1 /* If-conversion support.
2 Copyright (C) 2000-2022 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "cfghooks.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "expmed.h"
32 #include "optabs.h"
33 #include "regs.h"
34 #include "emit-rtl.h"
35 #include "recog.h"
36
37 #include "cfgrtl.h"
38 #include "cfganal.h"
39 #include "cfgcleanup.h"
40 #include "expr.h"
41 #include "output.h"
42 #include "cfgloop.h"
43 #include "tree-pass.h"
44 #include "dbgcnt.h"
45 #include "shrink-wrap.h"
46 #include "rtl-iter.h"
47 #include "ifcvt.h"
48
49 #ifndef MAX_CONDITIONAL_EXECUTE
50 #define MAX_CONDITIONAL_EXECUTE \
51 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
52 + 1)
53 #endif
54
55 #define IFCVT_MULTIPLE_DUMPS 1
56
57 #define NULL_BLOCK ((basic_block) NULL)
58
59 /* True if after combine pass. */
60 static bool ifcvt_after_combine;
61
62 /* True if the target has the cbranchcc4 optab. */
63 static bool have_cbranchcc4;
64
65 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
66 static int num_possible_if_blocks;
67
68 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
69 execution. */
70 static int num_updated_if_blocks;
71
72 /* # of changes made. */
73 static int num_true_changes;
74
75 /* Whether conditional execution changes were made. */
76 static int cond_exec_changed_p;
77
78 /* Forward references. */
79 static int count_bb_insns (const_basic_block);
80 static bool cheap_bb_rtx_cost_p (const_basic_block, profile_probability, int);
81 static rtx_insn *first_active_insn (basic_block);
82 static rtx_insn *last_active_insn (basic_block, int);
83 static rtx_insn *find_active_insn_before (basic_block, rtx_insn *);
84 static rtx_insn *find_active_insn_after (basic_block, rtx_insn *);
85 static basic_block block_fallthru (basic_block);
86 static rtx cond_exec_get_condition (rtx_insn *, bool);
87 static rtx noce_get_condition (rtx_insn *, rtx_insn **, bool);
88 static int noce_operand_ok (const_rtx);
89 static void merge_if_block (ce_if_block *);
90 static int find_cond_trap (basic_block, edge, edge);
91 static basic_block find_if_header (basic_block, int);
92 static int block_jumps_and_fallthru_p (basic_block, basic_block);
93 static int noce_find_if_block (basic_block, edge, edge, int);
94 static int cond_exec_find_if_block (ce_if_block *);
95 static int find_if_case_1 (basic_block, edge, edge);
96 static int find_if_case_2 (basic_block, edge, edge);
97 static int dead_or_predicable (basic_block, basic_block, basic_block,
98 edge, int);
99 static void noce_emit_move_insn (rtx, rtx);
100 static rtx_insn *block_has_only_trap (basic_block);
101 static void need_cmov_or_rewire (basic_block, hash_set<rtx_insn *> *,
102 hash_map<rtx_insn *, int> *);
103 static bool noce_convert_multiple_sets_1 (struct noce_if_info *,
104 hash_set<rtx_insn *> *,
105 hash_map<rtx_insn *, int> *,
106 auto_vec<rtx> *,
107 auto_vec<rtx> *,
108 auto_vec<rtx_insn *> *, int *);
109
110 /* Count the number of non-jump active insns in BB. */
111
112 static int
count_bb_insns(const_basic_block bb)113 count_bb_insns (const_basic_block bb)
114 {
115 int count = 0;
116 rtx_insn *insn = BB_HEAD (bb);
117
118 while (1)
119 {
120 if (active_insn_p (insn) && !JUMP_P (insn))
121 count++;
122
123 if (insn == BB_END (bb))
124 break;
125 insn = NEXT_INSN (insn);
126 }
127
128 return count;
129 }
130
131 /* Determine whether the total insn_cost on non-jump insns in
132 basic block BB is less than MAX_COST. This function returns
133 false if the cost of any instruction could not be estimated.
134
135 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
136 as those insns are being speculated. MAX_COST is scaled with SCALE
137 plus a small fudge factor. */
138
139 static bool
cheap_bb_rtx_cost_p(const_basic_block bb,profile_probability prob,int max_cost)140 cheap_bb_rtx_cost_p (const_basic_block bb,
141 profile_probability prob, int max_cost)
142 {
143 int count = 0;
144 rtx_insn *insn = BB_HEAD (bb);
145 bool speed = optimize_bb_for_speed_p (bb);
146 int scale = prob.initialized_p () ? prob.to_reg_br_prob_base ()
147 : REG_BR_PROB_BASE;
148
149 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
150 applied to insn_cost when optimizing for size. Only do
151 this after combine because if-conversion might interfere with
152 passes before combine.
153
154 Use optimize_function_for_speed_p instead of the pre-defined
155 variable speed to make sure it is set to same value for all
156 basic blocks in one if-conversion transformation. */
157 if (!optimize_function_for_speed_p (cfun) && ifcvt_after_combine)
158 scale = REG_BR_PROB_BASE;
159 /* Our branch probability/scaling factors are just estimates and don't
160 account for cases where we can get speculation for free and other
161 secondary benefits. So we fudge the scale factor to make speculating
162 appear a little more profitable when optimizing for performance. */
163 else
164 scale += REG_BR_PROB_BASE / 8;
165
166
167 max_cost *= scale;
168
169 while (1)
170 {
171 if (NONJUMP_INSN_P (insn))
172 {
173 int cost = insn_cost (insn, speed) * REG_BR_PROB_BASE;
174 if (cost == 0)
175 return false;
176
177 /* If this instruction is the load or set of a "stack" register,
178 such as a floating point register on x87, then the cost of
179 speculatively executing this insn may need to include
180 the additional cost of popping its result off of the
181 register stack. Unfortunately, correctly recognizing and
182 accounting for this additional overhead is tricky, so for
183 now we simply prohibit such speculative execution. */
184 #ifdef STACK_REGS
185 {
186 rtx set = single_set (insn);
187 if (set && STACK_REG_P (SET_DEST (set)))
188 return false;
189 }
190 #endif
191
192 count += cost;
193 if (count >= max_cost)
194 return false;
195 }
196 else if (CALL_P (insn))
197 return false;
198
199 if (insn == BB_END (bb))
200 break;
201 insn = NEXT_INSN (insn);
202 }
203
204 return true;
205 }
206
207 /* Return the first non-jump active insn in the basic block. */
208
209 static rtx_insn *
first_active_insn(basic_block bb)210 first_active_insn (basic_block bb)
211 {
212 rtx_insn *insn = BB_HEAD (bb);
213
214 if (LABEL_P (insn))
215 {
216 if (insn == BB_END (bb))
217 return NULL;
218 insn = NEXT_INSN (insn);
219 }
220
221 while (NOTE_P (insn) || DEBUG_INSN_P (insn))
222 {
223 if (insn == BB_END (bb))
224 return NULL;
225 insn = NEXT_INSN (insn);
226 }
227
228 if (JUMP_P (insn))
229 return NULL;
230
231 return insn;
232 }
233
234 /* Return the last non-jump active (non-jump) insn in the basic block. */
235
236 static rtx_insn *
last_active_insn(basic_block bb,int skip_use_p)237 last_active_insn (basic_block bb, int skip_use_p)
238 {
239 rtx_insn *insn = BB_END (bb);
240 rtx_insn *head = BB_HEAD (bb);
241
242 while (NOTE_P (insn)
243 || JUMP_P (insn)
244 || DEBUG_INSN_P (insn)
245 || (skip_use_p
246 && NONJUMP_INSN_P (insn)
247 && GET_CODE (PATTERN (insn)) == USE))
248 {
249 if (insn == head)
250 return NULL;
251 insn = PREV_INSN (insn);
252 }
253
254 if (LABEL_P (insn))
255 return NULL;
256
257 return insn;
258 }
259
260 /* Return the active insn before INSN inside basic block CURR_BB. */
261
262 static rtx_insn *
find_active_insn_before(basic_block curr_bb,rtx_insn * insn)263 find_active_insn_before (basic_block curr_bb, rtx_insn *insn)
264 {
265 if (!insn || insn == BB_HEAD (curr_bb))
266 return NULL;
267
268 while ((insn = PREV_INSN (insn)) != NULL_RTX)
269 {
270 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
271 break;
272
273 /* No other active insn all the way to the start of the basic block. */
274 if (insn == BB_HEAD (curr_bb))
275 return NULL;
276 }
277
278 return insn;
279 }
280
281 /* Return the active insn after INSN inside basic block CURR_BB. */
282
283 static rtx_insn *
find_active_insn_after(basic_block curr_bb,rtx_insn * insn)284 find_active_insn_after (basic_block curr_bb, rtx_insn *insn)
285 {
286 if (!insn || insn == BB_END (curr_bb))
287 return NULL;
288
289 while ((insn = NEXT_INSN (insn)) != NULL_RTX)
290 {
291 if (NONJUMP_INSN_P (insn) || JUMP_P (insn) || CALL_P (insn))
292 break;
293
294 /* No other active insn all the way to the end of the basic block. */
295 if (insn == BB_END (curr_bb))
296 return NULL;
297 }
298
299 return insn;
300 }
301
302 /* Return the basic block reached by falling though the basic block BB. */
303
304 static basic_block
block_fallthru(basic_block bb)305 block_fallthru (basic_block bb)
306 {
307 edge e = find_fallthru_edge (bb->succs);
308
309 return (e) ? e->dest : NULL_BLOCK;
310 }
311
312 /* Return true if RTXs A and B can be safely interchanged. */
313
314 static bool
rtx_interchangeable_p(const_rtx a,const_rtx b)315 rtx_interchangeable_p (const_rtx a, const_rtx b)
316 {
317 if (!rtx_equal_p (a, b))
318 return false;
319
320 if (GET_CODE (a) != MEM)
321 return true;
322
323 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
324 reference is not. Interchanging a dead type-unsafe memory reference with
325 a live type-safe one creates a live type-unsafe memory reference, in other
326 words, it makes the program illegal.
327 We check here conservatively whether the two memory references have equal
328 memory attributes. */
329
330 return mem_attrs_eq_p (get_mem_attrs (a), get_mem_attrs (b));
331 }
332
333
334 /* Go through a bunch of insns, converting them to conditional
335 execution format if possible. Return TRUE if all of the non-note
336 insns were processed. */
337
338 static int
cond_exec_process_insns(ce_if_block * ce_info ATTRIBUTE_UNUSED,rtx_insn * start,rtx end,rtx test,profile_probability prob_val,int mod_ok)339 cond_exec_process_insns (ce_if_block *ce_info ATTRIBUTE_UNUSED,
340 /* if block information */rtx_insn *start,
341 /* first insn to look at */rtx end,
342 /* last insn to look at */rtx test,
343 /* conditional execution test */profile_probability
344 prob_val,
345 /* probability of branch taken. */int mod_ok)
346 {
347 int must_be_last = FALSE;
348 rtx_insn *insn;
349 rtx xtest;
350 rtx pattern;
351
352 if (!start || !end)
353 return FALSE;
354
355 for (insn = start; ; insn = NEXT_INSN (insn))
356 {
357 /* dwarf2out can't cope with conditional prologues. */
358 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
359 return FALSE;
360
361 if (NOTE_P (insn) || DEBUG_INSN_P (insn))
362 goto insn_done;
363
364 gcc_assert (NONJUMP_INSN_P (insn) || CALL_P (insn));
365
366 /* dwarf2out can't cope with conditional unwind info. */
367 if (RTX_FRAME_RELATED_P (insn))
368 return FALSE;
369
370 /* Remove USE insns that get in the way. */
371 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
372 {
373 /* ??? Ug. Actually unlinking the thing is problematic,
374 given what we'd have to coordinate with our callers. */
375 SET_INSN_DELETED (insn);
376 goto insn_done;
377 }
378
379 /* Last insn wasn't last? */
380 if (must_be_last)
381 return FALSE;
382
383 if (modified_in_p (test, insn))
384 {
385 if (!mod_ok)
386 return FALSE;
387 must_be_last = TRUE;
388 }
389
390 /* Now build the conditional form of the instruction. */
391 pattern = PATTERN (insn);
392 xtest = copy_rtx (test);
393
394 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
395 two conditions. */
396 if (GET_CODE (pattern) == COND_EXEC)
397 {
398 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
399 return FALSE;
400
401 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
402 COND_EXEC_TEST (pattern));
403 pattern = COND_EXEC_CODE (pattern);
404 }
405
406 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
407
408 /* If the machine needs to modify the insn being conditionally executed,
409 say for example to force a constant integer operand into a temp
410 register, do so here. */
411 #ifdef IFCVT_MODIFY_INSN
412 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
413 if (! pattern)
414 return FALSE;
415 #endif
416
417 validate_change (insn, &PATTERN (insn), pattern, 1);
418
419 if (CALL_P (insn) && prob_val.initialized_p ())
420 validate_change (insn, ®_NOTES (insn),
421 gen_rtx_INT_LIST ((machine_mode) REG_BR_PROB,
422 prob_val.to_reg_br_prob_note (),
423 REG_NOTES (insn)), 1);
424
425 insn_done:
426 if (insn == end)
427 break;
428 }
429
430 return TRUE;
431 }
432
433 /* Return the condition for a jump. Do not do any special processing. */
434
435 static rtx
cond_exec_get_condition(rtx_insn * jump,bool get_reversed=false)436 cond_exec_get_condition (rtx_insn *jump, bool get_reversed = false)
437 {
438 rtx test_if, cond;
439
440 if (any_condjump_p (jump))
441 test_if = SET_SRC (pc_set (jump));
442 else
443 return NULL_RTX;
444 cond = XEXP (test_if, 0);
445
446 /* If this branches to JUMP_LABEL when the condition is false,
447 reverse the condition. */
448 if (get_reversed
449 || (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
450 && label_ref_label (XEXP (test_if, 2))
451 == JUMP_LABEL (jump)))
452 {
453 enum rtx_code rev = reversed_comparison_code (cond, jump);
454 if (rev == UNKNOWN)
455 return NULL_RTX;
456
457 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
458 XEXP (cond, 1));
459 }
460
461 return cond;
462 }
463
464 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
465 to conditional execution. Return TRUE if we were successful at
466 converting the block. */
467
468 static int
cond_exec_process_if_block(ce_if_block * ce_info,int do_multiple_p)469 cond_exec_process_if_block (ce_if_block * ce_info,
470 /* if block information */int do_multiple_p)
471 {
472 basic_block test_bb = ce_info->test_bb; /* last test block */
473 basic_block then_bb = ce_info->then_bb; /* THEN */
474 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
475 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
476 rtx_insn *then_start; /* first insn in THEN block */
477 rtx_insn *then_end; /* last insn + 1 in THEN block */
478 rtx_insn *else_start = NULL; /* first insn in ELSE block or NULL */
479 rtx_insn *else_end = NULL; /* last insn + 1 in ELSE block */
480 int max; /* max # of insns to convert. */
481 int then_mod_ok; /* whether conditional mods are ok in THEN */
482 rtx true_expr; /* test for else block insns */
483 rtx false_expr; /* test for then block insns */
484 profile_probability true_prob_val;/* probability of else block */
485 profile_probability false_prob_val;/* probability of then block */
486 rtx_insn *then_last_head = NULL; /* Last match at the head of THEN */
487 rtx_insn *else_last_head = NULL; /* Last match at the head of ELSE */
488 rtx_insn *then_first_tail = NULL; /* First match at the tail of THEN */
489 rtx_insn *else_first_tail = NULL; /* First match at the tail of ELSE */
490 int then_n_insns, else_n_insns, n_insns;
491 enum rtx_code false_code;
492 rtx note;
493
494 /* If test is comprised of && or || elements, and we've failed at handling
495 all of them together, just use the last test if it is the special case of
496 && elements without an ELSE block. */
497 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
498 {
499 if (else_bb || ! ce_info->and_and_p)
500 return FALSE;
501
502 ce_info->test_bb = test_bb = ce_info->last_test_bb;
503 ce_info->num_multiple_test_blocks = 0;
504 ce_info->num_and_and_blocks = 0;
505 ce_info->num_or_or_blocks = 0;
506 }
507
508 /* Find the conditional jump to the ELSE or JOIN part, and isolate
509 the test. */
510 test_expr = cond_exec_get_condition (BB_END (test_bb));
511 if (! test_expr)
512 return FALSE;
513
514 /* If the conditional jump is more than just a conditional jump,
515 then we cannot do conditional execution conversion on this block. */
516 if (! onlyjump_p (BB_END (test_bb)))
517 return FALSE;
518
519 /* Collect the bounds of where we're to search, skipping any labels, jumps
520 and notes at the beginning and end of the block. Then count the total
521 number of insns and see if it is small enough to convert. */
522 then_start = first_active_insn (then_bb);
523 then_end = last_active_insn (then_bb, TRUE);
524 then_n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
525 n_insns = then_n_insns;
526 max = MAX_CONDITIONAL_EXECUTE;
527
528 if (else_bb)
529 {
530 int n_matching;
531
532 max *= 2;
533 else_start = first_active_insn (else_bb);
534 else_end = last_active_insn (else_bb, TRUE);
535 else_n_insns = ce_info->num_else_insns = count_bb_insns (else_bb);
536 n_insns += else_n_insns;
537
538 /* Look for matching sequences at the head and tail of the two blocks,
539 and limit the range of insns to be converted if possible. */
540 n_matching = flow_find_cross_jump (then_bb, else_bb,
541 &then_first_tail, &else_first_tail,
542 NULL);
543 if (then_first_tail == BB_HEAD (then_bb))
544 then_start = then_end = NULL;
545 if (else_first_tail == BB_HEAD (else_bb))
546 else_start = else_end = NULL;
547
548 if (n_matching > 0)
549 {
550 if (then_end)
551 then_end = find_active_insn_before (then_bb, then_first_tail);
552 if (else_end)
553 else_end = find_active_insn_before (else_bb, else_first_tail);
554 n_insns -= 2 * n_matching;
555 }
556
557 if (then_start
558 && else_start
559 && then_n_insns > n_matching
560 && else_n_insns > n_matching)
561 {
562 int longest_match = MIN (then_n_insns - n_matching,
563 else_n_insns - n_matching);
564 n_matching
565 = flow_find_head_matching_sequence (then_bb, else_bb,
566 &then_last_head,
567 &else_last_head,
568 longest_match);
569
570 if (n_matching > 0)
571 {
572 rtx_insn *insn;
573
574 /* We won't pass the insns in the head sequence to
575 cond_exec_process_insns, so we need to test them here
576 to make sure that they don't clobber the condition. */
577 for (insn = BB_HEAD (then_bb);
578 insn != NEXT_INSN (then_last_head);
579 insn = NEXT_INSN (insn))
580 if (!LABEL_P (insn) && !NOTE_P (insn)
581 && !DEBUG_INSN_P (insn)
582 && modified_in_p (test_expr, insn))
583 return FALSE;
584 }
585
586 if (then_last_head == then_end)
587 then_start = then_end = NULL;
588 if (else_last_head == else_end)
589 else_start = else_end = NULL;
590
591 if (n_matching > 0)
592 {
593 if (then_start)
594 then_start = find_active_insn_after (then_bb, then_last_head);
595 if (else_start)
596 else_start = find_active_insn_after (else_bb, else_last_head);
597 n_insns -= 2 * n_matching;
598 }
599 }
600 }
601
602 if (n_insns > max)
603 return FALSE;
604
605 /* Map test_expr/test_jump into the appropriate MD tests to use on
606 the conditionally executed code. */
607
608 true_expr = test_expr;
609
610 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
611 if (false_code != UNKNOWN)
612 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
613 XEXP (true_expr, 0), XEXP (true_expr, 1));
614 else
615 false_expr = NULL_RTX;
616
617 #ifdef IFCVT_MODIFY_TESTS
618 /* If the machine description needs to modify the tests, such as setting a
619 conditional execution register from a comparison, it can do so here. */
620 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
621
622 /* See if the conversion failed. */
623 if (!true_expr || !false_expr)
624 goto fail;
625 #endif
626
627 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
628 if (note)
629 {
630 true_prob_val = profile_probability::from_reg_br_prob_note (XINT (note, 0));
631 false_prob_val = true_prob_val.invert ();
632 }
633 else
634 {
635 true_prob_val = profile_probability::uninitialized ();
636 false_prob_val = profile_probability::uninitialized ();
637 }
638
639 /* If we have && or || tests, do them here. These tests are in the adjacent
640 blocks after the first block containing the test. */
641 if (ce_info->num_multiple_test_blocks > 0)
642 {
643 basic_block bb = test_bb;
644 basic_block last_test_bb = ce_info->last_test_bb;
645
646 if (! false_expr)
647 goto fail;
648
649 do
650 {
651 rtx_insn *start, *end;
652 rtx t, f;
653 enum rtx_code f_code;
654
655 bb = block_fallthru (bb);
656 start = first_active_insn (bb);
657 end = last_active_insn (bb, TRUE);
658 if (start
659 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
660 false_prob_val, FALSE))
661 goto fail;
662
663 /* If the conditional jump is more than just a conditional jump, then
664 we cannot do conditional execution conversion on this block. */
665 if (! onlyjump_p (BB_END (bb)))
666 goto fail;
667
668 /* Find the conditional jump and isolate the test. */
669 t = cond_exec_get_condition (BB_END (bb));
670 if (! t)
671 goto fail;
672
673 f_code = reversed_comparison_code (t, BB_END (bb));
674 if (f_code == UNKNOWN)
675 goto fail;
676
677 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
678 if (ce_info->and_and_p)
679 {
680 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
681 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
682 }
683 else
684 {
685 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
686 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
687 }
688
689 /* If the machine description needs to modify the tests, such as
690 setting a conditional execution register from a comparison, it can
691 do so here. */
692 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
693 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
694
695 /* See if the conversion failed. */
696 if (!t || !f)
697 goto fail;
698 #endif
699
700 true_expr = t;
701 false_expr = f;
702 }
703 while (bb != last_test_bb);
704 }
705
706 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
707 on then THEN block. */
708 then_mod_ok = (else_bb == NULL_BLOCK);
709
710 /* Go through the THEN and ELSE blocks converting the insns if possible
711 to conditional execution. */
712
713 if (then_end
714 && (! false_expr
715 || ! cond_exec_process_insns (ce_info, then_start, then_end,
716 false_expr, false_prob_val,
717 then_mod_ok)))
718 goto fail;
719
720 if (else_bb && else_end
721 && ! cond_exec_process_insns (ce_info, else_start, else_end,
722 true_expr, true_prob_val, TRUE))
723 goto fail;
724
725 /* If we cannot apply the changes, fail. Do not go through the normal fail
726 processing, since apply_change_group will call cancel_changes. */
727 if (! apply_change_group ())
728 {
729 #ifdef IFCVT_MODIFY_CANCEL
730 /* Cancel any machine dependent changes. */
731 IFCVT_MODIFY_CANCEL (ce_info);
732 #endif
733 return FALSE;
734 }
735
736 #ifdef IFCVT_MODIFY_FINAL
737 /* Do any machine dependent final modifications. */
738 IFCVT_MODIFY_FINAL (ce_info);
739 #endif
740
741 /* Conversion succeeded. */
742 if (dump_file)
743 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
744 n_insns, (n_insns == 1) ? " was" : "s were");
745
746 /* Merge the blocks! If we had matching sequences, make sure to delete one
747 copy at the appropriate location first: delete the copy in the THEN branch
748 for a tail sequence so that the remaining one is executed last for both
749 branches, and delete the copy in the ELSE branch for a head sequence so
750 that the remaining one is executed first for both branches. */
751 if (then_first_tail)
752 {
753 rtx_insn *from = then_first_tail;
754 if (!INSN_P (from))
755 from = find_active_insn_after (then_bb, from);
756 delete_insn_chain (from, get_last_bb_insn (then_bb), false);
757 }
758 if (else_last_head)
759 delete_insn_chain (first_active_insn (else_bb), else_last_head, false);
760
761 merge_if_block (ce_info);
762 cond_exec_changed_p = TRUE;
763 return TRUE;
764
765 fail:
766 #ifdef IFCVT_MODIFY_CANCEL
767 /* Cancel any machine dependent changes. */
768 IFCVT_MODIFY_CANCEL (ce_info);
769 #endif
770
771 cancel_changes (0);
772 return FALSE;
773 }
774
775 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
776 static int noce_try_move (struct noce_if_info *);
777 static int noce_try_ifelse_collapse (struct noce_if_info *);
778 static int noce_try_store_flag (struct noce_if_info *);
779 static int noce_try_addcc (struct noce_if_info *);
780 static int noce_try_store_flag_constants (struct noce_if_info *);
781 static int noce_try_store_flag_mask (struct noce_if_info *);
782 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
783 rtx, rtx, rtx, rtx = NULL, rtx = NULL);
784 static int noce_try_cmove (struct noce_if_info *);
785 static int noce_try_cmove_arith (struct noce_if_info *);
786 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx_insn **);
787 static int noce_try_minmax (struct noce_if_info *);
788 static int noce_try_abs (struct noce_if_info *);
789 static int noce_try_sign_mask (struct noce_if_info *);
790
791 /* Return the comparison code for reversed condition for IF_INFO,
792 or UNKNOWN if reversing the condition is not possible. */
793
794 static inline enum rtx_code
noce_reversed_cond_code(struct noce_if_info * if_info)795 noce_reversed_cond_code (struct noce_if_info *if_info)
796 {
797 if (if_info->rev_cond)
798 return GET_CODE (if_info->rev_cond);
799 return reversed_comparison_code (if_info->cond, if_info->jump);
800 }
801
802 /* Return true if SEQ is a good candidate as a replacement for the
803 if-convertible sequence described in IF_INFO.
