xref: /netbsd-src/external/gpl3/gcc.old/dist/gcc/ira-costs.c (revision 8feb0f0b7eaff0608f8350bbfa3098827b4bb91b)
1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2    Copyright (C) 2006-2020 Free Software Foundation, Inc.
3    Contributed by Vladimir Makarov <vmakarov@redhat.com>.
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3.  If not see
19 <http://www.gnu.org/licenses/>.  */
20 
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "ira-int.h"
35 #include "addresses.h"
36 #include "reload.h"
37 
38 /* The flags is set up every time when we calculate pseudo register
39    classes through function ira_set_pseudo_classes.  */
40 static bool pseudo_classes_defined_p = false;
41 
42 /* TRUE if we work with allocnos.  Otherwise we work with pseudos.  */
43 static bool allocno_p;
44 
45 /* Number of elements in array `costs'.  */
46 static int cost_elements_num;
47 
48 /* The `costs' struct records the cost of using hard registers of each
49    class considered for the calculation and of using memory for each
50    allocno or pseudo.  */
51 struct costs
52 {
53   int mem_cost;
54   /* Costs for register classes start here.  We process only some
55      allocno classes.  */
56   int cost[1];
57 };
58 
59 #define max_struct_costs_size \
60   (this_target_ira_int->x_max_struct_costs_size)
61 #define init_cost \
62   (this_target_ira_int->x_init_cost)
63 #define temp_costs \
64   (this_target_ira_int->x_temp_costs)
65 #define op_costs \
66   (this_target_ira_int->x_op_costs)
67 #define this_op_costs \
68   (this_target_ira_int->x_this_op_costs)
69 
70 /* Costs of each class for each allocno or pseudo.  */
71 static struct costs *costs;
72 
73 /* Accumulated costs of each class for each allocno.  */
74 static struct costs *total_allocno_costs;
75 
76 /* It is the current size of struct costs.  */
77 static size_t struct_costs_size;
78 
79 /* Return pointer to structure containing costs of allocno or pseudo
80    with given NUM in array ARR.  */
81 #define COSTS(arr, num) \
82   ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
83 
84 /* Return index in COSTS when processing reg with REGNO.  */
85 #define COST_INDEX(regno) (allocno_p 					     \
86                            ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
87 			   : (int) regno)
88 
89 /* Record register class preferences of each allocno or pseudo.  Null
90    value means no preferences.  It happens on the 1st iteration of the
91    cost calculation.  */
92 static enum reg_class *pref;
93 
94 /* Allocated buffers for pref.  */
95 static enum reg_class *pref_buffer;
96 
97 /* Record allocno class of each allocno with the same regno.  */
98 static enum reg_class *regno_aclass;
99 
100 /* Record cost gains for not allocating a register with an invariant
101    equivalence.  */
102 static int *regno_equiv_gains;
103 
104 /* Execution frequency of the current insn.  */
105 static int frequency;
106 
107 
108 
109 /* Info about reg classes whose costs are calculated for a pseudo.  */
110 struct cost_classes
111 {
112   /* Number of the cost classes in the subsequent array.  */
113   int num;
114   /* Container of the cost classes.  */
115   enum reg_class classes[N_REG_CLASSES];
116   /* Map reg class -> index of the reg class in the previous array.
117      -1 if it is not a cost class.  */
118   int index[N_REG_CLASSES];
119   /* Map hard regno index of first class in array CLASSES containing
120      the hard regno, -1 otherwise.  */
121   int hard_regno_index[FIRST_PSEUDO_REGISTER];
122 };
123 
124 /* Types of pointers to the structure above.  */
125 typedef struct cost_classes *cost_classes_t;
126 typedef const struct cost_classes *const_cost_classes_t;
127 
128 /* Info about cost classes for each pseudo.  */
129 static cost_classes_t *regno_cost_classes;
130 
131 /* Helper for cost_classes hashing.  */
132 
133 struct cost_classes_hasher : pointer_hash <cost_classes>
134 {
135   static inline hashval_t hash (const cost_classes *);
136   static inline bool equal (const cost_classes *, const cost_classes *);
137   static inline void remove (cost_classes *);
138 };
139 
140 /* Returns hash value for cost classes info HV.  */
141 inline hashval_t
hash(const cost_classes * hv)142 cost_classes_hasher::hash (const cost_classes *hv)
143 {
144   return iterative_hash (&hv->classes, sizeof (enum reg_class) * hv->num, 0);
145 }
146 
147 /* Compares cost classes info HV1 and HV2.  */
148 inline bool
equal(const cost_classes * hv1,const cost_classes * hv2)149 cost_classes_hasher::equal (const cost_classes *hv1, const cost_classes *hv2)
150 {
151   return (hv1->num == hv2->num
152 	  && memcmp (hv1->classes, hv2->classes,
153 		     sizeof (enum reg_class) * hv1->num) == 0);
154 }
155 
156 /* Delete cost classes info V from the hash table.  */
157 inline void
remove(cost_classes * v)158 cost_classes_hasher::remove (cost_classes *v)
159 {
160   ira_free (v);
161 }
162 
163 /* Hash table of unique cost classes.  */
164 static hash_table<cost_classes_hasher> *cost_classes_htab;
165 
166 /* Map allocno class -> cost classes for pseudo of given allocno
167    class.  */
168 static cost_classes_t cost_classes_aclass_cache[N_REG_CLASSES];
169 
170 /* Map mode -> cost classes for pseudo of give mode.  */
171 static cost_classes_t cost_classes_mode_cache[MAX_MACHINE_MODE];
172 
173 /* Cost classes that include all classes in ira_important_classes.  */
174 static cost_classes all_cost_classes;
175 
176 /* Use the array of classes in CLASSES_PTR to fill out the rest of
177    the structure.  */
178 static void
complete_cost_classes(cost_classes_t classes_ptr)179 complete_cost_classes (cost_classes_t classes_ptr)
180 {
181   for (int i = 0; i < N_REG_CLASSES; i++)
182     classes_ptr->index[i] = -1;
183   for (int i = 0; i < FIRST_PSEUDO_REGISTER; i++)
184     classes_ptr->hard_regno_index[i] = -1;
185   for (int i = 0; i < classes_ptr->num; i++)
186     {
187       enum reg_class cl = classes_ptr->classes[i];
188       classes_ptr->index[cl] = i;
189       for (int j = ira_class_hard_regs_num[cl] - 1; j >= 0; j--)
190 	{
191 	  unsigned int hard_regno = ira_class_hard_regs[cl][j];
192 	  if (classes_ptr->hard_regno_index[hard_regno] < 0)
193 	    classes_ptr->hard_regno_index[hard_regno] = i;
194 	}
195     }
196 }
197 
198 /* Initialize info about the cost classes for each pseudo.  */
199 static void
initiate_regno_cost_classes(void)200 initiate_regno_cost_classes (void)
201 {
202   int size = sizeof (cost_classes_t) * max_reg_num ();
203 
204   regno_cost_classes = (cost_classes_t *) ira_allocate (size);
205   memset (regno_cost_classes, 0, size);
206   memset (cost_classes_aclass_cache, 0,
207 	  sizeof (cost_classes_t) * N_REG_CLASSES);
208   memset (cost_classes_mode_cache, 0,
209 	  sizeof (cost_classes_t) * MAX_MACHINE_MODE);
210   cost_classes_htab = new hash_table<cost_classes_hasher> (200);
211   all_cost_classes.num = ira_important_classes_num;
212   for (int i = 0; i < ira_important_classes_num; i++)
213     all_cost_classes.classes[i] = ira_important_classes[i];
214   complete_cost_classes (&all_cost_classes);
215 }
216 
217 /* Create new cost classes from cost classes FROM and set up members
218    index and hard_regno_index.  Return the new classes.  The function
219    implements some common code of two functions
220    setup_regno_cost_classes_by_aclass and
221    setup_regno_cost_classes_by_mode.  */
222 static cost_classes_t
setup_cost_classes(cost_classes_t from)223 setup_cost_classes (cost_classes_t from)
224 {
225   cost_classes_t classes_ptr;
226 
227   classes_ptr = (cost_classes_t) ira_allocate (sizeof (struct cost_classes));
228   classes_ptr->num = from->num;
229   for (int i = 0; i < from->num; i++)
230     classes_ptr->classes[i] = from->classes[i];
231   complete_cost_classes (classes_ptr);
232   return classes_ptr;
233 }
234 
235 /* Return a version of FULL that only considers registers in REGS that are
236    valid for mode MODE.  Both FULL and the returned class are globally
237    allocated.  */
238 static cost_classes_t
restrict_cost_classes(cost_classes_t full,machine_mode mode,const_hard_reg_set regs)239 restrict_cost_classes (cost_classes_t full, machine_mode mode,
240 		       const_hard_reg_set regs)
241 {
242   static struct cost_classes narrow;
243   int map[N_REG_CLASSES];
244   narrow.num = 0;
245   for (int i = 0; i < full->num; i++)
246     {
247       /* Assume that we'll drop the class.  */
248       map[i] = -1;
249 
250       /* Ignore classes that are too small for the mode.  */
251       enum reg_class cl = full->classes[i];
252       if (!contains_reg_of_mode[cl][mode])
253 	continue;
254 
255       /* Calculate the set of registers in CL that belong to REGS and
256 	 are valid for MODE.  */
257       HARD_REG_SET valid_for_cl = reg_class_contents[cl] & regs;
258       valid_for_cl &= ~(ira_prohibited_class_mode_regs[cl][mode]
259 			| ira_no_alloc_regs);
260       if (hard_reg_set_empty_p (valid_for_cl))
261 	continue;
262 
263       /* Don't use this class if the set of valid registers is a subset
264 	 of an existing class.  For example, suppose we have two classes
265 	 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS.  Suppose
266 	 that the mode changes allowed by FR_REGS are not as general as
267 	 the mode changes allowed by GR_REGS.
268 
269 	 In this situation, the mode changes for GR_AND_FR_REGS could
270 	 either be seen as the union or the intersection of the mode
271 	 changes allowed by the two subclasses.  The justification for
272 	 the union-based definition would be that, if you want a mode
273 	 change that's only allowed by GR_REGS, you can pick a register
274 	 from the GR_REGS subclass.  The justification for the
275 	 intersection-based definition would be that every register
276 	 from the class would allow the mode change.
