static int
5010 PREFIX(re_search_2) (struct re_pattern_buffer *bufp,
5011 const char *string1, int size1,
5012 const char *string2, int size2,
5013 int startpos, int range,
5014 struct re_registers *regs,
5015 int stop)
5016 {
5017 int val;
5018 register char *fastmap = bufp->fastmap;
5019 register RE_TRANSLATE_TYPE translate = bufp->translate;
5020 int total_size = size1 + size2;
5021 int endpos = startpos + range;
5022 #ifdef WCHAR
5023 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5024 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5025 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5026 int wcs_size1 = 0, wcs_size2 = 0;
5027 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5028 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5029 /* They hold whether each wchar_t is binary data or not. */
5030 char *is_binary = NULL;
5031 #endif /* WCHAR */
5032
5033 /* Check for out-of-range STARTPOS. */
5034 if (startpos < 0 || startpos > total_size)
5035 return -1;
5036
5037 /* Fix up RANGE if it might eventually take us outside
5038 the virtual concatenation of STRING1 and STRING2.
5039 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5040 if (endpos < 0)
5041 range = 0 - startpos;
5042 else if (endpos > total_size)
5043 range = total_size - startpos;
5044
5045 /* If the search isn't to be a backwards one, don't waste time in a
5046 search for a pattern that must be anchored. */
5047 if (bufp->used > 0 && range > 0
5048 && ((re_opcode_t) bufp->buffer[0] == begbuf
5049 /* `begline' is like `begbuf' if it cannot match at newlines. */
5050 || ((re_opcode_t) bufp->buffer[0] == begline
5051 && !bufp->newline_anchor)))
5052 {
5053 if (startpos > 0)
5054 return -1;
5055 else
5056 range = 1;
5057 }
5058
5059 #ifdef emacs
5060 /* In a forward search for something that starts with \=.
5061 don't keep searching past point. */
5062 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5063 {
5064 range = PT - startpos;
5065 if (range <= 0)
5066 return -1;
5067 }
5068 #endif /* emacs */
5069
5070 /* Update the fastmap now if not correct already. */
5071 if (fastmap && !bufp->fastmap_accurate)
5072 if (re_compile_fastmap (bufp) == -2)
5073 return -2;
5074
5075 #ifdef WCHAR
5076 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5077 fill them with converted string. */
5078 if (size1 != 0)
5079 {
5080 if (size1 > MAX_ALLOCA_SIZE)
5081 {
5082 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5083 mbs_offset1 = TALLOC (size1 + 1, int);
5084 is_binary = TALLOC (size1 + 1, char);
5085 }
5086 else
5087 {
5088 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5089 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5090 is_binary = REGEX_TALLOC (size1 + 1, char);
5091 }
5092 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5093 {
5094 if (size1 > MAX_ALLOCA_SIZE)
5095 {
5096 free (wcs_string1);
5097 free (mbs_offset1);
5098 free (is_binary);
5099 }
5100 else
5101 {
5102 FREE_VAR (wcs_string1);
5103 FREE_VAR (mbs_offset1);
5104 FREE_VAR (is_binary);
5105 }
5106 return -2;
5107 }
5108 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5109 mbs_offset1, is_binary);
5110 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
5111 if (size1 > MAX_ALLOCA_SIZE)
5112 free (is_binary);
5113 else
5114 FREE_VAR (is_binary);
5115 }
5116 if (size2 != 0)
5117 {
5118 if (size2 > MAX_ALLOCA_SIZE)
5119 {
5120 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5121 mbs_offset2 = TALLOC (size2 + 1, int);
5122 is_binary = TALLOC (size2 + 1, char);
5123 }
5124 else
5125 {
5126 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5127 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5128 is_binary = REGEX_TALLOC (size2 + 1, char);
5129 }
5130 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5131 {
5132 FREE_WCS_BUFFERS ();
5133 if (size2 > MAX_ALLOCA_SIZE)
5134 free (is_binary);
5135 else
5136 FREE_VAR (is_binary);
5137 return -2;
5138 }
5139 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5140 mbs_offset2, is_binary);
5141 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
5142 if (size2 > MAX_ALLOCA_SIZE)
5143 free (is_binary);
5144 else
5145 FREE_VAR (is_binary);
5146 }
5147 #endif /* WCHAR */
5148
5149
5150 /* Loop through the string, looking for a place to start matching. */
5151 for (;;)
5152 {
5153 /* If a fastmap is supplied, skip quickly over characters that
5154 cannot be the start of a match. If the pattern can match the
5155 null string, however, we don't need to skip characters; we want
5156 the first null string. */
5157 if (fastmap && startpos < total_size && !bufp->can_be_null)
5158 {
5159 if (range > 0) /* Searching forwards. */
5160 {
5161 register const char *d;
5162 register int lim = 0;
5163 int irange = range;
5164
5165 if (startpos < size1 && startpos + range >= size1)
5166 lim = range - (size1 - startpos);
5167
5168 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5169
5170 /* Written out as an if-else to avoid testing `translate'
5171 inside the loop. */
5172 if (translate)
5173 while (range > lim
5174 && !fastmap[(unsigned char)
5175 translate[(unsigned char) *d++]])
5176 range--;
5177 else
5178 while (range > lim && !fastmap[(unsigned char) *d++])
5179 range--;
5180
5181 startpos += irange - range;
5182 }
5183 else /* Searching backwards. */
5184 {
5185 register CHAR_T c = (size1 == 0 || startpos >= size1
5186 ? string2[startpos - size1]
5187 : string1[startpos]);
5188
5189 if (!fastmap[(unsigned char) TRANSLATE (c)])
5190 goto advance;
5191 }
5192 }
5193
5194 /* If can't match the null string, and that's all we have left, fail. */
5195 if (range >= 0 && startpos == total_size && fastmap
5196 && !bufp->can_be_null)
5197 {
5198 #ifdef WCHAR
5199 FREE_WCS_BUFFERS ();
5200 #endif
5201 return -1;
5202 }
5203
5204 #ifdef WCHAR
5205 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5206 size2, startpos, regs, stop,
5207 wcs_string1, wcs_size1,
5208 wcs_string2, wcs_size2,
5209 mbs_offset1, mbs_offset2);
5210 #else /* BYTE */
5211 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5212 size2, startpos, regs, stop);
5213 #endif /* BYTE */
5214
5215 #ifndef REGEX_MALLOC
5216 # ifdef C_ALLOCA
5217 alloca (0);
5218 # endif
5219 #endif
5220
5221 if (val >= 0)
5222 {
5223 #ifdef WCHAR
5224 FREE_WCS_BUFFERS ();
5225 #endif
5226 return startpos;
5227 }
5228
5229 if (val == -2)
5230 {
5231 #ifdef WCHAR
5232 FREE_WCS_BUFFERS ();
5233 #endif
5234 return -2;
5235 }
5236
5237 advance:
5238 if (!range)
5239 break;
5240 else if (range > 0)
5241 {
5242 range--;
5243 startpos++;
5244 }
5245 else
5246 {
5247 range++;
5248 startpos--;
5249 }
5250 }
5251 #ifdef WCHAR
5252 FREE_WCS_BUFFERS ();
5253 #endif
5254 return -1;
5255 }
5256
5257 #ifdef WCHAR
5258 /* This converts PTR, a pointer into one of the search wchar_t strings
5259 `string1' and `string2' into an multibyte string offset from the
5260 beginning of that string. We use mbs_offset to optimize.
5261 See convert_mbs_to_wcs. */
5262 # define POINTER_TO_OFFSET(ptr) \
5263 (FIRST_STRING_P (ptr) \
5264 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5265 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5266 + csize1)))
5267 #else /* BYTE */
5268 /* This converts PTR, a pointer into one of the search strings `string1'
5269 and `string2' into an offset from the beginning of that string. */
5270 # define POINTER_TO_OFFSET(ptr) \
5271 (FIRST_STRING_P (ptr) \
5272 ? ((regoff_t) ((ptr) - string1)) \
5273 : ((regoff_t) ((ptr) - string2 + size1)))
5274 #endif /* WCHAR */
5275
5276 /* Macros for dealing with the split strings in re_match_2. */
5277
5278 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5279
5280 /* Call before fetching a character with *d. This switches over to
5281 string2 if necessary. */
5282 #define PREFETCH() \
5283 while (d == dend) \
5284 { \
5285 /* End of string2 => fail. */ \
5286 if (dend == end_match_2) \
5287 goto fail; \
5288 /* End of string1 => advance to string2. */ \
5289 d = string2; \
5290 dend = end_match_2; \
5291 }
5292
5293 /* Test if at very beginning or at very end of the virtual concatenation
5294 of `string1' and `string2'. If only one string, it's `string2'. */
5295 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5296 #define AT_STRINGS_END(d) ((d) == end2)
5297
5298
5299 /* Test if D points to a character which is word-constituent. We have
5300 two special cases to check for: if past the end of string1, look at
5301 the first character in string2; and if before the beginning of
5302 string2, look at the last character in string1. */
5303 #ifdef WCHAR
5304 /* Use internationalized API instead of SYNTAX. */
5305 # define WORDCHAR_P(d) \
5306 (iswalnum ((wint_t)((d) == end1 ? *string2 \
5307 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5308 || ((d) == end1 ? *string2 \
5309 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
5310 #else /* BYTE */
5311 # define WORDCHAR_P(d) \
5312 (SYNTAX ((d) == end1 ? *string2 \
5313 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5314 == Sword)
5315 #endif /* WCHAR */
5316
5317 /* Disabled due to a compiler bug -- see comment at case wordbound */
5318 #if 0
5319 /* Test if the character before D and the one at D differ with respect
5320 to being word-constituent. */
5321 #define AT_WORD_BOUNDARY(d) \
5322 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5323 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5324 #endif
5325
5326 /* Free everything we malloc. */
5327 #ifdef MATCH_MAY_ALLOCATE
5328 # ifdef WCHAR
5329 # define FREE_VARIABLES() \
5330 do { \
5331 REGEX_FREE_STACK (fail_stack.stack); \
5332 FREE_VAR (regstart); \
5333 FREE_VAR (regend); \
5334 FREE_VAR (old_regstart); \
5335 FREE_VAR (old_regend); \
5336 FREE_VAR (best_regstart); \
5337 FREE_VAR (best_regend); \
5338 FREE_VAR (reg_info); \
5339 FREE_VAR (reg_dummy); \
5340 FREE_VAR (reg_info_dummy); \
5341 if (!cant_free_wcs_buf) \
5342 { \
5343 FREE_VAR (string1); \
5344 FREE_VAR (string2); \
5345 FREE_VAR (mbs_offset1); \
5346 FREE_VAR (mbs_offset2); \
5347 } \
5348 } while (0)
5349 # else /* BYTE */
5350 # define FREE_VARIABLES() \
5351 do { \
5352 REGEX_FREE_STACK (fail_stack.stack); \
5353 FREE_VAR (regstart); \
5354 FREE_VAR (regend); \
5355 FREE_VAR (old_regstart); \
5356 FREE_VAR (old_regend); \
5357 FREE_VAR (best_regstart); \
5358 FREE_VAR (best_regend); \
5359 FREE_VAR (reg_info); \
5360 FREE_VAR (reg_dummy); \
5361 FREE_VAR (reg_info_dummy); \
5362 } while (0)
5363 # endif /* WCHAR */
5364 #else
5365 # ifdef WCHAR
5366 # define FREE_VARIABLES() \
5367 do { \
5368 if (!cant_free_wcs_buf) \
5369 { \
5370 FREE_VAR (string1); \
5371 FREE_VAR (string2); \
5372 FREE_VAR (mbs_offset1); \
5373 FREE_VAR (mbs_offset2); \
5374 } \
5375 } while (0)
5376 # else /* BYTE */
5377 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5378 # endif /* WCHAR */
5379 #endif /* not MATCH_MAY_ALLOCATE */
5380
5381 /* These values must meet several constraints. They must not be valid
5382 register values; since we have a limit of 255 registers (because
5383 we use only one byte in the pattern for the register number), we can
5384 use numbers larger than 255. They must differ by 1, because of
5385 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5386 be larger than the value for the highest register, so we do not try
5387 to actually save any registers when none are active. */
5388 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5389 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5390
5391 #else /* not INSIDE_RECURSION */
5392 /* Matching routines. */
5393
5394 #ifndef emacs /* Emacs never uses this. */
5395 /* re_match is like re_match_2 except it takes only a single string. */
5396
5397 int
5398 re_match (struct re_pattern_buffer *bufp,
5399 const char *string,
5400 int size, int pos,
5401 struct re_registers *regs)
5402 {
5403 int result;
5404 # ifdef MBS_SUPPORT
5405 if (MB_CUR_MAX != 1)
5406 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5407 pos, regs, size,
5408 NULL, 0, NULL, 0, NULL, NULL);
5409 else
5410 # endif
5411 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5412 pos, regs, size);
5413 # ifndef REGEX_MALLOC
5414 # ifdef C_ALLOCA
5415 alloca (0);
5416 # endif
5417 # endif
5418 return result;
5419 }
5420 # ifdef _LIBC
5421 weak_alias (__re_match, re_match)
5422 # endif
5423 #endif /* not emacs */
5424
5425 #endif /* not INSIDE_RECURSION */
5426
5427 #ifdef INSIDE_RECURSION
5428 static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5429 UCHAR_T *end,
5430 PREFIX(register_info_type) *reg_info);
5431 static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5432 UCHAR_T *end,
5433 PREFIX(register_info_type) *reg_info);
5434 static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5435 UCHAR_T *end,
5436 PREFIX(register_info_type) *reg_info);
5437 static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5438 int len, char *translate);
5439 #else /* not INSIDE_RECURSION */
5440
5441 /* re_match_2 matches the compiled pattern in BUFP against the
5442 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5443 and SIZE2, respectively). We start matching at POS, and stop
5444 matching at STOP.