804 This is the default implementation that targets can override
805 through a target hook. */
806
807 bool
default_noce_conversion_profitable_p(rtx_insn * seq,struct noce_if_info * if_info)808 default_noce_conversion_profitable_p (rtx_insn *seq,
809 struct noce_if_info *if_info)
810 {
811 bool speed_p = if_info->speed_p;
812
813 /* Cost up the new sequence. */
814 unsigned int cost = seq_cost (seq, speed_p);
815
816 if (cost <= if_info->original_cost)
817 return true;
818
819 /* When compiling for size, we can make a reasonably accurately guess
820 at the size growth. When compiling for speed, use the maximum. */
821 return speed_p && cost <= if_info->max_seq_cost;
822 }
823
824 /* Helper function for noce_try_store_flag*. */
825
826 static rtx
noce_emit_store_flag(struct noce_if_info * if_info,rtx x,int reversep,int normalize)827 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
828 int normalize)
829 {
830 rtx cond = if_info->cond;
831 int cond_complex;
832 enum rtx_code code;
833
834 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
835 || ! general_operand (XEXP (cond, 1), VOIDmode));
836
837 /* If earliest == jump, or when the condition is complex, try to
838 build the store_flag insn directly. */
839
840 if (cond_complex)
841 {
842 rtx set = pc_set (if_info->jump);
843 cond = XEXP (SET_SRC (set), 0);
844 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
845 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump))
846 reversep = !reversep;
847 if (if_info->then_else_reversed)
848 reversep = !reversep;
849 }
850 else if (reversep
851 && if_info->rev_cond
852 && general_operand (XEXP (if_info->rev_cond, 0), VOIDmode)
853 && general_operand (XEXP (if_info->rev_cond, 1), VOIDmode))
854 {
855 cond = if_info->rev_cond;
856 reversep = false;
857 }
858
859 if (reversep)
860 code = reversed_comparison_code (cond, if_info->jump);
861 else
862 code = GET_CODE (cond);
863
864 if ((if_info->cond_earliest == if_info->jump || cond_complex)
865 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
866 {
867 rtx src = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
868 XEXP (cond, 1));
869 rtx set = gen_rtx_SET (x, src);
870
871 start_sequence ();
872 rtx_insn *insn = emit_insn (set);
873
874 if (recog_memoized (insn) >= 0)
875 {
876 rtx_insn *seq = get_insns ();
877 end_sequence ();
878 emit_insn (seq);
879
880 if_info->cond_earliest = if_info->jump;
881
882 return x;
883 }
884
885 end_sequence ();
886 }
887
888 /* Don't even try if the comparison operands or the mode of X are weird. */
889 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
890 return NULL_RTX;
891
892 return emit_store_flag (x, code, XEXP (cond, 0),
893 XEXP (cond, 1), VOIDmode,
894 (code == LTU || code == LEU
895 || code == GEU || code == GTU), normalize);
896 }
897
898 /* Return true if X can be safely forced into a register by copy_to_mode_reg
899 / force_operand. */
900
901 static bool
noce_can_force_operand(rtx x)902 noce_can_force_operand (rtx x)
903 {
904 if (general_operand (x, VOIDmode))
905 return true;
906 if (SUBREG_P (x))
907 {
908 if (!noce_can_force_operand (SUBREG_REG (x)))
909 return false;
910 return true;
911 }
912 if (ARITHMETIC_P (x))
913 {
914 if (!noce_can_force_operand (XEXP (x, 0))
915 || !noce_can_force_operand (XEXP (x, 1)))
916 return false;
917 switch (GET_CODE (x))
918 {
919 case MULT:
920 case DIV:
921 case MOD:
922 case UDIV:
923 case UMOD:
924 return true;
925 default:
926 return code_to_optab (GET_CODE (x));
927 }
928 }
929 if (UNARY_P (x))
930 {
931 if (!noce_can_force_operand (XEXP (x, 0)))
932 return false;
933 switch (GET_CODE (x))
934 {
935 case ZERO_EXTEND:
936 case SIGN_EXTEND:
937 case TRUNCATE:
938 case FLOAT_EXTEND:
939 case FLOAT_TRUNCATE:
940 case FIX:
941 case UNSIGNED_FIX:
942 case FLOAT:
943 case UNSIGNED_FLOAT:
944 return true;
945 default:
946 return code_to_optab (GET_CODE (x));
947 }
948 }
949 return false;
950 }
951
952 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
953 X is the destination/target and Y is the value to copy. */
954
955 static void
noce_emit_move_insn(rtx x,rtx y)956 noce_emit_move_insn (rtx x, rtx y)
957 {
958 machine_mode outmode;
959 rtx outer, inner;
960 poly_int64 bitpos;
961
962 if (GET_CODE (x) != STRICT_LOW_PART)
963 {
964 rtx_insn *seq, *insn;
965 rtx target;
966 optab ot;
967
968 start_sequence ();
969 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
970 otherwise construct a suitable SET pattern ourselves. */
971 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
972 ? emit_move_insn (x, y)
973 : emit_insn (gen_rtx_SET (x, y));
974 seq = get_insns ();
975 end_sequence ();
976
977 if (recog_memoized (insn) <= 0)
978 {
979 if (GET_CODE (x) == ZERO_EXTRACT)
980 {
981 rtx op = XEXP (x, 0);
982 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
983 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
984
985 /* store_bit_field expects START to be relative to
986 BYTES_BIG_ENDIAN and adjusts this value for machines with
987 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
988 invoke store_bit_field again it is necessary to have the START
989 value from the first call. */
990 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
991 {
992 if (MEM_P (op))
993 start = BITS_PER_UNIT - start - size;
994 else
995 {
996 gcc_assert (REG_P (op));
997 start = BITS_PER_WORD - start - size;
998 }
999 }
1000
1001 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
1002 store_bit_field (op, size, start, 0, 0, GET_MODE (x), y, false);
1003 return;
1004 }
1005
1006 switch (GET_RTX_CLASS (GET_CODE (y)))
1007 {
1008 case RTX_UNARY:
1009 ot = code_to_optab (GET_CODE (y));
1010 if (ot && noce_can_force_operand (XEXP (y, 0)))
1011 {
1012 start_sequence ();
1013 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
1014 if (target != NULL_RTX)
1015 {
1016 if (target != x)
1017 emit_move_insn (x, target);
1018 seq = get_insns ();
1019 }
1020 end_sequence ();
1021 }
1022 break;
1023
1024 case RTX_BIN_ARITH:
1025 case RTX_COMM_ARITH:
1026 ot = code_to_optab (GET_CODE (y));
1027 if (ot
1028 && noce_can_force_operand (XEXP (y, 0))
1029 && noce_can_force_operand (XEXP (y, 1)))
1030 {
1031 start_sequence ();
1032 target = expand_binop (GET_MODE (y), ot,
1033 XEXP (y, 0), XEXP (y, 1),
1034 x, 0, OPTAB_DIRECT);
1035 if (target != NULL_RTX)
1036 {
1037 if (target != x)
1038 emit_move_insn (x, target);
1039 seq = get_insns ();
1040 }
1041 end_sequence ();
1042 }
1043 break;
1044
1045 default:
1046 break;
1047 }
1048 }
1049
1050 emit_insn (seq);
1051 return;
1052 }
1053
1054 outer = XEXP (x, 0);
1055 inner = XEXP (outer, 0);
1056 outmode = GET_MODE (outer);
1057 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
1058 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos,
1059 0, 0, outmode, y, false);
1060 }
1061
1062 /* Return the CC reg if it is used in COND. */
1063
1064 static rtx
cc_in_cond(rtx cond)1065 cc_in_cond (rtx cond)
1066 {
1067 if (have_cbranchcc4 && cond
1068 && GET_MODE_CLASS (GET_MODE (XEXP (cond, 0))) == MODE_CC)
1069 return XEXP (cond, 0);
1070
1071 return NULL_RTX;
1072 }
1073
1074 /* Return sequence of instructions generated by if conversion. This
1075 function calls end_sequence() to end the current stream, ensures
1076 that the instructions are unshared, recognizable non-jump insns.
1077 On failure, this function returns a NULL_RTX. */
1078
1079 static rtx_insn *
end_ifcvt_sequence(struct noce_if_info * if_info)1080 end_ifcvt_sequence (struct noce_if_info *if_info)
1081 {
1082 rtx_insn *insn;
1083 rtx_insn *seq = get_insns ();
1084 rtx cc = cc_in_cond (if_info->cond);
1085
1086 set_used_flags (if_info->x);
1087 set_used_flags (if_info->cond);
1088 set_used_flags (if_info->a);
1089 set_used_flags (if_info->b);
1090
1091 for (insn = seq; insn; insn = NEXT_INSN (insn))
1092 set_used_flags (insn);
1093
1094 unshare_all_rtl_in_chain (seq);
1095 end_sequence ();
1096
1097 /* Make sure that all of the instructions emitted are recognizable,
1098 and that we haven't introduced a new jump instruction.
1099 As an exercise for the reader, build a general mechanism that
1100 allows proper placement of required clobbers. */
1101 for (insn = seq; insn; insn = NEXT_INSN (insn))
1102 if (JUMP_P (insn)
1103 || recog_memoized (insn) == -1
1104 /* Make sure new generated code does not clobber CC. */
1105 || (cc && set_of (cc, insn)))
1106 return NULL;
1107
1108 return seq;
1109 }
1110
1111 /* Return true iff the then and else basic block (if it exists)
1112 consist of a single simple set instruction. */
1113
1114 static bool
noce_simple_bbs(struct noce_if_info * if_info)1115 noce_simple_bbs (struct noce_if_info *if_info)
1116 {
1117 if (!if_info->then_simple)
1118 return false;
1119
1120 if (if_info->else_bb)
1121 return if_info->else_simple;
1122
1123 return true;
1124 }
1125
1126 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1127 "if (a == b) x = a; else x = b" into "x = b". */
1128
1129 static int
noce_try_move(struct noce_if_info * if_info)1130 noce_try_move (struct noce_if_info *if_info)
1131 {
1132 rtx cond = if_info->cond;
1133 enum rtx_code code = GET_CODE (cond);
1134 rtx y;
1135 rtx_insn *seq;
1136
1137 if (code != NE && code != EQ)
1138 return FALSE;
1139
1140 if (!noce_simple_bbs (if_info))
1141 return FALSE;
1142
1143 /* This optimization isn't valid if either A or B could be a NaN
1144 or a signed zero. */
1145 if (HONOR_NANS (if_info->x)
1146 || HONOR_SIGNED_ZEROS (if_info->x))
1147 return FALSE;
1148
1149 /* Check whether the operands of the comparison are A and in
1150 either order. */
1151 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
1152 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
1153 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
1154 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
1155 {
1156 if (!rtx_interchangeable_p (if_info->a, if_info->b))
1157 return FALSE;
1158
1159 y = (code == EQ) ? if_info->a : if_info->b;
1160
1161 /* Avoid generating the move if the source is the destination. */
1162 if (! rtx_equal_p (if_info->x, y))
1163 {
1164 start_sequence ();
1165 noce_emit_move_insn (if_info->x, y);
1166 seq = end_ifcvt_sequence (if_info);
1167 if (!seq)
1168 return FALSE;
1169
1170 emit_insn_before_setloc (seq, if_info->jump,
1171 INSN_LOCATION (if_info->insn_a));
1172 }
1173 if_info->transform_name = "noce_try_move";
1174 return TRUE;
1175 }
1176 return FALSE;
1177 }
1178
1179 /* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
1180 through simplify_rtx. Sometimes that can eliminate the IF_THEN_ELSE.
1181 If that is the case, emit the result into x. */
1182
1183 static int
noce_try_ifelse_collapse(struct noce_if_info * if_info)1184 noce_try_ifelse_collapse (struct noce_if_info * if_info)
1185 {
1186 if (!noce_simple_bbs (if_info))
1187 return FALSE;
1188
1189 machine_mode mode = GET_MODE (if_info->x);
1190 rtx if_then_else = simplify_gen_ternary (IF_THEN_ELSE, mode, mode,
1191 if_info->cond, if_info->b,
1192 if_info->a);
1193
1194 if (GET_CODE (if_then_else) == IF_THEN_ELSE)
1195 return FALSE;
1196
1197 rtx_insn *seq;
1198 start_sequence ();
1199 noce_emit_move_insn (if_info->x, if_then_else);
1200 seq = end_ifcvt_sequence (if_info);
1201 if (!seq)
1202 return FALSE;
1203
1204 emit_insn_before_setloc (seq, if_info->jump,
1205 INSN_LOCATION (if_info->insn_a));
1206
1207 if_info->transform_name = "noce_try_ifelse_collapse";
1208 return TRUE;
1209 }
1210
1211
1212 /* Convert "if (test) x = 1; else x = 0".
1213
1214 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1215 tried in noce_try_store_flag_constants after noce_try_cmove has had
1216 a go at the conversion. */
1217
1218 static int
noce_try_store_flag(struct noce_if_info * if_info)1219 noce_try_store_flag (struct noce_if_info *if_info)
1220 {
1221 int reversep;
1222 rtx target;
1223 rtx_insn *seq;
1224
1225 if (!noce_simple_bbs (if_info))
1226 return FALSE;
1227
1228 if (CONST_INT_P (if_info->b)
1229 && INTVAL (if_info->b) == STORE_FLAG_VALUE
1230 && if_info->a == const0_rtx)
1231 reversep = 0;
1232 else if (if_info->b == const0_rtx
1233 && CONST_INT_P (if_info->a)
1234 && INTVAL (if_info->a) == STORE_FLAG_VALUE
1235 && noce_reversed_cond_code (if_info) != UNKNOWN)
1236 reversep = 1;
1237 else
1238 return FALSE;
1239
1240 start_sequence ();
1241
1242 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
1243 if (target)
1244 {
1245 if (target != if_info->x)
1246 noce_emit_move_insn (if_info->x, target);
1247
1248 seq = end_ifcvt_sequence (if_info);
1249 if (! seq)
1250 return FALSE;
1251
1252 emit_insn_before_setloc (seq, if_info->jump,
1253 INSN_LOCATION (if_info->insn_a));
1254 if_info->transform_name = "noce_try_store_flag";
1255 return TRUE;
1256 }
1257 else
1258 {
1259 end_sequence ();
1260 return FALSE;
1261 }
1262 }
1263
1264
1265 /* Convert "if (test) x = -A; else x = A" into
1266 x = A; if (test) x = -x if the machine can do the
1267 conditional negate form of this cheaply.
1268 Try this before noce_try_cmove that will just load the
1269 immediates into two registers and do a conditional select
1270 between them. If the target has a conditional negate or
1271 conditional invert operation we can save a potentially
1272 expensive constant synthesis. */
1273
1274 static bool
noce_try_inverse_constants(struct noce_if_info * if_info)1275 noce_try_inverse_constants (struct noce_if_info *if_info)
1276 {
1277 if (!noce_simple_bbs (if_info))
1278 return false;
1279
1280 if (!CONST_INT_P (if_info->a)
1281 || !CONST_INT_P (if_info->b)
1282 || !REG_P (if_info->x))
1283 return false;
1284
1285 machine_mode mode = GET_MODE (if_info->x);
1286
1287 HOST_WIDE_INT val_a = INTVAL (if_info->a);
1288 HOST_WIDE_INT val_b = INTVAL (if_info->b);
1289
1290 rtx cond = if_info->cond;
1291
1292 rtx x = if_info->x;
1293 rtx target;
1294
1295 start_sequence ();
1296
1297 rtx_code code;
1298 if (val_b != HOST_WIDE_INT_MIN && val_a == -val_b)
1299 code = NEG;
1300 else if (val_a == ~val_b)
1301 code = NOT;
1302 else
1303 {
1304 end_sequence ();
1305 return false;
1306 }
1307
1308 rtx tmp = gen_reg_rtx (mode);
1309 noce_emit_move_insn (tmp, if_info->a);
1310
1311 target = emit_conditional_neg_or_complement (x, code, mode, cond, tmp, tmp);
1312
1313 if (target)
1314 {
1315 rtx_insn *seq = get_insns ();
1316
1317 if (!seq)
1318 {
1319 end_sequence ();
1320 return false;
1321 }
1322
1323 if (target != if_info->x)
1324 noce_emit_move_insn (if_info->x, target);
1325
1326 seq = end_ifcvt_sequence (if_info);
1327
1328 if (!seq)
1329 return false;
1330
1331 emit_insn_before_setloc (seq, if_info->jump,
1332 INSN_LOCATION (if_info->insn_a));
1333 if_info->transform_name = "noce_try_inverse_constants";
1334 return true;
1335 }
1336
1337 end_sequence ();
1338 return false;
1339 }
1340
1341
1342 /* Convert "if (test) x = a; else x = b", for A and B constant.
1343 Also allow A = y + c1, B = y + c2, with a common y between A
1344 and B. */
1345
1346 static int
noce_try_store_flag_constants(struct noce_if_info * if_info)1347 noce_try_store_flag_constants (struct noce_if_info *if_info)
1348 {
1349 rtx target;
1350 rtx_insn *seq;
1351 bool reversep;
1352 HOST_WIDE_INT itrue, ifalse, diff, tmp;
1353 int normalize;
1354 bool can_reverse;
1355 machine_mode mode = GET_MODE (if_info->x);
1356 rtx common = NULL_RTX;
1357
1358 rtx a = if_info->a;
1359 rtx b = if_info->b;
1360
1361 /* Handle cases like x := test ? y + 3 : y + 4. */
1362 if (GET_CODE (a) == PLUS
1363 && GET_CODE (b) == PLUS
1364 && CONST_INT_P (XEXP (a, 1))
1365 && CONST_INT_P (XEXP (b, 1))
1366 && rtx_equal_p (XEXP (a, 0), XEXP (b, 0))
1367 /* Allow expressions that are not using the result or plain
1368 registers where we handle overlap below. */
1369 && (REG_P (XEXP (a, 0))
1370 || (noce_operand_ok (XEXP (a, 0))
1371 && ! reg_overlap_mentioned_p (if_info->x, XEXP (a, 0)))))
1372 {
1373 common = XEXP (a, 0);
1374 a = XEXP (a, 1);
1375 b = XEXP (b, 1);
1376 }
1377
1378 if (!noce_simple_bbs (if_info))
1379 return FALSE;
1380
1381 if (CONST_INT_P (a)
1382 && CONST_INT_P (b))
1383 {
1384 ifalse = INTVAL (a);
1385 itrue = INTVAL (b);
1386 bool subtract_flag_p = false;
1387
1388 diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1389 /* Make sure we can represent the difference between the two values. */
1390 if ((diff > 0)
1391 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1392 return FALSE;
1393
1394 diff = trunc_int_for_mode (diff, mode);
1395
1396 can_reverse = noce_reversed_cond_code (if_info) != UNKNOWN;
1397 reversep = false;
1398 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1399 {
1400 normalize = 0;
1401 /* We could collapse these cases but it is easier to follow the
1402 diff/STORE_FLAG_VALUE combinations when they are listed
1403 explicitly. */
1404
1405 /* test ? 3 : 4
1406 => 4 + (test != 0). */
1407 if (diff < 0 && STORE_FLAG_VALUE < 0)
1408 reversep = false;
1409 /* test ? 4 : 3
1410 => can_reverse | 4 + (test == 0)
1411 !can_reverse | 3 - (test != 0). */
1412 else if (diff > 0 && STORE_FLAG_VALUE < 0)
1413 {
1414 reversep = can_reverse;
1415 subtract_flag_p = !can_reverse;
1416 /* If we need to subtract the flag and we have PLUS-immediate
1417 A and B then it is unlikely to be beneficial to play tricks
1418 here. */
1419 if (subtract_flag_p && common)
1420 return FALSE;
1421 }
1422 /* test ? 3 : 4
1423 => can_reverse | 3 + (test == 0)
1424 !can_reverse | 4 - (test != 0). */
1425 else if (diff < 0 && STORE_FLAG_VALUE > 0)
1426 {
1427 reversep = can_reverse;
1428 subtract_flag_p = !can_reverse;
1429 /* If we need to subtract the flag and we have PLUS-immediate
1430 A and B then it is unlikely to be beneficial to play tricks
1431 here. */
1432 if (subtract_flag_p && common)
1433 return FALSE;
1434 }
1435 /* test ? 4 : 3
1436 => 4 + (test != 0). */
1437 else if (diff > 0 && STORE_FLAG_VALUE > 0)
1438 reversep = false;
1439 else
1440 gcc_unreachable ();
1441 }
1442 /* Is this (cond) ? 2^n : 0? */
1443 else if (ifalse == 0 && pow2p_hwi (itrue)
1444 && STORE_FLAG_VALUE == 1)
1445 normalize = 1;
1446 /* Is this (cond) ? 0 : 2^n? */
1447 else if (itrue == 0 && pow2p_hwi (ifalse) && can_reverse
1448 && STORE_FLAG_VALUE == 1)
1449 {
1450 normalize = 1;
1451 reversep = true;
1452 }
1453 /* Is this (cond) ? -1 : x? */
1454 else if (itrue == -1
1455 && STORE_FLAG_VALUE == -1)
1456 normalize = -1;
1457 /* Is this (cond) ? x : -1? */
1458 else if (ifalse == -1 && can_reverse
1459 && STORE_FLAG_VALUE == -1)
1460 {
1461 normalize = -1;
1462 reversep = true;
1463 }
1464 else
1465 return FALSE;
1466
1467 if (reversep)
1468 {
1469 std::swap (itrue, ifalse);
1470 diff = trunc_int_for_mode (-(unsigned HOST_WIDE_INT) diff, mode);
1471 }
1472
1473 start_sequence ();
1474
1475 /* If we have x := test ? x + 3 : x + 4 then move the original
1476 x out of the way while we store flags. */
1477 if (common && rtx_equal_p (common, if_info->x))
1478 {
1479 common = gen_reg_rtx (mode);
1480 noce_emit_move_insn (common, if_info->x);
1481 }
1482
1483 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1484 if (! target)
1485 {
1486 end_sequence ();
1487 return FALSE;
1488 }
1489
1490 /* if (test) x = 3; else x = 4;
1491 => x = 3 + (test == 0); */
1492 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1493 {
1494 /* Add the common part now. This may allow combine to merge this
1495 with the store flag operation earlier into some sort of conditional
1496 increment/decrement if the target allows it. */
1497 if (common)
1498 target = expand_simple_binop (mode, PLUS,
1499 target, common,
1500 target, 0, OPTAB_WIDEN);
1501
1502 /* Always use ifalse here. It should have been swapped with itrue
1503 when appropriate when reversep is true. */
1504 target = expand_simple_binop (mode, subtract_flag_p ? MINUS : PLUS,
1505 gen_int_mode (ifalse, mode), target,
1506 if_info->x, 0, OPTAB_WIDEN);
1507 }
1508 /* Other cases are not beneficial when the original A and B are PLUS
1509 expressions. */
1510 else if (common)
1511 {
1512 end_sequence ();
1513 return FALSE;
1514 }
1515 /* if (test) x = 8; else x = 0;
1516 => x = (test != 0) << 3; */
1517 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1518 {
1519 target = expand_simple_binop (mode, ASHIFT,
1520 target, GEN_INT (tmp), if_info->x, 0,
1521 OPTAB_WIDEN);
1522 }
1523
1524 /* if (test) x = -1; else x = b;
1525 => x = -(test != 0) | b; */
1526 else if (itrue == -1)
1527 {
1528 target = expand_simple_binop (mode, IOR,
1529 target, gen_int_mode (ifalse, mode),
1530 if_info->x, 0, OPTAB_WIDEN);
1531 }
1532 else
1533 {
1534 end_sequence ();
1535 return FALSE;
1536 }
1537
1538 if (! target)
1539 {
1540 end_sequence ();
1541 return FALSE;
1542 }
1543
1544 if (target != if_info->x)
1545 noce_emit_move_insn (if_info->x, target);
1546
1547 seq = end_ifcvt_sequence (if_info);
1548 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1549 return FALSE;
1550
1551 emit_insn_before_setloc (seq, if_info->jump,
1552 INSN_LOCATION (if_info->insn_a));
1553 if_info->transform_name = "noce_try_store_flag_constants";
1554
1555 return TRUE;
1556 }
1557
1558 return FALSE;
1559 }
1560
1561 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1562 similarly for "foo--". */
1563
1564 static int
noce_try_addcc(struct noce_if_info * if_info)1565 noce_try_addcc (struct noce_if_info *if_info)
1566 {
1567 rtx target;
1568 rtx_insn *seq;
1569 int subtract, normalize;
1570
1571 if (!noce_simple_bbs (if_info))
1572 return FALSE;
1573
1574 if (GET_CODE (if_info->a) == PLUS
1575 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1576 && noce_reversed_cond_code (if_info) != UNKNOWN)
1577 {
1578 rtx cond = if_info->rev_cond;
1579 enum rtx_code code;
1580
1581 if (cond == NULL_RTX)
1582 {
1583 cond = if_info->cond;
1584 code = reversed_comparison_code (cond, if_info->jump);
1585 }
1586 else
1587 code = GET_CODE (cond);
1588
1589 /* First try to use addcc pattern. */
1590 if (general_operand (XEXP (cond, 0), VOIDmode)
1591 && general_operand (XEXP (cond, 1), VOIDmode))
1592 {
1593 start_sequence ();
1594 target = emit_conditional_add (if_info->x, code,
1595 XEXP (cond, 0),
1596 XEXP (cond, 1),
1597 VOIDmode,
1598 if_info->b,
1599 XEXP (if_info->a, 1),
1600 GET_MODE (if_info->x),
1601 (code == LTU || code == GEU
1602 || code == LEU || code == GTU));
1603 if (target)
1604 {
1605 if (target != if_info->x)
1606 noce_emit_move_insn (if_info->x, target);
1607
1608 seq = end_ifcvt_sequence (if_info);
1609 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1610 return FALSE;
1611
1612 emit_insn_before_setloc (seq, if_info->jump,
1613 INSN_LOCATION (if_info->insn_a));
1614 if_info->transform_name = "noce_try_addcc";
1615
1616 return TRUE;
1617 }
1618 end_sequence ();
1619 }
1620
1621 /* If that fails, construct conditional increment or decrement using
1622 setcc. We're changing a branch and an increment to a comparison and
1623 an ADD/SUB. */
1624 if (XEXP (if_info->a, 1) == const1_rtx
1625 || XEXP (if_info->a, 1) == constm1_rtx)
1626 {
1627 start_sequence ();
1628 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1629 subtract = 0, normalize = 0;
1630 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1631 subtract = 1, normalize = 0;
1632 else
1633 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1634
1635
1636 target = noce_emit_store_flag (if_info,
1637 gen_reg_rtx (GET_MODE (if_info->x)),
1638 1, normalize);
1639
1640 if (target)
1641 target = expand_simple_binop (GET_MODE (if_info->x),
1642 subtract ? MINUS : PLUS,
1643 if_info->b, target, if_info->x,
1644 0, OPTAB_WIDEN);
1645 if (target)
1646 {
1647 if (target != if_info->x)
1648 noce_emit_move_insn (if_info->x, target);
1649
1650 seq = end_ifcvt_sequence (if_info);
1651 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1652 return FALSE;
1653
1654 emit_insn_before_setloc (seq, if_info->jump,
1655 INSN_LOCATION (if_info->insn_a));
1656 if_info->transform_name = "noce_try_addcc";
1657 return TRUE;
1658 }
1659 end_sequence ();
1660 }
1661 }
1662
1663 return FALSE;
1664 }
1665
1666 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1667
1668 static int
noce_try_store_flag_mask(struct noce_if_info * if_info)1669 noce_try_store_flag_mask (struct noce_if_info *if_info)
1670 {
1671 rtx target;
1672 rtx_insn *seq;
1673 int reversep;
1674
1675 if (!noce_simple_bbs (if_info))
1676 return FALSE;
1677
1678 reversep = 0;
1679
1680 if ((if_info->a == const0_rtx
1681 && (REG_P (if_info->b) || rtx_equal_p (if_info->b, if_info->x)))
1682 || ((reversep = (noce_reversed_cond_code (if_info) != UNKNOWN))
1683 && if_info->b == const0_rtx
1684 && (REG_P (if_info->a) || rtx_equal_p (if_info->a, if_info->x))))
1685 {
1686 start_sequence ();
1687 target = noce_emit_store_flag (if_info,
1688 gen_reg_rtx (GET_MODE (if_info->x)),
1689 reversep, -1);
1690 if (target)
1691 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1692 reversep ? if_info->a : if_info->b,
1693 target, if_info->x, 0,
1694 OPTAB_WIDEN);
1695
1696 if (target)
1697 {
1698 if (target != if_info->x)
1699 noce_emit_move_insn (if_info->x, target);
1700
1701 seq = end_ifcvt_sequence (if_info);
1702 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1703 return FALSE;
1704
1705 emit_insn_before_setloc (seq, if_info->jump,
1706 INSN_LOCATION (if_info->insn_a));
1707 if_info->transform_name = "noce_try_store_flag_mask";
1708
1709 return TRUE;
1710 }
1711
1712 end_sequence ();
1713 }
1714
1715 return FALSE;
1716 }
1717
1718 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1719
1720 static rtx
noce_emit_cmove(struct noce_if_info * if_info,rtx x,enum rtx_code code,rtx cmp_a,rtx cmp_b,rtx vfalse,rtx vtrue,rtx cc_cmp,rtx rev_cc_cmp)1721 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1722 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue, rtx cc_cmp,
1723 rtx rev_cc_cmp)
1724 {
1725 rtx target ATTRIBUTE_UNUSED;
1726 int unsignedp ATTRIBUTE_UNUSED;
1727
1728 /* If earliest == jump, try to build the cmove insn directly.