277 
278 	 However, if we have a register that needs to be in GR_REGS,
279 	 using GR_AND_FR_REGS with the intersection-based definition
280 	 would be too pessimistic, since it would bring in restrictions
281 	 that only apply to FR_REGS.  Conversely, if we have a register
282 	 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
283 	 union-based definition would lose the extra restrictions
284 	 placed on FR_REGS.  GR_AND_FR_REGS is therefore only useful
285 	 for cases where GR_REGS and FP_REGS are both valid.  */
286       int pos;
287       for (pos = 0; pos < narrow.num; ++pos)
288 	{
289 	  enum reg_class cl2 = narrow.classes[pos];
290 	  if (hard_reg_set_subset_p (valid_for_cl, reg_class_contents[cl2]))
291 	    break;
292 	}
293       map[i] = pos;
294       if (pos == narrow.num)
295 	{
296 	  /* If several classes are equivalent, prefer to use the one
297 	     that was chosen as the allocno class.  */
298 	  enum reg_class cl2 = ira_allocno_class_translate[cl];
299 	  if (ira_class_hard_regs_num[cl] == ira_class_hard_regs_num[cl2])
300 	    cl = cl2;
301 	  narrow.classes[narrow.num++] = cl;
302 	}
303     }
304   if (narrow.num == full->num)
305     return full;
306 
307   cost_classes **slot = cost_classes_htab->find_slot (&narrow, INSERT);
308   if (*slot == NULL)
309     {
310       cost_classes_t classes = setup_cost_classes (&narrow);
311       /* Map equivalent classes to the representative that we chose above.  */
312       for (int i = 0; i < ira_important_classes_num; i++)
313 	{
314 	  enum reg_class cl = ira_important_classes[i];
315 	  int index = full->index[cl];
316 	  if (index >= 0)
317 	    classes->index[cl] = map[index];
318 	}
319       *slot = classes;
320     }
321   return *slot;
322 }
323 
324 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
325    This function is used when we know an initial approximation of
326    allocno class of the pseudo already, e.g. on the second iteration
327    of class cost calculation or after class cost calculation in
328    register-pressure sensitive insn scheduling or register-pressure
329    sensitive loop-invariant motion.  */
330 static void
setup_regno_cost_classes_by_aclass(int regno,enum reg_class aclass)331 setup_regno_cost_classes_by_aclass (int regno, enum reg_class aclass)
332 {
333   static struct cost_classes classes;
334   cost_classes_t classes_ptr;
335   enum reg_class cl;
336   int i;
337   cost_classes **slot;
338   HARD_REG_SET temp, temp2;
339   bool exclude_p;
340 
341   if ((classes_ptr = cost_classes_aclass_cache[aclass]) == NULL)
342     {
343       temp = reg_class_contents[aclass] & ~ira_no_alloc_regs;
344       /* We exclude classes from consideration which are subsets of
345 	 ACLASS only if ACLASS is an uniform class.  */
346       exclude_p = ira_uniform_class_p[aclass];
347       classes.num = 0;
348       for (i = 0; i < ira_important_classes_num; i++)
349 	{
350 	  cl = ira_important_classes[i];
351 	  if (exclude_p)
352 	    {
353 	      /* Exclude non-uniform classes which are subsets of
354 		 ACLASS.  */
355 	      temp2 = reg_class_contents[cl] & ~ira_no_alloc_regs;
356 	      if (hard_reg_set_subset_p (temp2, temp) && cl != aclass)
357 		continue;
358 	    }
359 	  classes.classes[classes.num++] = cl;
360 	}
361       slot = cost_classes_htab->find_slot (&classes, INSERT);
362       if (*slot == NULL)
363 	{
364 	  classes_ptr = setup_cost_classes (&classes);
365 	  *slot = classes_ptr;
366 	}
367       classes_ptr = cost_classes_aclass_cache[aclass] = (cost_classes_t) *slot;
368     }
369   if (regno_reg_rtx[regno] != NULL_RTX)
370     {
371       /* Restrict the classes to those that are valid for REGNO's mode
372 	 (which might for example exclude singleton classes if the mode
373 	 requires two registers).  Also restrict the classes to those that
374 	 are valid for subregs of REGNO.  */
375       const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno);
376       if (!valid_regs)
377 	valid_regs = &reg_class_contents[ALL_REGS];
378       classes_ptr = restrict_cost_classes (classes_ptr,
379 					   PSEUDO_REGNO_MODE (regno),
380 					   *valid_regs);
381     }
382   regno_cost_classes[regno] = classes_ptr;
383 }
384 
385 /* Setup cost classes for pseudo REGNO with MODE.  Usage of MODE can
386    decrease number of cost classes for the pseudo, if hard registers
387    of some important classes cannot hold a value of MODE.  So the
388    pseudo cannot get hard register of some important classes and cost
389    calculation for such important classes is only wasting CPU
390    time.  */
391 static void
setup_regno_cost_classes_by_mode(int regno,machine_mode mode)392 setup_regno_cost_classes_by_mode (int regno, machine_mode mode)
393 {
394   if (const HARD_REG_SET *valid_regs = valid_mode_changes_for_regno (regno))
395     regno_cost_classes[regno] = restrict_cost_classes (&all_cost_classes,
396 						       mode, *valid_regs);
397   else
398     {
399       if (cost_classes_mode_cache[mode] == NULL)
400 	cost_classes_mode_cache[mode]
401 	  = restrict_cost_classes (&all_cost_classes, mode,
402 				   reg_class_contents[ALL_REGS]);
403       regno_cost_classes[regno] = cost_classes_mode_cache[mode];
404     }
405 }
406 
407 /* Finalize info about the cost classes for each pseudo.  */
408 static void
finish_regno_cost_classes(void)409 finish_regno_cost_classes (void)
410 {
411   ira_free (regno_cost_classes);
412   delete cost_classes_htab;
413   cost_classes_htab = NULL;
414 }
415 
416 
417 
418 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
419    TO_P is FALSE) a register of class RCLASS in mode MODE.  X must not
420    be a pseudo register.  */
421 static int
copy_cost(rtx x,machine_mode mode,reg_class_t rclass,bool to_p,secondary_reload_info * prev_sri)422 copy_cost (rtx x, machine_mode mode, reg_class_t rclass, bool to_p,
423 	   secondary_reload_info *prev_sri)
424 {
425   secondary_reload_info sri;
426   reg_class_t secondary_class = NO_REGS;
427 
428   /* If X is a SCRATCH, there is actually nothing to move since we are
429      assuming optimal allocation.  */
430   if (GET_CODE (x) == SCRATCH)
431     return 0;
432 
433   /* Get the class we will actually use for a reload.  */
434   rclass = targetm.preferred_reload_class (x, rclass);
435 
436   /* If we need a secondary reload for an intermediate, the cost is
437      that to load the input into the intermediate register, then to
438      copy it.  */
439   sri.prev_sri = prev_sri;
440   sri.extra_cost = 0;
441   /* PR 68770: Secondary reload might examine the t_icode field.  */
442   sri.t_icode = CODE_FOR_nothing;
443 
444   secondary_class = targetm.secondary_reload (to_p, x, rclass, mode, &sri);
445 
446   if (secondary_class != NO_REGS)
447     {
448       ira_init_register_move_cost_if_necessary (mode);
449       return (ira_register_move_cost[mode][(int) secondary_class][(int) rclass]
450 	      + sri.extra_cost
451 	      + copy_cost (x, mode, secondary_class, to_p, &sri));
452     }
453 
454   /* For memory, use the memory move cost, for (hard) registers, use
455      the cost to move between the register classes, and use 2 for
456      everything else (constants).  */
457   if (MEM_P (x) || rclass == NO_REGS)
458     return sri.extra_cost
459 	   + ira_memory_move_cost[mode][(int) rclass][to_p != 0];
460   else if (REG_P (x))
461     {
462       reg_class_t x_class = REGNO_REG_CLASS (REGNO (x));
463 
464       ira_init_register_move_cost_if_necessary (mode);
465       return (sri.extra_cost
466 	      + ira_register_move_cost[mode][(int) x_class][(int) rclass]);
467     }
468   else
469     /* If this is a constant, we may eventually want to call rtx_cost
470        here.  */
471     return sri.extra_cost + COSTS_N_INSNS (1);
472 }
473 
474 
475 
476 /* Record the cost of using memory or hard registers of various
477    classes for the operands in INSN.
478 
479    N_ALTS is the number of alternatives.
480    N_OPS is the number of operands.
481    OPS is an array of the operands.
482    MODES are the modes of the operands, in case any are VOIDmode.
483    CONSTRAINTS are the constraints to use for the operands.  This array
484    is modified by this procedure.
485 
486    This procedure works alternative by alternative.  For each
487    alternative we assume that we will be able to allocate all allocnos
488    to their ideal register class and calculate the cost of using that
489    alternative.  Then we compute, for each operand that is a
490    pseudo-register, the cost of having the allocno allocated to each
491    register class and using it in that alternative.  To this cost is
492    added the cost of the alternative.
493 
494    The cost of each class for this insn is its lowest cost among all
495    the alternatives.  */
496 static void
record_reg_classes(int n_alts,int n_ops,rtx * ops,machine_mode * modes,const char ** constraints,rtx_insn * insn,enum reg_class * pref)497 record_reg_classes (int n_alts, int n_ops, rtx *ops,
498 		    machine_mode *modes, const char **constraints,
499 		    rtx_insn *insn, enum reg_class *pref)
500 {
501   int alt;
502   int i, j, k;
503   int insn_allows_mem[MAX_RECOG_OPERANDS];
504   move_table *move_in_cost, *move_out_cost;
505   short (*mem_cost)[2];
506 
507   for (i = 0; i < n_ops; i++)
508     insn_allows_mem[i] = 0;
509 
510   /* Process each alternative, each time minimizing an operand's cost
511      with the cost for each operand in that alternative.  */
512   alternative_mask preferred = get_preferred_alternatives (insn);
513   for (alt = 0; alt < n_alts; alt++)
514     {
515       enum reg_class classes[MAX_RECOG_OPERANDS];
516       int allows_mem[MAX_RECOG_OPERANDS];
517       enum reg_class rclass;
518       int alt_fail = 0;
519       int alt_cost = 0, op_cost_add;
520 
521       if (!TEST_BIT (preferred, alt))
522 	{
523 	  for (i = 0; i < recog_data.n_operands; i++)
524 	    constraints[i] = skip_alternative (constraints[i]);
525 
526 	  continue;
527 	}
528 
529       for (i = 0; i < n_ops; i++)
530 	{
531 	  unsigned char c;
532 	  const char *p = constraints[i];
533 	  rtx op = ops[i];
534 	  machine_mode mode = modes[i];
535 	  int allows_addr = 0;
536 	  int win = 0;
537 
538 	  /* Initially show we know nothing about the register class.  */
539 	  classes[i] = NO_REGS;
540 	  allows_mem[i] = 0;
541 
542 	  /* If this operand has no constraints at all, we can
543 	     conclude nothing about it since anything is valid.  */
544 	  if (*p == 0)
545 	    {
546 	      if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
547 		memset (this_op_costs[i], 0, struct_costs_size);
548 	      continue;
549 	    }
550 
551 	  /* If this alternative is only relevant when this operand
552 	     matches a previous operand, we do different things
553 	     depending on whether this operand is a allocno-reg or not.
554 	     We must process any modifiers for the operand before we
555 	     can make this test.  */
556 	  while (*p == '%' || *p == '=' || *p == '+' || *p == '&')
557 	    p++;
558 
559 	  if (p[0] >= '0' && p[0] <= '0' + i)
560 	    {
561 	      /* Copy class and whether memory is allowed from the
562 		 matching alternative.  Then perform any needed cost
563 		 computations and/or adjustments.  */
564 	      j = p[0] - '0';
565 	      classes[i] = classes[j];
566 	      allows_mem[i] = allows_mem[j];
567 	      if (allows_mem[i])
568 		insn_allows_mem[i] = 1;
569 
570 	      if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
571 		{
572 		  /* If this matches the other operand, we have no
573 		     added cost and we win.  */
574 		  if (rtx_equal_p (ops[j], op))
575 		    win = 1;
576 		  /* If we can put the other operand into a register,
577 		     add to the cost of this alternative the cost to
578 		     copy this operand to the register used for the
579 		     other operand.  */
580 		  else if (classes[j] != NO_REGS)
581 		    {
582 		      alt_cost += copy_cost (op, mode, classes[j], 1, NULL);
583 		      win = 1;
584 		    }
585 		}
586 	      else if (! REG_P (ops[j])
587 		       || REGNO (ops[j]) < FIRST_PSEUDO_REGISTER)
588 		{
589 		  /* This op is an allocno but the one it matches is
590 		     not.  */
591 
592 		  /* If we can't put the other operand into a
593 		     register, this alternative can't be used.  */
594 
595 		  if (classes[j] == NO_REGS)
596 		    alt_fail = 1;
597 		  /* Otherwise, add to the cost of this alternative
598 		     the cost to copy the other operand to the hard
599 		     register used for this operand.  */
600 		  else
601 		    alt_cost += copy_cost (ops[j], mode, classes[j], 1, NULL);
602 		}
603 	      else
604 		{
605 		  /* The costs of this operand are not the same as the
606 		     other operand since move costs are not symmetric.