5445
5446 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5447 store offsets for the substring each group matched in REGS. See the
5448 documentation for exactly how many groups we fill.
5449
5450 We return -1 if no match, -2 if an internal error (such as the
5451 failure stack overflowing). Otherwise, we return the length of the
5452 matched substring. */
5453
5454 int
re_match_2(struct re_pattern_buffer * bufp,const char * string1,int size1,const char * string2,int size2,int pos,struct re_registers * regs,int stop)5455 re_match_2 (struct re_pattern_buffer *bufp,
5456 const char *string1, int size1,
5457 const char *string2, int size2,
5458 int pos, struct re_registers *regs,
5459 int stop)
5460 {
5461 int result;
5462 # ifdef MBS_SUPPORT
5463 if (MB_CUR_MAX != 1)
5464 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5465 pos, regs, stop,
5466 NULL, 0, NULL, 0, NULL, NULL);
5467 else
5468 # endif
5469 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5470 pos, regs, stop);
5471
5472 #ifndef REGEX_MALLOC
5473 # ifdef C_ALLOCA
5474 alloca (0);
5475 # endif
5476 #endif
5477 return result;
5478 }
5479 #ifdef _LIBC
weak_alias(__re_match_2,re_match_2)5480 weak_alias (__re_match_2, re_match_2)
5481 #endif
5482
5483 #endif /* not INSIDE_RECURSION */
5484
5485 #ifdef INSIDE_RECURSION
5486
5487 #ifdef WCHAR
5488
5489 /* This check the substring (from 0, to length) of the multibyte string,
5490 to which offset_buffer correspond. And count how many wchar_t_characters
5491 the substring occupy. We use offset_buffer to optimization.
5492 See convert_mbs_to_wcs. */
5493
5494 static int
5495 count_mbs_length (int *offset_buffer, int length)
5496 {
5497 int upper, lower;
5498
5499 /* Check whether the size is valid. */
5500 if (length < 0)
5501 return -1;
5502
5503 if (offset_buffer == NULL)
5504 return 0;
5505
5506 /* If there are no multibyte character, offset_buffer[i] == i.
5507 Optmize for this case. */
5508 if (offset_buffer[length] == length)
5509 return length;
5510
5511 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5512 upper = length;
5513 lower = 0;
5514
5515 while (true)
5516 {
5517 int middle = (lower + upper) / 2;
5518 if (middle == lower || middle == upper)
5519 break;
5520 if (offset_buffer[middle] > length)
5521 upper = middle;
5522 else if (offset_buffer[middle] < length)
5523 lower = middle;
5524 else
5525 return middle;
5526 }
5527
5528 return -1;
5529 }
5530 #endif /* WCHAR */
5531
5532 /* This is a separate function so that we can force an alloca cleanup
5533 afterwards. */
5534 #ifdef WCHAR
5535 static int
wcs_re_match_2_internal(struct re_pattern_buffer * bufp,const char * cstring1,int csize1,const char * cstring2,int csize2,int pos,struct re_registers * regs,int stop,wchar_t * string1,int size1,wchar_t * string2,int size2,int * mbs_offset1,int * mbs_offset2)5536 wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5537 const char *cstring1, int csize1,
5538 const char *cstring2, int csize2,
5539 int pos,
5540 struct re_registers *regs,
5541 int stop,
5542 /* string1 == string2 == NULL means
5543 string1/2, size1/2 and mbs_offset1/2 need
5544 setting up in this function. */
5545 /* We need wchar_t * buffers corresponding to
5546 cstring1, cstring2. */
5547 wchar_t *string1, int size1,
5548 wchar_t *string2, int size2,
5549 /* Offset buffer for optimization. See
5550 convert_mbs_to_wc. */
5551 int *mbs_offset1,
5552 int *mbs_offset2)
5553 #else /* BYTE */
5554 static int
5555 byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5556 const char *string1, int size1,
5557 const char *string2, int size2,
5558 int pos,
5559 struct re_registers *regs,
5560 int stop)
5561 #endif /* BYTE */
5562 {
5563 /* General temporaries. */
5564 int mcnt;
5565 UCHAR_T *p1;
5566 #ifdef WCHAR
5567 /* They hold whether each wchar_t is binary data or not. */
5568 char *is_binary = NULL;
5569 /* If true, we can't free string1/2, mbs_offset1/2. */
5570 int cant_free_wcs_buf = 1;
5571 #endif /* WCHAR */
5572
5573 /* Just past the end of the corresponding string. */
5574 const CHAR_T *end1, *end2;
5575
5576 /* Pointers into string1 and string2, just past the last characters in
5577 each to consider matching. */
5578 const CHAR_T *end_match_1, *end_match_2;
5579
5580 /* Where we are in the data, and the end of the current string. */
5581 const CHAR_T *d, *dend;
5582
5583 /* Where we are in the pattern, and the end of the pattern. */
5584 #ifdef WCHAR
5585 UCHAR_T *pattern, *p;
5586 register UCHAR_T *pend;
5587 #else /* BYTE */
5588 UCHAR_T *p = bufp->buffer;
5589 register UCHAR_T *pend = p + bufp->used;
5590 #endif /* WCHAR */
5591
5592 /* Mark the opcode just after a start_memory, so we can test for an
5593 empty subpattern when we get to the stop_memory. */
5594 UCHAR_T *just_past_start_mem = 0;
5595
5596 /* We use this to map every character in the string. */
5597 RE_TRANSLATE_TYPE translate = bufp->translate;
5598
5599 /* Failure point stack. Each place that can handle a failure further
5600 down the line pushes a failure point on this stack. It consists of
5601 restart, regend, and reg_info for all registers corresponding to
5602 the subexpressions we're currently inside, plus the number of such
5603 registers, and, finally, two char *'s. The first char * is where
5604 to resume scanning the pattern; the second one is where to resume
5605 scanning the strings. If the latter is zero, the failure point is
5606 a ``dummy''; if a failure happens and the failure point is a dummy,
5607 it gets discarded and the next next one is tried. */
5608 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5609 PREFIX(fail_stack_type) fail_stack;
5610 #endif
5611 #ifdef DEBUG
5612 static unsigned failure_id;
5613 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5614 #endif
5615
5616 #ifdef REL_ALLOC
5617 /* This holds the pointer to the failure stack, when
5618 it is allocated relocatably. */
5619 fail_stack_elt_t *failure_stack_ptr;
5620 #endif
5621
5622 /* We fill all the registers internally, independent of what we
5623 return, for use in backreferences. The number here includes
5624 an element for register zero. */
5625 size_t num_regs = bufp->re_nsub + 1;
5626
5627 /* The currently active registers. */
5628 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5629 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5630
5631 /* Information on the contents of registers. These are pointers into
5632 the input strings; they record just what was matched (on this
5633 attempt) by a subexpression part of the pattern, that is, the
5634 regnum-th regstart pointer points to where in the pattern we began
5635 matching and the regnum-th regend points to right after where we
5636 stopped matching the regnum-th subexpression. (The zeroth register
5637 keeps track of what the whole pattern matches.) */
5638 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5639 const CHAR_T **regstart, **regend;
5640 #endif
5641
5642 /* If a group that's operated upon by a repetition operator fails to
5643 match anything, then the register for its start will need to be
5644 restored because it will have been set to wherever in the string we
5645 are when we last see its open-group operator. Similarly for a
5646 register's end. */
5647 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5648 const CHAR_T **old_regstart, **old_regend;
5649 #endif
5650
5651 /* The is_active field of reg_info helps us keep track of which (possibly
5652 nested) subexpressions we are currently in. The matched_something
5653 field of reg_info[reg_num] helps us tell whether or not we have
5654 matched any of the pattern so far this time through the reg_num-th
5655 subexpression. These two fields get reset each time through any
5656 loop their register is in. */
5657 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5658 PREFIX(register_info_type) *reg_info;
5659 #endif
5660
5661 /* The following record the register info as found in the above
5662 variables when we find a match better than any we've seen before.