1729 This is helpful when combine has created some complex condition
1730 (like for alpha's cmovlbs) that we can't hope to regenerate
1731 through the normal interface. */
1732
1733 if (if_info->cond_earliest == if_info->jump)
1734 {
1735 rtx cond = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1736 rtx if_then_else = gen_rtx_IF_THEN_ELSE (GET_MODE (x),
1737 cond, vtrue, vfalse);
1738 rtx set = gen_rtx_SET (x, if_then_else);
1739
1740 start_sequence ();
1741 rtx_insn *insn = emit_insn (set);
1742
1743 if (recog_memoized (insn) >= 0)
1744 {
1745 rtx_insn *seq = get_insns ();
1746 end_sequence ();
1747 emit_insn (seq);
1748
1749 return x;
1750 }
1751
1752 end_sequence ();
1753 }
1754
1755 unsignedp = (code == LTU || code == GEU
1756 || code == LEU || code == GTU);
1757
1758 if (cc_cmp != NULL_RTX && rev_cc_cmp != NULL_RTX)
1759 target = emit_conditional_move (x, cc_cmp, rev_cc_cmp,
1760 vtrue, vfalse, GET_MODE (x));
1761 else
1762 {
1763 /* Don't even try if the comparison operands are weird
1764 except that the target supports cbranchcc4. */
1765 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1766 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1767 {
1768 if (!have_cbranchcc4
1769 || GET_MODE_CLASS (GET_MODE (cmp_a)) != MODE_CC
1770 || cmp_b != const0_rtx)
1771 return NULL_RTX;
1772 }
1773
1774 target = emit_conditional_move (x, { code, cmp_a, cmp_b, VOIDmode },
1775 vtrue, vfalse, GET_MODE (x),
1776 unsignedp);
1777 }
1778
1779 if (target)
1780 return target;
1781
1782 /* We might be faced with a situation like:
1783
1784 x = (reg:M TARGET)
1785 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1786 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1787
1788 We can't do a conditional move in mode M, but it's possible that we
1789 could do a conditional move in mode N instead and take a subreg of
1790 the result.
1791
1792 If we can't create new pseudos, though, don't bother. */
1793 if (reload_completed)
1794 return NULL_RTX;
1795
1796 if (GET_CODE (vtrue) == SUBREG && GET_CODE (vfalse) == SUBREG)
1797 {
1798 rtx reg_vtrue = SUBREG_REG (vtrue);
1799 rtx reg_vfalse = SUBREG_REG (vfalse);
1800 poly_uint64 byte_vtrue = SUBREG_BYTE (vtrue);
1801 poly_uint64 byte_vfalse = SUBREG_BYTE (vfalse);
1802 rtx promoted_target;
1803
1804 if (GET_MODE (reg_vtrue) != GET_MODE (reg_vfalse)
1805 || maybe_ne (byte_vtrue, byte_vfalse)
1806 || (SUBREG_PROMOTED_VAR_P (vtrue)
1807 != SUBREG_PROMOTED_VAR_P (vfalse))
1808 || (SUBREG_PROMOTED_GET (vtrue)
1809 != SUBREG_PROMOTED_GET (vfalse)))
1810 return NULL_RTX;
1811
1812 promoted_target = gen_reg_rtx (GET_MODE (reg_vtrue));
1813
1814 target = emit_conditional_move (promoted_target,
1815 { code, cmp_a, cmp_b, VOIDmode },
1816 reg_vtrue, reg_vfalse,
1817 GET_MODE (reg_vtrue), unsignedp);
1818 /* Nope, couldn't do it in that mode either. */
1819 if (!target)
1820 return NULL_RTX;
1821
1822 target = gen_rtx_SUBREG (GET_MODE (vtrue), promoted_target, byte_vtrue);
1823 SUBREG_PROMOTED_VAR_P (target) = SUBREG_PROMOTED_VAR_P (vtrue);
1824 SUBREG_PROMOTED_SET (target, SUBREG_PROMOTED_GET (vtrue));
1825 emit_move_insn (x, target);
1826 return x;
1827 }
1828 else
1829 return NULL_RTX;
1830 }
1831
1832 /* Try only simple constants and registers here. More complex cases
1833 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1834 has had a go at it. */
1835
1836 static int
noce_try_cmove(struct noce_if_info * if_info)1837 noce_try_cmove (struct noce_if_info *if_info)
1838 {
1839 enum rtx_code code;
1840 rtx target;
1841 rtx_insn *seq;
1842
1843 if (!noce_simple_bbs (if_info))
1844 return FALSE;
1845
1846 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1847 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1848 {
1849 start_sequence ();
1850
1851 code = GET_CODE (if_info->cond);
1852 target = noce_emit_cmove (if_info, if_info->x, code,
1853 XEXP (if_info->cond, 0),
1854 XEXP (if_info->cond, 1),
1855 if_info->a, if_info->b);
1856
1857 if (target)
1858 {
1859 if (target != if_info->x)
1860 noce_emit_move_insn (if_info->x, target);
1861
1862 seq = end_ifcvt_sequence (if_info);
1863 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1864 return FALSE;
1865
1866 emit_insn_before_setloc (seq, if_info->jump,
1867 INSN_LOCATION (if_info->insn_a));
1868 if_info->transform_name = "noce_try_cmove";
1869
1870 return TRUE;
1871 }
1872 /* If both a and b are constants try a last-ditch transformation:
1873 if (test) x = a; else x = b;
1874 => x = (-(test != 0) & (b - a)) + a;
1875 Try this only if the target-specific expansion above has failed.
1876 The target-specific expander may want to generate sequences that
1877 we don't know about, so give them a chance before trying this
1878 approach. */
1879 else if (!targetm.have_conditional_execution ()
1880 && CONST_INT_P (if_info->a) && CONST_INT_P (if_info->b))
1881 {
1882 machine_mode mode = GET_MODE (if_info->x);
1883 HOST_WIDE_INT ifalse = INTVAL (if_info->a);
1884 HOST_WIDE_INT itrue = INTVAL (if_info->b);
1885 rtx target = noce_emit_store_flag (if_info, if_info->x, false, -1);
1886 if (!target)
1887 {
1888 end_sequence ();
1889 return FALSE;
1890 }
1891
1892 HOST_WIDE_INT diff = (unsigned HOST_WIDE_INT) itrue - ifalse;
1893 /* Make sure we can represent the difference
1894 between the two values. */
1895 if ((diff > 0)
1896 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
1897 {
1898 end_sequence ();
1899 return FALSE;
1900 }
1901
1902 diff = trunc_int_for_mode (diff, mode);
1903 target = expand_simple_binop (mode, AND,
1904 target, gen_int_mode (diff, mode),
1905 if_info->x, 0, OPTAB_WIDEN);
1906 if (target)
1907 target = expand_simple_binop (mode, PLUS,
1908 target, gen_int_mode (ifalse, mode),
1909 if_info->x, 0, OPTAB_WIDEN);
1910 if (target)
1911 {
1912 if (target != if_info->x)
1913 noce_emit_move_insn (if_info->x, target);
1914
1915 seq = end_ifcvt_sequence (if_info);
1916 if (!seq || !targetm.noce_conversion_profitable_p (seq, if_info))
1917 return FALSE;
1918
1919 emit_insn_before_setloc (seq, if_info->jump,
1920 INSN_LOCATION (if_info->insn_a));
1921 if_info->transform_name = "noce_try_cmove";
1922 return TRUE;
1923 }
1924 else
1925 {
1926 end_sequence ();
1927 return FALSE;
1928 }
1929 }
1930 else
1931 end_sequence ();
1932 }
1933
1934 return FALSE;
1935 }
1936
1937 /* Return true if X contains a conditional code mode rtx. */
1938
1939 static bool
contains_ccmode_rtx_p(rtx x)1940 contains_ccmode_rtx_p (rtx x)
1941 {
1942 subrtx_iterator::array_type array;
1943 FOR_EACH_SUBRTX (iter, array, x, ALL)
1944 if (GET_MODE_CLASS (GET_MODE (*iter)) == MODE_CC)
1945 return true;
1946
1947 return false;
1948 }
1949
1950 /* Helper for bb_valid_for_noce_process_p. Validate that
1951 the rtx insn INSN is a single set that does not set
1952 the conditional register CC and is in general valid for
1953 if-conversion. */
1954
1955 static bool
insn_valid_noce_process_p(rtx_insn * insn,rtx cc)1956 insn_valid_noce_process_p (rtx_insn *insn, rtx cc)
1957 {
1958 if (!insn
1959 || !NONJUMP_INSN_P (insn)
1960 || (cc && set_of (cc, insn)))
1961 return false;
1962
1963 rtx sset = single_set (insn);
1964
1965 /* Currently support only simple single sets in test_bb. */
1966 if (!sset
1967 || !noce_operand_ok (SET_DEST (sset))
1968 || contains_ccmode_rtx_p (SET_DEST (sset))
1969 || !noce_operand_ok (SET_SRC (sset)))
1970 return false;
1971
1972 return true;
1973 }
1974
1975
1976 /* Return true iff the registers that the insns in BB_A set do not get
1977 used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
1978 renamed later by the caller and so conflicts on it should be ignored
1979 in this function. */
1980
1981 static bool
bbs_ok_for_cmove_arith(basic_block bb_a,basic_block bb_b,rtx to_rename)1982 bbs_ok_for_cmove_arith (basic_block bb_a, basic_block bb_b, rtx to_rename)
1983 {
1984 rtx_insn *a_insn;
1985 bitmap bba_sets = BITMAP_ALLOC (®_obstack);
1986
1987 df_ref def;
1988 df_ref use;
1989
1990 FOR_BB_INSNS (bb_a, a_insn)
1991 {
1992 if (!active_insn_p (a_insn))
1993 continue;
1994
1995 rtx sset_a = single_set (a_insn);
1996
1997 if (!sset_a)
1998 {
1999 BITMAP_FREE (bba_sets);
2000 return false;
2001 }
2002 /* Record all registers that BB_A sets. */
2003 FOR_EACH_INSN_DEF (def, a_insn)
2004 if (!(to_rename && DF_REF_REG (def) == to_rename))
2005 bitmap_set_bit (bba_sets, DF_REF_REGNO (def));
2006 }
2007
2008 rtx_insn *b_insn;
2009
2010 FOR_BB_INSNS (bb_b, b_insn)
2011 {
2012 if (!active_insn_p (b_insn))
2013 continue;
2014
2015 rtx sset_b = single_set (b_insn);
2016
2017 if (!sset_b)
2018 {
2019 BITMAP_FREE (bba_sets);
2020 return false;
2021 }
2022
2023 /* Make sure this is a REG and not some instance
2024 of ZERO_EXTRACT or SUBREG or other dangerous stuff.
2025 If we have a memory destination then we have a pair of simple
2026 basic blocks performing an operation of the form [addr] = c ? a : b.
2027 bb_valid_for_noce_process_p will have ensured that these are
2028 the only stores present. In that case [addr] should be the location
2029 to be renamed. Assert that the callers set this up properly. */
2030 if (MEM_P (SET_DEST (sset_b)))
2031 gcc_assert (rtx_equal_p (SET_DEST (sset_b), to_rename));
2032 else if (!REG_P (SET_DEST (sset_b)))
2033 {
2034 BITMAP_FREE (bba_sets);
2035 return false;
2036 }
2037
2038 /* If the insn uses a reg set in BB_A return false. */
2039 FOR_EACH_INSN_USE (use, b_insn)
2040 {
2041 if (bitmap_bit_p (bba_sets, DF_REF_REGNO (use)))
2042 {
2043 BITMAP_FREE (bba_sets);
2044 return false;
2045 }
2046 }
2047
2048 }
2049
2050 BITMAP_FREE (bba_sets);
2051 return true;
2052 }
2053
2054 /* Emit copies of all the active instructions in BB except the last.
2055 This is a helper for noce_try_cmove_arith. */
2056
2057 static void
noce_emit_all_but_last(basic_block bb)2058 noce_emit_all_but_last (basic_block bb)
2059 {
2060 rtx_insn *last = last_active_insn (bb, FALSE);
2061 rtx_insn *insn;
2062 FOR_BB_INSNS (bb, insn)
2063 {
2064 if (insn != last && active_insn_p (insn))
2065 {
2066 rtx_insn *to_emit = as_a <rtx_insn *> (copy_rtx (insn));
2067
2068 emit_insn (PATTERN (to_emit));
2069 }
2070 }
2071 }
2072
2073 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
2074 the resulting insn or NULL if it's not a valid insn. */
2075
2076 static rtx_insn *
noce_emit_insn(rtx to_emit)2077 noce_emit_insn (rtx to_emit)
2078 {
2079 gcc_assert (to_emit);
2080 rtx_insn *insn = emit_insn (to_emit);
2081
2082 if (recog_memoized (insn) < 0)
2083 return NULL;
2084
2085 return insn;
2086 }
2087
2088 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
2089 and including the penultimate one in BB if it is not simple
2090 (as indicated by SIMPLE). Then emit LAST_INSN as the last
2091 insn in the block. The reason for that is that LAST_INSN may
2092 have been modified by the preparation in noce_try_cmove_arith. */
2093
2094 static bool
noce_emit_bb(rtx last_insn,basic_block bb,bool simple)2095 noce_emit_bb (rtx last_insn, basic_block bb, bool simple)
2096 {
2097 if (bb && !simple)
2098 noce_emit_all_but_last (bb);
2099
2100 if (last_insn && !noce_emit_insn (last_insn))
2101 return false;
2102
2103 return true;
2104 }
2105
2106 /* Try more complex cases involving conditional_move. */
2107
2108 static int
noce_try_cmove_arith(struct noce_if_info * if_info)2109 noce_try_cmove_arith (struct noce_if_info *if_info)
2110 {
2111 rtx a = if_info->a;
2112 rtx b = if_info->b;
2113 rtx x = if_info->x;
2114 rtx orig_a, orig_b;
2115 rtx_insn *insn_a, *insn_b;
2116 bool a_simple = if_info->then_simple;
2117 bool b_simple = if_info->else_simple;
2118 basic_block then_bb = if_info->then_bb;
2119 basic_block else_bb = if_info->else_bb;
2120 rtx target;
2121 int is_mem = 0;
2122 enum rtx_code code;
2123 rtx cond = if_info->cond;
2124 rtx_insn *ifcvt_seq;
2125
2126 /* A conditional move from two memory sources is equivalent to a
2127 conditional on their addresses followed by a load. Don't do this
2128 early because it'll screw alias analysis. Note that we've
2129 already checked for no side effects. */
2130 if (cse_not_expected
2131 && MEM_P (a) && MEM_P (b)
2132 && MEM_ADDR_SPACE (a) == MEM_ADDR_SPACE (b))
2133 {
2134 machine_mode address_mode = get_address_mode (a);
2135
2136 a = XEXP (a, 0);
2137 b = XEXP (b, 0);
2138 x = gen_reg_rtx (address_mode);
2139 is_mem = 1;
2140 }
2141
2142 /* ??? We could handle this if we knew that a load from A or B could
2143 not trap or fault. This is also true if we've already loaded
2144 from the address along the path from ENTRY. */
2145 else if (may_trap_or_fault_p (a) || may_trap_or_fault_p (b))
2146 return FALSE;
2147
2148 /* if (test) x = a + b; else x = c - d;
2149 => y = a + b;
2150 x = c - d;
2151 if (test)
2152 x = y;
2153 */
2154
2155 code = GET_CODE (cond);
2156 insn_a = if_info->insn_a;
2157 insn_b = if_info->insn_b;
2158
2159 machine_mode x_mode = GET_MODE (x);
2160
2161 if (!can_conditionally_move_p (x_mode))
2162 return FALSE;
2163
2164 /* Possibly rearrange operands to make things come out more natural. */
2165 if (noce_reversed_cond_code (if_info) != UNKNOWN)
2166 {
2167 int reversep = 0;
2168 if (rtx_equal_p (b, x))
2169 reversep = 1;
2170 else if (general_operand (b, GET_MODE (b)))
2171 reversep = 1;
2172
2173 if (reversep)
2174 {
2175 if (if_info->rev_cond)
2176 {
2177 cond = if_info->rev_cond;
2178 code = GET_CODE (cond);
2179 }
2180 else
2181 code = reversed_comparison_code (cond, if_info->jump);
2182 std::swap (a, b);
2183 std::swap (insn_a, insn_b);
2184 std::swap (a_simple, b_simple);
2185 std::swap (then_bb, else_bb);
2186 }
2187 }
2188
2189 if (then_bb && else_bb
2190 && (!bbs_ok_for_cmove_arith (then_bb, else_bb, if_info->orig_x)
2191 || !bbs_ok_for_cmove_arith (else_bb, then_bb, if_info->orig_x)))
2192 return FALSE;
2193
2194 start_sequence ();
2195
2196 /* If one of the blocks is empty then the corresponding B or A value
2197 came from the test block. The non-empty complex block that we will
2198 emit might clobber the register used by B or A, so move it to a pseudo
2199 first. */
2200
2201 rtx tmp_a = NULL_RTX;
2202 rtx tmp_b = NULL_RTX;
2203
2204 if (b_simple || !else_bb)
2205 tmp_b = gen_reg_rtx (x_mode);
2206
2207 if (a_simple || !then_bb)
2208 tmp_a = gen_reg_rtx (x_mode);
2209
2210 orig_a = a;
2211 orig_b = b;
2212
2213 rtx emit_a = NULL_RTX;
2214 rtx emit_b = NULL_RTX;
2215 rtx_insn *tmp_insn = NULL;
2216 bool modified_in_a = false;
2217 bool modified_in_b = false;
2218 /* If either operand is complex, load it into a register first.
2219 The best way to do this is to copy the original insn. In this
2220 way we preserve any clobbers etc that the insn may have had.
2221 This is of course not possible in the IS_MEM case. */
2222
2223 if (! general_operand (a, GET_MODE (a)) || tmp_a)
2224 {
2225
2226 if (is_mem)
2227 {
2228 rtx reg = gen_reg_rtx (GET_MODE (a));
2229 emit_a = gen_rtx_SET (reg, a);
2230 }
2231 else
2232 {
2233 if (insn_a)
2234 {
2235 a = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2236
2237 rtx_insn *copy_of_a = as_a <rtx_insn *> (copy_rtx (insn_a));
2238 rtx set = single_set (copy_of_a);
2239 SET_DEST (set) = a;
2240
2241 emit_a = PATTERN (copy_of_a);
2242 }
2243 else
2244 {
2245 rtx tmp_reg = tmp_a ? tmp_a : gen_reg_rtx (GET_MODE (a));
2246 emit_a = gen_rtx_SET (tmp_reg, a);
2247 a = tmp_reg;
2248 }
2249 }
2250 }
2251
2252 if (! general_operand (b, GET_MODE (b)) || tmp_b)
2253 {
2254 if (is_mem)
2255 {
2256 rtx reg = gen_reg_rtx (GET_MODE (b));
2257 emit_b = gen_rtx_SET (reg, b);
2258 }
2259 else
2260 {
2261 if (insn_b)
2262 {
2263 b = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2264 rtx_insn *copy_of_b = as_a <rtx_insn *> (copy_rtx (insn_b));
2265 rtx set = single_set (copy_of_b);
2266
2267 SET_DEST (set) = b;
2268 emit_b = PATTERN (copy_of_b);
2269 }
2270 else
2271 {
2272 rtx tmp_reg = tmp_b ? tmp_b : gen_reg_rtx (GET_MODE (b));
2273 emit_b = gen_rtx_SET (tmp_reg, b);
2274 b = tmp_reg;
2275 }
2276 }
2277 }
2278
2279 modified_in_a = emit_a != NULL_RTX && modified_in_p (orig_b, emit_a);
2280 if (tmp_b && then_bb)
2281 {
2282 FOR_BB_INSNS (then_bb, tmp_insn)
2283 /* Don't check inside insn_a. We will have changed it to emit_a
2284 with a destination that doesn't conflict. */
2285 if (!(insn_a && tmp_insn == insn_a)
2286 && modified_in_p (orig_b, tmp_insn))
2287 {
2288 modified_in_a = true;
2289 break;
2290 }
2291
2292 }
2293
2294 modified_in_b = emit_b != NULL_RTX && modified_in_p (orig_a, emit_b);
2295 if (tmp_a && else_bb)
2296 {
2297 FOR_BB_INSNS (else_bb, tmp_insn)
2298 /* Don't check inside insn_b. We will have changed it to emit_b
2299 with a destination that doesn't conflict. */
2300 if (!(insn_b && tmp_insn == insn_b)
2301 && modified_in_p (orig_a, tmp_insn))
2302 {
2303 modified_in_b = true;
2304 break;
2305 }
2306 }
2307
2308 /* If insn to set up A clobbers any registers B depends on, try to
2309 swap insn that sets up A with the one that sets up B. If even
2310 that doesn't help, punt. */
2311 if (modified_in_a && !modified_in_b)
2312 {
2313 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2314 goto end_seq_and_fail;
2315
2316 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2317 goto end_seq_and_fail;
2318 }
2319 else if (!modified_in_a)
2320 {
2321 if (!noce_emit_bb (emit_a, then_bb, a_simple))
2322 goto end_seq_and_fail;
2323
2324 if (!noce_emit_bb (emit_b, else_bb, b_simple))
2325 goto end_seq_and_fail;
2326 }
2327 else
2328 goto end_seq_and_fail;
2329
2330 target = noce_emit_cmove (if_info, x, code, XEXP (cond, 0), XEXP (cond, 1),
2331 a, b);
2332
2333 if (! target)
2334 goto end_seq_and_fail;
2335
2336 /* If we're handling a memory for above, emit the load now. */
2337 if (is_mem)
2338 {
2339 rtx mem = gen_rtx_MEM (GET_MODE (if_info->x), target);
2340
2341 /* Copy over flags as appropriate. */
2342 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
2343 MEM_VOLATILE_P (mem) = 1;
2344 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
2345 set_mem_alias_set (mem, MEM_ALIAS_SET (if_info->a));
2346 set_mem_align (mem,
2347 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
2348
2349 gcc_assert (MEM_ADDR_SPACE (if_info->a) == MEM_ADDR_SPACE (if_info->b));
2350 set_mem_addr_space (mem, MEM_ADDR_SPACE (if_info->a));
2351
2352 noce_emit_move_insn (if_info->x, mem);
2353 }
2354 else if (target != x)
2355 noce_emit_move_insn (x, target);
2356
2357 ifcvt_seq = end_ifcvt_sequence (if_info);
2358 if (!ifcvt_seq || !targetm.noce_conversion_profitable_p (ifcvt_seq, if_info))
2359 return FALSE;
2360
2361 emit_insn_before_setloc (ifcvt_seq, if_info->jump,
2362 INSN_LOCATION (if_info->insn_a));
2363 if_info->transform_name = "noce_try_cmove_arith";
2364 return TRUE;
2365
2366 end_seq_and_fail:
2367 end_sequence ();
2368 return FALSE;
2369 }
2370
2371 /* For most cases, the simplified condition we found is the best
2372 choice, but this is not the case for the min/max/abs transforms.