607 		     Moreover, if we cannot tie them, this alternative
608 		     needs to do a copy, which is one insn.  */
609 		  struct costs *pp = this_op_costs[i];
610 		  int *pp_costs = pp->cost;
611 		  cost_classes_t cost_classes_ptr
612 		    = regno_cost_classes[REGNO (op)];
613 		  enum reg_class *cost_classes = cost_classes_ptr->classes;
614 		  bool in_p = recog_data.operand_type[i] != OP_OUT;
615 		  bool out_p = recog_data.operand_type[i] != OP_IN;
616 		  enum reg_class op_class = classes[i];
617 
618 		  ira_init_register_move_cost_if_necessary (mode);
619 		  if (! in_p)
620 		    {
621 		      ira_assert (out_p);
622 		      if (op_class == NO_REGS)
623 			{
624 			  mem_cost = ira_memory_move_cost[mode];
625 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
626 			    {
627 			      rclass = cost_classes[k];
628 			      pp_costs[k] = mem_cost[rclass][0] * frequency;
629 			    }
630 			}
631 		      else
632 			{
633 			  move_out_cost = ira_may_move_out_cost[mode];
634 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
635 			    {
636 			      rclass = cost_classes[k];
637 			      pp_costs[k]
638 				= move_out_cost[op_class][rclass] * frequency;
639 			    }
640 			}
641 		    }
642 		  else if (! out_p)
643 		    {
644 		      ira_assert (in_p);
645 		      if (op_class == NO_REGS)
646 			{
647 			  mem_cost = ira_memory_move_cost[mode];
648 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
649 			    {
650 			      rclass = cost_classes[k];
651 			      pp_costs[k] = mem_cost[rclass][1] * frequency;
652 			    }
653 			}
654 		      else
655 			{
656 			  move_in_cost = ira_may_move_in_cost[mode];
657 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
658 			    {
659 			      rclass = cost_classes[k];
660 			      pp_costs[k]
661 				= move_in_cost[rclass][op_class] * frequency;
662 			    }
663 			}
664 		    }
665 		  else
666 		    {
667 		      if (op_class == NO_REGS)
668 			{
669 			  mem_cost = ira_memory_move_cost[mode];
670 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
671 			    {
672 			      rclass = cost_classes[k];
673 			      pp_costs[k] = ((mem_cost[rclass][0]
674 					      + mem_cost[rclass][1])
675 					     * frequency);
676 			    }
677 			}
678 		      else
679 			{
680 			  move_in_cost = ira_may_move_in_cost[mode];
681 			  move_out_cost = ira_may_move_out_cost[mode];
682 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
683 			    {
684 			      rclass = cost_classes[k];
685 			      pp_costs[k] = ((move_in_cost[rclass][op_class]
686 					      + move_out_cost[op_class][rclass])
687 					     * frequency);
688 			    }
689 			}
690 		    }
691 
692 		  /* If the alternative actually allows memory, make
693 		     things a bit cheaper since we won't need an extra
694 		     insn to load it.  */
695 		  pp->mem_cost
696 		    = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
697 		       + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
698 		       - allows_mem[i]) * frequency;
699 
700 		  /* If we have assigned a class to this allocno in
701 		     our first pass, add a cost to this alternative
702 		     corresponding to what we would add if this
703 		     allocno were not in the appropriate class.  */
704 		  if (pref)
705 		    {
706 		      enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
707 
708 		      if (pref_class == NO_REGS)
709 			alt_cost
710 			  += ((out_p
711 			       ? ira_memory_move_cost[mode][op_class][0] : 0)
712 			      + (in_p
713 				 ? ira_memory_move_cost[mode][op_class][1]
714 				 : 0));
715 		      else if (ira_reg_class_intersect
716 			       [pref_class][op_class] == NO_REGS)
717 			alt_cost
718 			  += ira_register_move_cost[mode][pref_class][op_class];
719 		    }
720 		  if (REGNO (ops[i]) != REGNO (ops[j])
721 		      && ! find_reg_note (insn, REG_DEAD, op))
722 		    alt_cost += 2;
723 
724 		  p++;
725 		}
726 	    }
727 
728 	  /* Scan all the constraint letters.  See if the operand
729 	     matches any of the constraints.  Collect the valid
730 	     register classes and see if this operand accepts
731 	     memory.  */
732 	  while ((c = *p))
733 	    {
734 	      switch (c)
735 		{
736 		case '*':
737 		  /* Ignore the next letter for this pass.  */
738 		  c = *++p;
739 		  break;
740 
741 		case '^':
742 		  alt_cost += 2;
743 		  break;
744 
745 		case '?':
746 		  alt_cost += 2;
747 		  break;
748 
749 		case 'g':
750 		  if (MEM_P (op)
751 		      || (CONSTANT_P (op)
752 			  && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))))
753 		    win = 1;
754 		  insn_allows_mem[i] = allows_mem[i] = 1;
755 		  classes[i] = ira_reg_class_subunion[classes[i]][GENERAL_REGS];
756 		  break;
757 
758 		default:
759 		  enum constraint_num cn = lookup_constraint (p);
760 		  enum reg_class cl;
761 		  switch (get_constraint_type (cn))
762 		    {
763 		    case CT_REGISTER:
764 		      cl = reg_class_for_constraint (cn);
765 		      if (cl != NO_REGS)
766 			classes[i] = ira_reg_class_subunion[classes[i]][cl];
767 		      break;
768 
769 		    case CT_CONST_INT:
770 		      if (CONST_INT_P (op)
771 			  && insn_const_int_ok_for_constraint (INTVAL (op), cn))
772 			win = 1;
773 		      break;
774 
775 		    case CT_MEMORY:
776 		      /* Every MEM can be reloaded to fit.  */
777 		      insn_allows_mem[i] = allows_mem[i] = 1;
778 		      if (MEM_P (op))
779 			win = 1;
780 		      break;
781 
782 		    case CT_SPECIAL_MEMORY:
783 		      insn_allows_mem[i] = allows_mem[i] = 1;
784 		      if (MEM_P (op) && constraint_satisfied_p (op, cn))
785 			win = 1;
786 		      break;
787 
788 		    case CT_ADDRESS:
789 		      /* Every address can be reloaded to fit.  */
790 		      allows_addr = 1;
791 		      if (address_operand (op, GET_MODE (op))
792 			  || constraint_satisfied_p (op, cn))
793 			win = 1;
794 		      /* We know this operand is an address, so we
795 			 want it to be allocated to a hard register
796 			 that can be the base of an address,
797 			 i.e. BASE_REG_CLASS.  */
798 		      classes[i]
799 			= ira_reg_class_subunion[classes[i]]
800 			  [base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
801 					   ADDRESS, SCRATCH)];
802 		      break;
803 
804 		    case CT_FIXED_FORM:
805 		      if (constraint_satisfied_p (op, cn))
806 			win = 1;
807 		      break;
808 		    }
809 		  break;
810 		}
811 	      p += CONSTRAINT_LEN (c, p);
812 	      if (c == ',')
813 		break;
814 	    }
815 
816 	  constraints[i] = p;
817 
818 	  if (alt_fail)
819 	    break;
820 
821 	  /* How we account for this operand now depends on whether it
822 	     is a pseudo register or not.  If it is, we first check if
823 	     any register classes are valid.  If not, we ignore this
824 	     alternative, since we want to assume that all allocnos get
825 	     allocated for register preferencing.  If some register
826 	     class is valid, compute the costs of moving the allocno
827 	     into that class.  */
828 	  if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
829 	    {
830 	      if (classes[i] == NO_REGS && ! allows_mem[i])
831 		{
832 		  /* We must always fail if the operand is a REG, but
833 		     we did not find a suitable class and memory is
834 		     not allowed.
835 
836 		     Otherwise we may perform an uninitialized read
837 		     from this_op_costs after the `continue' statement
838 		     below.  */
839 		  alt_fail = 1;
840 		}
841 	      else
842 		{
843 		  unsigned int regno = REGNO (op);
844 		  struct costs *pp = this_op_costs[i];
845 		  int *pp_costs = pp->cost;
846 		  cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
847 		  enum reg_class *cost_classes = cost_classes_ptr->classes;
848 		  bool in_p = recog_data.operand_type[i] != OP_OUT;
849 		  bool out_p = recog_data.operand_type[i] != OP_IN;
850 		  enum reg_class op_class = classes[i];
851 
852 		  ira_init_register_move_cost_if_necessary (mode);
853 		  if (! in_p)
854 		    {
855 		      ira_assert (out_p);
856 		      if (op_class == NO_REGS)
857 			{
858 			  mem_cost = ira_memory_move_cost[mode];
859 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
860 			    {
861 			      rclass = cost_classes[k];
862 			      pp_costs[k] = mem_cost[rclass][0] * frequency;
863 			    }
864 			}
865 		      else
866 			{
867 			  move_out_cost = ira_may_move_out_cost[mode];
868 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
869 			    {
870 			      rclass = cost_classes[k];
871 			      pp_costs[k]
872 				= move_out_cost[op_class][rclass] * frequency;
873 			    }
874 			}
875 		    }
876 		  else if (! out_p)
877 		    {
878 		      ira_assert (in_p);
879 		      if (op_class == NO_REGS)
880 			{
881 			  mem_cost = ira_memory_move_cost[mode];
882 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
883 			    {
884 			      rclass = cost_classes[k];
885 			      pp_costs[k] = mem_cost[rclass][1] * frequency;
886 			    }
887 			}
888 		      else
889 			{
890 			  move_in_cost = ira_may_move_in_cost[mode];
891 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
892 			    {
893 			      rclass = cost_classes[k];
894 			      pp_costs[k]
895 				= move_in_cost[rclass][op_class] * frequency;
896 			    }
897 			}
898 		    }
899 		  else
900 		    {
901 		      if (op_class == NO_REGS)
902 			{
903 			  mem_cost = ira_memory_move_cost[mode];
904 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
905 			    {
906 			      rclass = cost_classes[k];
907 			      pp_costs[k] = ((mem_cost[rclass][0]
908 					      + mem_cost[rclass][1])
909 					     * frequency);
910 			    }
911 			}
912 		      else
913 			{
914 			  move_in_cost = ira_may_move_in_cost[mode];
915 			  move_out_cost = ira_may_move_out_cost[mode];
916 			  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
917 			    {
918 			      rclass = cost_classes[k];
919 			      pp_costs[k] = ((move_in_cost[rclass][op_class]
920 					      + move_out_cost[op_class][rclass])
921 					     * frequency);
922 			    }
923 			}
924 		    }
925 
926 		  if (op_class == NO_REGS)
927 		    /* Although we don't need insn to reload from
928 		       memory, still accessing memory is usually more
929 		       expensive than a register.  */
930 		    pp->mem_cost = frequency;
931 		  else
932 		    /* If the alternative actually allows memory, make
933 		       things a bit cheaper since we won't need an
934 		       extra insn to load it.  */
935 		    pp->mem_cost
936 		      = ((out_p ? ira_memory_move_cost[mode][op_class][0] : 0)
937 			 + (in_p ? ira_memory_move_cost[mode][op_class][1] : 0)
938 			 - allows_mem[i]) * frequency;
939 		  /* If we have assigned a class to this allocno in
940 		     our first pass, add a cost to this alternative
941 		     corresponding to what we would add if this
942 		     allocno were not in the appropriate class.  */
943 		  if (pref)
944 		    {
945 		      enum reg_class pref_class = pref[COST_INDEX (REGNO (op))];
946 
947 		      if (pref_class == NO_REGS)
948 			{
949 			  if (op_class != NO_REGS)
950 			    alt_cost
951 			      += ((out_p
952 				   ? ira_memory_move_cost[mode][op_class][0]
953 				   : 0)
954 				  + (in_p
955 				     ? ira_memory_move_cost[mode][op_class][1]
956 				     : 0));
957 			}
958 		      else if (op_class == NO_REGS)
959 			alt_cost
960 			  += ((out_p
961 			       ? ira_memory_move_cost[mode][pref_class][1]
962 			       : 0)
963 			      + (in_p
964 				 ? ira_memory_move_cost[mode][pref_class][0]
965 				 : 0));
966 		      else if (ira_reg_class_intersect[pref_class][op_class]
967 			       == NO_REGS)
968 			alt_cost += (ira_register_move_cost
969 				     [mode][pref_class][op_class]);
970 		    }
971 		}
972 	    }
973 
974 	  /* Otherwise, if this alternative wins, either because we
975 	     have already determined that or if we have a hard
976 	     register of the proper class, there is no cost for this
977 	     alternative.  */
978 	  else if (win || (REG_P (op)
979 			   && reg_fits_class_p (op, classes[i],
980 						0, GET_MODE (op))))
981 	    ;
982 
983 	  /* If registers are valid, the cost of this alternative
984 	     includes copying the object to and/or from a
985 	     register.  */
986 	  else if (classes[i] != NO_REGS)
987 	    {
988 	      if (recog_data.operand_type[i] != OP_OUT)
989 		alt_cost += copy_cost (op, mode, classes[i], 1, NULL);
990 
991 	      if (recog_data.operand_type[i] != OP_IN)
992 		alt_cost += copy_cost (op, mode, classes[i], 0, NULL);
993 	    }
994 	  /* The only other way this alternative can be used is if
995 	     this is a constant that could be placed into memory.  */
996 	  else if (CONSTANT_P (op) && (allows_addr || allows_mem[i]))
997 	    alt_cost += ira_memory_move_cost[mode][classes[i]][1];
998 	  else
999 	    alt_fail = 1;
1000 
1001 	  if (alt_fail)
1002 	    break;
1003 	}
1004 
1005       if (alt_fail)
1006 	{
1007 	  /* The loop above might have exited early once the failure
1008 	     was seen.  Skip over the constraints for the remaining
1009 	     operands.  */
1010 	  i += 1;
1011 	  for (; i < n_ops; ++i)
1012 	    constraints[i] = skip_alternative (constraints[i]);
1013 	  continue;
1014 	}
1015 
1016       op_cost_add = alt_cost * frequency;
1017       /* Finally, update the costs with the information we've
1018 	 calculated about this alternative.  */
1019       for (i = 0; i < n_ops; i++)
1020 	if (REG_P (ops[i]) && REGNO (ops[i]) >= FIRST_PSEUDO_REGISTER)
1021 	  {
1022 	    struct costs *pp = op_costs[i], *qq = this_op_costs[i];
1023 	    int *pp_costs = pp->cost, *qq_costs = qq->cost;
1024 	    int scale = 1 + (recog_data.operand_type[i] == OP_INOUT);
1025 	    cost_classes_t cost_classes_ptr
1026 	      = regno_cost_classes[REGNO (ops[i])];
1027 
1028 	    pp->mem_cost = MIN (pp->mem_cost,
1029 				(qq->mem_cost + op_cost_add) * scale);
1030 
1031 	    for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1032 	      pp_costs[k]
1033 		= MIN (pp_costs[k], (qq_costs[k] + op_cost_add) * scale);
1034 	  }
1035     }
1036 
1037   if (allocno_p)
1038     for (i = 0; i < n_ops; i++)
1039       {
1040 	ira_allocno_t a;
1041 	rtx op = ops[i];
1042 
1043 	if (! REG_P (op) || REGNO (op) < FIRST_PSEUDO_REGISTER)
1044 	  continue;
1045 	a = ira_curr_regno_allocno_map [REGNO (op)];
1046 	if (! ALLOCNO_BAD_SPILL_P (a) && insn_allows_mem[i] == 0)
1047 	  ALLOCNO_BAD_SPILL_P (a) = true;
1048       }
1049 
1050 }
1051 
1052 
1053 
1054 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers.  */
1055 static inline bool
ok_for_index_p_nonstrict(rtx reg)1056 ok_for_index_p_nonstrict (rtx reg)
1057 {
1058   unsigned regno = REGNO (reg);
1059 
1060   return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
1061 }
1062 
1063 /* A version of regno_ok_for_base_p for use here, when all
1064    pseudo-registers should count as OK.  Arguments as for
1065    regno_ok_for_base_p.  */
1066 static inline bool
ok_for_base_p_nonstrict(rtx reg,machine_mode mode,addr_space_t as,enum rtx_code outer_code,enum rtx_code index_code)1067 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
1068 			 enum rtx_code outer_code, enum rtx_code index_code)
1069 {
1070   unsigned regno = REGNO (reg);
1071 
1072   if (regno >= FIRST_PSEUDO_REGISTER)
1073     return true;
1074   return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
1075 }
1076 
1077 /* Record the pseudo registers we must reload into hard registers in a
1078    subexpression of a memory address, X.
