xref: /netbsd-src/sys/kern/kern_synch.c (revision 4cb23c177765d2e7af27bfb0c0ac2f20096af011)
1 /*	$NetBSD: kern_synch.c,v 1.366 2023/11/22 13:18:48 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020, 2023
5  *    The NetBSD Foundation, Inc.
6  * All rights reserved.
7  *
8  * This code is derived from software contributed to The NetBSD Foundation
9  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
10  * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
11  * Daniel Sieger.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32  * POSSIBILITY OF SUCH DAMAGE.
33  */
34 
35 /*-
36  * Copyright (c) 1982, 1986, 1990, 1991, 1993
37  *	The Regents of the University of California.  All rights reserved.
38  * (c) UNIX System Laboratories, Inc.
39  * All or some portions of this file are derived from material licensed
40  * to the University of California by American Telephone and Telegraph
41  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
42  * the permission of UNIX System Laboratories, Inc.
43  *
44  * Redistribution and use in source and binary forms, with or without
45  * modification, are permitted provided that the following conditions
46  * are met:
47  * 1. Redistributions of source code must retain the above copyright
48  *    notice, this list of conditions and the following disclaimer.
49  * 2. Redistributions in binary form must reproduce the above copyright
50  *    notice, this list of conditions and the following disclaimer in the
51  *    documentation and/or other materials provided with the distribution.
52  * 3. Neither the name of the University nor the names of its contributors
53  *    may be used to endorse or promote products derived from this software
54  *    without specific prior written permission.
55  *
56  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
57  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
58  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
59  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
60  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
61  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
62  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
63  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
64  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
65  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
66  * SUCH DAMAGE.
67  *
68  *	@(#)kern_synch.c	8.9 (Berkeley) 5/19/95
69  */
70 
71 #include <sys/cdefs.h>
72 __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.366 2023/11/22 13:18:48 riastradh Exp $");
73 
74 #include "opt_kstack.h"
75 #include "opt_ddb.h"
76 #include "opt_dtrace.h"
77 
78 #define	__MUTEX_PRIVATE
79 
80 #include <sys/param.h>
81 
82 #include <sys/atomic.h>
83 #include <sys/cpu.h>
84 #include <sys/dtrace_bsd.h>
85 #include <sys/evcnt.h>
86 #include <sys/intr.h>
87 #include <sys/kernel.h>
88 #include <sys/lockdebug.h>
89 #include <sys/lwpctl.h>
90 #include <sys/proc.h>
91 #include <sys/pserialize.h>
92 #include <sys/resource.h>
93 #include <sys/resourcevar.h>
94 #include <sys/rwlock.h>
95 #include <sys/sched.h>
96 #include <sys/sleepq.h>
97 #include <sys/syncobj.h>
98 #include <sys/syscall_stats.h>
99 #include <sys/syslog.h>
100 #include <sys/systm.h>
101 
102 #include <uvm/uvm_extern.h>
103 
104 #include <dev/lockstat.h>
105 
106 int                             dtrace_vtime_active=0;
107 dtrace_vtime_switch_func_t      dtrace_vtime_switch_func;
108 
109 #ifdef DDB
110 #include <ddb/ddb.h>
111 #endif
112 
113 static void	sched_unsleep(struct lwp *, bool);
114 static void	sched_changepri(struct lwp *, pri_t);
115 static void	sched_lendpri(struct lwp *, pri_t);
116 
117 syncobj_t sleep_syncobj = {
118 	.sobj_name	= "sleep",
119 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
120 	.sobj_boostpri  = PRI_KERNEL,
121 	.sobj_unsleep	= sleepq_unsleep,
122 	.sobj_changepri	= sleepq_changepri,
123 	.sobj_lendpri	= sleepq_lendpri,
124 	.sobj_owner	= syncobj_noowner,
125 };
126 
127 syncobj_t sched_syncobj = {
128 	.sobj_name	= "sched",
129 	.sobj_flag	= SOBJ_SLEEPQ_SORTED,
130 	.sobj_boostpri  = PRI_USER,
131 	.sobj_unsleep	= sched_unsleep,
132 	.sobj_changepri	= sched_changepri,
133 	.sobj_lendpri	= sched_lendpri,
134 	.sobj_owner	= syncobj_noowner,
135 };
136 
137 syncobj_t kpause_syncobj = {
138 	.sobj_name	= "kpause",
139 	.sobj_flag	= SOBJ_SLEEPQ_NULL,
140 	.sobj_boostpri  = PRI_KERNEL,
141 	.sobj_unsleep	= sleepq_unsleep,
142 	.sobj_changepri	= sleepq_changepri,
143 	.sobj_lendpri	= sleepq_lendpri,
144 	.sobj_owner	= syncobj_noowner,
145 };
146 
147 /* "Lightning bolt": once a second sleep address. */
148 kcondvar_t		lbolt			__cacheline_aligned;
149 
150 u_int			sched_pstats_ticks	__cacheline_aligned;
151 
152 /* Preemption event counters. */
153 static struct evcnt	kpreempt_ev_crit	__cacheline_aligned;
154 static struct evcnt	kpreempt_ev_klock	__cacheline_aligned;
155 static struct evcnt	kpreempt_ev_immed	__cacheline_aligned;
156 
157 void
synch_init(void)158 synch_init(void)
159 {
160 
161 	cv_init(&lbolt, "lbolt");
162 
163 	evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
164 	   "kpreempt", "defer: critical section");
165 	evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
166 	   "kpreempt", "defer: kernel_lock");
167 	evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
168 	   "kpreempt", "immediate");
169 }
170 
171 /*
172  * OBSOLETE INTERFACE
173  *
174  * General sleep call.  Suspends the current LWP until a wakeup is
175  * performed on the specified identifier.  The LWP will then be made
176  * runnable with the specified priority.  Sleeps at most timo/hz seconds (0
177  * means no timeout).  If pri includes PCATCH flag, signals are checked
178  * before and after sleeping, else signals are not checked.  Returns 0 if
179  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
180  * signal needs to be delivered, ERESTART is returned if the current system
181  * call should be restarted if possible, and EINTR is returned if the system
182  * call should be interrupted by the signal (return EINTR).