2373 For these we wish to know that it is A or B in the condition. */
2374
2375 static rtx
noce_get_alt_condition(struct noce_if_info * if_info,rtx target,rtx_insn ** earliest)2376 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
2377 rtx_insn **earliest)
2378 {
2379 rtx cond, set;
2380 rtx_insn *insn;
2381 int reverse;
2382
2383 /* If target is already mentioned in the known condition, return it. */
2384 if (reg_mentioned_p (target, if_info->cond))
2385 {
2386 *earliest = if_info->cond_earliest;
2387 return if_info->cond;
2388 }
2389
2390 set = pc_set (if_info->jump);
2391 cond = XEXP (SET_SRC (set), 0);
2392 reverse
2393 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2394 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (if_info->jump);
2395 if (if_info->then_else_reversed)
2396 reverse = !reverse;
2397
2398 /* If we're looking for a constant, try to make the conditional
2399 have that constant in it. There are two reasons why it may
2400 not have the constant we want:
2401
2402 1. GCC may have needed to put the constant in a register, because
2403 the target can't compare directly against that constant. For
2404 this case, we look for a SET immediately before the comparison
2405 that puts a constant in that register.
2406
2407 2. GCC may have canonicalized the conditional, for example
2408 replacing "if x < 4" with "if x <= 3". We can undo that (or
2409 make equivalent types of changes) to get the constants we need
2410 if they're off by one in the right direction. */
2411
2412 if (CONST_INT_P (target))
2413 {
2414 enum rtx_code code = GET_CODE (if_info->cond);
2415 rtx op_a = XEXP (if_info->cond, 0);
2416 rtx op_b = XEXP (if_info->cond, 1);
2417 rtx_insn *prev_insn;
2418
2419 /* First, look to see if we put a constant in a register. */
2420 prev_insn = prev_nonnote_nondebug_insn (if_info->cond_earliest);
2421 if (prev_insn
2422 && BLOCK_FOR_INSN (prev_insn)
2423 == BLOCK_FOR_INSN (if_info->cond_earliest)
2424 && INSN_P (prev_insn)
2425 && GET_CODE (PATTERN (prev_insn)) == SET)
2426 {
2427 rtx src = find_reg_equal_equiv_note (prev_insn);
2428 if (!src)
2429 src = SET_SRC (PATTERN (prev_insn));
2430 if (CONST_INT_P (src))
2431 {
2432 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
2433 op_a = src;
2434 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
2435 op_b = src;
2436
2437 if (CONST_INT_P (op_a))
2438 {
2439 std::swap (op_a, op_b);
2440 code = swap_condition (code);
2441 }
2442 }
2443 }
2444
2445 /* Now, look to see if we can get the right constant by
2446 adjusting the conditional. */
2447 if (CONST_INT_P (op_b))
2448 {
2449 HOST_WIDE_INT desired_val = INTVAL (target);
2450 HOST_WIDE_INT actual_val = INTVAL (op_b);
2451
2452 switch (code)
2453 {
2454 case LT:
2455 if (desired_val != HOST_WIDE_INT_MAX
2456 && actual_val == desired_val + 1)
2457 {
2458 code = LE;
2459 op_b = GEN_INT (desired_val);
2460 }
2461 break;
2462 case LE:
2463 if (desired_val != HOST_WIDE_INT_MIN
2464 && actual_val == desired_val - 1)
2465 {
2466 code = LT;
2467 op_b = GEN_INT (desired_val);
2468 }
2469 break;
2470 case GT:
2471 if (desired_val != HOST_WIDE_INT_MIN
2472 && actual_val == desired_val - 1)
2473 {
2474 code = GE;
2475 op_b = GEN_INT (desired_val);
2476 }
2477 break;
2478 case GE:
2479 if (desired_val != HOST_WIDE_INT_MAX
2480 && actual_val == desired_val + 1)
2481 {
2482 code = GT;
2483 op_b = GEN_INT (desired_val);
2484 }
2485 break;
2486 default:
2487 break;
2488 }
2489 }
2490
2491 /* If we made any changes, generate a new conditional that is
2492 equivalent to what we started with, but has the right
2493 constants in it. */
2494 if (code != GET_CODE (if_info->cond)
2495 || op_a != XEXP (if_info->cond, 0)
2496 || op_b != XEXP (if_info->cond, 1))
2497 {
2498 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
2499 *earliest = if_info->cond_earliest;
2500 return cond;
2501 }
2502 }
2503
2504 cond = canonicalize_condition (if_info->jump, cond, reverse,
2505 earliest, target, have_cbranchcc4, true);
2506 if (! cond || ! reg_mentioned_p (target, cond))
2507 return NULL;
2508
2509 /* We almost certainly searched back to a different place.
2510 Need to re-verify correct lifetimes. */
2511
2512 /* X may not be mentioned in the range (cond_earliest, jump]. */
2513 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
2514 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
2515 return NULL;
2516
2517 /* A and B may not be modified in the range [cond_earliest, jump). */
2518 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
2519 if (INSN_P (insn)
2520 && (modified_in_p (if_info->a, insn)
2521 || modified_in_p (if_info->b, insn)))
2522 return NULL;
2523
2524 return cond;
2525 }
2526
2527 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2528
2529 static int
noce_try_minmax(struct noce_if_info * if_info)2530 noce_try_minmax (struct noce_if_info *if_info)
2531 {
2532 rtx cond, target;
2533 rtx_insn *earliest, *seq;
2534 enum rtx_code code, op;
2535 int unsignedp;
2536
2537 if (!noce_simple_bbs (if_info))
2538 return FALSE;
2539
2540 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2541 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2542 to get the target to tell us... */
2543 if (HONOR_SIGNED_ZEROS (if_info->x)
2544 || HONOR_NANS (if_info->x))
2545 return FALSE;
2546
2547 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
2548 if (!cond)
2549 return FALSE;
2550
2551 /* Verify the condition is of the form we expect, and canonicalize
2552 the comparison code. */
2553 code = GET_CODE (cond);
2554 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
2555 {
2556 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
2557 return FALSE;
2558 }
2559 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
2560 {
2561 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
2562 return FALSE;
2563 code = swap_condition (code);
2564 }
2565 else
2566 return FALSE;
2567
2568 /* Determine what sort of operation this is. Note that the code is for
2569 a taken branch, so the code->operation mapping appears backwards. */
2570 switch (code)
2571 {
2572 case LT:
2573 case LE:
2574 case UNLT:
2575 case UNLE:
2576 op = SMAX;
2577 unsignedp = 0;
2578 break;
2579 case GT:
2580 case GE:
2581 case UNGT:
2582 case UNGE:
2583 op = SMIN;
2584 unsignedp = 0;
2585 break;
2586 case LTU:
2587 case LEU:
2588 op = UMAX;
2589 unsignedp = 1;
2590 break;
2591 case GTU:
2592 case GEU:
2593 op = UMIN;
2594 unsignedp = 1;
2595 break;
2596 default:
2597 return FALSE;
2598 }
2599
2600 start_sequence ();
2601
2602 target = expand_simple_binop (GET_MODE (if_info->x), op,
2603 if_info->a, if_info->b,
2604 if_info->x, unsignedp, OPTAB_WIDEN);
2605 if (! target)
2606 {
2607 end_sequence ();
2608 return FALSE;
2609 }
2610 if (target != if_info->x)
2611 noce_emit_move_insn (if_info->x, target);
2612
2613 seq = end_ifcvt_sequence (if_info);
2614 if (!seq)
2615 return FALSE;
2616
2617 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2618 if_info->cond = cond;
2619 if_info->cond_earliest = earliest;
2620 if_info->rev_cond = NULL_RTX;
2621 if_info->transform_name = "noce_try_minmax";
2622
2623 return TRUE;
2624 }
2625
2626 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2627 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2628 etc. */
2629
2630 static int
noce_try_abs(struct noce_if_info * if_info)2631 noce_try_abs (struct noce_if_info *if_info)
2632 {
2633 rtx cond, target, a, b, c;
2634 rtx_insn *earliest, *seq;
2635 int negate;
2636 bool one_cmpl = false;
2637
2638 if (!noce_simple_bbs (if_info))
2639 return FALSE;
2640
2641 /* Reject modes with signed zeros. */
2642 if (HONOR_SIGNED_ZEROS (if_info->x))
2643 return FALSE;
2644
2645 /* Recognize A and B as constituting an ABS or NABS. The canonical
2646 form is a branch around the negation, taken when the object is the
2647 first operand of a comparison against 0 that evaluates to true. */
2648 a = if_info->a;
2649 b = if_info->b;
2650 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
2651 negate = 0;
2652 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
2653 {
2654 std::swap (a, b);
2655 negate = 1;
2656 }
2657 else if (GET_CODE (a) == NOT && rtx_equal_p (XEXP (a, 0), b))
2658 {
2659 negate = 0;
2660 one_cmpl = true;
2661 }
2662 else if (GET_CODE (b) == NOT && rtx_equal_p (XEXP (b, 0), a))
2663 {
2664 std::swap (a, b);
2665 negate = 1;
2666 one_cmpl = true;
2667 }
2668 else
2669 return FALSE;
2670
2671 cond = noce_get_alt_condition (if_info, b, &earliest);
2672 if (!cond)
2673 return FALSE;
2674
2675 /* Verify the condition is of the form we expect. */
2676 if (rtx_equal_p (XEXP (cond, 0), b))
2677 c = XEXP (cond, 1);
2678 else if (rtx_equal_p (XEXP (cond, 1), b))
2679 {
2680 c = XEXP (cond, 0);
2681 negate = !negate;
2682 }
2683 else
2684 return FALSE;
2685
2686 /* Verify that C is zero. Search one step backward for a
2687 REG_EQUAL note or a simple source if necessary. */
2688 if (REG_P (c))
2689 {
2690 rtx set;
2691 rtx_insn *insn = prev_nonnote_nondebug_insn (earliest);
2692 if (insn
2693 && BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (earliest)
2694 && (set = single_set (insn))
2695 && rtx_equal_p (SET_DEST (set), c))
2696 {
2697 rtx note = find_reg_equal_equiv_note (insn);
2698 if (note)
2699 c = XEXP (note, 0);
2700 else
2701 c = SET_SRC (set);
2702 }
2703 else
2704 return FALSE;
2705 }
2706 if (MEM_P (c)
2707 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
2708 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
2709 c = get_pool_constant (XEXP (c, 0));
2710
2711 /* Work around funny ideas get_condition has wrt canonicalization.
2712 Note that these rtx constants are known to be CONST_INT, and
2713 therefore imply integer comparisons.
2714 The one_cmpl case is more complicated, as we want to handle
2715 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2716 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2717 but not other cases (x > -1 is equivalent of x >= 0). */
2718 if (c == constm1_rtx && GET_CODE (cond) == GT)
2719 ;
2720 else if (c == const1_rtx && GET_CODE (cond) == LT)
2721 {
2722 if (one_cmpl)
2723 return FALSE;
2724 }
2725 else if (c == CONST0_RTX (GET_MODE (b)))
2726 {
2727 if (one_cmpl
2728 && GET_CODE (cond) != GE
2729 && GET_CODE (cond) != LT)
2730 return FALSE;
2731 }
2732 else
2733 return FALSE;
2734
2735 /* Determine what sort of operation this is. */
2736 switch (GET_CODE (cond))
2737 {
2738 case LT:
2739 case LE:
2740 case UNLT:
2741 case UNLE:
2742 negate = !negate;
2743 break;
2744 case GT:
2745 case GE:
2746 case UNGT:
2747 case UNGE:
2748 break;
2749 default:
2750 return FALSE;
2751 }
2752
2753 start_sequence ();
2754 if (one_cmpl)
2755 target = expand_one_cmpl_abs_nojump (GET_MODE (if_info->x), b,
2756 if_info->x);
2757 else
2758 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
2759
2760 /* ??? It's a quandary whether cmove would be better here, especially
2761 for integers. Perhaps combine will clean things up. */
2762 if (target && negate)
2763 {
2764 if (one_cmpl)
2765 target = expand_simple_unop (GET_MODE (target), NOT, target,
2766 if_info->x, 0);
2767 else
2768 target = expand_simple_unop (GET_MODE (target), NEG, target,
2769 if_info->x, 0);
2770 }
2771
2772 if (! target)
2773 {
2774 end_sequence ();
2775 return FALSE;
2776 }
2777
2778 if (target != if_info->x)
2779 noce_emit_move_insn (if_info->x, target);
2780
2781 seq = end_ifcvt_sequence (if_info);
2782 if (!seq)
2783 return FALSE;
2784
2785 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2786 if_info->cond = cond;
2787 if_info->cond_earliest = earliest;
2788 if_info->rev_cond = NULL_RTX;
2789 if_info->transform_name = "noce_try_abs";
2790
2791 return TRUE;
2792 }
2793
2794 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2795
2796 static int
noce_try_sign_mask(struct noce_if_info * if_info)2797 noce_try_sign_mask (struct noce_if_info *if_info)
2798 {
2799 rtx cond, t, m, c;
2800 rtx_insn *seq;
2801 machine_mode mode;
2802 enum rtx_code code;
2803 bool t_unconditional;
2804
2805 if (!noce_simple_bbs (if_info))
2806 return FALSE;
2807
2808 cond = if_info->cond;
2809 code = GET_CODE (cond);
2810 m = XEXP (cond, 0);
2811 c = XEXP (cond, 1);
2812
2813 t = NULL_RTX;
2814 if (if_info->a == const0_rtx)
2815 {
2816 if ((code == LT && c == const0_rtx)
2817 || (code == LE && c == constm1_rtx))
2818 t = if_info->b;
2819 }
2820 else if (if_info->b == const0_rtx)
2821 {
2822 if ((code == GE && c == const0_rtx)
2823 || (code == GT && c == constm1_rtx))
2824 t = if_info->a;
2825 }
2826
2827 if (! t || side_effects_p (t))
2828 return FALSE;
2829
2830 /* We currently don't handle different modes. */
2831 mode = GET_MODE (t);
2832 if (GET_MODE (m) != mode)
2833 return FALSE;
2834
2835 /* This is only profitable if T is unconditionally executed/evaluated in the
2836 original insn sequence or T is cheap and can't trap or fault. The former
2837 happens if B is the non-zero (T) value and if INSN_B was taken from
2838 TEST_BB, or there was no INSN_B which can happen for e.g. conditional
2839 stores to memory. For the cost computation use the block TEST_BB where
2840 the evaluation will end up after the transformation. */
2841 t_unconditional
2842 = (t == if_info->b
2843 && (if_info->insn_b == NULL_RTX
2844 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
2845 if (!(t_unconditional
2846 || ((set_src_cost (t, mode, if_info->speed_p)
2847 < COSTS_N_INSNS (2))
2848 && !may_trap_or_fault_p (t))))
2849 return FALSE;
2850
2851 if (!noce_can_force_operand (t))
2852 return FALSE;
2853
2854 start_sequence ();
2855 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2856 "(signed) m >> 31" directly. This benefits targets with specialized
2857 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2858 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
2859 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
2860 : NULL_RTX;
2861
2862 if (!t)
2863 {
2864 end_sequence ();
2865 return FALSE;
2866 }
2867
2868 noce_emit_move_insn (if_info->x, t);
2869
2870 seq = end_ifcvt_sequence (if_info);
2871 if (!seq)
2872 return FALSE;
2873
2874 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATION (if_info->insn_a));
2875 if_info->transform_name = "noce_try_sign_mask";
2876
2877 return TRUE;
2878 }
2879
2880
2881 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2882 transformations. */
2883
2884 static int
noce_try_bitop(struct noce_if_info * if_info)2885 noce_try_bitop (struct noce_if_info *if_info)
2886 {
2887 rtx cond, x, a, result;
2888 rtx_insn *seq;
2889 scalar_int_mode mode;
2890 enum rtx_code code;
2891 int bitnum;
2892
2893 x = if_info->x;
2894 cond = if_info->cond;
2895 code = GET_CODE (cond);
2896
2897 /* Check for an integer operation. */
2898 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
2899 return FALSE;
2900
2901 if (!noce_simple_bbs (if_info))
2902 return FALSE;
2903
2904 /* Check for no else condition. */
2905 if (! rtx_equal_p (x, if_info->b))
2906 return FALSE;
2907
2908 /* Check for a suitable condition. */
2909 if (code != NE && code != EQ)
2910 return FALSE;
2911 if (XEXP (cond, 1) != const0_rtx)
2912 return FALSE;
2913 cond = XEXP (cond, 0);
2914
2915 /* ??? We could also handle AND here. */
2916 if (GET_CODE (cond) == ZERO_EXTRACT)
2917 {
2918 if (XEXP (cond, 1) != const1_rtx
2919 || !CONST_INT_P (XEXP (cond, 2))
2920 || ! rtx_equal_p (x, XEXP (cond, 0)))
2921 return FALSE;
2922 bitnum = INTVAL (XEXP (cond, 2));
2923 if (BITS_BIG_ENDIAN)
2924 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
2925 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
2926 return FALSE;
2927 }
2928 else
2929 return FALSE;
2930
2931 a = if_info->a;
2932 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
2933 {
2934 /* Check for "if (X & C) x = x op C". */
2935 if (! rtx_equal_p (x, XEXP (a, 0))
2936 || !CONST_INT_P (XEXP (a, 1))
2937 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2938 != HOST_WIDE_INT_1U << bitnum)
2939 return FALSE;
2940
2941 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2942 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2943 if (GET_CODE (a) == IOR)
2944 result = (code == NE) ? a : NULL_RTX;
2945 else if (code == NE)
2946 {
2947 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2948 result = gen_int_mode (HOST_WIDE_INT_1 << bitnum, mode);
2949 result = simplify_gen_binary (IOR, mode, x, result);
2950 }
2951 else
2952 {
2953 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2954 result = gen_int_mode (~(HOST_WIDE_INT_1 << bitnum), mode);
2955 result = simplify_gen_binary (AND, mode, x, result);
2956 }
2957 }
2958 else if (GET_CODE (a) == AND)
2959 {
2960 /* Check for "if (X & C) x &= ~C". */
2961 if (! rtx_equal_p (x, XEXP (a, 0))
2962 || !CONST_INT_P (XEXP (a, 1))
2963 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2964 != (~(HOST_WIDE_INT_1 << bitnum) & GET_MODE_MASK (mode)))
2965 return FALSE;
2966
2967 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2968 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2969 result = (code == EQ) ? a : NULL_RTX;
2970 }
2971 else
2972 return FALSE;
2973
2974 if (result)
2975 {
2976 start_sequence ();
2977 noce_emit_move_insn (x, result);
2978 seq = end_ifcvt_sequence (if_info);
2979 if (!seq)
2980 return FALSE;
2981
2982 emit_insn_before_setloc (seq, if_info->jump,
2983 INSN_LOCATION (if_info->insn_a));
2984 }
2985 if_info->transform_name = "noce_try_bitop";
2986 return TRUE;
2987 }
2988
2989
2990 /* Similar to get_condition, only the resulting condition must be
2991 valid at JUMP, instead of at EARLIEST.
2992
2993 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2994 THEN block of the caller, and we have to reverse the condition. */
2995
2996 static rtx
noce_get_condition(rtx_insn * jump,rtx_insn ** earliest,bool then_else_reversed)2997 noce_get_condition (rtx_insn *jump, rtx_insn **earliest, bool then_else_reversed)
2998 {
2999 rtx cond, set, tmp;
3000 bool reverse;
3001
3002 if (! any_condjump_p (jump))
3003 return NULL_RTX;
3004
3005 set = pc_set (jump);
3006
3007 /* If this branches to JUMP_LABEL when the condition is false,
3008 reverse the condition. */
3009 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
3010 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump));
3011
3012 /* We may have to reverse because the caller's if block is not canonical,
3013 i.e. the THEN block isn't the fallthrough block for the TEST block
3014 (see find_if_header). */
3015 if (then_else_reversed)
3016 reverse = !reverse;
3017
3018 /* If the condition variable is a register and is MODE_INT, accept it. */
3019
3020 cond = XEXP (SET_SRC (set), 0);
3021 tmp = XEXP (cond, 0);
3022 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT
3023 && (GET_MODE (tmp) != BImode
3024 || !targetm.small_register_classes_for_mode_p (BImode)))
3025 {
3026 *earliest = jump;
3027
3028 if (reverse)
3029 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
3030 GET_MODE (cond), tmp, XEXP (cond, 1));
3031 return cond;
3032 }
3033
3034 /* Otherwise, fall back on canonicalize_condition to do the dirty
3035 work of manipulating MODE_CC values and COMPARE rtx codes. */
3036 tmp = canonicalize_condition (jump, cond, reverse, earliest,
3037 NULL_RTX, have_cbranchcc4, true);
3038
3039 /* We don't handle side-effects in the condition, like handling
3040 REG_INC notes and making sure no duplicate conditions are emitted. */
3041 if (tmp != NULL_RTX && side_effects_p (tmp))
3042 return NULL_RTX;
3043
3044 return tmp;
3045 }
3046
3047 /* Return true if OP is ok for if-then-else processing. */
3048
3049 static int
noce_operand_ok(const_rtx op)3050 noce_operand_ok (const_rtx op)
3051 {
3052 if (side_effects_p (op))
3053 return FALSE;
3054
3055 /* We special-case memories, so handle any of them with
3056 no address side effects. */
3057 if (MEM_P (op))
3058 return ! side_effects_p (XEXP (op, 0));
3059
3060 return ! may_trap_p (op);
3061 }
3062
3063 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
3064 The condition used in this if-conversion is in COND.
3065 In practice, check that TEST_BB ends with a single set
3066 x := a and all previous computations
3067 in TEST_BB don't produce any values that are live after TEST_BB.