1079 
1080    If CONTEXT is 0, we are looking at the base part of an address,
1081    otherwise we are looking at the index part.
1082 
1083    MODE and AS are the mode and address space of the memory reference;
1084    OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1085    These four arguments are passed down to base_reg_class.
1086 
1087    SCALE is twice the amount to multiply the cost by (it is twice so
1088    we can represent half-cost adjustments).  */
1089 static void
record_address_regs(machine_mode mode,addr_space_t as,rtx x,int context,enum rtx_code outer_code,enum rtx_code index_code,int scale)1090 record_address_regs (machine_mode mode, addr_space_t as, rtx x,
1091 		     int context, enum rtx_code outer_code,
1092 		     enum rtx_code index_code, int scale)
1093 {
1094   enum rtx_code code = GET_CODE (x);
1095   enum reg_class rclass;
1096 
1097   if (context == 1)
1098     rclass = INDEX_REG_CLASS;
1099   else
1100     rclass = base_reg_class (mode, as, outer_code, index_code);
1101 
1102   switch (code)
1103     {
1104     case CONST_INT:
1105     case CONST:
1106     case CC0:
1107     case PC:
1108     case SYMBOL_REF:
1109     case LABEL_REF:
1110       return;
1111 
1112     case PLUS:
1113       /* When we have an address that is a sum, we must determine
1114 	 whether registers are "base" or "index" regs.  If there is a
1115 	 sum of two registers, we must choose one to be the "base".
1116 	 Luckily, we can use the REG_POINTER to make a good choice
1117 	 most of the time.  We only need to do this on machines that
1118 	 can have two registers in an address and where the base and
1119 	 index register classes are different.
1120 
1121 	 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1122 	 but that seems bogus since it should only be set when we are
1123 	 sure the register is being used as a pointer.  */
1124       {
1125 	rtx arg0 = XEXP (x, 0);
1126 	rtx arg1 = XEXP (x, 1);
1127 	enum rtx_code code0 = GET_CODE (arg0);
1128 	enum rtx_code code1 = GET_CODE (arg1);
1129 
1130 	/* Look inside subregs.  */
1131 	if (code0 == SUBREG)
1132 	  arg0 = SUBREG_REG (arg0), code0 = GET_CODE (arg0);
1133 	if (code1 == SUBREG)
1134 	  arg1 = SUBREG_REG (arg1), code1 = GET_CODE (arg1);
1135 
1136 	/* If index registers do not appear, or coincide with base registers,
1137 	   just record registers in any non-constant operands.  We
1138 	   assume here, as well as in the tests below, that all
1139 	   addresses are in canonical form.  */
1140 	if (MAX_REGS_PER_ADDRESS == 1
1141 	    || INDEX_REG_CLASS == base_reg_class (VOIDmode, as, PLUS, SCRATCH))
1142 	  {
1143 	    record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1144 	    if (! CONSTANT_P (arg1))
1145 	      record_address_regs (mode, as, arg1, context, PLUS, code0, scale);
1146 	  }
1147 
1148 	/* If the second operand is a constant integer, it doesn't
1149 	   change what class the first operand must be.  */
1150 	else if (CONST_SCALAR_INT_P (arg1))
1151 	  record_address_regs (mode, as, arg0, context, PLUS, code1, scale);
1152 	/* If the second operand is a symbolic constant, the first
1153 	   operand must be an index register.  */
1154 	else if (code1 == SYMBOL_REF || code1 == CONST || code1 == LABEL_REF)
1155 	  record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1156 	/* If both operands are registers but one is already a hard
1157 	   register of index or reg-base class, give the other the
1158 	   class that the hard register is not.  */
1159 	else if (code0 == REG && code1 == REG
1160 		 && REGNO (arg0) < FIRST_PSEUDO_REGISTER
1161 		 && (ok_for_base_p_nonstrict (arg0, mode, as, PLUS, REG)
1162 		     || ok_for_index_p_nonstrict (arg0)))
1163 	  record_address_regs (mode, as, arg1,
1164 			       ok_for_base_p_nonstrict (arg0, mode, as,
1165 							PLUS, REG) ? 1 : 0,
1166 			       PLUS, REG, scale);
1167 	else if (code0 == REG && code1 == REG
1168 		 && REGNO (arg1) < FIRST_PSEUDO_REGISTER
1169 		 && (ok_for_base_p_nonstrict (arg1, mode, as, PLUS, REG)
1170 		     || ok_for_index_p_nonstrict (arg1)))
1171 	  record_address_regs (mode, as, arg0,
1172 			       ok_for_base_p_nonstrict (arg1, mode, as,
1173 							PLUS, REG) ? 1 : 0,
1174 			       PLUS, REG, scale);
1175 	/* If one operand is known to be a pointer, it must be the
1176 	   base with the other operand the index.  Likewise if the
1177 	   other operand is a MULT.  */
1178 	else if ((code0 == REG && REG_POINTER (arg0)) || code1 == MULT)
1179 	  {
1180 	    record_address_regs (mode, as, arg0, 0, PLUS, code1, scale);
1181 	    record_address_regs (mode, as, arg1, 1, PLUS, code0, scale);
1182 	  }
1183 	else if ((code1 == REG && REG_POINTER (arg1)) || code0 == MULT)
1184 	  {
1185 	    record_address_regs (mode, as, arg0, 1, PLUS, code1, scale);
1186 	    record_address_regs (mode, as, arg1, 0, PLUS, code0, scale);
1187 	  }
1188 	/* Otherwise, count equal chances that each might be a base or
1189 	   index register.  This case should be rare.  */
1190 	else
1191 	  {
1192 	    record_address_regs (mode, as, arg0, 0, PLUS, code1, scale / 2);
1193 	    record_address_regs (mode, as, arg0, 1, PLUS, code1, scale / 2);
1194 	    record_address_regs (mode, as, arg1, 0, PLUS, code0, scale / 2);
1195 	    record_address_regs (mode, as, arg1, 1, PLUS, code0, scale / 2);
1196 	  }
1197       }
1198       break;
1199 
1200       /* Double the importance of an allocno that is incremented or
1201 	 decremented, since it would take two extra insns if it ends
1202 	 up in the wrong place.  */
1203     case POST_MODIFY:
1204     case PRE_MODIFY:
1205       record_address_regs (mode, as, XEXP (x, 0), 0, code,
1206 			   GET_CODE (XEXP (XEXP (x, 1), 1)), 2 * scale);
1207       if (REG_P (XEXP (XEXP (x, 1), 1)))
1208 	record_address_regs (mode, as, XEXP (XEXP (x, 1), 1), 1, code, REG,
1209 			     2 * scale);
1210       break;
1211 
1212     case POST_INC:
1213     case PRE_INC:
1214     case POST_DEC:
1215     case PRE_DEC:
1216       /* Double the importance of an allocno that is incremented or
1217 	 decremented, since it would take two extra insns if it ends
1218 	 up in the wrong place.  */
1219       record_address_regs (mode, as, XEXP (x, 0), 0, code, SCRATCH, 2 * scale);
1220       break;
1221 
1222     case REG:
1223       {
1224 	struct costs *pp;
1225 	int *pp_costs;
1226 	enum reg_class i;
1227 	int k, regno, add_cost;
1228 	cost_classes_t cost_classes_ptr;
1229 	enum reg_class *cost_classes;
1230 	move_table *move_in_cost;
1231 
1232 	if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1233 	  break;
1234 
1235 	regno = REGNO (x);
1236 	if (allocno_p)
1237 	  ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map[regno]) = true;
1238 	pp = COSTS (costs, COST_INDEX (regno));
1239 	add_cost = (ira_memory_move_cost[Pmode][rclass][1] * scale) / 2;
1240 	if (INT_MAX - add_cost < pp->mem_cost)
1241 	  pp->mem_cost = INT_MAX;
1242 	else
1243 	  pp->mem_cost += add_cost;
1244 	cost_classes_ptr = regno_cost_classes[regno];
1245 	cost_classes = cost_classes_ptr->classes;
1246 	pp_costs = pp->cost;
1247 	ira_init_register_move_cost_if_necessary (Pmode);
1248 	move_in_cost = ira_may_move_in_cost[Pmode];
1249 	for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1250 	  {
1251 	    i = cost_classes[k];
1252 	    add_cost = (move_in_cost[i][rclass] * scale) / 2;
1253 	    if (INT_MAX - add_cost < pp_costs[k])
1254 	      pp_costs[k] = INT_MAX;
1255 	    else
1256 	      pp_costs[k] += add_cost;
1257 	  }
1258       }
1259       break;
1260 
1261     default:
1262       {
1263 	const char *fmt = GET_RTX_FORMAT (code);
1264 	int i;
1265 	for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1266 	  if (fmt[i] == 'e')
1267 	    record_address_regs (mode, as, XEXP (x, i), context, code, SCRATCH,
1268 				 scale);
1269       }
1270     }
1271 }
1272 
1273 
1274 
1275 /* Calculate the costs of insn operands.  */
1276 static void
record_operand_costs(rtx_insn * insn,enum reg_class * pref)1277 record_operand_costs (rtx_insn *insn, enum reg_class *pref)
1278 {
1279   const char *constraints[MAX_RECOG_OPERANDS];
1280   machine_mode modes[MAX_RECOG_OPERANDS];
1281   rtx set;
1282   int i;
1283 
1284   if ((set = single_set (insn)) != NULL_RTX
1285       /* In rare cases the single set insn might have less 2 operands
1286 	 as the source can be a fixed special reg.  */
1287       && recog_data.n_operands > 1
1288       && recog_data.operand[0] == SET_DEST (set)
1289       && recog_data.operand[1] == SET_SRC (set))
1290     {
1291       int regno, other_regno;
1292       rtx dest = SET_DEST (set);
1293       rtx src = SET_SRC (set);