5663 This happens as we backtrack through the failure points, which in
5664 turn happens only if we have not yet matched the entire string. */
5665 unsigned best_regs_set = false;
5666 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5667 const CHAR_T **best_regstart, **best_regend;
5668 #endif
5669
5670 /* Logically, this is `best_regend[0]'. But we don't want to have to
5671 allocate space for that if we're not allocating space for anything
5672 else (see below). Also, we never need info about register 0 for
5673 any of the other register vectors, and it seems rather a kludge to
5674 treat `best_regend' differently than the rest. So we keep track of
5675 the end of the best match so far in a separate variable. We
5676 initialize this to NULL so that when we backtrack the first time
5677 and need to test it, it's not garbage. */
5678 const CHAR_T *match_end = NULL;
5679
5680 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5681 int set_regs_matched_done = 0;
5682
5683 /* Used when we pop values we don't care about. */
5684 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5685 const CHAR_T **reg_dummy;
5686 PREFIX(register_info_type) *reg_info_dummy;
5687 #endif
5688
5689 #ifdef DEBUG
5690 /* Counts the total number of registers pushed. */
5691 unsigned num_regs_pushed = 0;
5692 #endif
5693
5694 /* Definitions for state transitions. More efficiently for gcc. */
5695 #ifdef __GNUC__
5696 # if defined HAVE_SUBTRACT_LOCAL_LABELS && defined SHARED
5697 # define NEXT \
5698 do \
5699 { \
5700 int offset; \
5701 const void *__unbounded ptr; \
5702 offset = (p == pend \
5703 ? 0 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5704 ptr = &&end_of_pattern + offset; \
5705 goto *ptr; \
5706 } \
5707 while (0)
5708 # define REF(x) \
5709 &&label_##x - &&end_of_pattern
5710 # define JUMP_TABLE_TYPE const int
5711 # else
5712 # define NEXT \
5713 do \
5714 { \
5715 const void *__unbounded ptr; \
5716 ptr = (p == pend ? &&end_of_pattern \
5717 : jmptable[SWITCH_ENUM_CAST ((re_opcode_t) *p++)]); \
5718 goto *ptr; \
5719 } \
5720 while (0)
5721 # define REF(x) \
5722 &&label_##x
5723 # define JUMP_TABLE_TYPE const void *const
5724 # endif
5725 # define CASE(x) label_##x
5726 static JUMP_TABLE_TYPE jmptable[] =
5727 {
5728 REF (no_op),
5729 REF (succeed),
5730 REF (exactn),
5731 # ifdef MBS_SUPPORT
5732 REF (exactn_bin),
5733 # endif
5734 REF (anychar),
5735 REF (charset),
5736 REF (charset_not),
5737 REF (start_memory),
5738 REF (stop_memory),
5739 REF (duplicate),
5740 REF (begline),
5741 REF (endline),
5742 REF (begbuf),
5743 REF (endbuf),
5744 REF (jump),
5745 REF (jump_past_alt),
5746 REF (on_failure_jump),
5747 REF (on_failure_keep_string_jump),
5748 REF (pop_failure_jump),
5749 REF (maybe_pop_jump),
5750 REF (dummy_failure_jump),
5751 REF (push_dummy_failure),
5752 REF (succeed_n),
5753 REF (jump_n),
5754 REF (set_number_at),
5755 REF (wordchar),
5756 REF (notwordchar),
5757 REF (wordbeg),
5758 REF (wordend),
5759 REF (wordbound),
5760 REF (notwordbound)
5761 # ifdef emacs
5762 ,REF (before_dot),
5763 REF (at_dot),
5764 REF (after_dot),
5765 REF (syntaxspec),
5766 REF (notsyntaxspec)
5767 # endif
5768 };
5769 #else
5770 # define NEXT \
5771 break
5772 # define CASE(x) \
5773 case x
5774 #endif
5775
5776 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5777
5778 INIT_FAIL_STACK ();
5779
5780 #ifdef MATCH_MAY_ALLOCATE
5781 /* Do not bother to initialize all the register variables if there are
5782 no groups in the pattern, as it takes a fair amount of time. If
5783 there are groups, we include space for register 0 (the whole
5784 pattern), even though we never use it, since it simplifies the
5785 array indexing. We should fix this. */
5786 if (bufp->re_nsub)
5787 {
5788 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5789 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5790 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5791 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5792 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5793 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5794 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5795 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5796 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5797
5798 if (!(regstart && regend && old_regstart && old_regend && reg_info
5799 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5800 {
5801 FREE_VARIABLES ();
5802 return -2;
5803 }
5804 }
5805 else
5806 {
5807 /* We must initialize all our variables to NULL, so that
5808 `FREE_VARIABLES' doesn't try to free them. */
5809 regstart = regend = old_regstart = old_regend = best_regstart
5810 = best_regend = reg_dummy = NULL;
5811 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5812 }
5813 #endif /* MATCH_MAY_ALLOCATE */
5814
5815 /* The starting position is bogus. */
5816 #ifdef WCHAR
5817 if (pos < 0 || pos > csize1 + csize2)
5818 #else /* BYTE */
5819 if (pos < 0 || pos > size1 + size2)
5820 #endif
5821 {
5822 FREE_VARIABLES ();
5823 return -1;
5824 }
5825
5826 #ifdef WCHAR
5827 /* Allocate wchar_t array for string1 and string2 and
5828 fill them with converted string. */
5829 if (string1 == NULL && string2 == NULL)
5830 {
5831 /* We need seting up buffers here. */
5832
5833 /* We must free wcs buffers in this function. */
5834 cant_free_wcs_buf = 0;
5835
5836 if (csize1 != 0)
5837 {
5838 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5839 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5840 is_binary = REGEX_TALLOC (csize1 + 1, char);
5841 if (!string1 || !mbs_offset1 || !is_binary)
5842 {
5843 FREE_VAR (string1);
5844 FREE_VAR (mbs_offset1);
5845 FREE_VAR (is_binary);
5846 return -2;
5847 }
5848 }
5849 if (csize2 != 0)
5850 {
5851 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5852 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5853 is_binary = REGEX_TALLOC (csize2 + 1, char);
5854 if (!string2 || !mbs_offset2 || !is_binary)
5855 {
5856 FREE_VAR (string1);
5857 FREE_VAR (mbs_offset1);
5858 FREE_VAR (string2);
5859 FREE_VAR (mbs_offset2);
5860 FREE_VAR (is_binary);
5861 return -2;
5862 }
5863 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5864 mbs_offset2, is_binary);
5865 string2[size2] = L'\0'; /* for a sentinel */
5866 FREE_VAR (is_binary);
5867 }
5868 }
5869
5870 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5871 pattern to (char*) in regex_compile. */
5872 p = pattern = (CHAR_T*)bufp->buffer;
5873 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5874
5875 #endif /* WCHAR */
5876
5877 /* Initialize subexpression text positions to -1 to mark ones that no
5878 start_memory/stop_memory has been seen for. Also initialize the
5879 register information struct. */
5880 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5881 {
5882 regstart[mcnt] = regend[mcnt]
5883 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5884
5885 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5886 IS_ACTIVE (reg_info[mcnt]) = 0;
5887 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5888 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5889 }
5890
5891 /* We move `string1' into `string2' if the latter's empty -- but not if
5892 `string1' is null. */
5893 if (size2 == 0 && string1 != NULL)
5894 {
5895 string2 = string1;
5896 size2 = size1;
5897 string1 = 0;
5898 size1 = 0;
5899 #ifdef WCHAR
5900 mbs_offset2 = mbs_offset1;
5901 csize2 = csize1;
5902 mbs_offset1 = NULL;
5903 csize1 = 0;
5904 #endif
5905 }
5906 end1 = string1 + size1;
5907 end2 = string2 + size2;
5908
5909 /* Compute where to stop matching, within the two strings. */
5910 #ifdef WCHAR
5911 if (stop <= csize1)
5912 {
5913 mcnt = count_mbs_length(mbs_offset1, stop);
5914 end_match_1 = string1 + mcnt;
5915 end_match_2 = string2;
5916 }
5917 else
5918 {
5919 if (stop > csize1 + csize2)
5920 stop = csize1 + csize2;
5921 end_match_1 = end1;
5922 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5923 end_match_2 = string2 + mcnt;
5924 }
5925 if (mcnt < 0)
5926 { /* count_mbs_length return error. */
5927 FREE_VARIABLES ();
5928 return -1;
5929 }
5930 #else
5931 if (stop <= size1)
5932 {
5933 end_match_1 = string1 + stop;
5934 end_match_2 = string2;
5935 }
5936 else
5937 {
5938 end_match_1 = end1;
5939 end_match_2 = string2 + stop - size1;
5940 }
5941 #endif /* WCHAR */
5942
5943 /* `p' scans through the pattern as `d' scans through the data.
5944 `dend' is the end of the input string that `d' points within. `d'
5945 is advanced into the following input string whenever necessary, but
5946 this happens before fetching; therefore, at the beginning of the
5947 loop, `d' can be pointing at the end of a string, but it cannot
5948 equal `string2'. */
5949 #ifdef WCHAR
5950 if (size1 > 0 && pos <= csize1)
5951 {
5952 mcnt = count_mbs_length(mbs_offset1, pos);
5953 d = string1 + mcnt;
5954 dend = end_match_1;
5955 }
5956 else
5957 {
5958 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5959 d = string2 + mcnt;
5960 dend = end_match_2;
5961 }
5962
5963 if (mcnt < 0)
5964 { /* count_mbs_length return error. */
5965 FREE_VARIABLES ();
5966 return -1;
5967 }
5968 #else
5969 if (size1 > 0 && pos <= size1)
5970 {
5971 d = string1 + pos;
5972 dend = end_match_1;
5973 }
5974 else
5975 {
5976 d = string2 + pos - size1;
5977 dend = end_match_2;
5978 }
5979 #endif /* WCHAR */
5980
5981 DEBUG_PRINT1 ("The compiled pattern is:\n");
5982 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5983 DEBUG_PRINT1 ("The string to match is: `");
5984 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5985 DEBUG_PRINT1 ("'\n");
5986
5987 /* This loops over pattern commands. It exits by returning from the
5988 function if the match is complete, or it drops through if the match
5989 fails at this starting point in the input data. */
5990 for (;;)
5991 {
5992 #ifdef _LIBC
5993 DEBUG_PRINT2 ("\n%p: ", p);
5994 #else
5995 DEBUG_PRINT2 ("\n0x%x: ", p);
5996 #endif
5997
5998 #ifdef __GNUC__
5999 NEXT;
6000 #else
6001 if (p == pend)
6002 #endif
6003 {
6004 #ifdef __GNUC__
6005 end_of_pattern:
6006 #endif
6007 /* End of pattern means we might have succeeded. */
6008 DEBUG_PRINT1 ("end of pattern ... ");
6009
6010 /* If we haven't matched the entire string, and we want the
6011 longest match, try backtracking. */
6012 if (d != end_match_2)
6013 {
6014 /* 1 if this match ends in the same string (string1 or string2)
6015 as the best previous match. */
6016 boolean same_str_p = (FIRST_STRING_P (match_end)
6017 == MATCHING_IN_FIRST_STRING);
6018 /* 1 if this match is the best seen so far. */
6019 boolean best_match_p;
6020
6021 /* AIX compiler got confused when this was combined
6022 with the previous declaration. */
6023 if (same_str_p)
6024 best_match_p = d > match_end;
6025 else
6026 best_match_p = !MATCHING_IN_FIRST_STRING;
6027
6028 DEBUG_PRINT1 ("backtracking.\n");
6029
6030 if (!FAIL_STACK_EMPTY ())
6031 { /* More failure points to try. */
6032
6033 /* If exceeds best match so far, save it. */
6034 if (!best_regs_set || best_match_p)
6035 {
6036 best_regs_set = true;
6037 match_end = d;
6038
6039 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
6040
6041 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6042 {
6043 best_regstart[mcnt] = regstart[mcnt];
6044 best_regend[mcnt] = regend[mcnt];
6045 }
6046 }
6047 goto fail;
6048 }
6049
6050 /* If no failure points, don't restore garbage. And if
6051 last match is real best match, don't restore second
6052 best one. */
6053 else if (best_regs_set && !best_match_p)
6054 {
6055 restore_best_regs:
6056 /* Restore best match. It may happen that `dend ==
6057 end_match_1' while the restored d is in string2.
6058 For example, the pattern `x.*y.*z' against the
6059 strings `x-' and `y-z-', if the two strings are
6060 not consecutive in memory. */
6061 DEBUG_PRINT1 ("Restoring best registers.\n");
6062
6063 d = match_end;
6064 dend = ((d >= string1 && d <= end1)
6065 ? end_match_1 : end_match_2);
6066
6067 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
6068 {
6069 regstart[mcnt] = best_regstart[mcnt];
6070 regend[mcnt] = best_regend[mcnt];
6071 }
6072 }
6073 } /* d != end_match_2 */
6074
6075 succeed_label:
6076 DEBUG_PRINT1 ("Accepting match.\n");
6077 /* If caller wants register contents data back, do it. */
6078 if (regs && !bufp->no_sub)
6079 {
6080 /* Have the register data arrays been allocated? */
6081 if (bufp->regs_allocated == REGS_UNALLOCATED)
6082 { /* No. So allocate them with malloc. We need one
6083 extra element beyond `num_regs' for the `-1' marker
6084 GNU code uses. */
6085 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
6086 regs->start = TALLOC (regs->num_regs, regoff_t);
6087 regs->end = TALLOC (regs->num_regs, regoff_t);
6088 if (regs->start == NULL || regs->end == NULL)
6089 {
6090 FREE_VARIABLES ();
6091 return -2;
6092 }
6093 bufp->regs_allocated = REGS_REALLOCATE;
6094 }
6095 else if (bufp->regs_allocated == REGS_REALLOCATE)
6096 { /* Yes. If we need more elements than were already
6097 allocated, reallocate them. If we need fewer, just
6098 leave it alone. */
6099 if (regs->num_regs < num_regs + 1)
6100 {
6101 regs->num_regs = num_regs + 1;
6102 RETALLOC (regs->start, regs->num_regs, regoff_t);
6103 RETALLOC (regs->end, regs->num_regs, regoff_t);
6104 if (regs->start == NULL || regs->end == NULL)
6105 {
6106 FREE_VARIABLES ();
6107 return -2;
6108 }
6109 }
6110 }
6111 else
6112 {
6113 /* These braces fend off a "empty body in an else-statement"
6114 warning under GCC when assert expands to nothing. */
6115 assert (bufp->regs_allocated == REGS_FIXED);
6116 }
6117
6118 /* Convert the pointer data in `regstart' and `regend' to
6119 indices. Register zero has to be set differently,
6120 since we haven't kept track of any info for it. */
6121 if (regs->num_regs > 0)
6122 {
6123 regs->start[0] = pos;
6124 #ifdef WCHAR
6125 if (MATCHING_IN_FIRST_STRING)
6126 regs->end[0] = (mbs_offset1 != NULL ?