3068 In other words, all the insns in TEST_BB are there only
3069 to compute a value for x. Add the rtx cost of the insns
3070 in TEST_BB to COST. Record whether TEST_BB is a single simple
3071 set instruction in SIMPLE_P. */
3072
3073 static bool
bb_valid_for_noce_process_p(basic_block test_bb,rtx cond,unsigned int * cost,bool * simple_p)3074 bb_valid_for_noce_process_p (basic_block test_bb, rtx cond,
3075 unsigned int *cost, bool *simple_p)
3076 {
3077 if (!test_bb)
3078 return false;
3079
3080 rtx_insn *last_insn = last_active_insn (test_bb, FALSE);
3081 rtx last_set = NULL_RTX;
3082
3083 rtx cc = cc_in_cond (cond);
3084
3085 if (!insn_valid_noce_process_p (last_insn, cc))
3086 return false;
3087
3088 /* Punt on blocks ending with asm goto or jumps with other side-effects,
3089 last_active_insn ignores JUMP_INSNs. */
3090 if (JUMP_P (BB_END (test_bb)) && !onlyjump_p (BB_END (test_bb)))
3091 return false;
3092
3093 last_set = single_set (last_insn);
3094
3095 rtx x = SET_DEST (last_set);
3096 rtx_insn *first_insn = first_active_insn (test_bb);
3097 rtx first_set = single_set (first_insn);
3098
3099 if (!first_set)
3100 return false;
3101
3102 /* We have a single simple set, that's okay. */
3103 bool speed_p = optimize_bb_for_speed_p (test_bb);
3104
3105 if (first_insn == last_insn)
3106 {
3107 *simple_p = noce_operand_ok (SET_DEST (first_set));
3108 *cost += pattern_cost (first_set, speed_p);
3109 return *simple_p;
3110 }
3111
3112 rtx_insn *prev_last_insn = PREV_INSN (last_insn);
3113 gcc_assert (prev_last_insn);
3114
3115 /* For now, disallow setting x multiple times in test_bb. */
3116 if (REG_P (x) && reg_set_between_p (x, first_insn, prev_last_insn))
3117 return false;
3118
3119 bitmap test_bb_temps = BITMAP_ALLOC (®_obstack);
3120
3121 /* The regs that are live out of test_bb. */
3122 bitmap test_bb_live_out = df_get_live_out (test_bb);
3123
3124 int potential_cost = pattern_cost (last_set, speed_p);
3125 rtx_insn *insn;
3126 FOR_BB_INSNS (test_bb, insn)
3127 {
3128 if (insn != last_insn)
3129 {
3130 if (!active_insn_p (insn))
3131 continue;
3132
3133 if (!insn_valid_noce_process_p (insn, cc))
3134 goto free_bitmap_and_fail;
3135
3136 rtx sset = single_set (insn);
3137 gcc_assert (sset);
3138
3139 if (contains_mem_rtx_p (SET_SRC (sset))
3140 || !REG_P (SET_DEST (sset))
3141 || reg_overlap_mentioned_p (SET_DEST (sset), cond))
3142 goto free_bitmap_and_fail;
3143
3144 potential_cost += pattern_cost (sset, speed_p);
3145 bitmap_set_bit (test_bb_temps, REGNO (SET_DEST (sset)));
3146 }
3147 }
3148
3149 /* If any of the intermediate results in test_bb are live after test_bb
3150 then fail. */
3151 if (bitmap_intersect_p (test_bb_live_out, test_bb_temps))
3152 goto free_bitmap_and_fail;
3153
3154 BITMAP_FREE (test_bb_temps);
3155 *cost += potential_cost;
3156 *simple_p = false;
3157 return true;
3158
3159 free_bitmap_and_fail:
3160 BITMAP_FREE (test_bb_temps);
3161 return false;
3162 }
3163
3164 /* Helper function to emit a cmov sequence encapsulated in
3165 start_sequence () and end_sequence (). If NEED_CMOV is true
3166 we call noce_emit_cmove to create a cmove sequence. Otherwise emit
3167 a simple move. If successful, store the first instruction of the
3168 sequence in TEMP_DEST and the sequence costs in SEQ_COST. */
3169
3170 static rtx_insn*
try_emit_cmove_seq(struct noce_if_info * if_info,rtx temp,rtx cond,rtx new_val,rtx old_val,bool need_cmov,unsigned * cost,rtx * temp_dest,rtx cc_cmp=NULL,rtx rev_cc_cmp=NULL)3171 try_emit_cmove_seq (struct noce_if_info *if_info, rtx temp,
3172 rtx cond, rtx new_val, rtx old_val, bool need_cmov,
3173 unsigned *cost, rtx *temp_dest,
3174 rtx cc_cmp = NULL, rtx rev_cc_cmp = NULL)
3175 {
3176 rtx_insn *seq = NULL;
3177 *cost = 0;
3178
3179 rtx x = XEXP (cond, 0);
3180 rtx y = XEXP (cond, 1);
3181 rtx_code cond_code = GET_CODE (cond);
3182
3183 start_sequence ();
3184
3185 if (need_cmov)
3186 *temp_dest = noce_emit_cmove (if_info, temp, cond_code,
3187 x, y, new_val, old_val, cc_cmp, rev_cc_cmp);
3188 else
3189 {
3190 *temp_dest = temp;
3191 if (if_info->then_else_reversed)
3192 noce_emit_move_insn (temp, old_val);
3193 else
3194 noce_emit_move_insn (temp, new_val);
3195 }
3196
3197 if (*temp_dest != NULL_RTX)
3198 {
3199 seq = get_insns ();
3200 *cost = seq_cost (seq, if_info->speed_p);
3201 }
3202
3203 end_sequence ();
3204
3205 return seq;
3206 }
3207
3208 /* We have something like:
3209
3210 if (x > y)
3211 { i = a; j = b; k = c; }
3212
3213 Make it:
3214
3215 tmp_i = (x > y) ? a : i;
3216 tmp_j = (x > y) ? b : j;
3217 tmp_k = (x > y) ? c : k;
3218 i = tmp_i;
3219 j = tmp_j;
3220 k = tmp_k;
3221
3222 Subsequent passes are expected to clean up the extra moves.
3223
3224 Look for special cases such as writes to one register which are
3225 read back in another SET, as might occur in a swap idiom or
3226 similar.
3227
3228 These look like:
3229
3230 if (x > y)
3231 i = a;
3232 j = i;
3233
3234 Which we want to rewrite to:
3235
3236 tmp_i = (x > y) ? a : i;
3237 tmp_j = (x > y) ? tmp_i : j;
3238 i = tmp_i;
3239 j = tmp_j;
3240
3241 We can catch these when looking at (SET x y) by keeping a list of the
3242 registers we would have targeted before if-conversion and looking back
3243 through it for an overlap with Y. If we find one, we rewire the
3244 conditional set to use the temporary we introduced earlier.
3245
3246 IF_INFO contains the useful information about the block structure and
3247 jump instructions. */
3248
3249 static int
noce_convert_multiple_sets(struct noce_if_info * if_info)3250 noce_convert_multiple_sets (struct noce_if_info *if_info)
3251 {
3252 basic_block test_bb = if_info->test_bb;
3253 basic_block then_bb = if_info->then_bb;
3254 basic_block join_bb = if_info->join_bb;
3255 rtx_insn *jump = if_info->jump;
3256 rtx_insn *cond_earliest;
3257 rtx_insn *insn;
3258
3259 start_sequence ();
3260
3261 /* Decompose the condition attached to the jump. */
3262 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3263 rtx x = XEXP (cond, 0);
3264 rtx y = XEXP (cond, 1);
3265
3266 /* The true targets for a conditional move. */
3267 auto_vec<rtx> targets;
3268 /* The temporaries introduced to allow us to not consider register
3269 overlap. */
3270 auto_vec<rtx> temporaries;
3271 /* The insns we've emitted. */
3272 auto_vec<rtx_insn *> unmodified_insns;
3273
3274 hash_set<rtx_insn *> need_no_cmov;
3275 hash_map<rtx_insn *, int> rewired_src;
3276
3277 need_cmov_or_rewire (then_bb, &need_no_cmov, &rewired_src);
3278
3279 int last_needs_comparison = -1;
3280
3281 bool ok = noce_convert_multiple_sets_1
3282 (if_info, &need_no_cmov, &rewired_src, &targets, &temporaries,
3283 &unmodified_insns, &last_needs_comparison);
3284 if (!ok)
3285 return false;
3286
3287 /* If there are insns that overwrite part of the initial
3288 comparison, we can still omit creating temporaries for
3289 the last of them.
3290 As the second try will always create a less expensive,
3291 valid sequence, we do not need to compare and can discard
3292 the first one. */
3293 if (last_needs_comparison != -1)
3294 {
3295 end_sequence ();
3296 start_sequence ();
3297 ok = noce_convert_multiple_sets_1
3298 (if_info, &need_no_cmov, &rewired_src, &targets, &temporaries,
3299 &unmodified_insns, &last_needs_comparison);
3300 /* Actually we should not fail anymore if we reached here,
3301 but better still check. */
3302 if (!ok)
3303 return false;
3304 }
3305
3306 /* We must have seen some sort of insn to insert, otherwise we were
3307 given an empty BB to convert, and we can't handle that. */
3308 gcc_assert (!unmodified_insns.is_empty ());
3309
3310 /* Now fixup the assignments. */
3311 for (unsigned i = 0; i < targets.length (); i++)
3312 if (targets[i] != temporaries[i])
3313 noce_emit_move_insn (targets[i], temporaries[i]);
3314
3315 /* Actually emit the sequence if it isn't too expensive. */
3316 rtx_insn *seq = get_insns ();
3317
3318 if (!targetm.noce_conversion_profitable_p (seq, if_info))
3319 {
3320 end_sequence ();
3321 return FALSE;
3322 }
3323
3324 for (insn = seq; insn; insn = NEXT_INSN (insn))
3325 set_used_flags (insn);
3326
3327 /* Mark all our temporaries and targets as used. */
3328 for (unsigned i = 0; i < targets.length (); i++)
3329 {
3330 set_used_flags (temporaries[i]);
3331 set_used_flags (targets[i]);
3332 }
3333
3334 set_used_flags (cond);
3335 set_used_flags (x);
3336 set_used_flags (y);
3337
3338 unshare_all_rtl_in_chain (seq);
3339 end_sequence ();
3340
3341 if (!seq)
3342 return FALSE;
3343
3344 for (insn = seq; insn; insn = NEXT_INSN (insn))
3345 if (JUMP_P (insn)
3346 || recog_memoized (insn) == -1)
3347 return FALSE;
3348
3349 emit_insn_before_setloc (seq, if_info->jump,
3350 INSN_LOCATION (unmodified_insns.last ()));
3351
3352 /* Clean up THEN_BB and the edges in and out of it. */
3353 remove_edge (find_edge (test_bb, join_bb));
3354 remove_edge (find_edge (then_bb, join_bb));
3355 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
3356 delete_basic_block (then_bb);
3357 num_true_changes++;
3358
3359 /* Maybe merge blocks now the jump is simple enough. */
3360 if (can_merge_blocks_p (test_bb, join_bb))
3361 {
3362 merge_blocks (test_bb, join_bb);
3363 num_true_changes++;
3364 }
3365
3366 num_updated_if_blocks++;
3367 if_info->transform_name = "noce_convert_multiple_sets";
3368 return TRUE;
3369 }
3370
3371 /* Helper function for noce_convert_multiple_sets_1. If store to
3372 DEST can affect P[0] or P[1], clear P[0]. Called via note_stores. */
3373
3374 static void
check_for_cc_cmp_clobbers(rtx dest,const_rtx,void * p0)3375 check_for_cc_cmp_clobbers (rtx dest, const_rtx, void *p0)
3376 {
3377 rtx *p = (rtx *) p0;
3378 if (p[0] == NULL_RTX)
3379 return;
3380 if (reg_overlap_mentioned_p (dest, p[0])
3381 || (p[1] && reg_overlap_mentioned_p (dest, p[1])))
3382 p[0] = NULL_RTX;
3383 }
3384
3385 /* This goes through all relevant insns of IF_INFO->then_bb and tries to
3386 create conditional moves. In case a simple move sufficis the insn
3387 should be listed in NEED_NO_CMOV. The rewired-src cases should be
3388 specified via REWIRED_SRC. TARGETS, TEMPORARIES and UNMODIFIED_INSNS
3389 are specified and used in noce_convert_multiple_sets and should be passed
3390 to this function.. */
3391
3392 static bool
noce_convert_multiple_sets_1(struct noce_if_info * if_info,hash_set<rtx_insn * > * need_no_cmov,hash_map<rtx_insn *,int> * rewired_src,auto_vec<rtx> * targets,auto_vec<rtx> * temporaries,auto_vec<rtx_insn * > * unmodified_insns,int * last_needs_comparison)3393 noce_convert_multiple_sets_1 (struct noce_if_info *if_info,
3394 hash_set<rtx_insn *> *need_no_cmov,
3395 hash_map<rtx_insn *, int> *rewired_src,
3396 auto_vec<rtx> *targets,
3397 auto_vec<rtx> *temporaries,
3398 auto_vec<rtx_insn *> *unmodified_insns,
3399 int *last_needs_comparison)
3400 {
3401 basic_block then_bb = if_info->then_bb;
3402 rtx_insn *jump = if_info->jump;
3403 rtx_insn *cond_earliest;
3404
3405 /* Decompose the condition attached to the jump. */
3406 rtx cond = noce_get_condition (jump, &cond_earliest, false);
3407
3408 rtx cc_cmp = cond_exec_get_condition (jump);
3409 if (cc_cmp)
3410 cc_cmp = copy_rtx (cc_cmp);
3411 rtx rev_cc_cmp = cond_exec_get_condition (jump, /* get_reversed */ true);
3412 if (rev_cc_cmp)
3413 rev_cc_cmp = copy_rtx (rev_cc_cmp);
3414
3415 rtx_insn *insn;
3416 int count = 0;
3417
3418 targets->truncate (0);
3419 temporaries->truncate (0);
3420 unmodified_insns->truncate (0);
3421
3422 bool second_try = *last_needs_comparison != -1;
3423
3424 FOR_BB_INSNS (then_bb, insn)
3425 {
3426 /* Skip over non-insns. */
3427 if (!active_insn_p (insn))
3428 continue;
3429
3430 rtx set = single_set (insn);
3431 gcc_checking_assert (set);
3432
3433 rtx target = SET_DEST (set);
3434 rtx temp;
3435
3436 rtx new_val = SET_SRC (set);
3437 if (int *ii = rewired_src->get (insn))
3438 new_val = simplify_replace_rtx (new_val, (*targets)[*ii],
3439 (*temporaries)[*ii]);
3440 rtx old_val = target;
3441
3442 /* As we are transforming
3443 if (x > y)
3444 {
3445 a = b;
3446 c = d;
3447 }
3448 into
3449 a = (x > y) ...
3450 c = (x > y) ...
3451
3452 we potentially check x > y before every set.
3453 Even though the check might be removed by subsequent passes, this means
3454 that we cannot transform
3455 if (x > y)
3456 {
3457 x = y;
3458 ...
3459 }
3460 into
3461 x = (x > y) ...
3462 ...
3463 since this would invalidate x and the following to-be-removed checks.
3464 Therefore we introduce a temporary every time we are about to
3465 overwrite a variable used in the check. Costing of a sequence with
3466 these is going to be inaccurate so only use temporaries when
3467 needed.
3468
3469 If performing a second try, we know how many insns require a
3470 temporary. For the last of these, we can omit creating one. */
3471 if (reg_overlap_mentioned_p (target, cond)
3472 && (!second_try || count < *last_needs_comparison))
3473 temp = gen_reg_rtx (GET_MODE (target));
3474 else
3475 temp = target;
3476
3477 /* We have identified swap-style idioms before. A normal
3478 set will need to be a cmov while the first instruction of a swap-style
3479 idiom can be a regular move. This helps with costing. */
3480 bool need_cmov = !need_no_cmov->contains (insn);
3481
3482 /* If we had a non-canonical conditional jump (i.e. one where
3483 the fallthrough is to the "else" case) we need to reverse
3484 the conditional select. */
3485 if (if_info->then_else_reversed)
3486 std::swap (old_val, new_val);
3487
3488
3489 /* We allow simple lowpart register subreg SET sources in
3490 bb_ok_for_noce_convert_multiple_sets. Be careful when processing
3491 sequences like:
3492 (set (reg:SI r1) (reg:SI r2))
3493 (set (reg:HI r3) (subreg:HI (r1)))
3494 For the second insn new_val or old_val (r1 in this example) will be
3495 taken from the temporaries and have the wider mode which will not
3496 match with the mode of the other source of the conditional move, so
3497 we'll end up trying to emit r4:HI = cond ? (r1:SI) : (r3:HI).
3498 Wrap the two cmove operands into subregs if appropriate to prevent
3499 that. */
3500
3501 if (!CONSTANT_P (new_val)
3502 && GET_MODE (new_val) != GET_MODE (temp))
3503 {
3504 machine_mode src_mode = GET_MODE (new_val);
3505 machine_mode dst_mode = GET_MODE (temp);
3506 if (!partial_subreg_p (dst_mode, src_mode))
3507 {
3508 end_sequence ();
3509 return FALSE;
3510 }
3511 new_val = lowpart_subreg (dst_mode, new_val, src_mode);
3512 }
3513 if (!CONSTANT_P (old_val)
3514 && GET_MODE (old_val) != GET_MODE (temp))
3515 {
3516 machine_mode src_mode = GET_MODE (old_val);
3517 machine_mode dst_mode = GET_MODE (temp);
3518 if (!partial_subreg_p (dst_mode, src_mode))
3519 {
3520 end_sequence ();
3521 return FALSE;
3522 }
3523 old_val = lowpart_subreg (dst_mode, old_val, src_mode);
3524 }
3525
3526 /* Try emitting a conditional move passing the backend the
3527 canonicalized comparison. The backend is then able to
3528 recognize expressions like
3529
3530 if (x > y)
3531 y = x;
3532
3533 as min/max and emit an insn, accordingly. */
3534 unsigned cost1 = 0, cost2 = 0;
3535 rtx_insn *seq, *seq1, *seq2 = NULL;
3536 rtx temp_dest = NULL_RTX, temp_dest1 = NULL_RTX, temp_dest2 = NULL_RTX;
3537 bool read_comparison = false;
3538
3539 seq1 = try_emit_cmove_seq (if_info, temp, cond,
3540 new_val, old_val, need_cmov,
3541 &cost1, &temp_dest1);
3542
3543 /* Here, we try to pass the backend a non-canonicalized cc comparison
3544 as well. This allows the backend to emit a cmov directly without
3545 creating an additional compare for each. If successful, costing
3546 is easier and this sequence is usually preferred. */
3547 if (cc_cmp)
3548 seq2 = try_emit_cmove_seq (if_info, temp, cond,
3549 new_val, old_val, need_cmov,
3550 &cost2, &temp_dest2, cc_cmp, rev_cc_cmp);
3551
3552 /* The backend might have created a sequence that uses the
3553 condition. Check this. */
3554 rtx_insn *walk = seq2;
3555 while (walk)
3556 {
3557 rtx set = single_set (walk);
3558
3559 if (!set || !SET_SRC (set))
3560 {
3561 walk = NEXT_INSN (walk);
3562 continue;
3563 }
3564
3565 rtx src = SET_SRC (set);
3566
3567 if (XEXP (set, 1) && GET_CODE (XEXP (set, 1)) == IF_THEN_ELSE)
3568 ; /* We assume that this is the cmove created by the backend that
3569 naturally uses the condition. Therefore we ignore it. */
3570 else
3571 {
3572 if (reg_mentioned_p (XEXP (cond, 0), src)
3573 || reg_mentioned_p (XEXP (cond, 1), src))
3574 {
3575 read_comparison = true;
3576 break;
3577 }
3578 }
3579
3580 walk = NEXT_INSN (walk);
3581 }
3582
3583 /* Check which version is less expensive. */
3584 if (seq1 != NULL_RTX && (cost1 <= cost2 || seq2 == NULL_RTX))
3585 {
3586 seq = seq1;
3587 temp_dest = temp_dest1;
3588 if (!second_try)
3589 *last_needs_comparison = count;
3590 }
3591 else if (seq2 != NULL_RTX)
3592 {
3593 seq = seq2;
3594 temp_dest = temp_dest2;
3595 if (!second_try && read_comparison)
3596 *last_needs_comparison = count;
3597 }
3598 else
3599 {
3600 /* Nothing worked, bail out. */
3601 end_sequence ();
3602 return FALSE;
3603 }
3604
3605 if (cc_cmp)
3606 {
3607 /* Check if SEQ can clobber registers mentioned in
3608 cc_cmp and/or rev_cc_cmp. If yes, we need to use
3609 only seq1 from that point on. */
3610 rtx cc_cmp_pair[2] = { cc_cmp, rev_cc_cmp };
3611 for (walk = seq; walk; walk = NEXT_INSN (walk))
3612 {
3613 note_stores (walk, check_for_cc_cmp_clobbers, cc_cmp_pair);
3614 if (cc_cmp_pair[0] == NULL_RTX)
3615 {
3616 cc_cmp = NULL_RTX;
3617 rev_cc_cmp = NULL_RTX;
3618 break;
3619 }
3620 }
3621 }
3622
3623 /* End the sub sequence and emit to the main sequence. */
3624 emit_insn (seq);
3625
3626 /* Bookkeeping. */
3627 count++;
3628 targets->safe_push (target);
3629 temporaries->safe_push (temp_dest);
3630 unmodified_insns->safe_push (insn);
3631 }
3632
3633 /* Even if we did not actually need the comparison, we want to make sure
3634 to try a second time in order to get rid of the temporaries. */
3635 if (*last_needs_comparison == -1)
3636 *last_needs_comparison = 0;
3637
3638
3639 return true;
3640 }
3641
3642
3643
3644 /* Return true iff basic block TEST_BB is comprised of only
3645 (SET (REG) (REG)) insns suitable for conversion to a series
3646 of conditional moves. Also check that we have more than one set
3647 (other routines can handle a single set better than we would), and
3648 fewer than PARAM_MAX_RTL_IF_CONVERSION_INSNS sets. While going
3649 through the insns store the sum of their potential costs in COST. */
3650
3651 static bool
bb_ok_for_noce_convert_multiple_sets(basic_block test_bb,unsigned * cost)3652 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb, unsigned *cost)
3653 {
3654 rtx_insn *insn;
3655 unsigned count = 0;
3656 unsigned param = param_max_rtl_if_conversion_insns;
3657 bool speed_p = optimize_bb_for_speed_p (test_bb);
3658 unsigned potential_cost = 0;
3659
3660 FOR_BB_INSNS (test_bb, insn)
3661 {
3662 /* Skip over notes etc. */
3663 if (!active_insn_p (insn))
3664 continue;
3665
3666 /* We only handle SET insns. */
3667 rtx set = single_set (insn);
3668 if (set == NULL_RTX)
3669 return false;
3670
3671 rtx dest = SET_DEST (set);
3672 rtx src = SET_SRC (set);
3673
3674 /* We can possibly relax this, but for now only handle REG to REG
3675 (including subreg) moves. This avoids any issues that might come
3676 from introducing loads/stores that might violate data-race-freedom
3677 guarantees. */
3678 if (!REG_P (dest))
3679 return false;
3680
3681 if (!((REG_P (src) || CONSTANT_P (src))
3682 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
3683 && subreg_lowpart_p (src))))
3684 return false;
3685
3686 /* Destination must be appropriate for a conditional write. */
3687 if (!noce_operand_ok (dest))
3688 return false;
3689
3690 /* We must be able to conditionally move in this mode. */
3691 if (!can_conditionally_move_p (GET_MODE (dest)))
3692 return false;
3693
3694 potential_cost += insn_cost (insn, speed_p);
3695
3696 count++;
3697 }
3698
3699 *cost += potential_cost;
3700
3701 /* If we would only put out one conditional move, the other strategies
3702 this pass tries are better optimized and will be more appropriate.
3703 Some targets want to strictly limit the number of conditional moves
3704 that are emitted, they set this through PARAM, we need to respect
3705 that. */
3706 return count > 1 && count <= param;
3707 }
3708
3709 /* Compute average of two given costs weighted by relative probabilities
3710 of respective basic blocks in an IF-THEN-ELSE. E is the IF-THEN edge.
3711 With P as the probability to take the IF-THEN branch, return
3712 P * THEN_COST + (1 - P) * ELSE_COST. */
3713 static unsigned
average_cost(unsigned then_cost,unsigned else_cost,edge e)3714 average_cost (unsigned then_cost, unsigned else_cost, edge e)
3715 {
3716 return else_cost + e->probability.apply ((signed) (then_cost - else_cost));
3717 }
3718
3719 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3720 it without using conditional execution. Return TRUE if we were successful
3721 at converting the block. */
3722
3723 static int
noce_process_if_block(struct noce_if_info * if_info)3724 noce_process_if_block (struct noce_if_info *if_info)
3725 {
3726 basic_block test_bb = if_info->test_bb; /* test block */
3727 basic_block then_bb = if_info->then_bb; /* THEN */
3728 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
3729 basic_block join_bb = if_info->join_bb; /* JOIN */
3730 rtx_insn *jump = if_info->jump;
3731 rtx cond = if_info->cond;
3732 rtx_insn *insn_a, *insn_b;
3733 rtx set_a, set_b;
3734 rtx orig_x, x, a, b;
3735
3736 /* We're looking for patterns of the form
3737
3738 (1) if (...) x = a; else x = b;
3739 (2) x = b; if (...) x = a;
3740 (3) if (...) x = a; // as if with an initial x = x.
3741 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3742 The later patterns require jumps to be more expensive.
3743 For the if (...) x = a; else x = b; case we allow multiple insns
3744 inside the then and else blocks as long as their only effect is
3745 to calculate a value for x.
3746 ??? For future expansion, further expand the "multiple X" rules. */
3747
3748 /* First look for multiple SETS. The original costs already include
3749 a base cost of COSTS_N_INSNS (2): one instruction for the compare
3750 (which we will be needing either way) and one instruction for the
3751 branch. When comparing costs we want to use the branch instruction
3752 cost and the sets vs. the cmovs generated here. Therefore subtract
3753 the costs of the compare before checking.