1294 
1295       if (GET_CODE (dest) == SUBREG
1296 	  && known_eq (GET_MODE_SIZE (GET_MODE (dest)),
1297 		       GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))))
1298 	dest = SUBREG_REG (dest);
1299       if (GET_CODE (src) == SUBREG
1300 	  && known_eq (GET_MODE_SIZE (GET_MODE (src)),
1301 		       GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
1302 	src = SUBREG_REG (src);
1303       if (REG_P (src) && REG_P (dest)
1304 	  && (((regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
1305 	       && (other_regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER)
1306 	      || ((regno = REGNO (dest)) >= FIRST_PSEUDO_REGISTER
1307 		  && (other_regno = REGNO (src)) < FIRST_PSEUDO_REGISTER)))
1308 	{
1309 	  machine_mode mode = GET_MODE (SET_SRC (set));
1310 	  cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1311 	  enum reg_class *cost_classes = cost_classes_ptr->classes;
1312 	  reg_class_t rclass, hard_reg_class, pref_class, bigger_hard_reg_class;
1313 	  int cost, k;
1314 	  move_table *move_costs;
1315 	  bool dead_p = find_regno_note (insn, REG_DEAD, REGNO (src));
1316 
1317 	  ira_init_register_move_cost_if_necessary (mode);
1318 	  move_costs = ira_register_move_cost[mode];
1319 	  hard_reg_class = REGNO_REG_CLASS (other_regno);
1320 	  bigger_hard_reg_class = ira_pressure_class_translate[hard_reg_class];
1321 	  /* Target code may return any cost for mode which does not
1322 	     fit the hard reg class (e.g. DImode for AREG on
1323 	     i386).  Check this and use a bigger class to get the
1324 	     right cost.  */
1325 	  if (bigger_hard_reg_class != NO_REGS
1326 	      && ! ira_hard_reg_in_set_p (other_regno, mode,
1327 					  reg_class_contents[hard_reg_class]))
1328 	    hard_reg_class = bigger_hard_reg_class;
1329 	  i = regno == (int) REGNO (src) ? 1 : 0;
1330 	  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1331 	    {
1332 	      rclass = cost_classes[k];
1333 	      cost = (i == 0
1334 		      ? move_costs[hard_reg_class][rclass]
1335 		      : move_costs[rclass][hard_reg_class]);
1336 
1337 	      op_costs[i]->cost[k] = cost * frequency;
1338 	      /* If we have assigned a class to this allocno in our
1339 		 first pass, add a cost to this alternative
1340 		 corresponding to what we would add if this allocno
1341 		 were not in the appropriate class.  */
1342 	      if (pref)
1343 		{
1344 		  if ((pref_class = pref[COST_INDEX (regno)]) == NO_REGS)
1345 		    op_costs[i]->cost[k]
1346 		      += ((i == 0 ? ira_memory_move_cost[mode][rclass][0] : 0)
1347 			  + (i == 1 ? ira_memory_move_cost[mode][rclass][1] : 0)
1348 			  * frequency);
1349 		  else if (ira_reg_class_intersect[pref_class][rclass]
1350 			   == NO_REGS)
1351 		    op_costs[i]->cost[k]
1352 		      += (move_costs[pref_class][rclass]
1353 			  * frequency);
1354 		}
1355 	      /* If this insn is a single set copying operand 1 to
1356 		 operand 0 and one operand is an allocno with the
1357 		 other a hard reg or an allocno that prefers a hard
1358 		 register that is in its own register class then we
1359 		 may want to adjust the cost of that register class to
1360 		 -1.
1361 
1362 		 Avoid the adjustment if the source does not die to
1363 		 avoid stressing of register allocator by preferencing
1364 		 two colliding registers into single class.  */
1365 	      if (dead_p
1366 		  && TEST_HARD_REG_BIT (reg_class_contents[rclass], other_regno)
1367 		  && (reg_class_size[(int) rclass]
1368 		      == (ira_reg_class_max_nregs
1369 			  [(int) rclass][(int) GET_MODE(src)])))
1370 		{
1371 		  if (reg_class_size[rclass] == 1)
1372 		    op_costs[i]->cost[k] = -frequency;
1373 		  else if (in_hard_reg_set_p (reg_class_contents[rclass],
1374 					      GET_MODE(src), other_regno))
1375 		    op_costs[i]->cost[k] = -frequency;
1376 		}
1377 	    }
1378 	  op_costs[i]->mem_cost
1379 	    = ira_memory_move_cost[mode][hard_reg_class][i] * frequency;
1380 	  if (pref && (pref_class = pref[COST_INDEX (regno)]) != NO_REGS)
1381 	    op_costs[i]->mem_cost
1382 	      += ira_memory_move_cost[mode][pref_class][i] * frequency;
1383 	  return;
1384 	}
1385     }
1386 
1387   for (i = 0; i < recog_data.n_operands; i++)
1388     {
1389       constraints[i] = recog_data.constraints[i];
1390       modes[i] = recog_data.operand_mode[i];
1391     }
1392 
1393   /* If we get here, we are set up to record the costs of all the
1394      operands for this insn.  Start by initializing the costs.  Then
1395      handle any address registers.  Finally record the desired classes
1396      for any allocnos, doing it twice if some pair of operands are
1397      commutative.  */
1398   for (i = 0; i < recog_data.n_operands; i++)
1399     {
1400       memcpy (op_costs[i], init_cost, struct_costs_size);
1401 
1402       if (GET_CODE (recog_data.operand[i]) == SUBREG)
1403 	recog_data.operand[i] = SUBREG_REG (recog_data.operand[i]);
1404 
1405       if (MEM_P (recog_data.operand[i]))
1406 	record_address_regs (GET_MODE (recog_data.operand[i]),
1407 			     MEM_ADDR_SPACE (recog_data.operand[i]),
1408 			     XEXP (recog_data.operand[i], 0),
1409 			     0, MEM, SCRATCH, frequency * 2);
1410       else if (constraints[i][0] == 'p'
1411 	       || (insn_extra_address_constraint
1412 		   (lookup_constraint (constraints[i]))))
1413 	record_address_regs (VOIDmode, ADDR_SPACE_GENERIC,
1414 			     recog_data.operand[i], 0, ADDRESS, SCRATCH,
1415 			     frequency * 2);
1416     }
1417 
1418   /* Check for commutative in a separate loop so everything will have
1419      been initialized.  We must do this even if one operand is a
1420      constant--see addsi3 in m68k.md.  */
1421   for (i = 0; i < (int) recog_data.n_operands - 1; i++)
1422     if (constraints[i][0] == '%')
1423       {
1424 	const char *xconstraints[MAX_RECOG_OPERANDS];
1425 	int j;
1426 
1427 	/* Handle commutative operands by swapping the
1428 	   constraints.  We assume the modes are the same.  */
1429 	for (j = 0; j < recog_data.n_operands; j++)
1430 	  xconstraints[j] = constraints[j];
1431 
1432 	xconstraints[i] = constraints[i+1];
1433 	xconstraints[i+1] = constraints[i];
1434 	record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1435 			    recog_data.operand, modes,
1436 			    xconstraints, insn, pref);
1437       }
1438   record_reg_classes (recog_data.n_alternatives, recog_data.n_operands,
1439 		      recog_data.operand, modes,
1440 		      constraints, insn, pref);
1441 }
1442 
1443 
1444 
1445 /* Process one insn INSN.  Scan it and record each time it would save
1446    code to put a certain allocnos in a certain class.  Return the last
1447    insn processed, so that the scan can be continued from there.  */
1448 static rtx_insn *
scan_one_insn(rtx_insn * insn)1449 scan_one_insn (rtx_insn *insn)
1450 {
1451   enum rtx_code pat_code;
1452   rtx set, note;
1453   int i, k;
1454   bool counted_mem;
1455 
1456   if (!NONDEBUG_INSN_P (insn))
1457     return insn;
1458 
1459   pat_code = GET_CODE (PATTERN (insn));
1460   if (pat_code == ASM_INPUT)
1461     return insn;
1462 
1463   /* If INSN is a USE/CLOBBER of a pseudo in a mode M then go ahead
1464      and initialize the register move costs of mode M.
1465 
1466      The pseudo may be related to another pseudo via a copy (implicit or
1467      explicit) and if there are no mode M uses/sets of the original
1468      pseudo, then we may leave the register move costs uninitialized for
1469      mode M. */
1470   if (pat_code == USE || pat_code == CLOBBER)
1471     {
1472       rtx x = XEXP (PATTERN (insn), 0);
1473       if (GET_CODE (x) == REG
1474 	  && REGNO (x) >= FIRST_PSEUDO_REGISTER
1475 	  && have_regs_of_mode[GET_MODE (x)])
1476         ira_init_register_move_cost_if_necessary (GET_MODE (x));
1477       return insn;
1478     }
1479 
1480   counted_mem = false;
1481   set = single_set (insn);
1482   extract_insn (insn);
1483 
1484   /* If this insn loads a parameter from its stack slot, then it
1485      represents a savings, rather than a cost, if the parameter is
1486      stored in memory.  Record this fact.
1487 
1488      Similarly if we're loading other constants from memory (constant
1489      pool, TOC references, small data areas, etc) and this is the only
1490      assignment to the destination pseudo.
1491 
1492      Don't do this if SET_SRC (set) isn't a general operand, if it is
1493      a memory requiring special instructions to load it, decreasing
1494      mem_cost might result in it being loaded using the specialized
1495      instruction into a register, then stored into stack and loaded
1496      again from the stack.  See PR52208.