6127 mbs_offset1[d-string1] : 0);
6128 else
6129 regs->end[0] = csize1 + (mbs_offset2 != NULL
6130 ? mbs_offset2[d-string2] : 0);
6131 #else
6132 regs->end[0] = (MATCHING_IN_FIRST_STRING
6133 ? ((regoff_t) (d - string1))
6134 : ((regoff_t) (d - string2 + size1)));
6135 #endif /* WCHAR */
6136 }
6137
6138 /* Go through the first `min (num_regs, regs->num_regs)'
6139 registers, since that is all we initialized. */
6140 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6141 mcnt++)
6142 {
6143 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6144 regs->start[mcnt] = regs->end[mcnt] = -1;
6145 else
6146 {
6147 regs->start[mcnt]
6148 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6149 regs->end[mcnt]
6150 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6151 }
6152 }
6153
6154 /* If the regs structure we return has more elements than
6155 were in the pattern, set the extra elements to -1. If
6156 we (re)allocated the registers, this is the case,
6157 because we always allocate enough to have at least one
6158 -1 at the end. */
6159 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6160 regs->start[mcnt] = regs->end[mcnt] = -1;
6161 } /* regs && !bufp->no_sub */
6162
6163 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6164 nfailure_points_pushed, nfailure_points_popped,
6165 nfailure_points_pushed - nfailure_points_popped);
6166 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6167
6168 #ifdef WCHAR
6169 if (MATCHING_IN_FIRST_STRING)
6170 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6171 else
6172 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6173 csize1;
6174 mcnt -= pos;
6175 #else
6176 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6177 ? string1 : string2 - size1);
6178 #endif /* WCHAR */
6179
6180 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6181
6182 FREE_VARIABLES ();
6183 return mcnt;
6184 }
6185
6186 #ifndef __GNUC__
6187 /* Otherwise match next pattern command. */
6188 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6189 {
6190 #endif
6191 /* Ignore these. Used to ignore the n of succeed_n's which
6192 currently have n == 0. */
6193 CASE (no_op):
6194 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6195 NEXT;
6196
6197 CASE (succeed):
6198 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6199 goto succeed_label;
6200
6201 /* Match the next n pattern characters exactly. The following
6202 byte in the pattern defines n, and the n bytes after that
6203 are the characters to match. */
6204 CASE (exactn):
6205 #ifdef MBS_SUPPORT
6206 CASE (exactn_bin):
6207 #endif
6208 mcnt = *p++;
6209 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6210
6211 /* This is written out as an if-else so we don't waste time
6212 testing `translate' inside the loop. */
6213 if (translate)
6214 {
6215 do
6216 {
6217 PREFETCH ();
6218 #ifdef WCHAR
6219 if (*d <= 0xff)
6220 {
6221 if ((UCHAR_T) translate[(unsigned char) *d++]
6222 != (UCHAR_T) *p++)
6223 goto fail;
6224 }
6225 else
6226 {
6227 if (*d++ != (CHAR_T) *p++)
6228 goto fail;
6229 }
6230 #else
6231 if ((UCHAR_T) translate[(unsigned char) *d++]
6232 != (UCHAR_T) *p++)
6233 goto fail;
6234 #endif /* WCHAR */
6235 }
6236 while (--mcnt);
6237 }
6238 else
6239 {
6240 do
6241 {
6242 PREFETCH ();
6243 if (*d++ != (CHAR_T) *p++) goto fail;
6244 }
6245 while (--mcnt);
6246 }
6247 SET_REGS_MATCHED ();
6248 NEXT;
6249
6250
6251 /* Match any character except possibly a newline or a null. */
6252 CASE (anychar):
6253 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6254
6255 PREFETCH ();
6256
6257 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6258 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6259 goto fail;
6260
6261 SET_REGS_MATCHED ();
6262 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6263 d++;
6264 NEXT;
6265
6266
6267 CASE (charset):
6268 CASE (charset_not):
6269 {
6270 register UCHAR_T c;
6271 #ifdef WCHAR
6272 unsigned int i, char_class_length, coll_symbol_length,
6273 equiv_class_length, ranges_length, chars_length, length;
6274 CHAR_T *workp, *workp2, *charset_top;
6275 #define WORK_BUFFER_SIZE 128
6276 CHAR_T str_buf[WORK_BUFFER_SIZE];
6277 # ifdef _LIBC
6278 uint32_t nrules;
6279 # endif /* _LIBC */
6280 #endif /* WCHAR */
6281 boolean not = (re_opcode_t) *(p - 1) == charset_not;
6282
6283 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
6284 PREFETCH ();
6285 c = TRANSLATE (*d); /* The character to match. */
6286 #ifdef WCHAR
6287 # ifdef _LIBC
6288 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6289 # endif /* _LIBC */
6290 charset_top = p - 1;
6291 char_class_length = *p++;
6292 coll_symbol_length = *p++;
6293 equiv_class_length = *p++;
6294 ranges_length = *p++;
6295 chars_length = *p++;
6296 /* p points charset[6], so the address of the next instruction
6297 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6298 where l=length of char_classes, m=length of collating_symbol,
6299 n=equivalence_class, o=length of char_range,
6300 p'=length of character. */
6301 workp = p;
6302 /* Update p to indicate the next instruction. */
6303 p += char_class_length + coll_symbol_length+ equiv_class_length +
6304 2*ranges_length + chars_length;
6305
6306 /* match with char_class? */
6307 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6308 {
6309 wctype_t wctype;
6310 uintptr_t alignedp = ((uintptr_t)workp
6311 + __alignof__(wctype_t) - 1)
6312 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6313 wctype = *((wctype_t*)alignedp);
6314 workp += CHAR_CLASS_SIZE;
6315 if (iswctype((wint_t)c, wctype))
6316 goto char_set_matched;
6317 }
6318
6319 /* match with collating_symbol? */
6320 # ifdef _LIBC
6321 if (nrules != 0)
6322 {
6323 const unsigned char *extra = (const unsigned char *)
6324 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6325
6326 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6327 workp++)
6328 {
6329 int32_t *wextra;
6330 wextra = (int32_t*)(extra + *workp++);
6331 for (i = 0; i < *wextra; ++i)
6332 if (TRANSLATE(d[i]) != wextra[1 + i])
6333 break;
6334
6335 if (i == *wextra)
6336 {
6337 /* Update d, however d will be incremented at
6338 char_set_matched:, we decrement d here. */
6339 d += i - 1;
6340 goto char_set_matched;
6341 }
6342 }
6343 }
6344 else /* (nrules == 0) */
6345 # endif
6346 /* If we can't look up collation data, we use wcscoll
6347 instead. */
6348 {
6349 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6350 {
6351 const CHAR_T *backup_d = d, *backup_dend = dend;
6352 length = wcslen (workp);
6353
6354 /* If wcscoll(the collating symbol, whole string) > 0,
6355 any substring of the string never match with the
6356 collating symbol. */
6357 if (wcscoll (workp, d) > 0)
6358 {
6359 workp += length + 1;
6360 continue;
6361 }
6362
6363 /* First, we compare the collating symbol with
6364 the first character of the string.
6365 If it don't match, we add the next character to
6366 the compare buffer in turn. */
6367 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6368 {
6369 int match;
6370 if (d == dend)
6371 {
6372 if (dend == end_match_2)
6373 break;
6374 d = string2;
6375 dend = end_match_2;
6376 }
6377
6378 /* add next character to the compare buffer. */
6379 str_buf[i] = TRANSLATE(*d);
6380 str_buf[i+1] = '\0';
6381
6382 match = wcscoll (workp, str_buf);
6383 if (match == 0)
6384 goto char_set_matched;
6385
6386 if (match < 0)
6387 /* (str_buf > workp) indicate (str_buf + X > workp),
6388 because for all X (str_buf + X > str_buf).
6389 So we don't need continue this loop. */
6390 break;
6391
6392 /* Otherwise(str_buf < workp),
6393 (str_buf+next_character) may equals (workp).
6394 So we continue this loop. */
6395 }
6396 /* not matched */
6397 d = backup_d;
6398 dend = backup_dend;
6399 workp += length + 1;
6400 }
6401 }
6402 /* match with equivalence_class? */
6403 # ifdef _LIBC
6404 if (nrules != 0)
6405 {
6406 const CHAR_T *backup_d = d, *backup_dend = dend;
6407 /* Try to match the equivalence class against
6408 those known to the collate implementation. */
6409 const int32_t *table;
6410 const int32_t *weights;
6411 const int32_t *extra;
6412 const int32_t *indirect;
6413 int32_t idx, idx2;
6414 wint_t *cp;
6415 size_t len;
6416
6417 /* This #include defines a local function! */
6418 # include <locale/weightwc.h>
6419
6420 table = (const int32_t *)
6421 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6422 weights = (const wint_t *)
6423 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6424 extra = (const wint_t *)
6425 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6426 indirect = (const int32_t *)
6427 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6428
6429 /* Write 1 collating element to str_buf, and
6430 get its index. */
6431 idx2 = 0;
6432
6433 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6434 {
6435 cp = (wint_t*)str_buf;
6436 if (d == dend)
6437 {
6438 if (dend == end_match_2)
6439 break;
6440 d = string2;
6441 dend = end_match_2;
6442 }
6443 str_buf[i] = TRANSLATE(*(d+i));
6444 str_buf[i+1] = '\0'; /* sentinel */
6445 idx2 = findidx ((const wint_t**)&cp);
6446 }
6447
6448 /* Update d, however d will be incremented at
6449 char_set_matched:, we decrement d here. */
6450 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6451 if (d >= dend)
6452 {
6453 if (dend == end_match_2)
6454 d = dend;
6455 else
6456 {
6457 d = string2;
6458 dend = end_match_2;
6459 }
6460 }
6461
6462 len = weights[idx2];
6463
6464 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6465 workp++)
6466 {
6467 idx = (int32_t)*workp;
6468 /* We already checked idx != 0 in regex_compile. */
6469
6470 if (idx2 != 0 && len == weights[idx])
6471 {
6472 int cnt = 0;
6473 while (cnt < len && (weights[idx + 1 + cnt]
6474 == weights[idx2 + 1 + cnt]))
6475 ++cnt;
6476
6477 if (cnt == len)
6478 goto char_set_matched;
6479 }
6480 }
6481 /* not matched */
6482 d = backup_d;
6483 dend = backup_dend;
6484 }
6485 else /* (nrules == 0) */
6486 # endif
6487 /* If we can't look up collation data, we use wcscoll
6488 instead. */
6489 {
6490 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6491 {
6492 const CHAR_T *backup_d = d, *backup_dend = dend;
6493 length = wcslen (workp);
6494
6495 /* If wcscoll(the collating symbol, whole string) > 0,
6496 any substring of the string never match with the
6497 collating symbol. */
6498 if (wcscoll (workp, d) > 0)
6499 {
6500 workp += length + 1;
6501 break;
6502 }
6503
6504 /* First, we compare the equivalence class with
6505 the first character of the string.
6506 If it don't match, we add the next character to
6507 the compare buffer in turn. */
6508 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6509 {
6510 int match;
6511 if (d == dend)
6512 {
6513 if (dend == end_match_2)
6514 break;
6515 d = string2;
6516 dend = end_match_2;
6517 }
6518
6519 /* add next character to the compare buffer. */
6520 str_buf[i] = TRANSLATE(*d);
6521 str_buf[i+1] = '\0';
6522
6523 match = wcscoll (workp, str_buf);
6524
6525 if (match == 0)
6526 goto char_set_matched;
6527
6528 if (match < 0)
6529 /* (str_buf > workp) indicate (str_buf + X > workp),
6530 because for all X (str_buf + X > str_buf).
6531 So we don't need continue this loop. */
6532 break;
6533
6534 /* Otherwise(str_buf < workp),
6535 (str_buf+next_character) may equals (workp).
6536 So we continue this loop. */
6537 }
6538 /* not matched */
6539 d = backup_d;
6540 dend = backup_dend;
6541 workp += length + 1;
6542 }
6543 }
6544
6545 /* match with char_range? */
6546 # ifdef _LIBC
6547 if (nrules != 0)
6548 {
6549 uint32_t collseqval;
6550 const char *collseq = (const char *)
6551 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6552
6553 collseqval = collseq_table_lookup (collseq, c);
6554
6555 for (; workp < p - chars_length ;)
6556 {
6557 uint32_t start_val, end_val;
6558
6559 /* We already compute the collation sequence value
6560 of the characters (or collating symbols). */
6561 start_val = (uint32_t) *workp++; /* range_start */
6562 end_val = (uint32_t) *workp++; /* range_end */
6563
6564 if (start_val <= collseqval && collseqval <= end_val)
6565 goto char_set_matched;
6566 }
6567 }
6568 else
6569 # endif
6570 {
6571 /* We set range_start_char at str_buf[0], range_end_char
6572 at str_buf[4], and compared char at str_buf[2]. */
6573 str_buf[1] = 0;
6574 str_buf[2] = c;
6575 str_buf[3] = 0;
6576 str_buf[5] = 0;
6577 for (; workp < p - chars_length ;)
6578 {
6579 wchar_t *range_start_char, *range_end_char;
6580
6581 /* match if (range_start_char <= c <= range_end_char). */
6582
6583 /* If range_start(or end) < 0, we assume -range_start(end)
6584 is the offset of the collating symbol which is specified
6585 as the character of the range start(end). */
6586
6587 /* range_start */
6588 if (*workp < 0)
6589 range_start_char = charset_top - (*workp++);
6590 else
6591 {
6592 str_buf[0] = *workp++;
6593 range_start_char = str_buf;
6594 }
6595
6596 /* range_end */
6597 if (*workp < 0)
6598 range_end_char = charset_top - (*workp++);
6599 else
6600 {
6601 str_buf[4] = *workp++;
6602 range_end_char = str_buf + 4;
6603 }
6604
6605 if (wcscoll (range_start_char, str_buf+2) <= 0
6606 && wcscoll (str_buf+2, range_end_char) <= 0)
6607 goto char_set_matched;
6608 }
6609 }
6610
6611 /* match with char? */
6612 for (; workp < p ; workp++)
6613 if (c == *workp)
6614 goto char_set_matched;
6615
6616 not = !not;
6617
6618 char_set_matched:
6619 if (not) goto fail;
6620 #else
6621 /* Cast to `unsigned' instead of `unsigned char' in case the
6622 bit list is a full 32 bytes long. */
6623 if (c < (unsigned) (*p * BYTEWIDTH)
6624 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6625 not = !not;
6626
6627 p += 1 + *p;
6628
6629 if (!not) goto fail;
6630 #undef WORK_BUFFER_SIZE
6631 #endif /* WCHAR */
6632 SET_REGS_MATCHED ();
6633 d++;
6634 NEXT;
6635 }
6636
6637
6638 /* The beginning of a group is represented by start_memory.