3754 ??? Actually, instead of the branch instruction costs we might want
3755 to use COSTS_N_INSNS (BRANCH_COST ()) as in other places. */
3756
3757 unsigned potential_cost = if_info->original_cost - COSTS_N_INSNS (1);
3758 unsigned old_cost = if_info->original_cost;
3759 if (!else_bb
3760 && HAVE_conditional_move
3761 && bb_ok_for_noce_convert_multiple_sets (then_bb, &potential_cost))
3762 {
3763 /* Temporarily set the original costs to what we estimated so
3764 we can determine if the transformation is worth it. */
3765 if_info->original_cost = potential_cost;
3766 if (noce_convert_multiple_sets (if_info))
3767 {
3768 if (dump_file && if_info->transform_name)
3769 fprintf (dump_file, "if-conversion succeeded through %s\n",
3770 if_info->transform_name);
3771 return TRUE;
3772 }
3773
3774 /* Restore the original costs. */
3775 if_info->original_cost = old_cost;
3776 }
3777
3778 bool speed_p = optimize_bb_for_speed_p (test_bb);
3779 unsigned int then_cost = 0, else_cost = 0;
3780 if (!bb_valid_for_noce_process_p (then_bb, cond, &then_cost,
3781 &if_info->then_simple))
3782 return false;
3783
3784 if (else_bb
3785 && !bb_valid_for_noce_process_p (else_bb, cond, &else_cost,
3786 &if_info->else_simple))
3787 return false;
3788
3789 if (speed_p)
3790 if_info->original_cost += average_cost (then_cost, else_cost,
3791 find_edge (test_bb, then_bb));
3792 else
3793 if_info->original_cost += then_cost + else_cost;
3794
3795 insn_a = last_active_insn (then_bb, FALSE);
3796 set_a = single_set (insn_a);
3797 gcc_assert (set_a);
3798
3799 x = SET_DEST (set_a);
3800 a = SET_SRC (set_a);
3801
3802 /* Look for the other potential set. Make sure we've got equivalent
3803 destinations. */
3804 /* ??? This is overconservative. Storing to two different mems is
3805 as easy as conditionally computing the address. Storing to a
3806 single mem merely requires a scratch memory to use as one of the
3807 destination addresses; often the memory immediately below the
3808 stack pointer is available for this. */
3809 set_b = NULL_RTX;
3810 if (else_bb)
3811 {
3812 insn_b = last_active_insn (else_bb, FALSE);
3813 set_b = single_set (insn_b);
3814 gcc_assert (set_b);
3815
3816 if (!rtx_interchangeable_p (x, SET_DEST (set_b)))
3817 return FALSE;
3818 }
3819 else
3820 {
3821 insn_b = if_info->cond_earliest;
3822 do
3823 insn_b = prev_nonnote_nondebug_insn (insn_b);
3824 while (insn_b
3825 && (BLOCK_FOR_INSN (insn_b)
3826 == BLOCK_FOR_INSN (if_info->cond_earliest))
3827 && !modified_in_p (x, insn_b));
3828
3829 /* We're going to be moving the evaluation of B down from above
3830 COND_EARLIEST to JUMP. Make sure the relevant data is still
3831 intact. */
3832 if (! insn_b
3833 || BLOCK_FOR_INSN (insn_b) != BLOCK_FOR_INSN (if_info->cond_earliest)
3834 || !NONJUMP_INSN_P (insn_b)
3835 || (set_b = single_set (insn_b)) == NULL_RTX
3836 || ! rtx_interchangeable_p (x, SET_DEST (set_b))
3837 || ! noce_operand_ok (SET_SRC (set_b))
3838 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
3839 || modified_between_p (SET_SRC (set_b), insn_b, jump)
3840 /* Avoid extending the lifetime of hard registers on small
3841 register class machines. */
3842 || (REG_P (SET_SRC (set_b))
3843 && HARD_REGISTER_P (SET_SRC (set_b))
3844 && targetm.small_register_classes_for_mode_p
3845 (GET_MODE (SET_SRC (set_b))))
3846 /* Likewise with X. In particular this can happen when
3847 noce_get_condition looks farther back in the instruction
3848 stream than one might expect. */
3849 || reg_overlap_mentioned_p (x, cond)
3850 || reg_overlap_mentioned_p (x, a)
3851 || modified_between_p (x, insn_b, jump))
3852 {
3853 insn_b = NULL;
3854 set_b = NULL_RTX;
3855 }
3856 }
3857
3858 /* If x has side effects then only the if-then-else form is safe to
3859 convert. But even in that case we would need to restore any notes
3860 (such as REG_INC) at then end. That can be tricky if
3861 noce_emit_move_insn expands to more than one insn, so disable the
3862 optimization entirely for now if there are side effects. */
3863 if (side_effects_p (x))
3864 return FALSE;
3865
3866 b = (set_b ? SET_SRC (set_b) : x);
3867
3868 /* Only operate on register destinations, and even then avoid extending
3869 the lifetime of hard registers on small register class machines. */
3870 orig_x = x;
3871 if_info->orig_x = orig_x;
3872 if (!REG_P (x)
3873 || (HARD_REGISTER_P (x)
3874 && targetm.small_register_classes_for_mode_p (GET_MODE (x))))
3875 {
3876 if (GET_MODE (x) == BLKmode)
3877 return FALSE;
3878
3879 if (GET_CODE (x) == ZERO_EXTRACT
3880 && (!CONST_INT_P (XEXP (x, 1))
3881 || !CONST_INT_P (XEXP (x, 2))))
3882 return FALSE;
3883
3884 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
3885 ? XEXP (x, 0) : x));
3886 }
3887
3888 /* Don't operate on sources that may trap or are volatile. */
3889 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
3890 return FALSE;
3891
3892 retry:
3893 /* Set up the info block for our subroutines. */
3894 if_info->insn_a = insn_a;
3895 if_info->insn_b = insn_b;
3896 if_info->x = x;
3897 if_info->a = a;
3898 if_info->b = b;
3899
3900 /* Try optimizations in some approximation of a useful order. */
3901 /* ??? Should first look to see if X is live incoming at all. If it
3902 isn't, we don't need anything but an unconditional set. */
3903
3904 /* Look and see if A and B are really the same. Avoid creating silly
3905 cmove constructs that no one will fix up later. */
3906 if (noce_simple_bbs (if_info)
3907 && rtx_interchangeable_p (a, b))
3908 {
3909 /* If we have an INSN_B, we don't have to create any new rtl. Just
3910 move the instruction that we already have. If we don't have an
3911 INSN_B, that means that A == X, and we've got a noop move. In
3912 that case don't do anything and let the code below delete INSN_A. */
3913 if (insn_b && else_bb)
3914 {
3915 rtx note;
3916
3917 if (else_bb && insn_b == BB_END (else_bb))
3918 BB_END (else_bb) = PREV_INSN (insn_b);
3919 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
3920
3921 /* If there was a REG_EQUAL note, delete it since it may have been
3922 true due to this insn being after a jump. */
3923 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
3924 remove_note (insn_b, note);
3925
3926 insn_b = NULL;
3927 }
3928 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3929 x must be executed twice. */
3930 else if (insn_b && side_effects_p (orig_x))
3931 return FALSE;
3932
3933 x = orig_x;
3934 goto success;
3935 }
3936
3937 if (!set_b && MEM_P (orig_x))
3938 /* We want to avoid store speculation to avoid cases like
3939 if (pthread_mutex_trylock(mutex))
3940 ++global_variable;
3941 Rather than go to much effort here, we rely on the SSA optimizers,
3942 which do a good enough job these days. */
3943 return FALSE;
3944
3945 if (noce_try_move (if_info))
3946 goto success;
3947 if (noce_try_ifelse_collapse (if_info))
3948 goto success;
3949 if (noce_try_store_flag (if_info))
3950 goto success;
3951 if (noce_try_bitop (if_info))
3952 goto success;
3953 if (noce_try_minmax (if_info))
3954 goto success;
3955 if (noce_try_abs (if_info))
3956 goto success;
3957 if (noce_try_inverse_constants (if_info))
3958 goto success;
3959 if (!targetm.have_conditional_execution ()
3960 && noce_try_store_flag_constants (if_info))
3961 goto success;
3962 if (HAVE_conditional_move
3963 && noce_try_cmove (if_info))
3964 goto success;
3965 if (! targetm.have_conditional_execution ())
3966 {
3967 if (noce_try_addcc (if_info))
3968 goto success;
3969 if (noce_try_store_flag_mask (if_info))
3970 goto success;
3971 if (HAVE_conditional_move
3972 && noce_try_cmove_arith (if_info))
3973 goto success;
3974 if (noce_try_sign_mask (if_info))
3975 goto success;
3976 }
3977
3978 if (!else_bb && set_b)
3979 {
3980 insn_b = NULL;
3981 set_b = NULL_RTX;
3982 b = orig_x;
3983 goto retry;
3984 }
3985
3986 return FALSE;
3987
3988 success:
3989 if (dump_file && if_info->transform_name)
3990 fprintf (dump_file, "if-conversion succeeded through %s\n",
3991 if_info->transform_name);
3992
3993 /* If we used a temporary, fix it up now. */
3994 if (orig_x != x)
3995 {
3996 rtx_insn *seq;
3997
3998 start_sequence ();
3999 noce_emit_move_insn (orig_x, x);
4000 seq = get_insns ();
4001 set_used_flags (orig_x);
4002 unshare_all_rtl_in_chain (seq);
4003 end_sequence ();
4004
4005 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATION (insn_a));
4006 }
4007
4008 /* The original THEN and ELSE blocks may now be removed. The test block
4009 must now jump to the join block. If the test block and the join block
4010 can be merged, do so. */
4011 if (else_bb)
4012 {
4013 delete_basic_block (else_bb);
4014 num_true_changes++;
4015 }
4016 else
4017 remove_edge (find_edge (test_bb, join_bb));
4018
4019 remove_edge (find_edge (then_bb, join_bb));
4020 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
4021 delete_basic_block (then_bb);
4022 num_true_changes++;
4023
4024 if (can_merge_blocks_p (test_bb, join_bb))
4025 {
4026 merge_blocks (test_bb, join_bb);
4027 num_true_changes++;
4028 }
4029
4030 num_updated_if_blocks++;
4031 return TRUE;
4032 }
4033
4034 /* Check whether a block is suitable for conditional move conversion.
4035 Every insn must be a simple set of a register to a constant or a
4036 register. For each assignment, store the value in the pointer map
4037 VALS, keyed indexed by register pointer, then store the register
4038 pointer in REGS. COND is the condition we will test. */
4039
4040 static int
check_cond_move_block(basic_block bb,hash_map<rtx,rtx> * vals,vec<rtx> * regs,rtx cond)4041 check_cond_move_block (basic_block bb,
4042 hash_map<rtx, rtx> *vals,
4043 vec<rtx> *regs,
4044 rtx cond)
4045 {
4046 rtx_insn *insn;
4047 rtx cc = cc_in_cond (cond);
4048
4049 /* We can only handle simple jumps at the end of the basic block.
4050 It is almost impossible to update the CFG otherwise. */
4051 insn = BB_END (bb);
4052 if (JUMP_P (insn) && !onlyjump_p (insn))
4053 return FALSE;
4054
4055 FOR_BB_INSNS (bb, insn)
4056 {
4057 rtx set, dest, src;
4058
4059 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
4060 continue;
4061 set = single_set (insn);
4062 if (!set)
4063 return FALSE;
4064
4065 dest = SET_DEST (set);
4066 src = SET_SRC (set);
4067 if (!REG_P (dest)
4068 || (HARD_REGISTER_P (dest)
4069 && targetm.small_register_classes_for_mode_p (GET_MODE (dest))))
4070 return FALSE;
4071
4072 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
4073 return FALSE;
4074
4075 if (side_effects_p (src) || side_effects_p (dest))
4076 return FALSE;
4077
4078 if (may_trap_p (src) || may_trap_p (dest))
4079 return FALSE;
4080
4081 /* Don't try to handle this if the source register was
4082 modified earlier in the block. */
4083 if ((REG_P (src)
4084 && vals->get (src))
4085 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
4086 && vals->get (SUBREG_REG (src))))
4087 return FALSE;
4088
4089 /* Don't try to handle this if the destination register was
4090 modified earlier in the block. */
4091 if (vals->get (dest))
4092 return FALSE;
4093
4094 /* Don't try to handle this if the condition uses the
4095 destination register. */
4096 if (reg_overlap_mentioned_p (dest, cond))
4097 return FALSE;
4098
4099 /* Don't try to handle this if the source register is modified
4100 later in the block. */
4101 if (!CONSTANT_P (src)
4102 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
4103 return FALSE;
4104
4105 /* Skip it if the instruction to be moved might clobber CC. */
4106 if (cc && set_of (cc, insn))
4107 return FALSE;
4108
4109 vals->put (dest, src);
4110
4111 regs->safe_push (dest);
4112 }
4113
4114 return TRUE;
4115 }
4116
4117 /* Find local swap-style idioms in BB and mark the first insn (1)
4118 that is only a temporary as not needing a conditional move as
4119 it is going to be dead afterwards anyway.
4120
4121 (1) int tmp = a;
4122 a = b;
4123 b = tmp;
4124
4125 ifcvt
4126 -->
4127
4128 tmp = a;
4129 a = cond ? b : a_old;
4130 b = cond ? tmp : b_old;
4131
4132 Additionally, store the index of insns like (2) when a subsequent
4133 SET reads from their destination.
4134
4135 (2) int c = a;
4136 int d = c;
4137
4138 ifcvt
4139 -->
4140
4141 c = cond ? a : c_old;
4142 d = cond ? d : c; // Need to use c rather than c_old here.
4143 */
4144
4145 static void
need_cmov_or_rewire(basic_block bb,hash_set<rtx_insn * > * need_no_cmov,hash_map<rtx_insn *,int> * rewired_src)4146 need_cmov_or_rewire (basic_block bb,
4147 hash_set<rtx_insn *> *need_no_cmov,
4148 hash_map<rtx_insn *, int> *rewired_src)
4149 {
4150 rtx_insn *insn;
4151 int count = 0;
4152 auto_vec<rtx_insn *> insns;
4153 auto_vec<rtx> dests;
4154
4155 /* Iterate over all SETs, storing the destinations
4156 in DEST.
4157 - If we hit a SET that reads from a destination
4158 that we have seen before and the corresponding register
4159 is dead afterwards, the register does not need to be
4160 moved conditionally.
4161 - If we encounter a previously changed register,
4162 rewire the read to the original source. */
4163 FOR_BB_INSNS (bb, insn)
4164 {
4165 rtx set, src, dest;
4166
4167 if (!active_insn_p (insn))
4168 continue;
4169
4170 set = single_set (insn);
4171 if (set == NULL_RTX)
4172 continue;
4173
4174 src = SET_SRC (set);
4175 if (SUBREG_P (src))
4176 src = SUBREG_REG (src);
4177 dest = SET_DEST (set);
4178
4179 /* Check if the current SET's source is the same
4180 as any previously seen destination.
4181 This is quadratic but the number of insns in BB
4182 is bounded by PARAM_MAX_RTL_IF_CONVERSION_INSNS. */
4183 if (REG_P (src))
4184 for (int i = count - 1; i >= 0; --i)
4185 if (reg_overlap_mentioned_p (src, dests[i]))
4186 {
4187 if (find_reg_note (insn, REG_DEAD, src) != NULL_RTX)
4188 need_no_cmov->add (insns[i]);
4189 else
4190 rewired_src->put (insn, i);
4191 }
4192
4193 insns.safe_push (insn);
4194 dests.safe_push (dest);
4195
4196 count++;
4197 }
4198 }
4199
4200 /* Given a basic block BB suitable for conditional move conversion,
4201 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
4202 the register values depending on COND, emit the insns in the block as
4203 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
4204 processed. The caller has started a sequence for the conversion.
4205 Return true if successful, false if something goes wrong. */
4206
4207 static bool
cond_move_convert_if_block(struct noce_if_info * if_infop,basic_block bb,rtx cond,hash_map<rtx,rtx> * then_vals,hash_map<rtx,rtx> * else_vals,bool else_block_p)4208 cond_move_convert_if_block (struct noce_if_info *if_infop,
4209 basic_block bb, rtx cond,
4210 hash_map<rtx, rtx> *then_vals,
4211 hash_map<rtx, rtx> *else_vals,
4212 bool else_block_p)
4213 {
4214 enum rtx_code code;
4215 rtx_insn *insn;
4216 rtx cond_arg0, cond_arg1;
4217
4218 code = GET_CODE (cond);
4219 cond_arg0 = XEXP (cond, 0);
4220 cond_arg1 = XEXP (cond, 1);
4221
4222 FOR_BB_INSNS (bb, insn)
4223 {
4224 rtx set, target, dest, t, e;
4225
4226 /* ??? Maybe emit conditional debug insn? */
4227 if (!NONDEBUG_INSN_P (insn) || JUMP_P (insn))
4228 continue;
4229 set = single_set (insn);
4230 gcc_assert (set && REG_P (SET_DEST (set)));
4231
4232 dest = SET_DEST (set);
4233
4234 rtx *then_slot = then_vals->get (dest);
4235 rtx *else_slot = else_vals->get (dest);
4236 t = then_slot ? *then_slot : NULL_RTX;
4237 e = else_slot ? *else_slot : NULL_RTX;
4238
4239 if (else_block_p)
4240 {
4241 /* If this register was set in the then block, we already
4242 handled this case there. */
4243 if (t)
4244 continue;
4245 t = dest;
4246 gcc_assert (e);
4247 }
4248 else
4249 {
4250 gcc_assert (t);
4251 if (!e)
4252 e = dest;
4253 }
4254
4255 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
4256 t, e);
4257 if (!target)
4258 return false;
4259
4260 if (target != dest)
4261 noce_emit_move_insn (dest, target);
4262 }
4263
4264 return true;
4265 }
4266
4267 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
4268 it using only conditional moves. Return TRUE if we were successful at
4269 converting the block. */
4270
4271 static int
cond_move_process_if_block(struct noce_if_info * if_info)4272 cond_move_process_if_block (struct noce_if_info *if_info)
4273 {
4274 basic_block test_bb = if_info->test_bb;
4275 basic_block then_bb = if_info->then_bb;
4276 basic_block else_bb = if_info->else_bb;
4277 basic_block join_bb = if_info->join_bb;
4278 rtx_insn *jump = if_info->jump;
4279 rtx cond = if_info->cond;
4280 rtx_insn *seq, *loc_insn;
4281 int c;
4282 vec<rtx> then_regs = vNULL;
4283 vec<rtx> else_regs = vNULL;
4284 int success_p = FALSE;
4285 int limit = param_max_rtl_if_conversion_insns;
4286
4287 /* Build a mapping for each block to the value used for each
4288 register. */
4289 hash_map<rtx, rtx> then_vals;
4290 hash_map<rtx, rtx> else_vals;
4291
4292 /* Make sure the blocks are suitable. */
4293 if (!check_cond_move_block (then_bb, &then_vals, &then_regs, cond)
4294 || (else_bb
4295 && !check_cond_move_block (else_bb, &else_vals, &else_regs, cond)))
4296 goto done;
4297
4298 /* Make sure the blocks can be used together. If the same register
4299 is set in both blocks, and is not set to a constant in both
4300 cases, then both blocks must set it to the same register. We
4301 have already verified that if it is set to a register, that the
4302 source register does not change after the assignment. Also count
4303 the number of registers set in only one of the blocks. */
4304 c = 0;
4305 for (rtx reg : then_regs)
4306 {
4307 rtx *then_slot = then_vals.get (reg);
4308 rtx *else_slot = else_vals.get (reg);
4309
4310 gcc_checking_assert (then_slot);
4311 if (!else_slot)
4312 ++c;
4313 else
4314 {
4315 rtx then_val = *then_slot;
4316 rtx else_val = *else_slot;
4317 if (!CONSTANT_P (then_val) && !CONSTANT_P (else_val)
4318 && !rtx_equal_p (then_val, else_val))
4319 goto done;
4320 }
4321 }
4322
4323 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
4324 for (rtx reg : else_regs)
4325 {
4326 gcc_checking_assert (else_vals.get (reg));
4327 if (!then_vals.get (reg))
4328 ++c;
4329 }
4330
4331 /* Make sure it is reasonable to convert this block. What matters
4332 is the number of assignments currently made in only one of the
4333 branches, since if we convert we are going to always execute
4334 them. */
4335 if (c > MAX_CONDITIONAL_EXECUTE
4336 || c > limit)
4337 goto done;
4338
4339 /* Try to emit the conditional moves. First do the then block,
4340 then do anything left in the else blocks. */
4341 start_sequence ();
4342 if (!cond_move_convert_if_block (if_info, then_bb, cond,
4343 &then_vals, &else_vals, false)
4344 || (else_bb
4345 && !cond_move_convert_if_block (if_info, else_bb, cond,
4346 &then_vals, &else_vals, true)))
4347 {
4348 end_sequence ();
4349 goto done;
4350 }
4351 seq = end_ifcvt_sequence (if_info);
4352 if (!seq)
4353 goto done;
4354
4355 loc_insn = first_active_insn (then_bb);
4356 if (!loc_insn)
4357 {
4358 loc_insn = first_active_insn (else_bb);
4359 gcc_assert (loc_insn);
4360 }
4361 emit_insn_before_setloc (seq, jump, INSN_LOCATION (loc_insn));
4362
4363 if (else_bb)
4364 {
4365 delete_basic_block (else_bb);
4366 num_true_changes++;
4367 }
4368 else
4369 remove_edge (find_edge (test_bb, join_bb));
4370
4371 remove_edge (find_edge (then_bb, join_bb));
4372 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
4373 delete_basic_block (then_bb);
4374 num_true_changes++;
4375
4376 if (can_merge_blocks_p (test_bb, join_bb))
4377 {
4378 merge_blocks (test_bb, join_bb);
4379 num_true_changes++;
4380 }
4381
4382 num_updated_if_blocks++;
4383 success_p = TRUE;
4384
4385 done:
4386 then_regs.release ();
4387 else_regs.release ();
4388 return success_p;
4389 }
4390
4391
4392 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
4393 IF-THEN-ELSE-JOIN block.
4394
4395 If so, we'll try to convert the insns to not require the branch,
4396 using only transformations that do not require conditional execution.
4397
4398 Return TRUE if we were successful at converting the block. */
4399
4400 static int
noce_find_if_block(basic_block test_bb,edge then_edge,edge else_edge,int pass)4401 noce_find_if_block (basic_block test_bb, edge then_edge, edge else_edge,
4402 int pass)
4403 {
4404 basic_block then_bb, else_bb, join_bb;
4405 bool then_else_reversed = false;
4406 rtx_insn *jump;
4407 rtx cond;
4408 rtx_insn *cond_earliest;
4409 struct noce_if_info if_info;
4410 bool speed_p = optimize_bb_for_speed_p (test_bb);
4411
4412 /* We only ever should get here before reload. */
4413 gcc_assert (!reload_completed);
4414
4415 /* Recognize an IF-THEN-ELSE-JOIN block. */
4416 if (single_pred_p (then_edge->dest)
4417 && single_succ_p (then_edge->dest)
4418 && single_pred_p (else_edge->dest)
4419 && single_succ_p (else_edge->dest)
4420 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
4421 {
4422 then_bb = then_edge->dest;
4423 else_bb = else_edge->dest;
4424 join_bb = single_succ (then_bb);
4425 }
4426 /* Recognize an IF-THEN-JOIN block. */
4427 else if (single_pred_p (then_edge->dest)
4428 && single_succ_p (then_edge->dest)
4429 && single_succ (then_edge->dest) == else_edge->dest)
4430 {
4431 then_bb = then_edge->dest;
4432 else_bb = NULL_BLOCK;
4433 join_bb = else_edge->dest;
4434 }
4435 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
4436 of basic blocks in cfglayout mode does not matter, so the fallthrough
4437 edge can go to any basic block (and not just to bb->next_bb, like in
4438 cfgrtl mode). */
4439 else if (single_pred_p (else_edge->dest)
4440 && single_succ_p (else_edge->dest)
4441 && single_succ (else_edge->dest) == then_edge->dest)
4442 {
4443 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
4444 To make this work, we have to invert the THEN and ELSE blocks
4445 and reverse the jump condition. */
4446 then_bb = else_edge->dest;
4447 else_bb = NULL_BLOCK;
4448 join_bb = single_succ (then_bb);
4449 then_else_reversed = true;
4450 }
4451 else
4452 /* Not a form we can handle. */
4453 return FALSE;
4454
4455 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4456 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4457 return FALSE;
4458 if (else_bb
4459 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4460 return FALSE;
4461
4462 num_possible_if_blocks++;
4463
4464 if (dump_file)
4465 {
4466 fprintf (dump_file,
4467 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
4468 (else_bb) ? "-ELSE" : "",
4469 pass, test_bb->index, then_bb->index);
4470
4471 if (else_bb)
4472 fprintf (dump_file, ", else %d", else_bb->index);
4473
4474 fprintf (dump_file, ", join %d\n", join_bb->index);
4475 }
4476
4477 /* If the conditional jump is more than just a conditional
4478 jump, then we cannot do if-conversion on this block. */
4479 jump = BB_END (test_bb);
4480 if (! onlyjump_p (jump))
4481 return FALSE;
4482
4483 /* If this is not a standard conditional jump, we can't parse it. */
4484 cond = noce_get_condition (jump, &cond_earliest, then_else_reversed);
4485 if (!cond)
4486 return FALSE;
4487
4488 /* We must be comparing objects whose modes imply the size. */
4489 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
4490 return FALSE;
4491
4492 /* Initialize an IF_INFO struct to pass around. */
4493 memset (&if_info, 0, sizeof if_info);
4494 if_info.test_bb = test_bb;
4495 if_info.then_bb = then_bb;
4496 if_info.else_bb = else_bb;
4497 if_info.join_bb = join_bb;
4498 if_info.cond = cond;
4499 rtx_insn *rev_cond_earliest;
4500 if_info.rev_cond = noce_get_condition (jump, &rev_cond_earliest,
4501 !then_else_reversed);
4502 gcc_assert (if_info.rev_cond == NULL_RTX
4503 || rev_cond_earliest == cond_earliest);
4504 if_info.cond_earliest = cond_earliest;
4505 if_info.jump = jump;
4506 if_info.then_else_reversed = then_else_reversed;
4507 if_info.speed_p = speed_p;
4508 if_info.max_seq_cost
4509 = targetm.max_noce_ifcvt_seq_cost (then_edge);
4510 /* We'll add in the cost of THEN_BB and ELSE_BB later, when we check
4511 that they are valid to transform. We can't easily get back to the insn
4512 for COND (and it may not exist if we had to canonicalize to get COND),
4513 and jump_insns are always given a cost of 1 by seq_cost, so treat
4514 both instructions as having cost COSTS_N_INSNS (1). */
4515 if_info.original_cost = COSTS_N_INSNS (2);
4516
4517
4518 /* Do the real work. */
4519
4520 if (noce_process_if_block (&if_info))
4521 return TRUE;
4522
4523 if (HAVE_conditional_move
4524 && cond_move_process_if_block (&if_info))
4525 return TRUE;
4526
4527 return FALSE;
4528 }
4529
4530
4531 /* Merge the blocks and mark for local life update. */
4532
4533 static void
merge_if_block(struct ce_if_block * ce_info)4534 merge_if_block (struct ce_if_block * ce_info)
4535 {
4536 basic_block test_bb = ce_info->test_bb; /* last test block */
4537 basic_block then_bb = ce_info->then_bb; /* THEN */
4538 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
4539 basic_block join_bb = ce_info->join_bb; /* join block */
4540 basic_block combo_bb;
4541
4542 /* All block merging is done into the lower block numbers. */
4543
4544 combo_bb = test_bb;
4545 df_set_bb_dirty (test_bb);
4546
4547 /* Merge any basic blocks to handle && and || subtests. Each of
4548 the blocks are on the fallthru path from the predecessor block. */
4549 if (ce_info->num_multiple_test_blocks > 0)
4550 {
4551 basic_block bb = test_bb;
4552 basic_block last_test_bb = ce_info->last_test_bb;
4553 basic_block fallthru = block_fallthru (bb);
4554
4555 do
4556 {
4557 bb = fallthru;
4558 fallthru = block_fallthru (bb);
4559 merge_blocks (combo_bb, bb);
4560 num_true_changes++;
4561 }
4562 while (bb != last_test_bb);
4563 }
4564
4565 /* Merge TEST block into THEN block. Normally the THEN block won't have a
4566 label, but it might if there were || tests. That label's count should be
4567 zero, and it normally should be removed. */
4568
4569 if (then_bb)
4570 {
4571 /* If THEN_BB has no successors, then there's a BARRIER after it.