1497 
1498      Don't do this if SET_SRC (set) has side effect.  See PR56124.  */
1499   if (set != 0 && REG_P (SET_DEST (set)) && MEM_P (SET_SRC (set))
1500       && (note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) != NULL_RTX
1501       && ((MEM_P (XEXP (note, 0))
1502 	   && !side_effects_p (SET_SRC (set)))
1503 	  || (CONSTANT_P (XEXP (note, 0))
1504 	      && targetm.legitimate_constant_p (GET_MODE (SET_DEST (set)),
1505 						XEXP (note, 0))
1506 	      && REG_N_SETS (REGNO (SET_DEST (set))) == 1))
1507       && general_operand (SET_SRC (set), GET_MODE (SET_SRC (set)))
1508       /* LRA does not use equiv with a symbol for PIC code.  */
1509       && (! ira_use_lra_p || ! pic_offset_table_rtx
1510 	  || ! contains_symbol_ref_p (XEXP (note, 0))))
1511     {
1512       enum reg_class cl = GENERAL_REGS;
1513       rtx reg = SET_DEST (set);
1514       int num = COST_INDEX (REGNO (reg));
1515 
1516       COSTS (costs, num)->mem_cost
1517 	-= ira_memory_move_cost[GET_MODE (reg)][cl][1] * frequency;
1518       record_address_regs (GET_MODE (SET_SRC (set)),
1519 			   MEM_ADDR_SPACE (SET_SRC (set)),
1520 			   XEXP (SET_SRC (set), 0), 0, MEM, SCRATCH,
1521 			   frequency * 2);
1522       counted_mem = true;
1523     }
1524 
1525   record_operand_costs (insn, pref);
1526 
1527   /* Now add the cost for each operand to the total costs for its
1528      allocno.  */
1529   for (i = 0; i < recog_data.n_operands; i++)
1530     {
1531       rtx op = recog_data.operand[i];
1532 
1533       if (GET_CODE (op) == SUBREG)
1534 	op = SUBREG_REG (op);
1535       if (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER)
1536 	{
1537 	  int regno = REGNO (op);
1538 	  struct costs *p = COSTS (costs, COST_INDEX (regno));
1539 	  struct costs *q = op_costs[i];
1540 	  int *p_costs = p->cost, *q_costs = q->cost;
1541 	  cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1542 	  int add_cost;
1543 
1544 	  /* If the already accounted for the memory "cost" above, don't
1545 	     do so again.  */
1546 	  if (!counted_mem)
1547 	    {
1548 	      add_cost = q->mem_cost;
1549 	      if (add_cost > 0 && INT_MAX - add_cost < p->mem_cost)
1550 		p->mem_cost = INT_MAX;
1551 	      else
1552 		p->mem_cost += add_cost;
1553 	    }
1554 	  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1555 	    {
1556 	      add_cost = q_costs[k];
1557 	      if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1558 		p_costs[k] = INT_MAX;
1559 	      else
1560 		p_costs[k] += add_cost;
1561 	    }
1562 	}
1563     }
1564   return insn;
1565 }
1566 
1567 
1568 
1569 /* Print allocnos costs to file F.  */
1570 static void
print_allocno_costs(FILE * f)1571 print_allocno_costs (FILE *f)
1572 {
1573   int k;
1574   ira_allocno_t a;
1575   ira_allocno_iterator ai;
1576 
1577   ira_assert (allocno_p);
1578   fprintf (f, "\n");
1579   FOR_EACH_ALLOCNO (a, ai)
1580     {
1581       int i, rclass;
1582       basic_block bb;
1583       int regno = ALLOCNO_REGNO (a);
1584       cost_classes_t cost_classes_ptr = regno_cost_classes[regno];
1585       enum reg_class *cost_classes = cost_classes_ptr->classes;
1586 
1587       i = ALLOCNO_NUM (a);
1588       fprintf (f, "  a%d(r%d,", i, regno);
1589       if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
1590 	fprintf (f, "b%d", bb->index);
1591       else
1592 	fprintf (f, "l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
1593       fprintf (f, ") costs:");
1594       for (k = 0; k < cost_classes_ptr->num; k++)
1595 	{
1596 	  rclass = cost_classes[k];
1597 	  fprintf (f, " %s:%d", reg_class_names[rclass],
1598 		   COSTS (costs, i)->cost[k]);
1599 	  if (flag_ira_region == IRA_REGION_ALL
1600 	      || flag_ira_region == IRA_REGION_MIXED)
1601 	    fprintf (f, ",%d", COSTS (total_allocno_costs, i)->cost[k]);
1602 	}
1603       fprintf (f, " MEM:%i", COSTS (costs, i)->mem_cost);
1604       if (flag_ira_region == IRA_REGION_ALL
1605 	  || flag_ira_region == IRA_REGION_MIXED)
1606 	fprintf (f, ",%d", COSTS (total_allocno_costs, i)->mem_cost);
1607       fprintf (f, "\n");
1608     }
1609 }
1610 
1611 /* Print pseudo costs to file F.  */
1612 static void
print_pseudo_costs(FILE * f)1613 print_pseudo_costs (FILE *f)
1614 {
1615   int regno, k;
1616   int rclass;
1617   cost_classes_t cost_classes_ptr;
1618   enum reg_class *cost_classes;
1619 
1620   ira_assert (! allocno_p);
1621   fprintf (f, "\n");
1622   for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
1623     {
1624       if (REG_N_REFS (regno) <= 0)
1625 	continue;
1626       cost_classes_ptr = regno_cost_classes[regno];
1627       cost_classes = cost_classes_ptr->classes;
1628       fprintf (f, "  r%d costs:", regno);
1629       for (k = 0; k < cost_classes_ptr->num; k++)
1630 	{
1631 	  rclass = cost_classes[k];
1632 	  fprintf (f, " %s:%d", reg_class_names[rclass],
1633 		   COSTS (costs, regno)->cost[k]);
1634 	}
1635       fprintf (f, " MEM:%i\n", COSTS (costs, regno)->mem_cost);
1636     }
1637 }
1638 
1639 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1640    costs.  */
1641 static void
process_bb_for_costs(basic_block bb)1642 process_bb_for_costs (basic_block bb)
1643 {
1644   rtx_insn *insn;
1645 
1646   frequency = REG_FREQ_FROM_BB (bb);
1647   if (frequency == 0)
1648     frequency = 1;
1649   FOR_BB_INSNS (bb, insn)
1650     insn = scan_one_insn (insn);
1651 }
1652 
1653 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1654    costs.  */
1655 static void
process_bb_node_for_costs(ira_loop_tree_node_t loop_tree_node)1656 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node)
1657 {
1658   basic_block bb;
1659 
1660   bb = loop_tree_node->bb;
1661   if (bb != NULL)
1662     process_bb_for_costs (bb);
1663 }
1664 
1665 /* Find costs of register classes and memory for allocnos or pseudos
1666    and their best costs.  Set up preferred, alternative and allocno
1667    classes for pseudos.  */
1668 static void
find_costs_and_classes(FILE * dump_file)1669 find_costs_and_classes (FILE *dump_file)
1670 {
1671   int i, k, start, max_cost_classes_num;
1672   int pass;
1673   basic_block bb;
1674   enum reg_class *regno_best_class, new_class;
1675 
1676   init_recog ();
1677   regno_best_class
1678     = (enum reg_class *) ira_allocate (max_reg_num ()
1679 				       * sizeof (enum reg_class));
1680   for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1681     regno_best_class[i] = NO_REGS;
1682   if (!resize_reg_info () && allocno_p
1683       && pseudo_classes_defined_p && flag_expensive_optimizations)
1684     {
1685       ira_allocno_t a;
1686       ira_allocno_iterator ai;
1687 
1688       pref = pref_buffer;
1689       max_cost_classes_num = 1;
1690       FOR_EACH_ALLOCNO (a, ai)
1691 	{
1692 	  pref[ALLOCNO_NUM (a)] = reg_preferred_class (ALLOCNO_REGNO (a));
1693 	  setup_regno_cost_classes_by_aclass
1694 	    (ALLOCNO_REGNO (a), pref[ALLOCNO_NUM (a)]);
1695 	  max_cost_classes_num
1696 	    = MAX (max_cost_classes_num,
1697 		   regno_cost_classes[ALLOCNO_REGNO (a)]->num);
1698 	}
1699       start = 1;
1700     }
1701   else
1702     {
1703       pref = NULL;
1704       max_cost_classes_num = ira_important_classes_num;
1705       for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1706 	if (regno_reg_rtx[i] != NULL_RTX)
1707  	  setup_regno_cost_classes_by_mode (i, PSEUDO_REGNO_MODE (i));
1708 	else
1709 	  setup_regno_cost_classes_by_aclass (i, ALL_REGS);
1710       start = 0;
1711     }
1712   if (allocno_p)
1713     /* Clear the flag for the next compiled function.  */
1714     pseudo_classes_defined_p = false;
1715   /* Normally we scan the insns once and determine the best class to
1716      use for each allocno.  However, if -fexpensive-optimizations are
1717      on, we do so twice, the second time using the tentative best
1718      classes to guide the selection.  */
1719   for (pass = start; pass <= flag_expensive_optimizations; pass++)
1720     {
1721       if ((!allocno_p || internal_flag_ira_verbose > 0) && dump_file)
1722 	fprintf (dump_file,
1723 		 "\nPass %i for finding pseudo/allocno costs\n\n", pass);
1724 
1725       if (pass != start)
1726 	{
1727 	  max_cost_classes_num = 1;
1728 	  for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1729 	    {
1730 	      setup_regno_cost_classes_by_aclass (i, regno_best_class[i]);
1731 	      max_cost_classes_num
1732 		= MAX (max_cost_classes_num, regno_cost_classes[i]->num);
1733 	    }
1734 	}
1735 
1736       struct_costs_size
1737 	= sizeof (struct costs) + sizeof (int) * (max_cost_classes_num - 1);
1738       /* Zero out our accumulation of the cost of each class for each
1739 	 allocno.  */
1740       memset (costs, 0, cost_elements_num * struct_costs_size);
1741 
1742       if (allocno_p)
1743 	{
1744 	  /* Scan the instructions and record each time it would save code
1745 	     to put a certain allocno in a certain class.  */
1746 	  ira_traverse_loop_tree (true, ira_loop_tree_root,
1747 				  process_bb_node_for_costs, NULL);
1748 
1749 	  memcpy (total_allocno_costs, costs,
1750 		  max_struct_costs_size * ira_allocnos_num);
1751 	}
1752       else
1753 	{
1754 	  basic_block bb;
1755 
1756 	  FOR_EACH_BB_FN (bb, cfun)
1757 	    process_bb_for_costs (bb);
1758 	}
1759 
1760       if (pass == 0)
1761 	pref = pref_buffer;
1762 
1763       /* Now for each allocno look at how desirable each class is and
1764 	 find which class is preferred.  */
1765       for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
1766 	{
1767 	  ira_allocno_t a, parent_a;
1768 	  int rclass, a_num, parent_a_num, add_cost;
1769 	  ira_loop_tree_node_t parent;
1770 	  int best_cost, allocno_cost;
1771 	  enum reg_class best, alt_class;
1772 	  cost_classes_t cost_classes_ptr = regno_cost_classes[i];
1773 	  enum reg_class *cost_classes;
1774 	  int *i_costs = temp_costs->cost;
1775 	  int i_mem_cost;
1776 	  int equiv_savings = regno_equiv_gains[i];
1777 
1778 	  if (! allocno_p)
1779 	    {
1780 	      if (regno_reg_rtx[i] == NULL_RTX)
1781 		continue;
1782 	      memcpy (temp_costs, COSTS (costs, i), struct_costs_size);
1783 	      i_mem_cost = temp_costs->mem_cost;
1784 	      cost_classes = cost_classes_ptr->classes;
1785 	    }
1786 	  else
1787 	    {
1788 	      if (ira_regno_allocno_map[i] == NULL)
1789 		continue;
1790 	      memset (temp_costs, 0, struct_costs_size);
1791 	      i_mem_cost = 0;
1792 	      cost_classes = cost_classes_ptr->classes;
1793 	      /* Find cost of all allocnos with the same regno.  */
1794 	      for (a = ira_regno_allocno_map[i];
1795 		   a != NULL;
1796 		   a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1797 		{
1798 		  int *a_costs, *p_costs;
1799 
1800 		  a_num = ALLOCNO_NUM (a);
1801 		  if ((flag_ira_region == IRA_REGION_ALL
1802 		       || flag_ira_region == IRA_REGION_MIXED)
1803 		      && (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
1804 		      && (parent_a = parent->regno_allocno_map[i]) != NULL
1805 		      /* There are no caps yet.  */
1806 		      && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1807 				       (a)->border_allocnos,
1808 				       ALLOCNO_NUM (a)))
1809 		    {
1810 		      /* Propagate costs to upper levels in the region
1811 			 tree.  */
1812 		      parent_a_num = ALLOCNO_NUM (parent_a);
1813 		      a_costs = COSTS (total_allocno_costs, a_num)->cost;
1814 		      p_costs = COSTS (total_allocno_costs, parent_a_num)->cost;
1815 		      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1816 			{
1817 			  add_cost = a_costs[k];
1818 			  if (add_cost > 0 && INT_MAX - add_cost < p_costs[k])
1819 			    p_costs[k] = INT_MAX;
1820 			  else
1821 			    p_costs[k] += add_cost;
1822 			}
1823 		      add_cost = COSTS (total_allocno_costs, a_num)->mem_cost;
1824 		      if (add_cost > 0
1825 			  && (INT_MAX - add_cost
1826 			      < COSTS (total_allocno_costs,
1827 				       parent_a_num)->mem_cost))
1828 			COSTS (total_allocno_costs, parent_a_num)->mem_cost
1829 			  = INT_MAX;
1830 		      else
1831 			COSTS (total_allocno_costs, parent_a_num)->mem_cost
1832 			  += add_cost;
1833 
1834 		      if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1835 			COSTS (total_allocno_costs, parent_a_num)->mem_cost = 0;
1836 		    }
1837 		  a_costs = COSTS (costs, a_num)->cost;
1838 		  for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1839 		    {
1840 		      add_cost = a_costs[k];
1841 		      if (add_cost > 0 && INT_MAX - add_cost < i_costs[k])
1842 			i_costs[k] = INT_MAX;
1843 		      else
1844 			i_costs[k] += add_cost;
1845 		    }
1846 		  add_cost = COSTS (costs, a_num)->mem_cost;
1847 		  if (add_cost > 0 && INT_MAX - add_cost < i_mem_cost)
1848 		    i_mem_cost = INT_MAX;
1849 		  else
1850 		    i_mem_cost += add_cost;
1851 		}
1852 	    }
1853 	  if (i >= first_moveable_pseudo && i < last_moveable_pseudo)
1854 	    i_mem_cost = 0;
1855 	  else if (equiv_savings < 0)
1856 	    i_mem_cost = -equiv_savings;
1857 	  else if (equiv_savings > 0)
1858 	    {
1859 	      i_mem_cost = 0;
1860 	      for (k = cost_classes_ptr->num - 1; k >= 0; k--)
1861 		i_costs[k] += equiv_savings;
1862 	    }
1863 
1864 	  best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1865 	  best = ALL_REGS;
1866 	  alt_class = NO_REGS;
1867 	  /* Find best common class for all allocnos with the same
1868 	     regno.  */
1869 	  for (k = 0; k < cost_classes_ptr->num; k++)
1870 	    {
1871 	      rclass = cost_classes[k];
1872 	      if (i_costs[k] < best_cost)
1873 		{
1874 		  best_cost = i_costs[k];
1875 		  best = (enum reg_class) rclass;
1876 		}
1877 	      else if (i_costs[k] == best_cost)
1878 		best = ira_reg_class_subunion[best][rclass];
1879 	      if (pass == flag_expensive_optimizations
1880 		  /* We still prefer registers to memory even at this
1881 		     stage if their costs are the same.  We will make
1882 		     a final decision during assigning hard registers
1883 		     when we have all info including more accurate
1884 		     costs which might be affected by assigning hard
1885 		     registers to other pseudos because the pseudos
1886 		     involved in moves can be coalesced.  */
1887 		  && i_costs[k] <= i_mem_cost
1888 		  && (reg_class_size[reg_class_subunion[alt_class][rclass]]
1889 		      > reg_class_size[alt_class]))
1890 		alt_class = reg_class_subunion[alt_class][rclass];
1891 	    }
1892 	  alt_class = ira_allocno_class_translate[alt_class];
1893 	  if (best_cost > i_mem_cost
1894 	      && ! non_spilled_static_chain_regno_p (i))
1895 	    regno_aclass[i] = NO_REGS;
1896 	  else if (!optimize && !targetm.class_likely_spilled_p (best))
1897 	    /* Registers in the alternative class are likely to need
1898 	       longer or slower sequences than registers in the best class.