6639 The arguments are the register number in the next byte, and the
6640 number of groups inner to this one in the next. The text
6641 matched within the group is recorded (in the internal
6642 registers data structure) under the register number. */
6643 CASE (start_memory):
6644 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6645 (long int) *p, (long int) p[1]);
6646
6647 /* Find out if this group can match the empty string. */
6648 p1 = p; /* To send to group_match_null_string_p. */
6649
6650 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6651 REG_MATCH_NULL_STRING_P (reg_info[*p])
6652 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6653
6654 /* Save the position in the string where we were the last time
6655 we were at this open-group operator in case the group is
6656 operated upon by a repetition operator, e.g., with `(a*)*b'
6657 against `ab'; then we want to ignore where we are now in
6658 the string in case this attempt to match fails. */
6659 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6660 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6661 : regstart[*p];
6662 DEBUG_PRINT2 (" old_regstart: %d\n",
6663 POINTER_TO_OFFSET (old_regstart[*p]));
6664
6665 regstart[*p] = d;
6666 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6667
6668 IS_ACTIVE (reg_info[*p]) = 1;
6669 MATCHED_SOMETHING (reg_info[*p]) = 0;
6670
6671 /* Clear this whenever we change the register activity status. */
6672 set_regs_matched_done = 0;
6673
6674 /* This is the new highest active register. */
6675 highest_active_reg = *p;
6676
6677 /* If nothing was active before, this is the new lowest active
6678 register. */
6679 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6680 lowest_active_reg = *p;
6681
6682 /* Move past the register number and inner group count. */
6683 p += 2;
6684 just_past_start_mem = p;
6685
6686 NEXT;
6687
6688
6689 /* The stop_memory opcode represents the end of a group. Its
6690 arguments are the same as start_memory's: the register
6691 number, and the number of inner groups. */
6692 CASE (stop_memory):
6693 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6694 (long int) *p, (long int) p[1]);
6695
6696 /* We need to save the string position the last time we were at
6697 this close-group operator in case the group is operated
6698 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6699 against `aba'; then we want to ignore where we are now in
6700 the string in case this attempt to match fails. */
6701 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6702 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6703 : regend[*p];
6704 DEBUG_PRINT2 (" old_regend: %d\n",
6705 POINTER_TO_OFFSET (old_regend[*p]));
6706
6707 regend[*p] = d;
6708 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6709
6710 /* This register isn't active anymore. */
6711 IS_ACTIVE (reg_info[*p]) = 0;
6712
6713 /* Clear this whenever we change the register activity status. */
6714 set_regs_matched_done = 0;
6715
6716 /* If this was the only register active, nothing is active
6717 anymore. */
6718 if (lowest_active_reg == highest_active_reg)
6719 {
6720 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6721 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6722 }
6723 else
6724 { /* We must scan for the new highest active register, since
6725 it isn't necessarily one less than now: consider
6726 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6727 new highest active register is 1. */
6728 UCHAR_T r = *p - 1;
6729 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6730 r--;
6731
6732 /* If we end up at register zero, that means that we saved
6733 the registers as the result of an `on_failure_jump', not
6734 a `start_memory', and we jumped to past the innermost
6735 `stop_memory'. For example, in ((.)*) we save
6736 registers 1 and 2 as a result of the *, but when we pop
6737 back to the second ), we are at the stop_memory 1.
6738 Thus, nothing is active. */
6739 if (r == 0)
6740 {
6741 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6742 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6743 }
6744 else
6745 highest_active_reg = r;
6746 }
6747
6748 /* If just failed to match something this time around with a
6749 group that's operated on by a repetition operator, try to
6750 force exit from the ``loop'', and restore the register
6751 information for this group that we had before trying this
6752 last match. */
6753 if ((!MATCHED_SOMETHING (reg_info[*p])
6754 || just_past_start_mem == p - 1)
6755 && (p + 2) < pend)
6756 {
6757 boolean is_a_jump_n = false;
6758
6759 p1 = p + 2;
6760 mcnt = 0;
6761 switch ((re_opcode_t) *p1++)
6762 {
6763 case jump_n:
6764 is_a_jump_n = true;
6765 case pop_failure_jump:
6766 case maybe_pop_jump:
6767 case jump:
6768 case dummy_failure_jump:
6769 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6770 if (is_a_jump_n)
6771 p1 += OFFSET_ADDRESS_SIZE;
6772 break;
6773
6774 default:
6775 /* do nothing */ ;
6776 }
6777 p1 += mcnt;
6778
6779 /* If the next operation is a jump backwards in the pattern
6780 to an on_failure_jump right before the start_memory
6781 corresponding to this stop_memory, exit from the loop
6782 by forcing a failure after pushing on the stack the
6783 on_failure_jump's jump in the pattern, and d. */
6784 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6785 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6786 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6787 {
6788 /* If this group ever matched anything, then restore
6789 what its registers were before trying this last
6790 failed match, e.g., with `(a*)*b' against `ab' for
6791 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6792 against `aba' for regend[3].
6793
6794 Also restore the registers for inner groups for,
6795 e.g., `((a*)(b*))*' against `aba' (register 3 would
6796 otherwise get trashed). */
6797
6798 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6799 {
6800 unsigned r;
6801
6802 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6803
6804 /* Restore this and inner groups' (if any) registers. */
6805 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6806 r++)
6807 {
6808 regstart[r] = old_regstart[r];
6809
6810 /* xx why this test? */
6811 if (old_regend[r] >= regstart[r])
6812 regend[r] = old_regend[r];
6813 }
6814 }
6815 p1++;
6816 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6817 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6818
6819 goto fail;
6820 }
6821 }
6822
6823 /* Move past the register number and the inner group count. */
6824 p += 2;
6825 NEXT;
6826
6827
6828 /* \<digit> has been turned into a `duplicate' command which is
6829 followed by the numeric value of <digit> as the register number. */
6830 CASE (duplicate):
6831 {
6832 register const CHAR_T *d2, *dend2;
6833 int regno = *p++; /* Get which register to match against. */
6834 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6835
6836 /* Can't back reference a group which we've never matched. */
6837 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6838 goto fail;
6839
6840 /* Where in input to try to start matching. */
6841 d2 = regstart[regno];
6842
6843 /* Where to stop matching; if both the place to start and
6844 the place to stop matching are in the same string, then
6845 set to the place to stop, otherwise, for now have to use
6846 the end of the first string. */
6847
6848 dend2 = ((FIRST_STRING_P (regstart[regno])
6849 == FIRST_STRING_P (regend[regno]))
6850 ? regend[regno] : end_match_1);
6851 for (;;)
6852 {
6853 /* If necessary, advance to next segment in register
6854 contents. */
6855 while (d2 == dend2)
6856 {
6857 if (dend2 == end_match_2) break;
6858 if (dend2 == regend[regno]) break;
6859
6860 /* End of string1 => advance to string2. */
6861 d2 = string2;
6862 dend2 = regend[regno];
6863 }
6864 /* At end of register contents => success */
6865 if (d2 == dend2) break;
6866
6867 /* If necessary, advance to next segment in data. */
6868 PREFETCH ();
6869
6870 /* How many characters left in this segment to match. */
6871 mcnt = dend - d;
6872
6873 /* Want how many consecutive characters we can match in
6874 one shot, so, if necessary, adjust the count. */
6875 if (mcnt > dend2 - d2)
6876 mcnt = dend2 - d2;
6877
6878 /* Compare that many; failure if mismatch, else move
6879 past them. */
6880 if (translate
6881 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6882 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6883 goto fail;
6884 d += mcnt, d2 += mcnt;
6885
6886 /* Do this because we've match some characters. */
6887 SET_REGS_MATCHED ();
6888 }
6889 }
6890 NEXT;
6891
6892
6893 /* begline matches the empty string at the beginning of the string
6894 (unless `not_bol' is set in `bufp'), and, if
6895 `newline_anchor' is set, after newlines. */
6896 CASE (begline):
6897 DEBUG_PRINT1 ("EXECUTING begline.\n");
6898
6899 if (AT_STRINGS_BEG (d))
6900 {
6901 if (!bufp->not_bol)
6902 {
6903 NEXT;
6904 }
6905 }
6906 else if (d[-1] == '\n' && bufp->newline_anchor)
6907 {
6908 NEXT;
6909 }
6910 /* In all other cases, we fail. */
6911 goto fail;
6912
6913
6914 /* endline is the dual of begline. */
6915 CASE (endline):
6916 DEBUG_PRINT1 ("EXECUTING endline.\n");
6917
6918 if (AT_STRINGS_END (d))
6919 {
6920 if (!bufp->not_eol)
6921 {
6922 NEXT;
6923 }
6924 }
6925
6926 /* We have to ``prefetch'' the next character. */
6927 else if ((d == end1 ? *string2 : *d) == '\n'
6928 && bufp->newline_anchor)
6929 {
6930 NEXT;
6931 }
6932 goto fail;
6933
6934
6935 /* Match at the very beginning of the data. */
6936 CASE (begbuf):
6937 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6938 if (AT_STRINGS_BEG (d))
6939 {
6940 NEXT;
6941 }
6942 goto fail;
6943
6944
6945 /* Match at the very end of the data. */
6946 CASE (endbuf):
6947 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6948 if (AT_STRINGS_END (d))
6949 {
6950 NEXT;
6951 }
6952 goto fail;
6953
6954
6955 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6956 pushes NULL as the value for the string on the stack. Then
6957 `pop_failure_point' will keep the current value for the
6958 string, instead of restoring it. To see why, consider
6959 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6960 then the . fails against the \n. But the next thing we want
6961 to do is match the \n against the \n; if we restored the
6962 string value, we would be back at the foo.
6963
6964 Because this is used only in specific cases, we don't need to
6965 check all the things that `on_failure_jump' does, to make
6966 sure the right things get saved on the stack. Hence we don't
6967 share its code. The only reason to push anything on the
6968 stack at all is that otherwise we would have to change
6969 `anychar's code to do something besides goto fail in this
6970 case; that seems worse than this. */
6971 CASE (on_failure_keep_string_jump):
6972 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6973
6974 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6975 #ifdef _LIBC
6976 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6977 #else
6978 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6979 #endif
6980
6981 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6982 NEXT;
6983
6984
6985 /* Uses of on_failure_jump:
6986
6987 Each alternative starts with an on_failure_jump that points
6988 to the beginning of the next alternative. Each alternative
6989 except the last ends with a jump that in effect jumps past
6990 the rest of the alternatives. (They really jump to the
6991 ending jump of the following alternative, because tensioning
6992 these jumps is a hassle.)
6993
6994 Repeats start with an on_failure_jump that points past both
6995 the repetition text and either the following jump or
6996 pop_failure_jump back to this on_failure_jump. */
6997 CASE (on_failure_jump):
6998 on_failure:
6999 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
7000
7001 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7002 #ifdef _LIBC
7003 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
7004 #else
7005 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
7006 #endif
7007
7008 /* If this on_failure_jump comes right before a group (i.e.,
7009 the original * applied to a group), save the information
7010 for that group and all inner ones, so that if we fail back
7011 to this point, the group's information will be correct.