183  */
184 int
tsleep(wchan_t ident,pri_t priority,const char * wmesg,int timo)185 tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
186 {
187 	struct lwp *l = curlwp;
188 	sleepq_t *sq;
189 	kmutex_t *mp;
190 	bool catch_p;
191 	int nlocks;
192 
193 	KASSERT((l->l_pflag & LP_INTR) == 0);
194 	KASSERT(ident != &lbolt);
195 	//KASSERT(KERNEL_LOCKED_P());
196 
197 	if (sleepq_dontsleep(l)) {
198 		(void)sleepq_abort(NULL, 0);
199 		return 0;
200 	}
201 
202 	catch_p = priority & PCATCH;
203 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
204 	nlocks = sleepq_enter(sq, l, mp);
205 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
206 	return sleepq_block(timo, catch_p, &sleep_syncobj, nlocks);
207 }
208 
209 int
mtsleep(wchan_t ident,pri_t priority,const char * wmesg,int timo,kmutex_t * mtx)210 mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
211 	kmutex_t *mtx)
212 {
213 	struct lwp *l = curlwp;
214 	sleepq_t *sq;
215 	kmutex_t *mp;
216 	bool catch_p;
217 	int error, nlocks;
218 
219 	KASSERT((l->l_pflag & LP_INTR) == 0);
220 	KASSERT(ident != &lbolt);
221 
222 	if (sleepq_dontsleep(l)) {
223 		(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
224 		return 0;
225 	}
226 
227 	catch_p = priority & PCATCH;
228 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
229 	nlocks = sleepq_enter(sq, l, mp);
230 	sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
231 	mutex_exit(mtx);
232 	error = sleepq_block(timo, catch_p, &sleep_syncobj, nlocks);
233 
234 	if ((priority & PNORELOCK) == 0)
235 		mutex_enter(mtx);
236 
237 	return error;
238 }
239 
240 /*
241  * General sleep call for situations where a wake-up is not expected.
242  */
243 int
kpause(const char * wmesg,bool intr,int timo,kmutex_t * mtx)244 kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
245 {
246 	struct lwp *l = curlwp;
247 	int error, nlocks;
248 
249 	KASSERTMSG(timo != 0 || intr, "wmesg=%s intr=%s timo=%d mtx=%p",
250 	    wmesg, intr ? "true" : "false", timo, mtx);
251 
252 	if (sleepq_dontsleep(l))
253 		return sleepq_abort(NULL, 0);
254 
255 	if (mtx != NULL)
256 		mutex_exit(mtx);
257 	nlocks = sleepq_enter(NULL, l, NULL);
258 	sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
259 	error = sleepq_block(timo, intr, &kpause_syncobj, nlocks);
260 	if (mtx != NULL)
261 		mutex_enter(mtx);
262 
263 	return error;
264 }
265 
266 /*
267  * OBSOLETE INTERFACE
268  *
269  * Make all LWPs sleeping on the specified identifier runnable.
270  */
271 void
wakeup(wchan_t ident)272 wakeup(wchan_t ident)
273 {
274 	sleepq_t *sq;
275 	kmutex_t *mp;
276 
277 	if (__predict_false(cold))
278 		return;
279 
280 	sq = sleeptab_lookup(&sleeptab, ident, &mp);
281 	sleepq_wake(sq, ident, (u_int)-1, mp);
282 }
283 
284 /*
285  * General yield call.  Puts the current LWP back on its run queue and
286  * performs a context switch.
287  */
288 void
yield(void)289 yield(void)
290 {
291 	struct lwp *l = curlwp;
292 	int nlocks;
293 
294 	KERNEL_UNLOCK_ALL(l, &nlocks);
295 	lwp_lock(l);
296 
297 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
298 	KASSERT(l->l_stat == LSONPROC);
299 
300 	spc_lock(l->l_cpu);
301 	mi_switch(l);
302 	KERNEL_LOCK(nlocks, l);
303 }
304 
305 /*
306  * General preemption call.  Puts the current LWP back on its run queue
307  * and performs an involuntary context switch.  Different from yield()
308  * in that:
309  *
310  * - It's counted differently (involuntary vs. voluntary).
311  * - Realtime threads go to the head of their runqueue vs. tail for yield().
312  */
313 void
preempt(void)314 preempt(void)
315 {
316 	struct lwp *l = curlwp;
317 	int nlocks;
318 
319 	KERNEL_UNLOCK_ALL(l, &nlocks);
320 	lwp_lock(l);
321 
322 	KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
323 	KASSERT(l->l_stat == LSONPROC);
324 
325 	spc_lock(l->l_cpu);
326 	l->l_pflag |= LP_PREEMPTING;
327 	mi_switch(l);
328 	KERNEL_LOCK(nlocks, l);
329 }
330 
331 /*
332  * Return true if the current LWP should yield the processor.  Intended to
333  * be used by long-running code in kernel.