4572 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4573 is no longer needed, and in fact it is incorrect to leave it in
4574 the insn stream. */
4575 if (EDGE_COUNT (then_bb->succs) == 0
4576 && EDGE_COUNT (combo_bb->succs) > 1)
4577 {
4578 rtx_insn *end = NEXT_INSN (BB_END (then_bb));
4579 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4580 end = NEXT_INSN (end);
4581
4582 if (end && BARRIER_P (end))
4583 delete_insn (end);
4584 }
4585 merge_blocks (combo_bb, then_bb);
4586 num_true_changes++;
4587 }
4588
4589 /* The ELSE block, if it existed, had a label. That label count
4590 will almost always be zero, but odd things can happen when labels
4591 get their addresses taken. */
4592 if (else_bb)
4593 {
4594 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4595 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4596 is no longer needed, and in fact it is incorrect to leave it in
4597 the insn stream. */
4598 if (EDGE_COUNT (else_bb->succs) == 0
4599 && EDGE_COUNT (combo_bb->succs) > 1)
4600 {
4601 rtx_insn *end = NEXT_INSN (BB_END (else_bb));
4602 while (end && NOTE_P (end) && !NOTE_INSN_BASIC_BLOCK_P (end))
4603 end = NEXT_INSN (end);
4604
4605 if (end && BARRIER_P (end))
4606 delete_insn (end);
4607 }
4608 merge_blocks (combo_bb, else_bb);
4609 num_true_changes++;
4610 }
4611
4612 /* If there was no join block reported, that means it was not adjacent
4613 to the others, and so we cannot merge them. */
4614
4615 if (! join_bb)
4616 {
4617 rtx_insn *last = BB_END (combo_bb);
4618
4619 /* The outgoing edge for the current COMBO block should already
4620 be correct. Verify this. */
4621 if (EDGE_COUNT (combo_bb->succs) == 0)
4622 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
4623 || (NONJUMP_INSN_P (last)
4624 && GET_CODE (PATTERN (last)) == TRAP_IF
4625 && (TRAP_CONDITION (PATTERN (last))
4626 == const_true_rtx)));
4627
4628 else
4629 /* There should still be something at the end of the THEN or ELSE
4630 blocks taking us to our final destination. */
4631 gcc_assert (JUMP_P (last)
4632 || (EDGE_SUCC (combo_bb, 0)->dest
4633 == EXIT_BLOCK_PTR_FOR_FN (cfun)
4634 && CALL_P (last)
4635 && SIBLING_CALL_P (last))
4636 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
4637 && can_throw_internal (last)));
4638 }
4639
4640 /* The JOIN block may have had quite a number of other predecessors too.
4641 Since we've already merged the TEST, THEN and ELSE blocks, we should
4642 have only one remaining edge from our if-then-else diamond. If there
4643 is more than one remaining edge, it must come from elsewhere. There
4644 may be zero incoming edges if the THEN block didn't actually join
4645 back up (as with a call to a non-return function). */
4646 else if (EDGE_COUNT (join_bb->preds) < 2
4647 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4648 {
4649 /* We can merge the JOIN cleanly and update the dataflow try
4650 again on this pass.*/
4651 merge_blocks (combo_bb, join_bb);
4652 num_true_changes++;
4653 }
4654 else
4655 {
4656 /* We cannot merge the JOIN. */
4657
4658 /* The outgoing edge for the current COMBO block should already
4659 be correct. Verify this. */
4660 gcc_assert (single_succ_p (combo_bb)
4661 && single_succ (combo_bb) == join_bb);
4662
4663 /* Remove the jump and cruft from the end of the COMBO block. */
4664 if (join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4665 tidy_fallthru_edge (single_succ_edge (combo_bb));
4666 }
4667
4668 num_updated_if_blocks++;
4669 }
4670
4671 /* Find a block ending in a simple IF condition and try to transform it
4672 in some way. When converting a multi-block condition, put the new code
4673 in the first such block and delete the rest. Return a pointer to this
4674 first block if some transformation was done. Return NULL otherwise. */
4675
4676 static basic_block
find_if_header(basic_block test_bb,int pass)4677 find_if_header (basic_block test_bb, int pass)
4678 {
4679 ce_if_block ce_info;
4680 edge then_edge;
4681 edge else_edge;
4682
4683 /* The kind of block we're looking for has exactly two successors. */
4684 if (EDGE_COUNT (test_bb->succs) != 2)
4685 return NULL;
4686
4687 then_edge = EDGE_SUCC (test_bb, 0);
4688 else_edge = EDGE_SUCC (test_bb, 1);
4689
4690 if (df_get_bb_dirty (then_edge->dest))
4691 return NULL;
4692 if (df_get_bb_dirty (else_edge->dest))
4693 return NULL;
4694
4695 /* Neither edge should be abnormal. */
4696 if ((then_edge->flags & EDGE_COMPLEX)
4697 || (else_edge->flags & EDGE_COMPLEX))
4698 return NULL;
4699
4700 /* Nor exit the loop. */
4701 if ((then_edge->flags & EDGE_LOOP_EXIT)
4702 || (else_edge->flags & EDGE_LOOP_EXIT))
4703 return NULL;
4704
4705 /* The THEN edge is canonically the one that falls through. */
4706 if (then_edge->flags & EDGE_FALLTHRU)
4707 ;
4708 else if (else_edge->flags & EDGE_FALLTHRU)
4709 std::swap (then_edge, else_edge);
4710 else
4711 /* Otherwise this must be a multiway branch of some sort. */
4712 return NULL;
4713
4714 memset (&ce_info, 0, sizeof (ce_info));
4715 ce_info.test_bb = test_bb;
4716 ce_info.then_bb = then_edge->dest;
4717 ce_info.else_bb = else_edge->dest;
4718 ce_info.pass = pass;
4719
4720 #ifdef IFCVT_MACHDEP_INIT
4721 IFCVT_MACHDEP_INIT (&ce_info);
4722 #endif
4723
4724 if (!reload_completed
4725 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
4726 goto success;
4727
4728 if (reload_completed
4729 && targetm.have_conditional_execution ()
4730 && cond_exec_find_if_block (&ce_info))
4731 goto success;
4732
4733 if (targetm.have_trap ()
4734 && optab_handler (ctrap_optab, word_mode) != CODE_FOR_nothing
4735 && find_cond_trap (test_bb, then_edge, else_edge))
4736 goto success;
4737
4738 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
4739 && (reload_completed || !targetm.have_conditional_execution ()))
4740 {
4741 if (find_if_case_1 (test_bb, then_edge, else_edge))
4742 goto success;
4743 if (find_if_case_2 (test_bb, then_edge, else_edge))
4744 goto success;
4745 }
4746
4747 return NULL;
4748
4749 success:
4750 if (dump_file)
4751 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
4752 /* Set this so we continue looking. */
4753 cond_exec_changed_p = TRUE;
4754 return ce_info.test_bb;
4755 }
4756
4757 /* Return true if a block has two edges, one of which falls through to the next
4758 block, and the other jumps to a specific block, so that we can tell if the
4759 block is part of an && test or an || test. Returns either -1 or the number
4760 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4761
4762 static int
block_jumps_and_fallthru_p(basic_block cur_bb,basic_block target_bb)4763 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
4764 {
4765 edge cur_edge;
4766 int fallthru_p = FALSE;
4767 int jump_p = FALSE;
4768 rtx_insn *insn;
4769 rtx_insn *end;
4770 int n_insns = 0;
4771 edge_iterator ei;
4772
4773 if (!cur_bb || !target_bb)
4774 return -1;
4775
4776 /* If no edges, obviously it doesn't jump or fallthru. */
4777 if (EDGE_COUNT (cur_bb->succs) == 0)
4778 return FALSE;
4779
4780 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
4781 {
4782 if (cur_edge->flags & EDGE_COMPLEX)
4783 /* Anything complex isn't what we want. */
4784 return -1;
4785
4786 else if (cur_edge->flags & EDGE_FALLTHRU)
4787 fallthru_p = TRUE;
4788
4789 else if (cur_edge->dest == target_bb)
4790 jump_p = TRUE;
4791
4792 else
4793 return -1;
4794 }
4795
4796 if ((jump_p & fallthru_p) == 0)
4797 return -1;
4798
4799 /* Don't allow calls in the block, since this is used to group && and ||
4800 together for conditional execution support. ??? we should support
4801 conditional execution support across calls for IA-64 some day, but
4802 for now it makes the code simpler. */
4803 end = BB_END (cur_bb);
4804 insn = BB_HEAD (cur_bb);
4805
4806 while (insn != NULL_RTX)
4807 {
4808 if (CALL_P (insn))
4809 return -1;
4810
4811 if (INSN_P (insn)
4812 && !JUMP_P (insn)
4813 && !DEBUG_INSN_P (insn)
4814 && GET_CODE (PATTERN (insn)) != USE
4815 && GET_CODE (PATTERN (insn)) != CLOBBER)
4816 n_insns++;
4817
4818 if (insn == end)
4819 break;
4820
4821 insn = NEXT_INSN (insn);
4822 }
4823
4824 return n_insns;
4825 }
4826
4827 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4828 block. If so, we'll try to convert the insns to not require the branch.
4829 Return TRUE if we were successful at converting the block. */
4830
4831 static int
cond_exec_find_if_block(struct ce_if_block * ce_info)4832 cond_exec_find_if_block (struct ce_if_block * ce_info)
4833 {
4834 basic_block test_bb = ce_info->test_bb;
4835 basic_block then_bb = ce_info->then_bb;
4836 basic_block else_bb = ce_info->else_bb;
4837 basic_block join_bb = NULL_BLOCK;
4838 edge cur_edge;
4839 basic_block next;
4840 edge_iterator ei;
4841
4842 ce_info->last_test_bb = test_bb;
4843
4844 /* We only ever should get here after reload,
4845 and if we have conditional execution. */
4846 gcc_assert (reload_completed && targetm.have_conditional_execution ());
4847
4848 /* Discover if any fall through predecessors of the current test basic block
4849 were && tests (which jump to the else block) or || tests (which jump to
4850 the then block). */
4851 if (single_pred_p (test_bb)
4852 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
4853 {
4854 basic_block bb = single_pred (test_bb);
4855 basic_block target_bb;
4856 int max_insns = MAX_CONDITIONAL_EXECUTE;
4857 int n_insns;
4858
4859 /* Determine if the preceding block is an && or || block. */
4860 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
4861 {
4862 ce_info->and_and_p = TRUE;
4863 target_bb = else_bb;
4864 }
4865 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
4866 {
4867 ce_info->and_and_p = FALSE;
4868 target_bb = then_bb;
4869 }
4870 else
4871 target_bb = NULL_BLOCK;
4872
4873 if (target_bb && n_insns <= max_insns)
4874 {
4875 int total_insns = 0;
4876 int blocks = 0;
4877
4878 ce_info->last_test_bb = test_bb;
4879
4880 /* Found at least one && or || block, look for more. */
4881 do
4882 {
4883 ce_info->test_bb = test_bb = bb;
4884 total_insns += n_insns;
4885 blocks++;
4886
4887 if (!single_pred_p (bb))
4888 break;
4889
4890 bb = single_pred (bb);
4891 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
4892 }
4893 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
4894
4895 ce_info->num_multiple_test_blocks = blocks;
4896 ce_info->num_multiple_test_insns = total_insns;
4897
4898 if (ce_info->and_and_p)
4899 ce_info->num_and_and_blocks = blocks;
4900 else
4901 ce_info->num_or_or_blocks = blocks;
4902 }
4903 }
4904
4905 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4906 other than any || blocks which jump to the THEN block. */
4907 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
4908 return FALSE;
4909
4910 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4911 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
4912 {
4913 if (cur_edge->flags & EDGE_COMPLEX)
4914 return FALSE;
4915 }
4916
4917 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
4918 {
4919 if (cur_edge->flags & EDGE_COMPLEX)
4920 return FALSE;
4921 }
4922
4923 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4924 if (EDGE_COUNT (then_bb->succs) > 0
4925 && (!single_succ_p (then_bb)
4926 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
4927 || (epilogue_completed
4928 && tablejump_p (BB_END (then_bb), NULL, NULL))))
4929 return FALSE;
4930
4931 /* If the THEN block has no successors, conditional execution can still
4932 make a conditional call. Don't do this unless the ELSE block has
4933 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4934 Check for the last insn of the THEN block being an indirect jump, which
4935 is listed as not having any successors, but confuses the rest of the CE
4936 code processing. ??? we should fix this in the future. */
4937 if (EDGE_COUNT (then_bb->succs) == 0)
4938 {
4939 if (single_pred_p (else_bb) && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
4940 {
4941 rtx_insn *last_insn = BB_END (then_bb);
4942
4943 while (last_insn
4944 && NOTE_P (last_insn)
4945 && last_insn != BB_HEAD (then_bb))
4946 last_insn = PREV_INSN (last_insn);
4947
4948 if (last_insn
4949 && JUMP_P (last_insn)
4950 && ! simplejump_p (last_insn))
4951 return FALSE;
4952
4953 join_bb = else_bb;
4954 else_bb = NULL_BLOCK;
4955 }
4956 else
4957 return FALSE;
4958 }
4959
4960 /* If the THEN block's successor is the other edge out of the TEST block,
4961 then we have an IF-THEN combo without an ELSE. */
4962 else if (single_succ (then_bb) == else_bb)
4963 {
4964 join_bb = else_bb;
4965 else_bb = NULL_BLOCK;
4966 }
4967
4968 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4969 has exactly one predecessor and one successor, and the outgoing edge
4970 is not complex, then we have an IF-THEN-ELSE combo. */
4971 else if (single_succ_p (else_bb)
4972 && single_succ (then_bb) == single_succ (else_bb)
4973 && single_pred_p (else_bb)
4974 && !(single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
4975 && !(epilogue_completed
4976 && tablejump_p (BB_END (else_bb), NULL, NULL)))
4977 join_bb = single_succ (else_bb);
4978
4979 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4980 else
4981 return FALSE;
4982
4983 num_possible_if_blocks++;
4984
4985 if (dump_file)
4986 {
4987 fprintf (dump_file,
4988 "\nIF-THEN%s block found, pass %d, start block %d "
4989 "[insn %d], then %d [%d]",
4990 (else_bb) ? "-ELSE" : "",
4991 ce_info->pass,
4992 test_bb->index,
4993 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
4994 then_bb->index,
4995 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
4996
4997 if (else_bb)
4998 fprintf (dump_file, ", else %d [%d]",
4999 else_bb->index,
5000 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
5001
5002 fprintf (dump_file, ", join %d [%d]",
5003 join_bb->index,
5004 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
5005
5006 if (ce_info->num_multiple_test_blocks > 0)
5007 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
5008 ce_info->num_multiple_test_blocks,
5009 (ce_info->and_and_p) ? "&&" : "||",
5010 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
5011 ce_info->last_test_bb->index,
5012 ((BB_HEAD (ce_info->last_test_bb))
5013 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
5014 : -1));
5015
5016 fputc ('\n', dump_file);
5017 }
5018
5019 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
5020 first condition for free, since we've already asserted that there's a
5021 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
5022 we checked the FALLTHRU flag, those are already adjacent to the last IF
5023 block. */
5024 /* ??? As an enhancement, move the ELSE block. Have to deal with
5025 BLOCK notes, if by no other means than backing out the merge if they
5026 exist. Sticky enough I don't want to think about it now. */
5027 next = then_bb;
5028 if (else_bb && (next = next->next_bb) != else_bb)
5029 return FALSE;
5030 if ((next = next->next_bb) != join_bb
5031 && join_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
5032 {
5033 if (else_bb)
5034 join_bb = NULL;
5035 else
5036 return FALSE;
5037 }
5038
5039 /* Do the real work. */
5040
5041 ce_info->else_bb = else_bb;
5042 ce_info->join_bb = join_bb;
5043
5044 /* If we have && and || tests, try to first handle combining the && and ||
5045 tests into the conditional code, and if that fails, go back and handle
5046 it without the && and ||, which at present handles the && case if there
5047 was no ELSE block. */
5048 if (cond_exec_process_if_block (ce_info, TRUE))
5049 return TRUE;
5050
5051 if (ce_info->num_multiple_test_blocks)
5052 {
5053 cancel_changes (0);
5054
5055 if (cond_exec_process_if_block (ce_info, FALSE))
5056 return TRUE;
5057 }
5058
5059 return FALSE;
5060 }
5061
5062 /* Convert a branch over a trap, or a branch
5063 to a trap, into a conditional trap. */
5064
5065 static int
find_cond_trap(basic_block test_bb,edge then_edge,edge else_edge)5066 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
5067 {
5068 basic_block then_bb = then_edge->dest;
5069 basic_block else_bb = else_edge->dest;
5070 basic_block other_bb, trap_bb;
5071 rtx_insn *trap, *jump;
5072 rtx cond;
5073 rtx_insn *cond_earliest;
5074
5075 /* Locate the block with the trap instruction. */
5076 /* ??? While we look for no successors, we really ought to allow
5077 EH successors. Need to fix merge_if_block for that to work. */
5078 if ((trap = block_has_only_trap (then_bb)) != NULL)
5079 trap_bb = then_bb, other_bb = else_bb;
5080 else if ((trap = block_has_only_trap (else_bb)) != NULL)
5081 trap_bb = else_bb, other_bb = then_bb;
5082 else
5083 return FALSE;
5084
5085 if (dump_file)
5086 {
5087 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
5088 test_bb->index, trap_bb->index);
5089 }
5090
5091 /* If this is not a standard conditional jump, we can't parse it. */
5092 jump = BB_END (test_bb);
5093 cond = noce_get_condition (jump, &cond_earliest, then_bb == trap_bb);
5094 if (! cond)
5095 return FALSE;
5096
5097 /* If the conditional jump is more than just a conditional jump, then
5098 we cannot do if-conversion on this block. Give up for returnjump_p,
5099 changing a conditional return followed by unconditional trap for
5100 conditional trap followed by unconditional return is likely not
5101 beneficial and harder to handle. */
5102 if (! onlyjump_p (jump) || returnjump_p (jump))
5103 return FALSE;
5104
5105 /* We must be comparing objects whose modes imply the size. */
5106 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
5107 return FALSE;
5108
5109 /* Attempt to generate the conditional trap. */
5110 rtx_insn *seq = gen_cond_trap (GET_CODE (cond), copy_rtx (XEXP (cond, 0)),
5111 copy_rtx (XEXP (cond, 1)),
5112 TRAP_CODE (PATTERN (trap)));
5113 if (seq == NULL)
5114 return FALSE;
5115
5116 /* If that results in an invalid insn, back out. */
5117 for (rtx_insn *x = seq; x; x = NEXT_INSN (x))
5118 if (reload_completed
5119 ? !valid_insn_p (x)
5120 : recog_memoized (x) < 0)
5121 return FALSE;
5122
5123 /* Emit the new insns before cond_earliest. */
5124 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATION (trap));
5125
5126 /* Delete the trap block if possible. */
5127 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
5128 df_set_bb_dirty (test_bb);
5129 df_set_bb_dirty (then_bb);
5130 df_set_bb_dirty (else_bb);
5131
5132 if (EDGE_COUNT (trap_bb->preds) == 0)
5133 {
5134 delete_basic_block (trap_bb);
5135 num_true_changes++;
5136 }
5137
5138 /* Wire together the blocks again. */
5139 if (current_ir_type () == IR_RTL_CFGLAYOUT)
5140 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
5141 else if (trap_bb == then_bb)
5142 {
5143 rtx lab = JUMP_LABEL (jump);
5144 rtx_insn *seq = targetm.gen_jump (lab);
5145 rtx_jump_insn *newjump = emit_jump_insn_after (seq, jump);
5146 LABEL_NUSES (lab) += 1;
5147 JUMP_LABEL (newjump) = lab;
5148 emit_barrier_after (newjump);
5149 }
5150 delete_insn (jump);
5151
5152 if (can_merge_blocks_p (test_bb, other_bb))
5153 {
5154 merge_blocks (test_bb, other_bb);
5155 num_true_changes++;
5156 }
5157
5158 num_updated_if_blocks++;
5159 return TRUE;
5160 }
5161
5162 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
5163 return it. */
5164
5165 static rtx_insn *
block_has_only_trap(basic_block bb)5166 block_has_only_trap (basic_block bb)
5167 {
5168 rtx_insn *trap;
5169
5170 /* We're not the exit block. */
5171 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5172 return NULL;
5173
5174 /* The block must have no successors. */
5175 if (EDGE_COUNT (bb->succs) > 0)
5176 return NULL;
5177
5178 /* The only instruction in the THEN block must be the trap. */
5179 trap = first_active_insn (bb);
5180 if (! (trap == BB_END (bb)
5181 && GET_CODE (PATTERN (trap)) == TRAP_IF
5182 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
5183 return NULL;
5184
5185 return trap;
5186 }
5187
5188 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
5189 transformable, but not necessarily the other. There need be no
5190 JOIN block.
5191
5192 Return TRUE if we were successful at converting the block.
5193
5194 Cases we'd like to look at:
5195
5196 (1)
5197 if (test) goto over; // x not live
5198 x = a;
5199 goto label;
5200 over:
5201
5202 becomes
5203
5204 x = a;
5205 if (! test) goto label;
5206
5207 (2)
5208 if (test) goto E; // x not live
5209 x = big();
5210 goto L;
5211 E:
5212 x = b;
5213 goto M;
5214
5215 becomes
5216
5217 x = b;
5218 if (test) goto M;
5219 x = big();
5220 goto L;
5221
5222 (3) // This one's really only interesting for targets that can do
5223 // multiway branching, e.g. IA-64 BBB bundles. For other targets
5224 // it results in multiple branches on a cache line, which often
5225 // does not sit well with predictors.
5226
5227 if (test1) goto E; // predicted not taken
5228 x = a;
5229 if (test2) goto F;
5230 ...
5231 E:
5232 x = b;
5233 J:
5234
5235 becomes
5236
5237 x = a;
5238 if (test1) goto E;
5239 if (test2) goto F;
5240
5241 Notes:
5242
5243 (A) Don't do (2) if the branch is predicted against the block we're
5244 eliminating. Do it anyway if we can eliminate a branch; this requires
5245 that the sole successor of the eliminated block postdominate the other
5246 side of the if.
5247
5248 (B) With CE, on (3) we can steal from both sides of the if, creating
5249
5250 if (test1) x = a;
5251 if (!test1) x = b;
5252 if (test1) goto J;
5253 if (test2) goto F;
5254 ...
5255 J:
5256
5257 Again, this is most useful if J postdominates.
5258
5259 (C) CE substitutes for helpful life information.
5260
5261 (D) These heuristics need a lot of work. */
5262
5263 /* Tests for case 1 above. */
5264
5265 static int
find_if_case_1(basic_block test_bb,edge then_edge,edge else_edge)5266 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
5267 {
5268 basic_block then_bb = then_edge->dest;
5269 basic_block else_bb = else_edge->dest;
5270 basic_block new_bb;
5271 int then_bb_index;
5272 profile_probability then_prob;
5273 rtx else_target = NULL_RTX;
5274
5275 /* If we are partitioning hot/cold basic blocks, we don't want to
5276 mess up unconditional or indirect jumps that cross between hot
5277 and cold sections.