7012 For example, in \(a*\)*\1, we need the preceding group,
7013 and in \(zz\(a*\)b*\)\2, we need the inner group. */
7014
7015 /* We can't use `p' to check ahead because we push
7016 a failure point to `p + mcnt' after we do this. */
7017 p1 = p;
7018
7019 /* We need to skip no_op's before we look for the
7020 start_memory in case this on_failure_jump is happening as
7021 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
7022 against aba. */
7023 while (p1 < pend && (re_opcode_t) *p1 == no_op)
7024 p1++;
7025
7026 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
7027 {
7028 /* We have a new highest active register now. This will
7029 get reset at the start_memory we are about to get to,
7030 but we will have saved all the registers relevant to
7031 this repetition op, as described above. */
7032 highest_active_reg = *(p1 + 1) + *(p1 + 2);
7033 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
7034 lowest_active_reg = *(p1 + 1);
7035 }
7036
7037 DEBUG_PRINT1 (":\n");
7038 PUSH_FAILURE_POINT (p + mcnt, d, -2);
7039 NEXT;
7040
7041
7042 /* A smart repeat ends with `maybe_pop_jump'.
7043 We change it to either `pop_failure_jump' or `jump'. */
7044 CASE (maybe_pop_jump):
7045 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7046 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
7047 {
7048 register UCHAR_T *p2 = p;
7049
7050 /* Compare the beginning of the repeat with what in the
7051 pattern follows its end. If we can establish that there
7052 is nothing that they would both match, i.e., that we
7053 would have to backtrack because of (as in, e.g., `a*a')
7054 then we can change to pop_failure_jump, because we'll
7055 never have to backtrack.
7056
7057 This is not true in the case of alternatives: in
7058 `(a|ab)*' we do need to backtrack to the `ab' alternative
7059 (e.g., if the string was `ab'). But instead of trying to
7060 detect that here, the alternative has put on a dummy
7061 failure point which is what we will end up popping. */
7062
7063 /* Skip over open/close-group commands.
7064 If what follows this loop is a ...+ construct,
7065 look at what begins its body, since we will have to
7066 match at least one of that. */
7067 while (1)
7068 {
7069 if (p2 + 2 < pend
7070 && ((re_opcode_t) *p2 == stop_memory
7071 || (re_opcode_t) *p2 == start_memory))
7072 p2 += 3;
7073 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7074 && (re_opcode_t) *p2 == dummy_failure_jump)
7075 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7076 else
7077 break;
7078 }
7079
7080 p1 = p + mcnt;
7081 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7082 to the `maybe_finalize_jump' of this case. Examine what
7083 follows. */
7084
7085 /* If we're at the end of the pattern, we can change. */
7086 if (p2 == pend)
7087 {
7088 /* Consider what happens when matching ":\(.*\)"
7089 against ":/". I don't really understand this code
7090 yet. */
7091 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7092 pop_failure_jump;
7093 DEBUG_PRINT1
7094 (" End of pattern: change to `pop_failure_jump'.\n");
7095 }
7096
7097 else if ((re_opcode_t) *p2 == exactn
7098 #ifdef MBS_SUPPORT
7099 || (re_opcode_t) *p2 == exactn_bin
7100 #endif
7101 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7102 {
7103 register UCHAR_T c
7104 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7105
7106 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7107 #ifdef MBS_SUPPORT
7108 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7109 #endif
7110 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7111 {
7112 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7113 pop_failure_jump;
7114 #ifdef WCHAR
7115 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7116 (wint_t) c,
7117 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7118 #else
7119 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7120 (char) c,
7121 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7122 #endif
7123 }
7124
7125 #ifndef WCHAR
7126 else if ((re_opcode_t) p1[3] == charset
7127 || (re_opcode_t) p1[3] == charset_not)
7128 {
7129 int not = (re_opcode_t) p1[3] == charset_not;
7130
7131 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7132 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
7133 not = !not;
7134
7135 /* `not' is equal to 1 if c would match, which means
7136 that we can't change to pop_failure_jump. */
7137 if (!not)
7138 {
7139 p[-3] = (unsigned char) pop_failure_jump;
7140 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7141 }
7142 }
7143 #endif /* not WCHAR */
7144 }
7145 #ifndef WCHAR
7146 else if ((re_opcode_t) *p2 == charset)
7147 {
7148 /* We win if the first character of the loop is not part
7149 of the charset. */
7150 if ((re_opcode_t) p1[3] == exactn
7151 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7152 && (p2[2 + p1[5] / BYTEWIDTH]
7153 & (1 << (p1[5] % BYTEWIDTH)))))
7154 {
7155 p[-3] = (unsigned char) pop_failure_jump;
7156 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7157 }
7158
7159 else if ((re_opcode_t) p1[3] == charset_not)
7160 {
7161 int idx;
7162 /* We win if the charset_not inside the loop
7163 lists every character listed in the charset after. */
7164 for (idx = 0; idx < (int) p2[1]; idx++)
7165 if (! (p2[2 + idx] == 0
7166 || (idx < (int) p1[4]
7167 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7168 break;
7169
7170 if (idx == p2[1])
7171 {
7172 p[-3] = (unsigned char) pop_failure_jump;
7173 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7174 }
7175 }
7176 else if ((re_opcode_t) p1[3] == charset)
7177 {
7178 int idx;
7179 /* We win if the charset inside the loop
7180 has no overlap with the one after the loop. */
7181 for (idx = 0;
7182 idx < (int) p2[1] && idx < (int) p1[4];
7183 idx++)
7184 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7185 break;
7186
7187 if (idx == p2[1] || idx == p1[4])
7188 {
7189 p[-3] = (unsigned char) pop_failure_jump;
7190 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7191 }
7192 }
7193 }
7194 #endif /* not WCHAR */
7195 }
7196 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7197 if ((re_opcode_t) p[-1] != pop_failure_jump)
7198 {
7199 p[-1] = (UCHAR_T) jump;
7200 DEBUG_PRINT1 (" Match => jump.\n");
7201 goto unconditional_jump;
7202 }
7203 /* Note fall through. */
7204
7205
7206 /* The end of a simple repeat has a pop_failure_jump back to
7207 its matching on_failure_jump, where the latter will push a
7208 failure point. The pop_failure_jump takes off failure
7209 points put on by this pop_failure_jump's matching
7210 on_failure_jump; we got through the pattern to here from the
7211 matching on_failure_jump, so didn't fail. */
7212 CASE (pop_failure_jump):
7213 {
7214 /* We need to pass separate storage for the lowest and
7215 highest registers, even though we don't care about the
7216 actual values. Otherwise, we will restore only one
7217 register from the stack, since lowest will == highest in
7218 `pop_failure_point'. */
7219 active_reg_t dummy_low_reg, dummy_high_reg;
7220 UCHAR_T *pdummy = NULL;
7221 const CHAR_T *sdummy = NULL;
7222
7223 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7224 POP_FAILURE_POINT (sdummy, pdummy,
7225 dummy_low_reg, dummy_high_reg,
7226 reg_dummy, reg_dummy, reg_info_dummy);
7227 }
7228 /* Note fall through. */
7229
7230 unconditional_jump:
7231 #ifdef _LIBC
7232 DEBUG_PRINT2 ("\n%p: ", p);
7233 #else
7234 DEBUG_PRINT2 ("\n0x%x: ", p);
7235 #endif
7236 /* Note fall through. */
7237
7238 /* Unconditionally jump (without popping any failure points). */
7239 CASE (jump):
7240 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7241 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7242 p += mcnt; /* Do the jump. */
7243 #ifdef _LIBC
7244 DEBUG_PRINT2 ("(to %p).\n", p);
7245 #else
7246 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7247 #endif
7248 NEXT;
7249
7250
7251 /* We need this opcode so we can detect where alternatives end
7252 in `group_match_null_string_p' et al. */
7253 CASE (jump_past_alt):
7254 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7255 goto unconditional_jump;
7256
7257
7258 /* Normally, the on_failure_jump pushes a failure point, which
7259 then gets popped at pop_failure_jump. We will end up at
7260 pop_failure_jump, also, and with a pattern of, say, `a+', we
7261 are skipping over the on_failure_jump, so we have to push
7262 something meaningless for pop_failure_jump to pop. */
7263 CASE (dummy_failure_jump):
7264 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7265 /* It doesn't matter what we push for the string here. What
7266 the code at `fail' tests is the value for the pattern. */
7267 PUSH_FAILURE_POINT (NULL, NULL, -2);
7268 goto unconditional_jump;
7269
7270
7271 /* At the end of an alternative, we need to push a dummy failure
7272 point in case we are followed by a `pop_failure_jump', because
7273 we don't want the failure point for the alternative to be
7274 popped. For example, matching `(a|ab)*' against `aab'
7275 requires that we match the `ab' alternative. */
7276 CASE (push_dummy_failure):
7277 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7278 /* See comments just above at `dummy_failure_jump' about the
7279 two zeroes. */
7280 PUSH_FAILURE_POINT (NULL, NULL, -2);
7281 NEXT;
7282
7283 /* Have to succeed matching what follows at least n times.