334  */
335 inline bool
preempt_needed(void)336 preempt_needed(void)
337 {
338 	lwp_t *l = curlwp;
339 	int needed;
340 
341 	KPREEMPT_DISABLE(l);
342 	needed = l->l_cpu->ci_want_resched;
343 	KPREEMPT_ENABLE(l);
344 
345 	return (needed != 0);
346 }
347 
348 /*
349  * A breathing point for long running code in kernel.
350  */
351 void
preempt_point(void)352 preempt_point(void)
353 {
354 
355 	if (__predict_false(preempt_needed())) {
356 		preempt();
357 	}
358 }
359 
360 /*
361  * Handle a request made by another agent to preempt the current LWP
362  * in-kernel.  Usually called when l_dopreempt may be non-zero.
363  *
364  * Character addresses for lockstat only.
365  */
366 static char	kpreempt_is_disabled;
367 static char	kernel_lock_held;
368 static char	is_softint_lwp;
369 static char	spl_is_raised;
370 
371 bool
kpreempt(uintptr_t where)372 kpreempt(uintptr_t where)
373 {
374 	uintptr_t failed;
375 	lwp_t *l;
376 	int s, dop, lsflag;
377 
378 	l = curlwp;
379 	failed = 0;
380 	while ((dop = l->l_dopreempt) != 0) {
381 		if (l->l_stat != LSONPROC) {
382 			/*
383 			 * About to block (or die), let it happen.
384 			 * Doesn't really count as "preemption has
385 			 * been blocked", since we're going to
386 			 * context switch.
387 			 */
388 			atomic_swap_uint(&l->l_dopreempt, 0);
389 			return true;
390 		}
391 		KASSERT((l->l_flag & LW_IDLE) == 0);
392 		if (__predict_false(l->l_nopreempt != 0)) {
393 			/* LWP holds preemption disabled, explicitly. */
394 			if ((dop & DOPREEMPT_COUNTED) == 0) {
395 				kpreempt_ev_crit.ev_count++;
396 			}
397 			failed = (uintptr_t)&kpreempt_is_disabled;
398 			break;
399 		}
400 		if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
401 			/* Can't preempt soft interrupts yet. */
402 			atomic_swap_uint(&l->l_dopreempt, 0);
403 			failed = (uintptr_t)&is_softint_lwp;
404 			break;
405 		}
406 		s = splsched();
407 		if (__predict_false(l->l_blcnt != 0 ||
408 		    curcpu()->ci_biglock_wanted != NULL)) {
409 			/* Hold or want kernel_lock, code is not MT safe. */
410 			splx(s);
411 			if ((dop & DOPREEMPT_COUNTED) == 0) {
412 				kpreempt_ev_klock.ev_count++;
413 			}
414 			failed = (uintptr_t)&kernel_lock_held;
415 			break;
416 		}
417 		if (__predict_false(!cpu_kpreempt_enter(where, s))) {
418 			/*
419 			 * It may be that the IPL is too high.
420 			 * kpreempt_enter() can schedule an
421 			 * interrupt to retry later.
422 			 */
423 			splx(s);
424 			failed = (uintptr_t)&spl_is_raised;
425 			break;
426 		}
427 		/* Do it! */
428 		if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
429 			kpreempt_ev_immed.ev_count++;
430 		}
431 		lwp_lock(l);
432 		l->l_pflag |= LP_PREEMPTING;
433 		spc_lock(l->l_cpu);
434 		mi_switch(l);
435 		l->l_nopreempt++;
436 		splx(s);
437 
438 		/* Take care of any MD cleanup. */
439 		cpu_kpreempt_exit(where);
440 		l->l_nopreempt--;
441 	}
442 
443 	if (__predict_true(!failed)) {
444 		return false;
445 	}
446 
447 	/* Record preemption failure for reporting via lockstat. */
448 	atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
449 	lsflag = 0;
450 	LOCKSTAT_ENTER(lsflag);
451 	if (__predict_false(lsflag)) {
452 		if (where == 0) {
453 			where = (uintptr_t)__builtin_return_address(0);
454 		}
455 		/* Preemption is on, might recurse, so make it atomic. */
456 		if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
457 		    (void *)where) == NULL) {
458 			LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
459 			l->l_pfaillock = failed;
460 		}
461 	}
462 	LOCKSTAT_EXIT(lsflag);
463 	return true;
464 }
465 
466 /*
467  * Return true if preemption is explicitly disabled.
468  */
469 bool
kpreempt_disabled(void)470 kpreempt_disabled(void)
471 {
472 	const lwp_t *l = curlwp;
473 
474 	return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
475 	    (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
476 	    cpu_kpreempt_disabled();
477 }
478 
479 /*
480  * Disable kernel preemption.
481  */
482 void
kpreempt_disable(void)483 kpreempt_disable(void)
484 {
485 
486 	KPREEMPT_DISABLE(curlwp);
487 }
488 
489 /*
490  * Reenable kernel preemption.
491  */
492 void
kpreempt_enable(void)493 kpreempt_enable(void)
494 {
495 
496 	KPREEMPT_ENABLE(curlwp);
497 }
498 
499 /*
500  * Compute the amount of time during which the current lwp was running.
501  *
502  * - update l_rtime unless it's an idle lwp.