1899 	       When optimizing we make some effort to use the best class
1900 	       over the alternative class where possible, but at -O0 we
1901 	       effectively give the alternative class equal weight.
1902 	       We then run the risk of using slower alternative registers
1903 	       when plenty of registers from the best class are still free.
1904 	       This is especially true because live ranges tend to be very
1905 	       short in -O0 code and so register pressure tends to be low.
1906 
1907 	       Avoid that by ignoring the alternative class if the best
1908 	       class has plenty of registers.
1909 
1910 	       The union class arrays give important classes and only
1911 	       part of it are allocno classes.  So translate them into
1912 	       allocno classes.  */
1913 	    regno_aclass[i] = ira_allocno_class_translate[best];
1914 	  else
1915 	    {
1916 	      /* Make the common class the biggest class of best and
1917 		 alt_class.  Translate the common class into an
1918 		 allocno class too.  */
1919 	      regno_aclass[i] = (ira_allocno_class_translate
1920 				 [ira_reg_class_superunion[best][alt_class]]);
1921 	      ira_assert (regno_aclass[i] != NO_REGS
1922 			  && ira_reg_allocno_class_p[regno_aclass[i]]);
1923 	    }
1924 	  if ((new_class
1925 	       = (reg_class) (targetm.ira_change_pseudo_allocno_class
1926 			      (i, regno_aclass[i], best))) != regno_aclass[i])
1927 	    {
1928 	      regno_aclass[i] = new_class;
1929 	      if (hard_reg_set_subset_p (reg_class_contents[new_class],
1930 					 reg_class_contents[best]))
1931 		best = new_class;
1932 	      if (hard_reg_set_subset_p (reg_class_contents[new_class],
1933 					 reg_class_contents[alt_class]))
1934 		alt_class = new_class;
1935 	    }
1936 	  if (pass == flag_expensive_optimizations)
1937 	    {
1938 	      if (best_cost > i_mem_cost
1939 		  /* Do not assign NO_REGS to static chain pointer
1940 		     pseudo when non-local goto is used.  */
1941 		  && ! non_spilled_static_chain_regno_p (i))
1942 		best = alt_class = NO_REGS;
1943 	      else if (best == alt_class)
1944 		alt_class = NO_REGS;
1945 	      setup_reg_classes (i, best, alt_class, regno_aclass[i]);
1946 	      if ((!allocno_p || internal_flag_ira_verbose > 2)
1947 		  && dump_file != NULL)
1948 		fprintf (dump_file,
1949 			 "    r%d: preferred %s, alternative %s, allocno %s\n",
1950 			 i, reg_class_names[best], reg_class_names[alt_class],
1951 			 reg_class_names[regno_aclass[i]]);
1952 	    }
1953 	  regno_best_class[i] = best;
1954 	  if (! allocno_p)
1955 	    {
1956 	      pref[i] = (best_cost > i_mem_cost
1957 			 && ! non_spilled_static_chain_regno_p (i)
1958 			 ? NO_REGS : best);
1959 	      continue;
1960 	    }
1961 	  for (a = ira_regno_allocno_map[i];
1962 	       a != NULL;
1963 	       a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
1964 	    {
1965 	      enum reg_class aclass = regno_aclass[i];
1966 	      int a_num = ALLOCNO_NUM (a);
1967 	      int *total_a_costs = COSTS (total_allocno_costs, a_num)->cost;
1968 	      int *a_costs = COSTS (costs, a_num)->cost;
1969 
1970 	      if (aclass == NO_REGS)
1971 		best = NO_REGS;
1972 	      else
1973 		{
1974 		  /* Finding best class which is subset of the common
1975 		     class.  */
1976 		  best_cost = (1 << (HOST_BITS_PER_INT - 2)) - 1;
1977 		  allocno_cost = best_cost;
1978 		  best = ALL_REGS;
1979 		  for (k = 0; k < cost_classes_ptr->num; k++)
1980 		    {
1981 		      rclass = cost_classes[k];
1982 		      if (! ira_class_subset_p[rclass][aclass])
1983 			continue;
1984 		      if (total_a_costs[k] < best_cost)
1985 			{
1986 			  best_cost = total_a_costs[k];
1987 			  allocno_cost = a_costs[k];
1988 			  best = (enum reg_class) rclass;
1989 			}
1990 		      else if (total_a_costs[k] == best_cost)
1991 			{
1992 			  best = ira_reg_class_subunion[best][rclass];
1993 			  allocno_cost = MAX (allocno_cost, a_costs[k]);
1994 			}
1995 		    }
1996 		  ALLOCNO_CLASS_COST (a) = allocno_cost;
1997 		}
1998 	      if (internal_flag_ira_verbose > 2 && dump_file != NULL
1999 		  && (pass == 0 || pref[a_num] != best))
2000 		{
2001 		  fprintf (dump_file, "    a%d (r%d,", a_num, i);
2002 		  if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
2003 		    fprintf (dump_file, "b%d", bb->index);
2004 		  else
2005 		    fprintf (dump_file, "l%d",
2006 			     ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
2007 		  fprintf (dump_file, ") best %s, allocno %s\n",
2008 			   reg_class_names[best],
2009 			   reg_class_names[aclass]);
2010 		}
2011 	      pref[a_num] = best;
2012 	      if (pass == flag_expensive_optimizations && best != aclass
2013 		  && ira_class_hard_regs_num[best] > 0
2014 		  && (ira_reg_class_max_nregs[best][ALLOCNO_MODE (a)]
2015 		      >= ira_class_hard_regs_num[best]))
2016 		{
2017 		  int ind = cost_classes_ptr->index[aclass];
2018 
2019 		  ira_assert (ind >= 0);
2020 		  ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a));
2021 		  ira_add_allocno_pref (a, ira_class_hard_regs[best][0],
2022 					(a_costs[ind] - ALLOCNO_CLASS_COST (a))
2023 					/ (ira_register_move_cost
2024 					   [ALLOCNO_MODE (a)][best][aclass]));
2025 		  for (k = 0; k < cost_classes_ptr->num; k++)
2026 		    if (ira_class_subset_p[cost_classes[k]][best])
2027 		      a_costs[k] = a_costs[ind];
2028 		}
2029 	    }
2030 	}
2031 
2032       if (internal_flag_ira_verbose > 4 && dump_file)
2033 	{
2034 	  if (allocno_p)
2035 	    print_allocno_costs (dump_file);
2036 	  else
2037 	    print_pseudo_costs (dump_file);
2038 	  fprintf (dump_file,"\n");
2039 	}
2040     }
2041   ira_free (regno_best_class);
2042 }
2043 
2044 
2045 
2046 /* Process moves involving hard regs to modify allocno hard register
2047    costs.  We can do this only after determining allocno class.  If a
2048    hard register forms a register class, then moves with the hard
2049    register are already taken into account in class costs for the
2050    allocno.  */
2051 static void
process_bb_node_for_hard_reg_moves(ira_loop_tree_node_t loop_tree_node)2052 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node)
2053 {
2054   int i, freq, src_regno, dst_regno, hard_regno, a_regno;
2055   bool to_p;
2056   ira_allocno_t a, curr_a;
2057   ira_loop_tree_node_t curr_loop_tree_node;
2058   enum reg_class rclass;
2059   basic_block bb;
2060   rtx_insn *insn;
2061   rtx set, src, dst;
2062 
2063   bb = loop_tree_node->bb;
2064   if (bb == NULL)
2065     return;
2066   freq = REG_FREQ_FROM_BB (bb);
2067   if (freq == 0)
2068     freq = 1;
2069   FOR_BB_INSNS (bb, insn)
2070     {
2071       if (!NONDEBUG_INSN_P (insn))
2072 	continue;
2073       set = single_set (insn);
2074       if (set == NULL_RTX)
2075 	continue;
2076       dst = SET_DEST (set);
2077       src = SET_SRC (set);
2078       if (! REG_P (dst) || ! REG_P (src))
2079 	continue;
2080       dst_regno = REGNO (dst);
2081       src_regno = REGNO (src);
2082       if (dst_regno >= FIRST_PSEUDO_REGISTER
2083 	  && src_regno < FIRST_PSEUDO_REGISTER)
2084 	{
2085 	  hard_regno = src_regno;
2086 	  a = ira_curr_regno_allocno_map[dst_regno];
2087 	  to_p = true;
2088 	}
2089       else if (src_regno >= FIRST_PSEUDO_REGISTER
2090 	       && dst_regno < FIRST_PSEUDO_REGISTER)
2091 	{
2092 	  hard_regno = dst_regno;
2093 	  a = ira_curr_regno_allocno_map[src_regno];
2094 	  to_p = false;
2095 	}
2096       else
2097 	continue;
2098       if (reg_class_size[(int) REGNO_REG_CLASS (hard_regno)]
2099 	  == (ira_reg_class_max_nregs
2100 	      [REGNO_REG_CLASS (hard_regno)][(int) ALLOCNO_MODE(a)]))
2101 	/* If the class can provide only one hard reg to the allocno,
2102 	   we processed the insn record_operand_costs already and we
2103 	   actually updated the hard reg cost there.  */
2104 	continue;
2105       rclass = ALLOCNO_CLASS (a);
2106       if (! TEST_HARD_REG_BIT (reg_class_contents[rclass], hard_regno))
2107 	continue;
2108       i = ira_class_hard_reg_index[rclass][hard_regno];
2109       if (i < 0)
2110 	continue;
2111       a_regno = ALLOCNO_REGNO (a);
2112       for (curr_loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2113 	   curr_loop_tree_node != NULL;
2114 	   curr_loop_tree_node = curr_loop_tree_node->parent)
2115 	if ((curr_a = curr_loop_tree_node->regno_allocno_map[a_regno]) != NULL)
2116 	  ira_add_allocno_pref (curr_a, hard_regno, freq);
2117       {
2118 	int cost;
2119 	enum reg_class hard_reg_class;
2120 	machine_mode mode;
2121 
2122 	mode = ALLOCNO_MODE (a);
2123 	hard_reg_class = REGNO_REG_CLASS (hard_regno);
2124 	ira_init_register_move_cost_if_necessary (mode);
2125 	cost = (to_p ? ira_register_move_cost[mode][hard_reg_class][rclass]
2126 		: ira_register_move_cost[mode][rclass][hard_reg_class]) * freq;
2127 	ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a), rclass,
2128 				    ALLOCNO_CLASS_COST (a));
2129 	ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2130 				    rclass, 0);
2131 	ALLOCNO_HARD_REG_COSTS (a)[i] -= cost;
2132 	ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[i] -= cost;
2133 	ALLOCNO_CLASS_COST (a) = MIN (ALLOCNO_CLASS_COST (a),
2134 				      ALLOCNO_HARD_REG_COSTS (a)[i]);
2135       }
2136     }
2137 }
2138 
2139 /* After we find hard register and memory costs for allocnos, define
2140    its class and modify hard register cost because insns moving
2141    allocno to/from hard registers.  */
2142 static void
setup_allocno_class_and_costs(void)2143 setup_allocno_class_and_costs (void)
2144 {
2145   int i, j, n, regno, hard_regno, num;
2146   int *reg_costs;
2147   enum reg_class aclass, rclass;