7284 After that, handle like `on_failure_jump'. */
7285 CASE (succeed_n):
7286 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7287 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7288
7289 assert (mcnt >= 0);
7290 /* Originally, this is how many times we HAVE to succeed. */
7291 if (mcnt > 0)
7292 {
7293 mcnt--;
7294 p += OFFSET_ADDRESS_SIZE;
7295 STORE_NUMBER_AND_INCR (p, mcnt);
7296 #ifdef _LIBC
7297 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7298 , mcnt);
7299 #else
7300 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7301 , mcnt);
7302 #endif
7303 }
7304 else if (mcnt == 0)
7305 {
7306 #ifdef _LIBC
7307 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7308 p + OFFSET_ADDRESS_SIZE);
7309 #else
7310 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7311 p + OFFSET_ADDRESS_SIZE);
7312 #endif /* _LIBC */
7313
7314 #ifdef WCHAR
7315 p[1] = (UCHAR_T) no_op;
7316 #else
7317 p[2] = (UCHAR_T) no_op;
7318 p[3] = (UCHAR_T) no_op;
7319 #endif /* WCHAR */
7320 goto on_failure;
7321 }
7322 NEXT;
7323
7324 CASE (jump_n):
7325 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7326 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7327
7328 /* Originally, this is how many times we CAN jump. */
7329 if (mcnt)
7330 {
7331 mcnt--;
7332 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7333
7334 #ifdef _LIBC
7335 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7336 mcnt);
7337 #else
7338 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7339 mcnt);
7340 #endif /* _LIBC */
7341 goto unconditional_jump;
7342 }
7343 /* If don't have to jump any more, skip over the rest of command. */
7344 else
7345 p += 2 * OFFSET_ADDRESS_SIZE;
7346 NEXT;
7347
7348 CASE (set_number_at):
7349 {
7350 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7351
7352 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7353 p1 = p + mcnt;
7354 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7355 #ifdef _LIBC
7356 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7357 #else
7358 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7359 #endif
7360 STORE_NUMBER (p1, mcnt);
7361 NEXT;
7362 }
7363
7364 #if 0
7365 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7366 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7367 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7368 macro and introducing temporary variables works around the bug. */
7369
7370 CASE (wordbound):
7371 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7372 if (AT_WORD_BOUNDARY (d))
7373 {
7374 NEXT;
7375 }
7376 goto fail;
7377
7378 CASE (notwordbound):
7379 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7380 if (AT_WORD_BOUNDARY (d))
7381 goto fail;
7382 NEXT;
7383 #else
7384 CASE (wordbound):
7385 {
7386 boolean prevchar, thischar;
7387
7388 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7389 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7390 {
7391 NEXT;
7392 }
7393
7394 prevchar = WORDCHAR_P (d - 1);
7395 thischar = WORDCHAR_P (d);
7396 if (prevchar != thischar)
7397 {
7398 NEXT;
7399 }
7400 goto fail;
7401 }
7402
7403 CASE (notwordbound):
7404 {
7405 boolean prevchar, thischar;
7406
7407 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7408 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7409 goto fail;
7410
7411 prevchar = WORDCHAR_P (d - 1);
7412 thischar = WORDCHAR_P (d);
7413 if (prevchar != thischar)
7414 goto fail;
7415 NEXT;
7416 }
7417 #endif
7418
7419 CASE (wordbeg):
7420 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7421 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7422 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7423 {
7424 NEXT;
7425 }
7426 goto fail;
7427
7428 CASE (wordend):
7429 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7430 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7431 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7432 {
7433 NEXT;
7434 }
7435 goto fail;
7436
7437 #ifdef emacs
7438 CASE (before_dot):
7439 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7440 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7441 goto fail;
7442 NEXT;
7443
7444 CASE (at_dot):
7445 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7446 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7447 goto fail;
7448 NEXT;
7449
7450 CASE (after_dot):
7451 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7452 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7453 goto fail;
7454 NEXT;
7455
7456 CASE (syntaxspec):
7457 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7458 mcnt = *p++;
7459 goto matchsyntax;
7460
7461 CASE (wordchar):
7462 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7463 mcnt = (int) Sword;
7464 matchsyntax:
7465 PREFETCH ();
7466 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7467 d++;
7468 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7469 goto fail;
7470 SET_REGS_MATCHED ();
7471 NEXT;
7472
7473 CASE (notsyntaxspec):
7474 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7475 mcnt = *p++;
7476 goto matchnotsyntax;
7477
7478 CASE (notwordchar):
7479 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7480 mcnt = (int) Sword;
7481 matchnotsyntax:
7482 PREFETCH ();
7483 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7484 d++;
7485 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7486 goto fail;
7487 SET_REGS_MATCHED ();
7488 NEXT;
7489
7490 #else /* not emacs */
7491 CASE (wordchar):
7492 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7493 PREFETCH ();
7494 if (!WORDCHAR_P (d))
7495 goto fail;
7496 SET_REGS_MATCHED ();
7497 d++;
7498 NEXT;
7499
7500 CASE (notwordchar):
7501 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7502 PREFETCH ();
7503 if (WORDCHAR_P (d))
7504 goto fail;
7505 SET_REGS_MATCHED ();
7506 d++;
7507 NEXT;
7508 #endif /* not emacs */
7509
7510 #ifndef __GNUC__
7511 default:
7512 abort ();
7513 }
7514 continue; /* Successfully executed one pattern command; keep going. */
7515 #endif
7516
7517
7518 /* We goto here if a matching operation fails. */
7519 fail:
7520 if (!FAIL_STACK_EMPTY ())
7521 { /* A restart point is known. Restore to that state. */
7522 DEBUG_PRINT1 ("\nFAIL:\n");
7523 POP_FAILURE_POINT (d, p,
7524 lowest_active_reg, highest_active_reg,
7525 regstart, regend, reg_info);
7526
7527 /* If this failure point is a dummy, try the next one. */
7528 if (!p)
7529 goto fail;
7530
7531 /* If we failed to the end of the pattern, don't examine *p. */
7532 assert (p <= pend);
7533 if (p < pend)
7534 {
7535 boolean is_a_jump_n = false;
7536
7537 /* If failed to a backwards jump that's part of a repetition
7538 loop, need to pop this failure point and use the next one. */
7539 switch ((re_opcode_t) *p)
7540 {
7541 case jump_n:
7542 is_a_jump_n = true;
7543 case maybe_pop_jump:
7544 case pop_failure_jump:
7545 case jump:
7546 p1 = p + 1;
7547 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7548 p1 += mcnt;
7549
7550 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7551 || (!is_a_jump_n
7552 && (re_opcode_t) *p1 == on_failure_jump))
7553 goto fail;
7554 break;
7555 default:
7556 /* do nothing */ ;
7557 }
7558 }
7559
7560 if (d >= string1 && d <= end1)
7561 dend = end_match_1;
7562 }
7563 else
7564 break; /* Matching at this starting point really fails. */
7565 } /* for (;;) */
7566
7567 if (best_regs_set)
7568 goto restore_best_regs;
7569
7570 FREE_VARIABLES ();
7571
7572 return -1; /* Failure to match. */
7573 } /* re_match_2 */
7574
7575 /* Subroutine definitions for re_match_2. */
7576
7577
7578 /* We are passed P pointing to a register number after a start_memory.
7579
7580 Return true if the pattern up to the corresponding stop_memory can
7581 match the empty string, and false otherwise.
7582
7583 If we find the matching stop_memory, sets P to point to one past its number.
7584 Otherwise, sets P to an undefined byte less than or equal to END.
7585
7586 We don't handle duplicates properly (yet). */
7587
7588 static boolean
PREFIX(group_match_null_string_p)7589 PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7590 PREFIX(register_info_type) *reg_info)
7591 {
7592 int mcnt;
7593 /* Point to after the args to the start_memory. */
7594 UCHAR_T *p1 = *p + 2;
7595
7596 while (p1 < end)
7597 {
7598 /* Skip over opcodes that can match nothing, and return true or
7599 false, as appropriate, when we get to one that can't, or to the
7600 matching stop_memory. */
7601
7602 switch ((re_opcode_t) *p1)
7603 {
7604 /* Could be either a loop or a series of alternatives. */
7605 case on_failure_jump:
7606 p1++;
7607 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7608
7609 /* If the next operation is not a jump backwards in the
7610 pattern. */
7611
7612 if (mcnt >= 0)
7613 {
7614 /* Go through the on_failure_jumps of the alternatives,
7615 seeing if any of the alternatives cannot match nothing.
7616 The last alternative starts with only a jump,
7617 whereas the rest start with on_failure_jump and end
7618 with a jump, e.g., here is the pattern for `a|b|c':
7619
7620 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7621 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7622 /exactn/1/c
7623
7624 So, we have to first go through the first (n-1)
7625 alternatives and then deal with the last one separately. */
7626
7627
7628 /* Deal with the first (n-1) alternatives, which start
7629 with an on_failure_jump (see above) that jumps to right
7630 past a jump_past_alt. */
7631
7632 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7633 jump_past_alt)
7634 {
7635 /* `mcnt' holds how many bytes long the alternative
7636 is, including the ending `jump_past_alt' and
7637 its number. */
7638
7639 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7640 (1 + OFFSET_ADDRESS_SIZE),
7641 reg_info))
7642 return false;
7643
7644 /* Move to right after this alternative, including the
7645 jump_past_alt. */
7646 p1 += mcnt;
7647
7648 /* Break if it's the beginning of an n-th alternative
7649 that doesn't begin with an on_failure_jump. */
7650 if ((re_opcode_t) *p1 != on_failure_jump)
7651 break;
7652
7653 /* Still have to check that it's not an n-th
7654 alternative that starts with an on_failure_jump. */
7655 p1++;
7656 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7657 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7658 jump_past_alt)
7659 {
7660 /* Get to the beginning of the n-th alternative. */
7661 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7662 break;
7663 }
7664 }
7665
7666 /* Deal with the last alternative: go back and get number
7667 of the `jump_past_alt' just before it. `mcnt' contains
7668 the length of the alternative. */
7669 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7670
7671 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7672 return false;
7673
7674 p1 += mcnt; /* Get past the n-th alternative. */
7675 } /* if mcnt > 0 */
7676 break;
7677
7678
7679 case stop_memory:
7680 assert (p1[1] == **p);
7681 *p = p1 + 2;
7682 return true;
7683
7684
7685 default:
7686 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7687 return false;
7688 }
7689 } /* while p1 < end */
7690
7691 return false;
7692 } /* group_match_null_string_p */
7693
7694
7695 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7696 It expects P to be the first byte of a single alternative and END one
7697 byte past the last. The alternative can contain groups. */
7698
7699 static boolean
PREFIX(alt_match_null_string_p)7700 PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7701 PREFIX(register_info_type) *reg_info)
7702 {
7703 int mcnt;
7704 UCHAR_T *p1 = p;
7705
7706 while (p1 < end)
7707 {
7708 /* Skip over opcodes that can match nothing, and break when we get
7709 to one that can't. */
7710
7711 switch ((re_opcode_t) *p1)
7712 {
7713 /* It's a loop. */
7714 case on_failure_jump:
7715 p1++;
7716 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7717 p1 += mcnt;
7718 break;
7719
7720 default:
7721 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7722 return false;
7723 }
7724 } /* while p1 < end */
7725
7726 return true;
7727 } /* alt_match_null_string_p */
7728
7729
7730 /* Deals with the ops common to group_match_null_string_p and
7731 alt_match_null_string_p.
7732
7733 Sets P to one after the op and its arguments, if any. */
7734
7735 static boolean
PREFIX(common_op_match_null_string_p)7736 PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7737 PREFIX(register_info_type) *reg_info)
7738 {
7739 int mcnt;
7740 boolean ret;
7741 int reg_no;
7742 UCHAR_T *p1 = *p;
7743
7744 switch ((re_opcode_t) *p1++)
7745 {
7746 case no_op:
7747 case begline:
7748 case endline:
7749 case begbuf:
7750 case endbuf:
7751 case wordbeg:
7752 case wordend:
7753 case wordbound:
7754 case notwordbound:
7755 #ifdef emacs
7756 case before_dot:
7757 case at_dot:
7758 case after_dot:
7759 #endif
7760 break;
7761
7762 case start_memory:
7763 reg_no = *p1;
7764 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7765 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7766
7767 /* Have to set this here in case we're checking a group which
7768 contains a group and a back reference to it. */
7769
7770 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7771 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7772
7773 if (!ret)
7774 return false;
7775 break;
7776
7777 /* If this is an optimized succeed_n for zero times, make the jump. */
7778 case jump:
7779 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7780 if (mcnt >= 0)
7781 p1 += mcnt;
7782 else
7783 return false;
7784 break;
7785
7786 case succeed_n:
7787 /* Get to the number of times to succeed. */
7788 p1 += OFFSET_ADDRESS_SIZE;
7789 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7790
7791 if (mcnt == 0)
7792 {
7793 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7794 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7795 p1 += mcnt;
7796 }
7797 else
7798 return false;
7799 break;
7800
7801 case duplicate:
7802 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7803 return false;
7804 break;
7805
7806 case set_number_at:
7807 p1 += 2 * OFFSET_ADDRESS_SIZE;
7808
7809 default:
7810 /* All other opcodes mean we cannot match the empty string. */
7811 return false;
7812 }
7813
7814 *p = p1;
7815 return true;
7816 } /* common_op_match_null_string_p */
7817
7818
7819 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7820 bytes; nonzero otherwise. */
7821
7822 static int
PREFIX(bcmp_translate)7823 PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
7824 register int len,
7825 RE_TRANSLATE_TYPE translate)
7826 {
7827 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7828 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7829 while (len)
7830 {
7831 #ifdef WCHAR
7832 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7833 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7834 return 1;
7835 #else /* BYTE */
7836 if (translate[*p1++] != translate[*p2++]) return 1;
7837 #endif /* WCHAR */
7838 len--;
7839 }
7840 return 0;
7841 }
7842
7843
7844 #else /* not INSIDE_RECURSION */
7845
7846 /* Entry points for GNU code. */
7847
7848 /* re_compile_pattern is the GNU regular expression compiler: it
7849 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7850 Returns 0 if the pattern was valid, otherwise an error string.
7851
7852 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7853 are set in BUFP on entry.
7854
7855 We call regex_compile to do the actual compilation. */
7856
7857 const char *
7858 re_compile_pattern (const char *pattern,
7859 size_t length,
7860 struct re_pattern_buffer *bufp)
7861 {
7862 reg_errcode_t ret;
7863
7864 /* GNU code is written to assume at least RE_NREGS registers will be set
7865 (and at least one extra will be -1). */
7866 bufp->regs_allocated = REGS_UNALLOCATED;
7867
7868 /* And GNU code determines whether or not to get register information
7869 by passing null for the REGS argument to re_match, etc., not by
7870 setting no_sub. */
7871 bufp->no_sub = 0;
7872
7873 /* Match anchors at newline. */
7874 bufp->newline_anchor = 1;
7875
7876 # ifdef MBS_SUPPORT
7877 if (MB_CUR_MAX != 1)
7878 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7879 else
7880 # endif
7881 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7882
7883 if (!ret)
7884 return NULL;
7885 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7886 }
7887 #ifdef _LIBC
7888 weak_alias (__re_compile_pattern, re_compile_pattern)
7889 #endif
7890
7891 /* Entry points compatible with 4.2 BSD regex library. We don't define
7892 them unless specifically requested. */
7893
7894 #if defined _REGEX_RE_COMP || defined _LIBC
7895
7896 /* BSD has one and only one pattern buffer. */
7897 static struct re_pattern_buffer re_comp_buf;
7898
7899 char *
7900 #ifdef _LIBC
7901 /* Make these definitions weak in libc, so POSIX programs can redefine
7902 these names if they don't use our functions, and still use
7903 regcomp/regexec below without link errors. */
7904 weak_function
7905 #endif
7906 re_comp (const char *s)
7907 {
7908 reg_errcode_t ret;
7909
7910 if (!s)
7911 {
7912 if (!re_comp_buf.buffer)
7913 return (char *) gettext ("No previous regular expression");
7914 return 0;
7915 }
7916
7917 if (!re_comp_buf.buffer)
7918 {
7919 re_comp_buf.buffer = malloc (200);
7920 if (re_comp_buf.buffer == NULL)
7921 return (char *) gettext (re_error_msgid
7922 + re_error_msgid_idx[(int) REG_ESPACE]);
7923 re_comp_buf.allocated = 200;
7924
7925 re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
7926 if (re_comp_buf.fastmap == NULL)
7927 return (char *) gettext (re_error_msgid
7928 + re_error_msgid_idx[(int) REG_ESPACE]);
7929 }
7930
7931 /* Since `re_exec' always passes NULL for the `regs' argument, we
7932 don't need to initialize the pattern buffer fields which affect it. */
7933
7934 /* Match anchors at newlines. */
7935 re_comp_buf.newline_anchor = 1;
7936
7937 # ifdef MBS_SUPPORT
7938 if (MB_CUR_MAX != 1)
7939 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7940 else
7941 # endif
7942 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7943
7944 if (!ret)
7945 return NULL;
7946
7947 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
7948 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7949 }
7950
7951
7952 int
7953 #ifdef _LIBC
7954 weak_function
7955 #endif
7956 re_exec (const char *s)
7957 {
7958 const int len = strlen (s);
7959 return
7960 0 <= re_search (&re_comp_buf, s, len, 0, len, 0);
7961 }
7962
7963 #endif /* _REGEX_RE_COMP */
7964
7965 /* POSIX.2 functions. Don't define these for Emacs. */
7966
7967 #ifndef emacs
7968
7969 /* regcomp takes a regular expression as a string and compiles it.