503  */
504 
505 void
updatertime(lwp_t * l,const struct bintime * now)506 updatertime(lwp_t *l, const struct bintime *now)
507 {
508 	static bool backwards = false;
509 
510 	if (__predict_false(l->l_flag & LW_IDLE))
511 		return;
512 
513 	if (__predict_false(bintimecmp(now, &l->l_stime, <)) && !backwards) {
514 		char caller[128];
515 
516 #ifdef DDB
517 		db_symstr(caller, sizeof(caller),
518 		    (db_expr_t)(intptr_t)__builtin_return_address(0),
519 		    DB_STGY_PROC);
520 #else
521 		snprintf(caller, sizeof(caller), "%p",
522 		    __builtin_return_address(0));
523 #endif
524 		backwards = true;
525 		printf("WARNING: lwp %ld (%s%s%s) flags 0x%x:"
526 		    " timecounter went backwards"
527 		    " from (%jd + 0x%016"PRIx64"/2^64) sec"
528 		    " to (%jd + 0x%016"PRIx64"/2^64) sec"
529 		    " in %s\n",
530 		    (long)l->l_lid,
531 		    l->l_proc->p_comm,
532 		    l->l_name ? " " : "",
533 		    l->l_name ? l->l_name : "",
534 		    l->l_pflag,
535 		    (intmax_t)l->l_stime.sec, l->l_stime.frac,
536 		    (intmax_t)now->sec, now->frac,
537 		    caller);
538 	}
539 
540 	/* rtime += now - stime */
541 	bintime_add(&l->l_rtime, now);
542 	bintime_sub(&l->l_rtime, &l->l_stime);
543 }
544 
545 /*
546  * Select next LWP from the current CPU to run..
547  */
548 static inline lwp_t *
nextlwp(struct cpu_info * ci,struct schedstate_percpu * spc)549 nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
550 {
551 	lwp_t *newl;
552 
553 	/*
554 	 * Let sched_nextlwp() select the LWP to run the CPU next.
555 	 * If no LWP is runnable, select the idle LWP.
556 	 *
557 	 * On arrival here LWPs on a run queue are locked by spc_mutex which
558 	 * is currently held.  Idle LWPs are always locked by spc_lwplock,
559 	 * which may or may not be held here.  On exit from this code block,
560 	 * in all cases newl is locked by spc_lwplock.
561 	 */
562 	newl = sched_nextlwp();
563 	if (newl != NULL) {
564 		sched_dequeue(newl);
565 		KASSERT(lwp_locked(newl, spc->spc_mutex));
566 		KASSERT(newl->l_cpu == ci);
567 		newl->l_stat = LSONPROC;
568 		newl->l_pflag |= LP_RUNNING;
569 		newl->l_boostpri = PRI_NONE;
570 		spc->spc_curpriority = lwp_eprio(newl);
571 		spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
572 		lwp_setlock(newl, spc->spc_lwplock);
573 	} else {
574 		/*
575 		 * The idle LWP does not get set to LSONPROC, because
576 		 * otherwise it screws up the output from top(1) etc.
577 		 */
578 		newl = ci->ci_data.cpu_idlelwp;
579 		newl->l_pflag |= LP_RUNNING;
580 		spc->spc_curpriority = PRI_IDLE;
581 		spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
582 		    SPCF_IDLE;
583 	}
584 
585 	/*
586 	 * Only clear want_resched if there are no pending (slow) software
587 	 * interrupts.  We can do this without an atomic, because no new
588 	 * LWPs can appear in the queue due to our hold on spc_mutex, and
589 	 * the update to ci_want_resched will become globally visible before
590 	 * the release of spc_mutex becomes globally visible.
591 	 */
592 	if (ci->ci_data.cpu_softints == 0)
593 		ci->ci_want_resched = 0;
594 
595 	return newl;
596 }
597 
598 /*
599  * The machine independent parts of context switch.
600  *
601  * NOTE: l->l_cpu is not changed in this routine, because an LWP never
602  * changes its own l_cpu (that would screw up curcpu on many ports and could
603  * cause all kinds of other evil stuff).  l_cpu is always changed by some
604  * other actor, when it's known the LWP is not running (the LP_RUNNING flag
605  * is checked under lock).
606  */
607 void
mi_switch(lwp_t * l)608 mi_switch(lwp_t *l)
609 {
610 	struct cpu_info *ci;
611 	struct schedstate_percpu *spc;
612 	struct lwp *newl;
613 	kmutex_t *lock;
614 	int oldspl;
615 	struct bintime bt;
616 	bool returning;
617 
618 	KASSERT(lwp_locked(l, NULL));
619 	KASSERT(kpreempt_disabled());
620 	KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
621 	KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
622 
623 	kstack_check_magic(l);
624 
625 	binuptime(&bt);
626 
627 	KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
628 	KASSERT((l->l_pflag & LP_RUNNING) != 0);
629 	KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
630 	ci = curcpu();
631 	spc = &ci->ci_schedstate;
632 	returning = false;
633 	newl = NULL;
634 
635 	/*
636 	 * If we have been asked to switch to a specific LWP, then there
637 	 * is no need to inspect the run queues.  If a soft interrupt is
638 	 * blocking, then return to the interrupted thread without adjusting
639 	 * VM context or its start time: neither have been changed in order
640 	 * to take the interrupt.
641 	 */
642 	if (l->l_switchto != NULL) {
643 		if ((l->l_pflag & LP_INTR) != 0) {
644 			returning = true;
645 			softint_block(l);
646 			if ((l->l_pflag & LP_TIMEINTR) != 0)
647 				updatertime(l, &bt);
648 		}
649 		newl = l->l_switchto;
650 		l->l_switchto = NULL;
651 	}
652 #ifndef __HAVE_FAST_SOFTINTS
653 	else if (ci->ci_data.cpu_softints != 0) {
654 		/* There are pending soft interrupts, so pick one. */
655 		newl = softint_picklwp();
656 		newl->l_stat = LSONPROC;
657 		newl->l_pflag |= LP_RUNNING;
658 	}
659 #endif	/* !__HAVE_FAST_SOFTINTS */
660 
661 	/*
662 	 * If on the CPU and we have gotten this far, then we must yield.