5278
5279 Basic block partitioning may result in some jumps that appear to
5280 be optimizable (or blocks that appear to be mergeable), but which really
5281 must be left untouched (they are required to make it safely across
5282 partition boundaries). See the comments at the top of
5283 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
5284
5285 if ((BB_END (then_bb)
5286 && JUMP_P (BB_END (then_bb))
5287 && CROSSING_JUMP_P (BB_END (then_bb)))
5288 || (JUMP_P (BB_END (test_bb))
5289 && CROSSING_JUMP_P (BB_END (test_bb)))
5290 || (BB_END (else_bb)
5291 && JUMP_P (BB_END (else_bb))
5292 && CROSSING_JUMP_P (BB_END (else_bb))))
5293 return FALSE;
5294
5295 /* Verify test_bb ends in a conditional jump with no other side-effects. */
5296 if (!onlyjump_p (BB_END (test_bb)))
5297 return FALSE;
5298
5299 /* THEN has one successor. */
5300 if (!single_succ_p (then_bb))
5301 return FALSE;
5302
5303 /* THEN does not fall through, but is not strange either. */
5304 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
5305 return FALSE;
5306
5307 /* THEN has one predecessor. */
5308 if (!single_pred_p (then_bb))
5309 return FALSE;
5310
5311 /* THEN must do something. */
5312 if (forwarder_block_p (then_bb))
5313 return FALSE;
5314
5315 num_possible_if_blocks++;
5316 if (dump_file)
5317 fprintf (dump_file,
5318 "\nIF-CASE-1 found, start %d, then %d\n",
5319 test_bb->index, then_bb->index);
5320
5321 then_prob = then_edge->probability.invert ();
5322
5323 /* We're speculating from the THEN path, we want to make sure the cost
5324 of speculation is within reason. */
5325 if (! cheap_bb_rtx_cost_p (then_bb, then_prob,
5326 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
5327 predictable_edge_p (then_edge)))))
5328 return FALSE;
5329
5330 if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5331 {
5332 rtx_insn *jump = BB_END (else_edge->src);
5333 gcc_assert (JUMP_P (jump));
5334 else_target = JUMP_LABEL (jump);
5335 }
5336
5337 /* Registers set are dead, or are predicable. */
5338 if (! dead_or_predicable (test_bb, then_bb, else_bb,
5339 single_succ_edge (then_bb), 1))
5340 return FALSE;
5341
5342 /* Conversion went ok, including moving the insns and fixing up the
5343 jump. Adjust the CFG to match. */
5344
5345 /* We can avoid creating a new basic block if then_bb is immediately
5346 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
5347 through to else_bb. */
5348
5349 if (then_bb->next_bb == else_bb
5350 && then_bb->prev_bb == test_bb
5351 && else_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
5352 {
5353 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
5354 new_bb = 0;
5355 }
5356 else if (else_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
5357 new_bb = force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb),
5358 else_bb, else_target);
5359 else
5360 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
5361 else_bb);
5362
5363 df_set_bb_dirty (test_bb);
5364 df_set_bb_dirty (else_bb);
5365
5366 then_bb_index = then_bb->index;
5367 delete_basic_block (then_bb);
5368
5369 /* Make rest of code believe that the newly created block is the THEN_BB
5370 block we removed. */
5371 if (new_bb)
5372 {
5373 df_bb_replace (then_bb_index, new_bb);
5374 /* This should have been done above via force_nonfallthru_and_redirect
5375 (possibly called from redirect_edge_and_branch_force). */
5376 gcc_checking_assert (BB_PARTITION (new_bb) == BB_PARTITION (test_bb));
5377 }
5378
5379 num_true_changes++;
5380 num_updated_if_blocks++;
5381 return TRUE;
5382 }
5383
5384 /* Test for case 2 above. */
5385
5386 static int
find_if_case_2(basic_block test_bb,edge then_edge,edge else_edge)5387 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
5388 {
5389 basic_block then_bb = then_edge->dest;
5390 basic_block else_bb = else_edge->dest;
5391 edge else_succ;
5392 profile_probability then_prob, else_prob;
5393
5394 /* We do not want to speculate (empty) loop latches. */
5395 if (current_loops
5396 && else_bb->loop_father->latch == else_bb)
5397 return FALSE;
5398
5399 /* If we are partitioning hot/cold basic blocks, we don't want to
5400 mess up unconditional or indirect jumps that cross between hot
5401 and cold sections.
5402
5403 Basic block partitioning may result in some jumps that appear to
5404 be optimizable (or blocks that appear to be mergeable), but which really
5405 must be left untouched (they are required to make it safely across
5406 partition boundaries). See the comments at the top of
5407 bb-reorder.cc:partition_hot_cold_basic_blocks for complete details. */
5408
5409 if ((BB_END (then_bb)
5410 && JUMP_P (BB_END (then_bb))
5411 && CROSSING_JUMP_P (BB_END (then_bb)))
5412 || (JUMP_P (BB_END (test_bb))
5413 && CROSSING_JUMP_P (BB_END (test_bb)))
5414 || (BB_END (else_bb)
5415 && JUMP_P (BB_END (else_bb))
5416 && CROSSING_JUMP_P (BB_END (else_bb))))
5417 return FALSE;
5418
5419 /* Verify test_bb ends in a conditional jump with no other side-effects. */
5420 if (!onlyjump_p (BB_END (test_bb)))
5421 return FALSE;
5422
5423 /* ELSE has one successor. */
5424 if (!single_succ_p (else_bb))
5425 return FALSE;
5426 else
5427 else_succ = single_succ_edge (else_bb);
5428
5429 /* ELSE outgoing edge is not complex. */
5430 if (else_succ->flags & EDGE_COMPLEX)
5431 return FALSE;
5432
5433 /* ELSE has one predecessor. */
5434 if (!single_pred_p (else_bb))
5435 return FALSE;
5436
5437 /* THEN is not EXIT. */
5438 if (then_bb->index < NUM_FIXED_BLOCKS)
5439 return FALSE;
5440
5441 else_prob = else_edge->probability;
5442 then_prob = else_prob.invert ();
5443
5444 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
5445 if (else_prob > then_prob)
5446 ;
5447 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
5448 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
5449 else_succ->dest))
5450 ;
5451 else
5452 return FALSE;
5453
5454 num_possible_if_blocks++;
5455 if (dump_file)
5456 fprintf (dump_file,
5457 "\nIF-CASE-2 found, start %d, else %d\n",
5458 test_bb->index, else_bb->index);
5459
5460 /* We're speculating from the ELSE path, we want to make sure the cost
5461 of speculation is within reason. */
5462 if (! cheap_bb_rtx_cost_p (else_bb, else_prob,
5463 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
5464 predictable_edge_p (else_edge)))))
5465 return FALSE;
5466
5467 /* Registers set are dead, or are predicable. */
5468 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ, 0))
5469 return FALSE;
5470
5471 /* Conversion went ok, including moving the insns and fixing up the
5472 jump. Adjust the CFG to match. */
5473
5474 df_set_bb_dirty (test_bb);
5475 df_set_bb_dirty (then_bb);
5476 delete_basic_block (else_bb);
5477
5478 num_true_changes++;
5479 num_updated_if_blocks++;
5480
5481 /* ??? We may now fallthru from one of THEN's successors into a join
5482 block. Rerun cleanup_cfg? Examine things manually? Wait? */
5483
5484 return TRUE;
5485 }
5486
5487 /* Used by the code above to perform the actual rtl transformations.
5488 Return TRUE if successful.
5489
5490 TEST_BB is the block containing the conditional branch. MERGE_BB
5491 is the block containing the code to manipulate. DEST_EDGE is an
5492 edge representing a jump to the join block; after the conversion,
5493 TEST_BB should be branching to its destination.
5494 REVERSEP is true if the sense of the branch should be reversed. */
5495
5496 static int
dead_or_predicable(basic_block test_bb,basic_block merge_bb,basic_block other_bb,edge dest_edge,int reversep)5497 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
5498 basic_block other_bb, edge dest_edge, int reversep)
5499 {
5500 basic_block new_dest = dest_edge->dest;
5501 rtx_insn *head, *end, *jump;
5502 rtx_insn *earliest = NULL;
5503 rtx old_dest;
5504 bitmap merge_set = NULL;
5505 /* Number of pending changes. */
5506 int n_validated_changes = 0;
5507 rtx new_dest_label = NULL_RTX;
5508
5509 jump = BB_END (test_bb);
5510
5511 /* Find the extent of the real code in the merge block. */
5512 head = BB_HEAD (merge_bb);
5513 end = BB_END (merge_bb);
5514
5515 while (DEBUG_INSN_P (end) && end != head)
5516 end = PREV_INSN (end);
5517
5518 /* If merge_bb ends with a tablejump, predicating/moving insn's
5519 into test_bb and then deleting merge_bb will result in the jumptable
5520 that follows merge_bb being removed along with merge_bb and then we
5521 get an unresolved reference to the jumptable. */
5522 if (tablejump_p (end, NULL, NULL))
5523 return FALSE;
5524
5525 if (LABEL_P (head))
5526 head = NEXT_INSN (head);
5527 while (DEBUG_INSN_P (head) && head != end)
5528 head = NEXT_INSN (head);
5529 if (NOTE_P (head))
5530 {
5531 if (head == end)
5532 {
5533 head = end = NULL;
5534 goto no_body;
5535 }
5536 head = NEXT_INSN (head);
5537 while (DEBUG_INSN_P (head) && head != end)
5538 head = NEXT_INSN (head);
5539 }
5540
5541 if (JUMP_P (end))
5542 {
5543 if (!onlyjump_p (end))
5544 return FALSE;
5545 if (head == end)
5546 {
5547 head = end = NULL;
5548 goto no_body;
5549 }
5550 end = PREV_INSN (end);
5551 while (DEBUG_INSN_P (end) && end != head)
5552 end = PREV_INSN (end);
5553 }
5554
5555 /* Don't move frame-related insn across the conditional branch. This
5556 can lead to one of the paths of the branch having wrong unwind info. */
5557 if (epilogue_completed)
5558 {
5559 rtx_insn *insn = head;
5560 while (1)
5561 {
5562 if (INSN_P (insn) && RTX_FRAME_RELATED_P (insn))
5563 return FALSE;
5564 if (insn == end)
5565 break;
5566 insn = NEXT_INSN (insn);
5567 }
5568 }
5569
5570 /* Disable handling dead code by conditional execution if the machine needs
5571 to do anything funny with the tests, etc. */
5572 #ifndef IFCVT_MODIFY_TESTS
5573 if (targetm.have_conditional_execution ())
5574 {
5575 /* In the conditional execution case, we have things easy. We know
5576 the condition is reversible. We don't have to check life info
5577 because we're going to conditionally execute the code anyway.
5578 All that's left is making sure the insns involved can actually
5579 be predicated. */
5580
5581 rtx cond;
5582
5583 /* If the conditional jump is more than just a conditional jump,
5584 then we cannot do conditional execution conversion on this block. */
5585 if (!onlyjump_p (jump))
5586 goto nce;
5587
5588 cond = cond_exec_get_condition (jump);
5589 if (! cond)
5590 goto nce;
5591
5592 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
5593 profile_probability prob_val
5594 = (note ? profile_probability::from_reg_br_prob_note (XINT (note, 0))
5595 : profile_probability::uninitialized ());
5596
5597 if (reversep)
5598 {
5599 enum rtx_code rev = reversed_comparison_code (cond, jump);
5600 if (rev == UNKNOWN)
5601 return FALSE;
5602 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
5603 XEXP (cond, 1));
5604 prob_val = prob_val.invert ();
5605 }
5606
5607 if (cond_exec_process_insns (NULL, head, end, cond, prob_val, 0)
5608 && verify_changes (0))
5609 n_validated_changes = num_validated_changes ();
5610 else
5611 cancel_changes (0);
5612
5613 earliest = jump;
5614 }
5615 nce:
5616 #endif
5617
5618 /* If we allocated new pseudos (e.g. in the conditional move
5619 expander called from noce_emit_cmove), we must resize the
5620 array first. */
5621 if (max_regno < max_reg_num ())
5622 max_regno = max_reg_num ();
5623
5624 /* Try the NCE path if the CE path did not result in any changes. */
5625 if (n_validated_changes == 0)
5626 {
5627 rtx cond;
5628 rtx_insn *insn;
5629 regset live;
5630 bool success;
5631
5632 /* In the non-conditional execution case, we have to verify that there
5633 are no trapping operations, no calls, no references to memory, and
5634 that any registers modified are dead at the branch site. */
5635
5636 if (!any_condjump_p (jump))
5637 return FALSE;
5638
5639 /* Find the extent of the conditional. */
5640 cond = noce_get_condition (jump, &earliest, false);
5641 if (!cond)
5642 return FALSE;
5643
5644 live = BITMAP_ALLOC (®_obstack);
5645 simulate_backwards_to_point (merge_bb, live, end);
5646 success = can_move_insns_across (head, end, earliest, jump,
5647 merge_bb, live,
5648 df_get_live_in (other_bb), NULL);
5649 BITMAP_FREE (live);
5650 if (!success)
5651 return FALSE;
5652
5653 /* Collect the set of registers set in MERGE_BB. */
5654 merge_set = BITMAP_ALLOC (®_obstack);
5655
5656 FOR_BB_INSNS (merge_bb, insn)
5657 if (NONDEBUG_INSN_P (insn))
5658 df_simulate_find_defs (insn, merge_set);
5659
5660 /* If shrink-wrapping, disable this optimization when test_bb is
5661 the first basic block and merge_bb exits. The idea is to not
5662 move code setting up a return register as that may clobber a
5663 register used to pass function parameters, which then must be
5664 saved in caller-saved regs. A caller-saved reg requires the
5665 prologue, killing a shrink-wrap opportunity. */
5666 if ((SHRINK_WRAPPING_ENABLED && !epilogue_completed)
5667 && ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb == test_bb
5668 && single_succ_p (new_dest)
5669 && single_succ (new_dest) == EXIT_BLOCK_PTR_FOR_FN (cfun)
5670 && bitmap_intersect_p (df_get_live_in (new_dest), merge_set))
5671 {
5672 regset return_regs;
5673 unsigned int i;
5674
5675 return_regs = BITMAP_ALLOC (®_obstack);
5676
5677 /* Start off with the intersection of regs used to pass
5678 params and regs used to return values. */
5679 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5680 if (FUNCTION_ARG_REGNO_P (i)
5681 && targetm.calls.function_value_regno_p (i))
5682 bitmap_set_bit (return_regs, INCOMING_REGNO (i));
5683
5684 bitmap_and_into (return_regs,
5685 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5686 bitmap_and_into (return_regs,
5687 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun)));
5688 if (!bitmap_empty_p (return_regs))
5689 {
5690 FOR_BB_INSNS_REVERSE (new_dest, insn)
5691 if (NONDEBUG_INSN_P (insn))
5692 {
5693 df_ref def;
5694
5695 /* If this insn sets any reg in return_regs, add all
5696 reg uses to the set of regs we're interested in. */
5697 FOR_EACH_INSN_DEF (def, insn)
5698 if (bitmap_bit_p (return_regs, DF_REF_REGNO (def)))
5699 {
5700 df_simulate_uses (insn, return_regs);
5701 break;
5702 }
5703 }
5704 if (bitmap_intersect_p (merge_set, return_regs))
5705 {
5706 BITMAP_FREE (return_regs);
5707 BITMAP_FREE (merge_set);
5708 return FALSE;
5709 }
5710 }
5711 BITMAP_FREE (return_regs);
5712 }
5713 }
5714
5715 no_body:
5716 /* We don't want to use normal invert_jump or redirect_jump because
5717 we don't want to delete_insn called. Also, we want to do our own
5718 change group management. */
5719
5720 old_dest = JUMP_LABEL (jump);
5721 if (other_bb != new_dest)
5722 {
5723 if (!any_condjump_p (jump))
5724 goto cancel;
5725
5726 if (JUMP_P (BB_END (dest_edge->src)))
5727 new_dest_label = JUMP_LABEL (BB_END (dest_edge->src));
5728 else if (new_dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
5729 new_dest_label = ret_rtx;
5730 else
5731 new_dest_label = block_label (new_dest);
5732
5733 rtx_jump_insn *jump_insn = as_a <rtx_jump_insn *> (jump);
5734 if (reversep
5735 ? ! invert_jump_1 (jump_insn, new_dest_label)
5736 : ! redirect_jump_1 (jump_insn, new_dest_label))
5737 goto cancel;
5738 }
5739
5740 if (verify_changes (n_validated_changes))
5741 confirm_change_group ();
5742 else
5743 goto cancel;
5744
5745 if (other_bb != new_dest)
5746 {
5747 redirect_jump_2 (as_a <rtx_jump_insn *> (jump), old_dest, new_dest_label,
5748 0, reversep);
5749
5750 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
5751 if (reversep)
5752 {
5753 std::swap (BRANCH_EDGE (test_bb)->probability,
5754 FALLTHRU_EDGE (test_bb)->probability);
5755 update_br_prob_note (test_bb);
5756 }
5757 }
5758
5759 /* Move the insns out of MERGE_BB to before the branch. */
5760 if (head != NULL)
5761 {
5762 rtx_insn *insn;
5763
5764 if (end == BB_END (merge_bb))
5765 BB_END (merge_bb) = PREV_INSN (head);
5766
5767 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5768 notes being moved might become invalid. */
5769 insn = head;
5770 do
5771 {
5772 rtx note;
5773
5774 if (! INSN_P (insn))
5775 continue;
5776 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5777 if (! note)
5778 continue;
5779 remove_note (insn, note);
5780 } while (insn != end && (insn = NEXT_INSN (insn)));
5781
5782 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5783 notes referring to the registers being set might become invalid. */
5784 if (merge_set)
5785 {
5786 unsigned i;
5787 bitmap_iterator bi;
5788
5789 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
5790 remove_reg_equal_equiv_notes_for_regno (i);
5791
5792 BITMAP_FREE (merge_set);
5793 }
5794
5795 reorder_insns (head, end, PREV_INSN (earliest));
5796 }
5797
5798 /* Remove the jump and edge if we can. */
5799 if (other_bb == new_dest)
5800 {
5801 delete_insn (jump);
5802 remove_edge (BRANCH_EDGE (test_bb));
5803 /* ??? Can't merge blocks here, as then_bb is still in use.
5804 At minimum, the merge will get done just before bb-reorder. */
5805 }
5806
5807 return TRUE;
5808
5809 cancel:
5810 cancel_changes (0);
5811
5812 if (merge_set)
5813 BITMAP_FREE (merge_set);
5814
5815 return FALSE;
5816 }
5817
5818 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5819 we are after combine pass. */
5820
5821 static void
if_convert(bool after_combine)5822 if_convert (bool after_combine)
5823 {
5824 basic_block bb;
5825 int pass;
5826
5827 if (optimize == 1)
5828 {
5829 df_live_add_problem ();
5830 df_live_set_all_dirty ();
5831 }
5832
5833 /* Record whether we are after combine pass. */
5834 ifcvt_after_combine = after_combine;
5835 have_cbranchcc4 = (direct_optab_handler (cbranch_optab, CCmode)
5836 != CODE_FOR_nothing);
5837 num_possible_if_blocks = 0;
5838 num_updated_if_blocks = 0;
5839 num_true_changes = 0;
5840
5841 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
5842 mark_loop_exit_edges ();
5843 loop_optimizer_finalize ();
5844 free_dominance_info (CDI_DOMINATORS);
5845
5846 /* Compute postdominators. */
5847 calculate_dominance_info (CDI_POST_DOMINATORS);
5848
5849 df_set_flags (DF_LR_RUN_DCE);
5850
5851 /* Go through each of the basic blocks looking for things to convert. If we
5852 have conditional execution, we make multiple passes to allow us to handle
5853 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5854 pass = 0;
5855 do
5856 {
5857 df_analyze ();
5858 /* Only need to do dce on the first pass. */
5859 df_clear_flags (DF_LR_RUN_DCE);
5860 cond_exec_changed_p = FALSE;
5861 pass++;
5862
5863 #ifdef IFCVT_MULTIPLE_DUMPS
5864 if (dump_file && pass > 1)
5865 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
5866 #endif
5867
5868 FOR_EACH_BB_FN (bb, cfun)
5869 {
5870 basic_block new_bb;
5871 while (!df_get_bb_dirty (bb)
5872 && (new_bb = find_if_header (bb, pass)) != NULL)
5873 bb = new_bb;
5874 }
5875
5876 #ifdef IFCVT_MULTIPLE_DUMPS
5877 if (dump_file && cond_exec_changed_p)
5878 print_rtl_with_bb (dump_file, get_insns (), dump_flags);
5879 #endif
5880 }
5881 while (cond_exec_changed_p);
5882
5883 #ifdef IFCVT_MULTIPLE_DUMPS
5884 if (dump_file)
5885 fprintf (dump_file, "\n\n========== no more changes\n");
5886 #endif
5887
5888 free_dominance_info (CDI_POST_DOMINATORS);
5889
5890 if (dump_file)
5891 fflush (dump_file);
5892
5893 clear_aux_for_blocks ();
5894
5895 /* If we allocated new pseudos, we must resize the array for sched1. */
5896 if (max_regno < max_reg_num ())
5897 max_regno = max_reg_num ();
5898
5899 /* Write the final stats. */
5900 if (dump_file && num_possible_if_blocks > 0)
5901 {
5902 fprintf (dump_file,
5903 "\n%d possible IF blocks searched.\n",
5904 num_possible_if_blocks);
5905 fprintf (dump_file,
5906 "%d IF blocks converted.\n",
5907 num_updated_if_blocks);
5908 fprintf (dump_file,
5909 "%d true changes made.\n\n\n",
5910 num_true_changes);
5911 }
5912
5913 if (optimize == 1)
5914 df_remove_problem (df_live);
5915
5916 /* Some non-cold blocks may now be only reachable from cold blocks.
5917 Fix that up. */
5918 fixup_partitions ();
5919
5920 checking_verify_flow_info ();
5921 }
5922
5923 /* If-conversion and CFG cleanup. */
5924 static unsigned int
rest_of_handle_if_conversion(void)5925 rest_of_handle_if_conversion (void)
5926 {
5927 int flags = 0;
5928
5929 if (flag_if_conversion)
5930 {
5931 if (dump_file)
5932 {
5933 dump_reg_info (dump_file);
5934 dump_flow_info (dump_file, dump_flags);
5935 }
5936 cleanup_cfg (CLEANUP_EXPENSIVE);
5937 if_convert (false);
5938 if (num_updated_if_blocks)
5939 /* Get rid of any dead CC-related instructions. */
5940 flags |= CLEANUP_FORCE_FAST_DCE;
5941 }
5942
5943 cleanup_cfg (flags);
5944 return 0;
5945 }
5946
5947 namespace {
5948
5949 const pass_data pass_data_rtl_ifcvt =
5950 {
5951 RTL_PASS, /* type */
5952 "ce1", /* name */
5953 OPTGROUP_NONE, /* optinfo_flags */
5954 TV_IFCVT, /* tv_id */
5955 0, /* properties_required */
5956 0, /* properties_provided */
5957 0, /* properties_destroyed */
5958 0, /* todo_flags_start */
5959 TODO_df_finish, /* todo_flags_finish */
5960 };
5961
5962 class pass_rtl_ifcvt : public rtl_opt_pass
5963 {
5964 public:
pass_rtl_ifcvt(gcc::context * ctxt)5965 pass_rtl_ifcvt (gcc::context *ctxt)
5966 : rtl_opt_pass (pass_data_rtl_ifcvt, ctxt)
5967 {}
5968
5969 /* opt_pass methods: */
gate(function *)5970 virtual bool gate (function *)
5971 {
5972 return (optimize > 0) && dbg_cnt (if_conversion);
5973 }
5974
execute(function *)5975 virtual unsigned int execute (function *)
5976 {
5977 return rest_of_handle_if_conversion ();
5978 }
5979
5980 }; // class pass_rtl_ifcvt
5981
5982 } // anon namespace
5983
5984 rtl_opt_pass *
make_pass_rtl_ifcvt(gcc::context * ctxt)5985 make_pass_rtl_ifcvt (gcc::context *ctxt)
5986 {
5987 return new pass_rtl_ifcvt (ctxt);
5988 }
5989
5990
5991 /* Rerun if-conversion, as combine may have simplified things enough
5992 to now meet sequence length restrictions. */
5993
5994 namespace {
5995
5996 const pass_data pass_data_if_after_combine =
5997 {
5998 RTL_PASS, /* type */
5999 "ce2", /* name */
6000 OPTGROUP_NONE, /* optinfo_flags */
6001 TV_IFCVT, /* tv_id */
6002 0, /* properties_required */
6003 0, /* properties_provided */
6004 0, /* properties_destroyed */
6005 0, /* todo_flags_start */
6006 TODO_df_finish, /* todo_flags_finish */
6007 };
6008
6009 class pass_if_after_combine : public rtl_opt_pass
6010 {
6011 public:
pass_if_after_combine(gcc::context * ctxt)6012 pass_if_after_combine (gcc::context *ctxt)
6013 : rtl_opt_pass (pass_data_if_after_combine, ctxt)
6014 {}
6015
6016 /* opt_pass methods: */
gate(function *)6017 virtual bool gate (function *)
6018 {
6019 return optimize > 0 && flag_if_conversion
6020 && dbg_cnt (if_after_combine);
6021 }
6022
execute(function *)6023 virtual unsigned int execute (function *)
6024 {
6025 if_convert (true);
6026 return 0;
6027 }
6028
6029 }; // class pass_if_after_combine
6030
6031 } // anon namespace
6032
6033 rtl_opt_pass *
make_pass_if_after_combine(gcc::context * ctxt)6034 make_pass_if_after_combine (gcc::context *ctxt)
6035 {
6036 return new pass_if_after_combine (ctxt);
6037 }
6038
6039
6040 namespace {
6041
6042 const pass_data pass_data_if_after_reload =
6043 {
6044 RTL_PASS, /* type */
6045 "ce3", /* name */
6046 OPTGROUP_NONE, /* optinfo_flags */
6047 TV_IFCVT2, /* tv_id */
6048 0, /* properties_required */
6049 0, /* properties_provided */
6050 0, /* properties_destroyed */
6051 0, /* todo_flags_start */
6052 TODO_df_finish, /* todo_flags_finish */
6053 };
6054
6055 class pass_if_after_reload : public rtl_opt_pass
6056 {
6057 public:
pass_if_after_reload(gcc::context * ctxt)6058 pass_if_after_reload (gcc::context *ctxt)
6059 : rtl_opt_pass (pass_data_if_after_reload, ctxt)
6060 {}
6061
6062 /* opt_pass methods: */
gate(function *)6063 virtual bool gate (function *)
6064 {
6065 return optimize > 0 && flag_if_conversion2
6066 && dbg_cnt (if_after_reload);
6067 }
6068
execute(function *)6069 virtual unsigned int execute (function *)
6070 {
6071 if_convert (true);
6072 return 0;
6073 }
6074
6075 }; // class pass_if_after_reload
6076
6077 } // anon namespace
6078
6079 rtl_opt_pass *
make_pass_if_after_reload(gcc::context * ctxt)6080 make_pass_if_after_reload (gcc::context *ctxt)
6081 {
6082 return new pass_if_after_reload (ctxt);
6083 }
6084