7970
7971 PREG is a regex_t *. We do not expect any fields to be initialized,
7972 since POSIX says we shouldn't. Thus, we set
7973
7974 `buffer' to the compiled pattern;
7975 `used' to the length of the compiled pattern;
7976 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7977 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7978 RE_SYNTAX_POSIX_BASIC;
7979 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7980 `fastmap' to an allocated space for the fastmap;
7981 `fastmap_accurate' to zero;
7982 `re_nsub' to the number of subexpressions in PATTERN.
7983
7984 PATTERN is the address of the pattern string.
7985
7986 CFLAGS is a series of bits which affect compilation.
7987
7988 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7989 use POSIX basic syntax.
7990
7991 If REG_NEWLINE is set, then . and [^...] don't match newline.
7992 Also, regexec will try a match beginning after every newline.
7993
7994 If REG_ICASE is set, then we considers upper- and lowercase
7995 versions of letters to be equivalent when matching.
7996
7997 If REG_NOSUB is set, then when PREG is passed to regexec, that
7998 routine will report only success or failure, and nothing about the
7999 registers.
8000
8001 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
8002 the return codes and their meanings.) */
8003
8004 int
8005 regcomp (regex_t *preg, const char *pattern, int cflags)
8006 {
8007 reg_errcode_t ret;
8008 reg_syntax_t syntax
8009 = (cflags & REG_EXTENDED) ?
8010 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
8011
8012 /* regex_compile will allocate the space for the compiled pattern. */
8013 preg->buffer = 0;
8014 preg->allocated = 0;
8015 preg->used = 0;
8016
8017 /* Try to allocate space for the fastmap. */
8018 preg->fastmap = malloc (1 << BYTEWIDTH);
8019
8020 if (cflags & REG_ICASE)
8021 {
8022 unsigned i;
8023
8024 preg->translate = malloc (CHAR_SET_SIZE
8025 * sizeof (*(RE_TRANSLATE_TYPE)0));
8026 if (preg->translate == NULL)
8027 return (int) REG_ESPACE;
8028
8029 /* Map uppercase characters to corresponding lowercase ones. */
8030 for (i = 0; i < CHAR_SET_SIZE; i++)
8031 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
8032 }
8033 else
8034 preg->translate = NULL;
8035
8036 /* If REG_NEWLINE is set, newlines are treated differently. */
8037 if (cflags & REG_NEWLINE)
8038 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
8039 syntax &= ~RE_DOT_NEWLINE;
8040 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
8041 /* It also changes the matching behavior. */
8042 preg->newline_anchor = 1;
8043 }
8044 else
8045 preg->newline_anchor = 0;
8046
8047 preg->no_sub = !!(cflags & REG_NOSUB);
8048
8049 /* POSIX says a null character in the pattern terminates it, so we
8050 can use strlen here in compiling the pattern. */
8051 # ifdef MBS_SUPPORT
8052 if (MB_CUR_MAX != 1)
8053 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
8054 else
8055 # endif
8056 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
8057
8058 /* POSIX doesn't distinguish between an unmatched open-group and an
8059 unmatched close-group: both are REG_EPAREN. */
8060 if (ret == REG_ERPAREN) ret = REG_EPAREN;
8061
8062 if (ret == REG_NOERROR && preg->fastmap)
8063 {
8064 /* Compute the fastmap now, since regexec cannot modify the pattern
8065 buffer. */
8066 if (re_compile_fastmap (preg) == -2)
8067 {
8068 /* Some error occurred while computing the fastmap, just forget
8069 about it. */
8070 free (preg->fastmap);
8071 preg->fastmap = NULL;
8072 }
8073 }
8074
8075 return (int) ret;
8076 }
8077 #ifdef _LIBC
8078 weak_alias (__regcomp, regcomp)
8079 #endif
8080
8081
8082 /* regexec searches for a given pattern, specified by PREG, in the
8083 string STRING.
8084
8085 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8086 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8087 least NMATCH elements, and we set them to the offsets of the
8088 corresponding matched substrings.
8089
8090 EFLAGS specifies `execution flags' which affect matching: if
8091 REG_NOTBOL is set, then ^ does not match at the beginning of the
8092 string; if REG_NOTEOL is set, then $ does not match at the end.
8093
8094 We return 0 if we find a match and REG_NOMATCH if not. */
8095
8096 int
8097 regexec (const regex_t *preg, const char *string,
8098 size_t nmatch, regmatch_t pmatch[], int eflags)
8099 {
8100 int ret;
8101 struct re_registers regs;
8102 regex_t private_preg;
8103 int len = strlen (string);
8104 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8105
8106 private_preg = *preg;
8107
8108 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8109 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8110
8111 /* The user has told us exactly how many registers to return
8112 information about, via `nmatch'. We have to pass that on to the
8113 matching routines. */
8114 private_preg.regs_allocated = REGS_FIXED;
8115
8116 if (want_reg_info)
8117 {
8118 regs.num_regs = nmatch;
8119 regs.start = TALLOC (nmatch * 2, regoff_t);
8120 if (regs.start == NULL)
8121 return (int) REG_NOMATCH;
8122 regs.end = regs.start + nmatch;
8123 }
8124
8125 /* Perform the searching operation. */
8126 ret = re_search (&private_preg, string, len,
8127 /* start: */ 0, /* range: */ len,
8128 want_reg_info ? ®s : 0);
8129
8130 /* Copy the register information to the POSIX structure. */
8131 if (want_reg_info)
8132 {
8133 if (ret >= 0)
8134 {
8135 unsigned r;
8136
8137 for (r = 0; r < nmatch; r++)
8138 {
8139 pmatch[r].rm_so = regs.start[r];
8140 pmatch[r].rm_eo = regs.end[r];
8141 }
8142 }
8143
8144 /* If we needed the temporary register info, free the space now. */
8145 free (regs.start);
8146 }
8147
8148 /* We want zero return to mean success, unlike `re_search'. */
8149 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8150 }
8151 #ifdef _LIBC
8152 weak_alias (__regexec, regexec)
8153 #endif
8154
8155
8156 /* Returns a message corresponding to an error code, ERRCODE, returned
8157 from either regcomp or regexec. We don't use PREG here. */
8158
8159 size_t
8160 regerror (int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
8161 {
8162 const char *msg;
8163 size_t msg_size;
8164
8165 if (errcode < 0
8166 || errcode >= (int) (sizeof (re_error_msgid_idx)
8167 / sizeof (re_error_msgid_idx[0])))
8168 /* Only error codes returned by the rest of the code should be passed
8169 to this routine. If we are given anything else, or if other regex
8170 code generates an invalid error code, then the program has a bug.
8171 Dump core so we can fix it. */
8172 abort ();
8173
8174 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
8175
8176 msg_size = strlen (msg) + 1; /* Includes the null. */
8177
8178 if (errbuf_size != 0)
8179 {
8180 if (msg_size > errbuf_size)
8181 {
8182 #if defined HAVE_MEMPCPY || defined _LIBC
8183 *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
8184 #else
8185 memcpy (errbuf, msg, errbuf_size - 1);
8186 errbuf[errbuf_size - 1] = 0;
8187 #endif
8188 }
8189 else
8190 memcpy (errbuf, msg, msg_size);
8191 }
8192
8193 return msg_size;
8194 }
8195 #ifdef _LIBC
8196 weak_alias (__regerror, regerror)
8197 #endif
8198
8199
8200 /* Free dynamically allocated space used by PREG. */
8201
8202 void
8203 regfree (regex_t *preg)
8204 {
8205 if (preg->buffer != NULL)
8206 free (preg->buffer);
8207 preg->buffer = NULL;
8208
8209 preg->allocated = 0;
8210 preg->used = 0;
8211
8212 if (preg->fastmap != NULL)
8213 free (preg->fastmap);
8214 preg->fastmap = NULL;
8215 preg->fastmap_accurate = 0;
8216
8217 if (preg->translate != NULL)
8218 free (preg->translate);
8219 preg->translate = NULL;
8220 }
8221 #ifdef _LIBC
8222 weak_alias (__regfree, regfree)
8223 #endif
8224
8225 #endif /* not emacs */
8226
8227 #endif /* not INSIDE_RECURSION */
8228
8229
8230 #undef STORE_NUMBER
8231 #undef STORE_NUMBER_AND_INCR
8232 #undef EXTRACT_NUMBER
8233 #undef EXTRACT_NUMBER_AND_INCR
8234
8235 #undef DEBUG_PRINT_COMPILED_PATTERN
8236 #undef DEBUG_PRINT_DOUBLE_STRING
8237
8238 #undef INIT_FAIL_STACK
8239 #undef RESET_FAIL_STACK
8240 #undef DOUBLE_FAIL_STACK
8241 #undef PUSH_PATTERN_OP
8242 #undef PUSH_FAILURE_POINTER
8243 #undef PUSH_FAILURE_INT
8244 #undef PUSH_FAILURE_ELT
8245 #undef POP_FAILURE_POINTER
8246 #undef POP_FAILURE_INT
8247 #undef POP_FAILURE_ELT
8248 #undef DEBUG_PUSH
8249 #undef DEBUG_POP
8250 #undef PUSH_FAILURE_POINT
8251 #undef POP_FAILURE_POINT
8252
8253 #undef REG_UNSET_VALUE
8254 #undef REG_UNSET
8255
8256 #undef PATFETCH
8257 #undef PATFETCH_RAW
8258 #undef PATUNFETCH
8259 #undef TRANSLATE
8260
8261 #undef INIT_BUF_SIZE
8262 #undef GET_BUFFER_SPACE
8263 #undef BUF_PUSH
8264 #undef BUF_PUSH_2
8265 #undef BUF_PUSH_3
8266 #undef STORE_JUMP
8267 #undef STORE_JUMP2
8268 #undef INSERT_JUMP
8269 #undef INSERT_JUMP2
8270 #undef EXTEND_BUFFER
8271 #undef GET_UNSIGNED_NUMBER
8272 #undef FREE_STACK_RETURN
8273
8274 # undef POINTER_TO_OFFSET
8275 # undef MATCHING_IN_FRST_STRING
8276 # undef PREFETCH
8277 # undef AT_STRINGS_BEG
8278 # undef AT_STRINGS_END
8279 # undef WORDCHAR_P
8280 # undef FREE_VAR
8281 # undef FREE_VARIABLES
8282 # undef NO_HIGHEST_ACTIVE_REG
8283 # undef NO_LOWEST_ACTIVE_REG
8284
8285 # undef CHAR_T
8286 # undef UCHAR_T
8287 # undef COMPILED_BUFFER_VAR
8288 # undef OFFSET_ADDRESS_SIZE
8289 # undef CHAR_CLASS_SIZE
8290 # undef PREFIX
8291 # undef ARG_PREFIX
8292 # undef PUT_CHAR
8293 # undef BYTE
8294 # undef WCHAR
8295
8296 # define DEFINED_ONCE
8297