663 	 */
664 	if (l->l_stat == LSONPROC && l != newl) {
665 		KASSERT(lwp_locked(l, spc->spc_lwplock));
666 		KASSERT((l->l_flag & LW_IDLE) == 0);
667 		l->l_stat = LSRUN;
668 		lwp_setlock(l, spc->spc_mutex);
669 		sched_enqueue(l);
670 		sched_preempted(l);
671 
672 		/*
673 		 * Handle migration.  Note that "migrating LWP" may
674 		 * be reset here, if interrupt/preemption happens
675 		 * early in idle LWP.
676 		 */
677 		if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
678 			KASSERT((l->l_pflag & LP_INTR) == 0);
679 			spc->spc_migrating = l;
680 		}
681 	}
682 
683 	/* Pick new LWP to run. */
684 	if (newl == NULL) {
685 		newl = nextlwp(ci, spc);
686 	}
687 
688 	/* Items that must be updated with the CPU locked. */
689 	if (!returning) {
690 		/* Count time spent in current system call */
691 		SYSCALL_TIME_SLEEP(l);
692 
693 		updatertime(l, &bt);
694 
695 		/* Update the new LWP's start time. */
696 		newl->l_stime = bt;
697 
698 		/*
699 		 * ci_curlwp changes when a fast soft interrupt occurs.
700 		 * We use ci_onproc to keep track of which kernel or
701 		 * user thread is running 'underneath' the software
702 		 * interrupt.  This is important for time accounting,
703 		 * itimers and forcing user threads to preempt (aston).
704 		 */
705 		ci->ci_onproc = newl;
706 	}
707 
708 	/*
709 	 * Preemption related tasks.  Must be done holding spc_mutex.  Clear
710 	 * l_dopreempt without an atomic - it's only ever set non-zero by
711 	 * sched_resched_cpu() which also holds spc_mutex, and only ever
712 	 * cleared by the LWP itself (us) with atomics when not under lock.
713 	 */
714 	l->l_dopreempt = 0;
715 	if (__predict_false(l->l_pfailaddr != 0)) {
716 		LOCKSTAT_FLAG(lsflag);
717 		LOCKSTAT_ENTER(lsflag);
718 		LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
719 		LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
720 		    1, l->l_pfailtime, l->l_pfailaddr);
721 		LOCKSTAT_EXIT(lsflag);
722 		l->l_pfailtime = 0;
723 		l->l_pfaillock = 0;
724 		l->l_pfailaddr = 0;
725 	}
726 
727 	if (l != newl) {
728 		struct lwp *prevlwp;
729 
730 		/* Release all locks, but leave the current LWP locked */
731 		if (l->l_mutex == spc->spc_mutex) {
732 			/*
733 			 * Drop spc_lwplock, if the current LWP has been moved
734 			 * to the run queue (it is now locked by spc_mutex).
735 			 */
736 			mutex_spin_exit(spc->spc_lwplock);
737 		} else {
738 			/*
739 			 * Otherwise, drop the spc_mutex, we are done with the
740 			 * run queues.
741 			 */
742 			mutex_spin_exit(spc->spc_mutex);
743 		}
744 
745 		/* We're down to only one lock, so do debug checks. */
746 		LOCKDEBUG_BARRIER(l->l_mutex, 1);
747 
748 		/* Count the context switch. */
749 		CPU_COUNT(CPU_COUNT_NSWTCH, 1);
750 		if ((l->l_pflag & LP_PREEMPTING) != 0) {
751 			l->l_ru.ru_nivcsw++;
752 			l->l_pflag &= ~LP_PREEMPTING;
753 		} else {
754 			l->l_ru.ru_nvcsw++;
755 		}
756 
757 		/*
758 		 * Increase the count of spin-mutexes before the release
759 		 * of the last lock - we must remain at IPL_SCHED after
760 		 * releasing the lock.
761 		 */
762 		KASSERTMSG(ci->ci_mtx_count == -1,
763 		    "%s: cpu%u: ci_mtx_count (%d) != -1 "
764 		    "(block with spin-mutex held)",
765 		     __func__, cpu_index(ci), ci->ci_mtx_count);
766 		oldspl = MUTEX_SPIN_OLDSPL(ci);
767 		ci->ci_mtx_count = -2;
768 
769 		/* Update status for lwpctl, if present. */
770 		if (l->l_lwpctl != NULL) {
771 			l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
772 			    LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
773 		}
774 
775 		/*
776 		 * If curlwp is a soft interrupt LWP, there's nobody on the
777 		 * other side to unlock - we're returning into an assembly
778 		 * trampoline.  Unlock now.  This is safe because this is a
779 		 * kernel LWP and is bound to current CPU: the worst anyone
780 		 * else will do to it, is to put it back onto this CPU's run
781 		 * queue (and the CPU is busy here right now!).
782 		 */
783 		if (returning) {
784 			/* Keep IPL_SCHED after this; MD code will fix up. */
785 			l->l_pflag &= ~LP_RUNNING;
786 			lwp_unlock(l);
787 		} else {
788 			/* A normal LWP: save old VM context. */
789 			pmap_deactivate(l);
790 		}
791 
792 		/*
793 		 * If DTrace has set the active vtime enum to anything
794 		 * other than INACTIVE (0), then it should have set the
795 		 * function to call.
796 		 */
797 		if (__predict_false(dtrace_vtime_active)) {
798 			(*dtrace_vtime_switch_func)(newl);
799 		}
800 
801 		/*
802 		 * We must ensure not to come here from inside a read section.
