1 /* SPDX-License-Identifier: BSD-2-Clause 2 * Copyright (C) 2020 Intel Corporation. 3 * Copyright (c) 2005-2007, Nick Galbreath 4 * Copyright (c) 2013-2017, Alfred Klomp 5 * Copyright (c) 2015-2017, Wojciech Mula 6 * Copyright (c) 2016-2017, Matthieu Darbois 7 * All rights reserved. 8 */ 9 10 #ifndef __aarch64__ 11 #error Unsupported hardware 12 #endif 13 14 #include "spdk/stdinc.h" 15 /* 16 * Encoding 17 * Use a 64-byte lookup to do the encoding. 18 * Reuse existing base64_dec_table and base64_dec_table. 19 20 * Decoding 21 * The input consists of five valid character sets in the Base64 alphabet, 22 * which we need to map back to the 6-bit values they represent. 23 * There are three ranges, two singles, and then there's the rest. 24 * 25 * LUT1[0-63] = base64_dec_table_neon64[0-63] 26 * LUT2[0-63] = base64_dec_table_neon64[64-127] 27 * # From To LUT Characters 28 * 1 [0..42] [255] #1 invalid input 29 * 2 [43] [62] #1 + 30 * 3 [44..46] [255] #1 invalid input 31 * 4 [47] [63] #1 / 32 * 5 [48..57] [52..61] #1 0..9 33 * 6 [58..63] [255] #1 invalid input 34 * 7 [64] [255] #2 invalid input 35 * 8 [65..90] [0..25] #2 A..Z 36 * 9 [91..96] [255] #2 invalid input 37 * 10 [97..122] [26..51] #2 a..z 38 * 11 [123..126] [255] #2 invalid input 39 * (12) Everything else => invalid input 40 */ 41 static const uint8_t base64_dec_table_neon64[] = { 42 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 43 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 44 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255, 255, 255, 63, 45 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255, 255, 255, 255, 255, 46 0, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 47 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 255, 255, 255, 255, 48 255, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 49 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 255, 255, 255, 255 50 }; 51 52 /* 53 * LUT1[0-63] = base64_urlsafe_dec_table_neon64[0-63] 54 * LUT2[0-63] = base64_urlsafe_dec_table_neon64[64-127] 55 * # From To LUT Characters 56 * 1 [0..44] [255] #1 invalid input 57 * 2 [45] [62] #1 - 58 * 3 [46..47] [255] #1 invalid input 59 * 5 [48..57] [52..61] #1 0..9 60 * 6 [58..63] [255] #1 invalid input 61 * 7 [64] [255] #2 invalid input 62 * 8 [65..90] [0..25] #2 A..Z 63 * 9 [91..94] [255] #2 invalid input 64 * 10 [95] [63] #2 _ 65 * 11 [96] [255] #2 invalid input 66 * 12 [97..122] [26..51] #2 a..z 67 * 13 [123..126] [255] #2 invalid input 68 * (14) Everything else => invalid input 69 */ 70 static const uint8_t base64_urlsafe_dec_table_neon64[] = { 71 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 72 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 73 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 62, 255, 255, 74 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 255, 255, 255, 255, 255, 255, 75 0, 255, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 76 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 255, 255, 255, 255, 77 63, 255, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 78 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 255, 255, 255, 255 79 }; 80 81 #include <arm_neon.h> 82 #define CMPGT(s,n) vcgtq_u8((s), vdupq_n_u8(n)) 83 84 static inline uint8x16x4_t load_64byte_table(const uint8_t * p)85 load_64byte_table(const uint8_t *p) 86 { 87 uint8x16x4_t ret; 88 ret.val[0] = vld1q_u8(p + 0); 89 ret.val[1] = vld1q_u8(p + 16); 90 ret.val[2] = vld1q_u8(p + 32); 91 ret.val[3] = vld1q_u8(p + 48); 92 return ret; 93 } 94 95 static void base64_encode_neon64(char ** dst,const char * enc_table,const void ** src,size_t * src_len)96 base64_encode_neon64(char **dst, const char *enc_table, const void **src, size_t *src_len) 97 { 98 const uint8x16x4_t tbl_enc = load_64byte_table(enc_table); 99 100 while (*src_len >= 48) { 101 uint8x16x3_t str; 102 uint8x16x4_t res; 103 104 /* Load 48 bytes and