xref: /llvm-project/mlir/include/mlir/Dialect/ArmSVE/Transforms/Passes.td (revision d5985d4c70bad7b25740027cb873c91a31ff0659)
1//===-- Passes.td - ArmSVE pass definition file ------------*- tablegen -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#ifndef MLIR_DIALECT_ARMSVE_TRANSFORMS_PASSES_TD
10#define MLIR_DIALECT_ARMSVE_TRANSFORMS_PASSES_TD
11
12include "mlir/Pass/PassBase.td"
13
14def LegalizeVectorStorage
15    : Pass<"arm-sve-legalize-vector-storage", "mlir::func::FuncOp"> {
16  let summary = "Ensures stores of SVE vector types will be legal";
17  let description = [{
18    This pass ensures that loads, stores, and allocations of SVE vector types
19    will be legal in the LLVM backend. It does this at the memref level, so this
20    pass must be applied before lowering all the way to LLVM.
21
22    This pass currently addresses two issues.
23
24    #### Loading and storing predicate types
25
26    It is only legal to load/store predicate types equal to (or greater than) a
27    full predicate register, which in MLIR is `vector<[16]xi1>`. Smaller
28    predicate types (`vector<[1|2|4|8]xi1>`) must be converted to/from a full
29    predicate type (referred to as a `svbool`) before and after storing and
30    loading respectively. This pass does this by widening allocations and
31    inserting conversion intrinsics. Note: Non-powers-of-two masks (e.g.
32    `vector<[7]xi1>`), which are not SVE predicates, are ignored.
33
34    For example:
35
36    ```mlir
37    %alloca = memref.alloca() : memref<vector<[4]xi1>>
38    %mask = vector.constant_mask [4] : vector<[4]xi1>
39    memref.store %mask, %alloca[] : memref<vector<[4]xi1>>
40    %reload = memref.load %alloca[] : memref<vector<[4]xi1>>
41    ```
42    Becomes:
43    ```mlir
44    %alloca = memref.alloca() {alignment = 1 : i64} : memref<vector<[16]xi1>>
45    %mask = vector.constant_mask [4] : vector<[4]xi1>
46    %svbool = arm_sve.convert_to_svbool %mask : vector<[4]xi1>
47    memref.store %svbool, %alloca[] : memref<vector<[16]xi1>>
48    %reload_svbool = memref.load %alloca[] : memref<vector<[16]xi1>>
49    %reload = arm_sve.convert_from_svbool %reload_svbool : vector<[4]xi1>
50    ```
51
52    #### Relax alignments for SVE vector allocas
53
54    The storage for SVE vector types only needs to have an alignment that
55    matches the element type (for example 4 byte alignment for `f32`s). However,
56    the LLVM backend currently defaults to aligning to `base size` x
57    `element size` bytes. For non-legal vector types like `vector<[8]xf32>` this
58    results in 8 x 4 = 32-byte alignment, but the backend only supports up to
59    16-byte alignment for SVE vectors on the stack. Explicitly setting a smaller
60    alignment prevents this issue.
61  }];
62  let constructor = "mlir::arm_sve::createLegalizeVectorStoragePass()";
63  let dependentDialects = ["func::FuncDialect",
64    "memref::MemRefDialect", "vector::VectorDialect",
65    "arm_sve::ArmSVEDialect"];
66}
67
68#endif // MLIR_DIALECT_ARMSVE_TRANSFORMS_PASSES_TD
69