803 		 */
804 		KASSERT(pserialize_not_in_read_section());
805 
806 		/* Switch to the new LWP.. */
807 #ifdef MULTIPROCESSOR
808 		KASSERT(curlwp == ci->ci_curlwp);
809 #endif
810 		KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
811 		prevlwp = cpu_switchto(l, newl, returning);
812 		ci = curcpu();
813 #ifdef MULTIPROCESSOR
814 		KASSERT(curlwp == ci->ci_curlwp);
815 #endif
816 		KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
817 		    l, curlwp, prevlwp);
818 		KASSERT(prevlwp != NULL);
819 		KASSERT(l->l_cpu == ci);
820 		KASSERT(ci->ci_mtx_count == -2);
821 
822 		/*
823 		 * Immediately mark the previous LWP as no longer running
824 		 * and unlock (to keep lock wait times short as possible).
825 		 * We'll still be at IPL_SCHED afterwards.  If a zombie,
826 		 * don't touch after clearing LP_RUNNING as it could be
827 		 * reaped by another CPU.  Issue a memory barrier to ensure
828 		 * this.
829 		 *
830 		 * atomic_store_release matches atomic_load_acquire in
831 		 * lwp_free.
832 		 */
833 		KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
834 		lock = prevlwp->l_mutex;
835 		if (__predict_false(prevlwp->l_stat == LSZOMB)) {
836 			atomic_store_release(&prevlwp->l_pflag,
837 			    prevlwp->l_pflag & ~LP_RUNNING);
838 		} else {
839 			prevlwp->l_pflag &= ~LP_RUNNING;
840 		}
841 		mutex_spin_exit(lock);
842 
843 		/*
844 		 * Switched away - we have new curlwp.
845 		 * Restore VM context and IPL.
846 		 */
847 		pmap_activate(l);
848 		pcu_switchpoint(l);
849 
850 		/* Update status for lwpctl, if present. */
851 		if (l->l_lwpctl != NULL) {
852 			l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
853 			l->l_lwpctl->lc_pctr++;
854 		}
855 
856 		/*
857 		 * Normalize the spin mutex count and restore the previous
858 		 * SPL.  Note that, unless the caller disabled preemption,
859 		 * we can be preempted at any time after this splx().
860 		 */
861 		KASSERT(l->l_cpu == ci);
862 		KASSERT(ci->ci_mtx_count == -1);
863 		ci->ci_mtx_count = 0;
864 		splx(oldspl);
865 	} else {
866 		/* Nothing to do - just unlock and return. */
867 		mutex_spin_exit(spc->spc_mutex);
868 		l->l_pflag &= ~LP_PREEMPTING;
869 		lwp_unlock(l);
870 	}
871 
872 	KASSERT(l == curlwp);
873 	KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
874 
875 	SYSCALL_TIME_WAKEUP(l);
876 	LOCKDEBUG_BARRIER(NULL, 1);
877 }
878 
879 /*
880  * setrunnable: change LWP state to be runnable, placing it on the run queue.
881  *
882  * Call with the process and LWP locked.  Will return with the LWP unlocked.
883  */
884 void
setrunnable(struct lwp * l)885 setrunnable(struct lwp *l)
886 {
887 	struct proc *p = l->l_proc;
888 	struct cpu_info *ci;
889 	kmutex_t *oldlock;
890 
891 	KASSERT((l->l_flag & LW_IDLE) == 0);
892 	KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
893 	KASSERT(mutex_owned(p->p_lock));
894 	KASSERT(lwp_locked(l, NULL));
895 	KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
896 
897 	switch (l->l_stat) {
898 	case LSSTOP:
899 		/*
900 		 * If we're being traced (possibly because someone attached us
901 		 * while we were stopped), check for a signal from the debugger.
902 		 */
903 		if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
904 			signotify(l);
905 		p->p_nrlwps++;
906 		break;
907 	case LSSUSPENDED:
908 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
909 		l->l_flag &= ~LW_WSUSPEND;
910 		p->p_nrlwps++;
911 		cv_broadcast(&p->p_lwpcv);
912 		break;
913 	case LSSLEEP:
914 		KASSERT(l->l_wchan != NULL);
915 		break;
916 	case LSIDL:
917 		KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
918 		break;
919 	default:
920 		panic("setrunnable: lwp %p state was %d", l, l->l_stat);
921 	}
922 
923 	/*
924 	 * If the LWP was sleeping, start it again.
925 	 */
926 	if (l->l_wchan != NULL) {
927 		l->l_stat = LSSLEEP;
928 		/* lwp_unsleep() will release the lock. */
929 		lwp_unsleep(l, true);
930 		return;
931 	}
932 
933 	/*
934 	 * If the LWP is still on the CPU, mark it as LSONPROC.  It may be
935 	 * about to call mi_switch(), in which case it will yield.
936 	 */
937 	if ((l->l_pflag & LP_RUNNING) != 0) {
938 		l->l_stat = LSONPROC;
939 		l->l_slptime = 0;
940 		lwp_unlock(l);
941 		return;
942 	}
943 
944 	/*
945 	 * Look for a CPU to run.
946 	 * Set the LWP runnable.
947 	 */
948 	ci = sched_takecpu(l);
949 	l->l_cpu = ci;
950 	spc_lock(ci);
951 	oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
952 	sched_setrunnable(l);
953 	l->l_stat = LSRUN;
954 	l->l_slptime = 0;
955 	sched_enqueue(l);
956 	sched_resched_lwp(l, true);
957 	/* SPC & LWP now unlocked. */
958 	mutex_spin_exit(oldlock);
959 }
960 
961 /*
962  * suspendsched:
963  *
964  *	Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
965  */
966 void
suspendsched(void)967 suspendsched(void)
968 {
969 	CPU_INFO_ITERATOR cii;
970 	struct cpu_info *ci;
971 	struct lwp *l;
972 	struct proc *p;
973 
974 	/*
975 	 * We do this by process in order not to violate the locking rules.