2148   ira_allocno_t a;
2149   ira_allocno_iterator ai;
2150   cost_classes_t cost_classes_ptr;
2151 
2152   ira_assert (allocno_p);
2153   FOR_EACH_ALLOCNO (a, ai)
2154     {
2155       i = ALLOCNO_NUM (a);
2156       regno = ALLOCNO_REGNO (a);
2157       aclass = regno_aclass[regno];
2158       cost_classes_ptr = regno_cost_classes[regno];
2159       ira_assert (pref[i] == NO_REGS || aclass != NO_REGS);
2160       ALLOCNO_MEMORY_COST (a) = COSTS (costs, i)->mem_cost;
2161       ira_set_allocno_class (a, aclass);
2162       if (aclass == NO_REGS)
2163 	continue;
2164       if (optimize && ALLOCNO_CLASS (a) != pref[i])
2165 	{
2166 	  n = ira_class_hard_regs_num[aclass];
2167 	  ALLOCNO_HARD_REG_COSTS (a)
2168 	    = reg_costs = ira_allocate_cost_vector (aclass);
2169 	  for (j = n - 1; j >= 0; j--)
2170 	    {
2171 	      hard_regno = ira_class_hard_regs[aclass][j];
2172 	      if (TEST_HARD_REG_BIT (reg_class_contents[pref[i]], hard_regno))
2173 		reg_costs[j] = ALLOCNO_CLASS_COST (a);
2174 	      else
2175 		{
2176 		  rclass = REGNO_REG_CLASS (hard_regno);
2177 		  num = cost_classes_ptr->index[rclass];
2178 		  if (num < 0)
2179 		    {
2180 		      num = cost_classes_ptr->hard_regno_index[hard_regno];
2181 		      ira_assert (num >= 0);
2182 		    }
2183 		  reg_costs[j] = COSTS (costs, i)->cost[num];
2184 		}
2185 	    }
2186 	}
2187     }
2188   if (optimize)
2189     ira_traverse_loop_tree (true, ira_loop_tree_root,
2190 			    process_bb_node_for_hard_reg_moves, NULL);
2191 }
2192 
2193 
2194 
2195 /* Function called once during compiler work.  */
2196 void
ira_init_costs_once(void)2197 ira_init_costs_once (void)
2198 {
2199   int i;
2200 
2201   init_cost = NULL;
2202   for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2203     {
2204       op_costs[i] = NULL;
2205       this_op_costs[i] = NULL;
2206     }
2207   temp_costs = NULL;
2208 }
2209 
2210 /* Free allocated temporary cost vectors.  */
2211 void
free_ira_costs()2212 target_ira_int::free_ira_costs ()
2213 {
2214   int i;
2215 
2216   free (x_init_cost);
2217   x_init_cost = NULL;
2218   for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2219     {
2220       free (x_op_costs[i]);
2221       free (x_this_op_costs[i]);
2222       x_op_costs[i] = x_this_op_costs[i] = NULL;
2223     }
2224   free (x_temp_costs);
2225   x_temp_costs = NULL;
2226 }
2227 
2228 /* This is called each time register related information is
2229    changed.  */
2230 void
ira_init_costs(void)2231 ira_init_costs (void)
2232 {
2233   int i;
2234 
2235   this_target_ira_int->free_ira_costs ();
2236   max_struct_costs_size
2237     = sizeof (struct costs) + sizeof (int) * (ira_important_classes_num - 1);
2238   /* Don't use ira_allocate because vectors live through several IRA
2239      calls.  */
2240   init_cost = (struct costs *) xmalloc (max_struct_costs_size);
2241   init_cost->mem_cost = 1000000;
2242   for (i = 0; i < ira_important_classes_num; i++)
2243     init_cost->cost[i] = 1000000;
2244   for (i = 0; i < MAX_RECOG_OPERANDS; i++)
2245     {
2246       op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2247       this_op_costs[i] = (struct costs *) xmalloc (max_struct_costs_size);
2248     }
2249   temp_costs = (struct costs *) xmalloc (max_struct_costs_size);
2250 }
2251 
2252 
2253 
2254 /* Common initialization function for ira_costs and
2255    ira_set_pseudo_classes.  */
2256 static void
init_costs(void)2257 init_costs (void)
2258 {
2259   init_subregs_of_mode ();
2260   costs = (struct costs *) ira_allocate (max_struct_costs_size
2261 					 * cost_elements_num);
2262   pref_buffer = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2263 						 * cost_elements_num);
2264   regno_aclass = (enum reg_class *) ira_allocate (sizeof (enum reg_class)
2265 						 * max_reg_num ());
2266   regno_equiv_gains = (int *) ira_allocate (sizeof (int) * max_reg_num ());
2267   memset (regno_equiv_gains, 0, sizeof (int) * max_reg_num ());
2268 }
2269 
2270 /* Common finalization function for ira_costs and
2271    ira_set_pseudo_classes.  */
2272 static void
finish_costs(void)2273 finish_costs (void)
2274 {
2275   finish_subregs_of_mode ();
2276   ira_free (regno_equiv_gains);
2277   ira_free (regno_aclass);
2278   ira_free (pref_buffer);
2279   ira_free (costs);
2280 }
2281 
2282 /* Entry function which defines register class, memory and hard
2283    register costs for each allocno.  */
2284 void
ira_costs(void)2285 ira_costs (void)
2286 {
2287   allocno_p = true;
2288   cost_elements_num = ira_allocnos_num;
2289   init_costs ();
2290   total_allocno_costs = (struct costs *) ira_allocate (max_struct_costs_size
2291 						       * ira_allocnos_num);
2292   initiate_regno_cost_classes ();
2293   calculate_elim_costs_all_insns ();
2294   find_costs_and_classes (ira_dump_file);
2295   setup_allocno_class_and_costs ();
2296   finish_regno_cost_classes ();
2297   finish_costs ();
2298   ira_free (total_allocno_costs);
2299 }
2300 
2301 /* Entry function which defines classes for pseudos.
2302    Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true.  */
2303 void
ira_set_pseudo_classes(bool define_pseudo_classes,FILE * dump_file)2304 ira_set_pseudo_classes (bool define_pseudo_classes, FILE *dump_file)
2305 {
2306   allocno_p = false;
2307   internal_flag_ira_verbose = flag_ira_verbose;
2308   cost_elements_num = max_reg_num ();
2309   init_costs ();
2310   initiate_regno_cost_classes ();
2311   find_costs_and_classes (dump_file);
2312   finish_regno_cost_classes ();
2313   if (define_pseudo_classes)
2314     pseudo_classes_defined_p = true;
2315 
2316   finish_costs ();
2317 }
2318 
2319 
2320 
2321 /* Change hard register costs for allocnos which lives through
2322    function calls.  This is called only when we found all intersected
2323    calls during building allocno live ranges.  */
2324 void
ira_tune_allocno_costs(void)2325 ira_tune_allocno_costs (void)
2326 {
2327   int j, n, regno;
2328   int cost, min_cost, *reg_costs;
2329   enum reg_class aclass, rclass;
2330   machine_mode mode;
2331   ira_allocno_t a;
2332   ira_allocno_iterator ai;
2333   ira_allocno_object_iterator oi;
2334   ira_object_t obj;
2335   bool skip_p;
2336 
2337   FOR_EACH_ALLOCNO (a, ai)
2338     {
2339       aclass = ALLOCNO_CLASS (a);
2340       if (aclass == NO_REGS)
2341 	continue;
2342       mode = ALLOCNO_MODE (a);
2343       n = ira_class_hard_regs_num[aclass];
2344       min_cost = INT_MAX;
2345       if (ALLOCNO_CALLS_CROSSED_NUM (a)
2346 	  != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a))
2347 	{
2348 	  ira_allocate_and_set_costs
2349 	    (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2350 	     ALLOCNO_CLASS_COST (a));
2351 	  reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2352 	  for (j = n - 1; j >= 0; j--)
2353 	    {
2354 	      regno = ira_class_hard_regs[aclass][j];
2355 	      skip_p = false;
2356 	      FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2357 		{
2358 		  if (ira_hard_reg_set_intersection_p (regno, mode,
2359 						       OBJECT_CONFLICT_HARD_REGS
2360 						       (obj)))
2361 		    {
2362 		      skip_p = true;
2363 		      break;
2364 		    }
2365 		}
2366 	      if (skip_p)
2367 		continue;
2368 	      rclass = REGNO_REG_CLASS (regno);
2369 	      cost = 0;
2370 	      if (ira_need_caller_save_p (a, regno))
2371 		cost += (ALLOCNO_CALL_FREQ (a)
2372 			 * (ira_memory_move_cost[mode][rclass][0]
2373 			    + ira_memory_move_cost[mode][rclass][1]));
2374 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2375 	      cost += ((ira_memory_move_cost[mode][rclass][0]
2376 			+ ira_memory_move_cost[mode][rclass][1])
2377 		       * ALLOCNO_FREQ (a)
2378 		       * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno) / 2);
2379 #endif
2380 	      if (INT_MAX - cost < reg_costs[j])
2381 		reg_costs[j] = INT_MAX;
2382 	      else
2383 		reg_costs[j] += cost;
2384 	      if (min_cost > reg_costs[j])
2385 		min_cost = reg_costs[j];
2386 	    }
2387 	}
2388       if (min_cost != INT_MAX)
2389 	ALLOCNO_CLASS_COST (a) = min_cost;
2390 
2391       /* Some targets allow pseudos to be allocated to unaligned sequences
2392 	 of hard registers.  However, selecting an unaligned sequence can
2393 	 unnecessarily restrict later allocations.  So increase the cost of
2394 	 unaligned hard regs to encourage the use of aligned hard regs.  */
2395       {
2396 	const int nregs = ira_reg_class_max_nregs[aclass][ALLOCNO_MODE (a)];
2397 
2398 	if (nregs > 1)
2399 	  {
2400 	    ira_allocate_and_set_costs
2401 	      (&ALLOCNO_HARD_REG_COSTS (a), aclass, ALLOCNO_CLASS_COST (a));
2402 	    reg_costs = ALLOCNO_HARD_REG_COSTS (a);
2403 	    for (j = n - 1; j >= 0; j--)
2404 	      {
2405 		regno = ira_non_ordered_class_hard_regs[aclass][j];
2406 		if ((regno % nregs) != 0)
2407 		  {
2408 		    int index = ira_class_hard_reg_index[aclass][regno];
2409 		    ira_assert (index != -1);
2410 		    reg_costs[index] += ALLOCNO_FREQ (a);
2411 		  }
2412 	      }
2413 	  }
2414       }
2415     }
2416 }
2417 
2418 /* Add COST to the estimated gain for eliminating REGNO with its
2419    equivalence.  If COST is zero, record that no such elimination is
2420    possible.  */
2421 
2422 void
ira_adjust_equiv_reg_cost(unsigned regno,int cost)2423 ira_adjust_equiv_reg_cost (unsigned regno, int cost)
2424 {
2425   if (cost == 0)
2426     regno_equiv_gains[regno] = 0;
2427   else
2428     regno_equiv_gains[regno] += cost;
2429 }
2430 
2431 void
ira_costs_c_finalize(void)2432 ira_costs_c_finalize (void)
2433 {
2434   this_target_ira_int->free_ira_costs ();
2435 }
2436