deinterleave */ 105 str = vld3q_u8((uint8_t *)*src); 106 107 /* Divide bits of three input bytes over four output bytes and clear top two bits */ 108 res.val[0] = vshrq_n_u8(str.val[0], 2); 109 res.val[1] = vandq_u8(vorrq_u8(vshrq_n_u8(str.val[1], 4), vshlq_n_u8(str.val[0], 4)), 110 vdupq_n_u8(0x3F)); 111 res.val[2] = vandq_u8(vorrq_u8(vshrq_n_u8(str.val[2], 6), vshlq_n_u8(str.val[1], 2)), 112 vdupq_n_u8(0x3F)); 113 res.val[3] = vandq_u8(str.val[2], vdupq_n_u8(0x3F)); 114 115 /* 116 * The bits have now been shifted to the right locations; 117 * translate their values 0..63 to the Base64 alphabet. 118 * Use a 64-byte table lookup: 119 */ 120 res.val[0] = vqtbl4q_u8(tbl_enc, res.val[0]); 121 res.val[1] = vqtbl4q_u8(tbl_enc, res.val[1]); 122 res.val[2] = vqtbl4q_u8(tbl_enc, res.val[2]); 123 res.val[3] = vqtbl4q_u8(tbl_enc, res.val[3]); 124 125 /* Interleave and store result */ 126 vst4q_u8((uint8_t *)*dst, res); 127 128 *src = (uint8_t *)*src + 48; /* 3 * 16 bytes of input */ 129 *dst += 64; /* 4 * 16 bytes of output */ 130 *src_len -= 48; 131 } 132 } 133 134 static void base64_decode_neon64(void ** dst,const uint8_t * dec_table_neon64,const uint8_t ** src,size_t * src_len)135 base64_decode_neon64(void **dst, const uint8_t *dec_table_neon64, const uint8_t **src, 136 size_t *src_len) 137 { 138 /* 139 * First LUT tbl_dec1 will use VTBL instruction (out of range indices are set to 0 in destination). 140 * Second LUT tbl_dec2 will use VTBX instruction (out of range indices will be unchanged in destination). 141 * Input [64..126] will be mapped to index [1..63] in tb1_dec2. Index 0 means that value comes from tb1_dec1. 142 */ 143 const uint8x16x4_t tbl_dec1 = load_64byte_table(dec_table_neon64); 144 const uint8x16x4_t tbl_dec2 = load_64byte_table(dec_table_neon64 + 64); 145 const uint8x16_t offset = vdupq_n_u8(63U); 146 147 while (*src_len >= 64) { 148 149 uint8x16x4_t dec1, dec2; 150 uint8x16x3_t dec; 151 152 /* Load 64 bytes and deinterleave */ 153 uint8x16x4_t str = vld4q_u8((uint8_t *)*src); 154 155 /* Get indices for 2nd LUT */ 156 dec2.val[0] = vqsubq_u8(str.val[0], offset); 157 dec2.val[1] = vqsubq_u8(str.val[1], offset); 158 dec2.val[2] = vqsubq_u8(str.val[2], offset); 159 dec2.val[3] = vqsubq_u8(str.val[3], offset); 160 161 /* Get values from 1st LUT */ 162 dec1.val[0] = vqtbl4q_u8(tbl_dec1, str.val[0]); 163 dec1.val[1] = vqtbl4q_u8(tbl_dec1, str.val[1]); 164 dec1.val[2] = vqtbl4q_u8(tbl_dec1, str.val[2]); 165 dec1.val[3] = vqtbl4q_u8(tbl_dec1, str.val[3]); 166 167 /* Get values from 2nd LUT */ 168 dec2.val[0] = vqtbx4q_u8(dec2.val[0], tbl_dec2, dec2.val[0]); 169 dec2.val[1] = vqtbx4q_u8(dec2.val[1], tbl_dec2, dec2.val[1]); 170 dec2.val[2] = vqtbx4q_u8(dec2.val[2], tbl_dec2, dec2.val[2]); 171 dec2.val[3] = vqtbx4q_u8(dec2.val[3], tbl_dec2, dec2.val[3]); 172 173 /* Get final values */ 174 str.val[0] = vorrq_u8(dec1.val[0], dec2.val[0]); 175 str.val[1] = vorrq_u8(dec1.val[1], dec2.val[1]); 176 str.val[2] = vorrq_u8(dec1.val[2], dec2.val[2]); 177 str.val[3] = vorrq_u8(dec1.val[3], dec2.val[3]); 178 179 /* Check for invalid input, any value larger than 63 */ 180 uint8x16_t classified = CMPGT(str.val[0], 63); 181 classified = vorrq_u8(classified, CMPGT(str.val[1], 63)); 182 classified = vorrq_u8(classified, CMPGT(str.val[2], 63)); 183 classified = vorrq_u8(classified, CMPGT(str.val[3], 63)); 184 185 /* check that all bits are zero */ 186 if (vmaxvq_u8(classified) != 0U) { 187 break; 188 } 189 190 /* Compress four bytes into three */ 191 dec.val[0] = vorrq_u8(vshlq_n_u8(str.val[0], 2), vshrq_n_u8(str.val[1], 4)); 192 dec.val[1] = vorrq_u8(vshlq_n_u8(str.val[1], 4), vshrq_n_u8(str.val[2], 2)); 193 dec.val[2] = vorrq_u8(vshlq_n_u8(str.val[2], 6), str.val[3]); 194 195 /* Interleave and store decoded result */ 196 vst3q_u8((uint8_t *)*dst, dec); 197 198 *src += 64; 199 *dst = (uint8_t *)*dst + 48; 200 *src_len -= 64; 201 } 202 } 203