976 	 */
977 	mutex_enter(&proc_lock);
978 	PROCLIST_FOREACH(p, &allproc) {
979 		mutex_enter(p->p_lock);
980 		if ((p->p_flag & PK_SYSTEM) != 0) {
981 			mutex_exit(p->p_lock);
982 			continue;
983 		}
984 
985 		if (p->p_stat != SSTOP) {
986 			if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
987 				p->p_pptr->p_nstopchild++;
988 				p->p_waited = 0;
989 			}
990 			p->p_stat = SSTOP;
991 		}
992 
993 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
994 			if (l == curlwp)
995 				continue;
996 
997 			lwp_lock(l);
998 
999 			/*
1000 			 * Set L_WREBOOT so that the LWP will suspend itself
1001 			 * when it tries to return to user mode.  We want to
1002 			 * try and get to get as many LWPs as possible to
1003 			 * the user / kernel boundary, so that they will
1004 			 * release any locks that they hold.
1005 			 */
1006 			l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
1007 
1008 			if (l->l_stat == LSSLEEP &&
1009 			    (l->l_flag & LW_SINTR) != 0) {
1010 				/* setrunnable() will release the lock. */
1011 				setrunnable(l);
1012 				continue;
1013 			}
1014 
1015 			lwp_unlock(l);
1016 		}
1017 
1018 		mutex_exit(p->p_lock);
1019 	}
1020 	mutex_exit(&proc_lock);
1021 
1022 	/*
1023 	 * Kick all CPUs to make them preempt any LWPs running in user mode.
1024 	 * They'll trap into the kernel and suspend themselves in userret().
1025 	 *
1026 	 * Unusually, we don't hold any other scheduler object locked, which
1027 	 * would keep preemption off for sched_resched_cpu(), so disable it
1028 	 * explicitly.
1029 	 */
1030 	kpreempt_disable();
1031 	for (CPU_INFO_FOREACH(cii, ci)) {
1032 		spc_lock(ci);
1033 		sched_resched_cpu(ci, PRI_KERNEL, true);
1034 		/* spc now unlocked */
1035 	}
1036 	kpreempt_enable();
1037 }
1038 
1039 /*
1040  * sched_unsleep:
1041  *
1042  *	The is called when the LWP has not been awoken normally but instead
1043  *	interrupted: for example, if the sleep timed out.  Because of this,
1044  *	it's not a valid action for running or idle LWPs.
1045  */
1046 static void
sched_unsleep(struct lwp * l,bool cleanup)1047 sched_unsleep(struct lwp *l, bool cleanup)
1048 {
1049 
1050 	lwp_unlock(l);
1051 	panic("sched_unsleep");
1052 }
1053 
1054 static void
sched_changepri(struct lwp * l,pri_t pri)1055 sched_changepri(struct lwp *l, pri_t pri)
1056 {
1057 	struct schedstate_percpu *spc;
1058 	struct cpu_info *ci;
1059 
1060 	KASSERT(lwp_locked(l, NULL));
1061 
1062 	ci = l->l_cpu;
1063 	spc = &ci->ci_schedstate;
1064 
1065 	if (l->l_stat == LSRUN) {
1066 		KASSERT(lwp_locked(l, spc->spc_mutex));
1067 		sched_dequeue(l);
1068 		l->l_priority = pri;
1069 		sched_enqueue(l);
1070 		sched_resched_lwp(l, false);
1071 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1072 		/* On priority drop, only evict realtime LWPs. */
1073 		KASSERT(lwp_locked(l, spc->spc_lwplock));
1074 		l->l_priority = pri;
1075 		spc_lock(ci);
1076 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
1077 		/* spc now unlocked */
1078 	} else {
1079 		l->l_priority = pri;
1080 	}
1081 }
1082 
1083 static void
sched_lendpri(struct lwp * l,pri_t pri)1084 sched_lendpri(struct lwp *l, pri_t pri)
1085 {
1086 	struct schedstate_percpu *spc;
1087 	struct cpu_info *ci;
1088 
1089 	KASSERT(lwp_locked(l, NULL));
1090 
1091 	ci = l->l_cpu;
1092 	spc = &ci->ci_schedstate;
1093 
1094 	if (l->l_stat == LSRUN) {
1095 		KASSERT(lwp_locked(l, spc->spc_mutex));
1096 		sched_dequeue(l);
1097 		l->l_inheritedprio = pri;
1098 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1099 		sched_enqueue(l);
1100 		sched_resched_lwp(l, false);
1101 	} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
1102 		/* On priority drop, only evict realtime LWPs. */
1103 		KASSERT(lwp_locked(l, spc->spc_lwplock));
1104 		l->l_inheritedprio = pri;
1105 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1106 		spc_lock(ci);
1107 		sched_resched_cpu(ci, spc->spc_maxpriority, true);
1108 		/* spc now unlocked */
1109 	} else {
1110 		l->l_inheritedprio = pri;
1111 		l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
1112 	}
1113 }
1114 
1115 struct lwp *
syncobj_noowner(wchan_t wchan)1116 syncobj_noowner(wchan_t wchan)
1117 {
1118 
1119 	return NULL;
1120 }
1121 
1122 /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
1123 const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
1124 
1125 /*
1126  * Constants for averages over 1, 5 and 15 minutes when sampling at
1127  * 5 second intervals.
1128  */
1129 static const fixpt_t cexp[ ] = {
1130 	0.9200444146293232 * FSCALE,	/* exp(-1/12) */
1131 	0.9834714538216174 * FSCALE,	/* exp(-1/60) */
1132 	0.9944598480048967 * FSCALE,	/* exp(-1/180) */
1133 };
1134 
1135 /*
1136  * sched_pstats:
1137  *
1138  * => Update process statistics and check CPU resource allocation.
1139  * => Call scheduler-specific hook to eventually adjust LWP priorities.
1140  * => Compute load average of a quantity on 1, 5 and 15 minute intervals.
1141  */
1142 void
sched_pstats(void)1143 sched_pstats(void)
1144 {
1145 	struct loadavg *avg = &averunnable;
1146 	const int clkhz = (stathz != 0 ? stathz : hz);
1147 	static bool backwardslwp = false;
1148 	static bool backwardsproc = false;
1149 	static u_int lavg_count = 0;
1150 	struct proc *p;
1151 	int nrun;
1152 
1153 	sched_pstats_ticks++;
1154 	if (++lavg_count >= 5) {
1155 		lavg_count = 0;
1156 		nrun = 0;
1157 	}
1158 	mutex_enter(&proc_lock);
1159 	PROCLIST_FOREACH(p, &allproc) {
1160 		struct lwp *l;
1161 		struct rlimit *rlim;
1162 		time_t runtm;
1163 		int sig;
1164 
1165 		/* Increment sleep time (if sleeping), ignore overflow. */
1166 		mutex_enter(p->p_lock);
1167 		runtm = p->p_rtime.sec;
1168 		LIST_FOREACH(l, &p->p_lwps, l_sibling) {
1169 			fixpt_t lpctcpu;
1170 			u_int lcpticks;
1171 
1172 			if (__predict_false((l->l_flag & LW_IDLE) != 0))
1173 				continue;
1174 			lwp_lock(l);
1175 			if (__predict_false(l->l_rtime.sec < 0) &&
1176 			    !backwardslwp) {
1177 				backwardslwp = true;
1178 				printf("WARNING: lwp %ld (%s%s%s): "
1179 				    "negative runtime: "
1180 				    "(%jd + 0x%016"PRIx64"/2^64) sec\n",
1181 				    (long)l->l_lid,
1182 				    l->l_proc->p_comm,
1183 				    l->l_name ? " " : "",
1184 				    l->l_name ? l->l_name : "",
1185 				    (intmax_t)l->l_rtime.sec,
1186 				    l->l_rtime.frac);
1187 			}
1188 			runtm += l->l_rtime.sec;
1189 			l->l_swtime++;
1190 			sched_lwp_stats(l);
1191 
1192 			/* For load average calculation. */
1193 			if (__predict_false(lavg_count == 0) &&
1194 			    (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
1195 				switch (l->l_stat) {
1196 				case LSSLEEP:
1197 					if (l->l_slptime > 1) {
1198 						break;
1199 					}
1200 					/* FALLTHROUGH */
1201 				case LSRUN:
1202 				case LSONPROC:
1203 				case LSIDL:
1204 					nrun++;
1205 				}
1206 			}
1207 			lwp_unlock(l);
1208 
1209 			l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
1210 			if (l->l_slptime != 0)
1211 				continue;
1212 
1213 			lpctcpu = l->l_pctcpu;
1214 			lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
1215 			lpctcpu += ((FSCALE - ccpu) *
1216 			    (lcpticks * FSCALE / clkhz)) >> FSHIFT;
1217 			l->l_pctcpu = lpctcpu;
1218 		}
1219 		/* Calculating p_pctcpu only for ps(1) */
1220 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
1221 
1222 		if (__predict_false(runtm < 0)) {
1223 			if (!backwardsproc) {
1224 				backwardsproc = true;
1225 				printf("WARNING: pid %ld (%s): "
1226 				    "negative runtime; "
1227 				    "monotonic clock has gone backwards\n",
1228 				    (long)p->p_pid, p->p_comm);
1229 			}
1230 			mutex_exit(p->p_lock);
1231 			continue;
1232 		}
1233 
1234 		/*
1235 		 * Check if the process exceeds its CPU resource allocation.
1236 		 * If over the hard limit, kill it with SIGKILL.
1237 		 * If over the soft limit, send SIGXCPU and raise
1238 		 * the soft limit a little.
1239 		 */
1240 		rlim = &p->p_rlimit[RLIMIT_CPU];
1241 		sig = 0;
1242 		if (__predict_false(runtm >= rlim->rlim_cur)) {
1243 			if (runtm >= rlim->rlim_max) {
1244 				sig = SIGKILL;
1245 				log(LOG_NOTICE,
1246 				    "pid %d, command %s, is killed: %s\n",
1247 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1248 				uprintf("pid %d, command %s, is killed: %s\n",
1249 				    p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
1250 			} else {
1251 				sig = SIGXCPU;
1252 				if (rlim->rlim_cur < rlim->rlim_max)
1253 					rlim->rlim_cur += 5;
1254 			}
1255 		}
1256 		mutex_exit(p->p_lock);
1257 		if (__predict_false(sig)) {
1258 			KASSERT((p->p_flag & PK_SYSTEM) == 0);
1259 			psignal(p, sig);
1260 		}
1261 	}
1262 
1263 	/* Load average calculation. */
1264 	if (__predict_false(lavg_count == 0)) {
1265 		int i;
1266 		CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
1267 		for (i = 0; i < __arraycount(cexp); i++) {
1268 			avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
1269 			    nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
1270 		}
1271 	}
1272 
1273 	/* Lightning bolt. */
1274 	cv_broadcast(&lbolt);
1275 
1276 	mutex_exit(&proc_lock);
1277 }
1278